

Fortezza-enabled Multi-level Sensitive Simulations

Eric A.M. Luiijf M.Sc.Eng.

TNO Physics and Electronics Laboratory (TNO-FEL)
P.O. Box 96864, 2509 JG The Hague
The Netherlands, +31 70 374 0312

luiijf@fel.tno.nl

Amitabh Dey, James Watson
SPARTA, Inc., Orlando, FL
amitabh_dey@sparta.com

jwatson@sparta.com

Carl Muckenhirn
SPARTA, Inc., Columbia, MD
Carl_Muckenhirn@sparta.com

Mike Garnsey

STRICOM, Orlando, FL
Mike_Garnsey@stricom.army.mil

Keywords:

DIS, Fortezza, ISDN, MISSI, multi-level, SABI, security, sensitive, simulation, TIBI

ABSTRACT: Current security models in simulation environments depend on interconnected System High enclaves. A
secret and below interconnect (SABI) using a guard might interconnect the various enclave classification levels.
Problem areas include: restricted "need-to-know" (privacy/sensitivity) support, the dependence on expensive or
capacity-limited link encryptors, the difficulty to clear all personnel involved in a multi-national and/or large exercise,
and the throughput limitations associated with centralized guard mechanisms.
In the joint Sensitive Simulation (SENSIM) project STRICOM, TNO-FEL and SPARTA Inc. researched the use of
application level Fortezza® end-to-end encryption in a multi-level sensitive but unclassified (SBU) secured simulation
environment. The use of digital signatures to authenticate and protect the integrity of simulation management
information has been studied as well. This paper discusses the background of this new approach, the international
experiments using an ISDN link, the initial results, improvements made, conclusions and recommendations for further
study. This project was sponsored jointly by the US Army STRICOM and the Royal Netherlands Army (RNlA).

1. Introduction

To date, all USA and international efforts in securing
distributed interactive simulations (DIS and HLA) are
targeted towards network level security services, e.g.,
data link encryption between multiple system high secured
environments, the so-called enclaves.

Current DMSO plans for the security architecture in the
High Level Architecture for Simulations (HLA) rely upon
system high environments and guards as sanitizing boxes
between networks at different classification levels [2]. The
reason is that multi-level security (MLS) in DIS and HLA
environments is a complex technical and organizational
issue. From [2], it is not expected that these MLS

solutions will be accredited under the demanding security
agency process for at least the next few years.

Within these System High environments, data flows
unencrypted through the network. Under certain
circumstances one wants to protect sensitive information
in simulators within the System High environment itself.
Examples include stealth plane simulators, capabilities of
advanced weapons systems and tactical doctrine.

In order to meet the demands of simulation architectures
such as the DMSO HLA, security should be exercised
closer to the actual consumers and producers of sensitive
and potentially classified information. Eventually, support
of multi-level simulations, that is a single simulation
operating on, and producing, information at more than one
security level (classification, compartment, caveat) will

require the simulation (or a simulation framework) to
directly access or perform security services.

The US National Security Agency’s (NSA) Multi-level
Information Systems Security Initiative (MISSI) or its
Dutch equivalent, the Technisch Informatie Beveiligings
Initiatief (TIBI), are producing technical security solutions
which may be applied to the modeling and simulation
environment. Of particular interest is use of the US
Fortezza® cryptocard and the accompanying Fortezza
cryptologic library to secure modeling and simulation
applications. For background information on Fortezza, see
[5] and [6].

STRICOM, SPARTA and TNO-FEL jointly developed a
new approach to the aforementioned security problems by
introducing application level security in the system high
simulation enclave environment. Our Sensitive Simulation
(SENSIM) project included joint experiments to
demonstrate the approach in a multi-level sensitive, but
unclassified (SBU) test environment. This environment
comprised of one LAN at STRICOM in Orlando and one
LAN at TNO-FEL in the Netherlands, interconnected via
ISDN, with ModSAF computer generated force
simulations using DIS protocols.

The objective of this paper is to describe the new concept
and demonstration of multi-level secure encryption at the
application level supporting a multi-level secure
distributed simulation. Results achieved are presented and
discussed, leading to issues and directions for future work.

The concept and intentions of the SENSIM project have
been presented earlier at the ITSEC'97 conference [1].
This paper extends [1] with results and observations.

2. Statement of the problem

For some time, various security issues have limited
training and simulation exercises. These have ranged from
pedestrian concerns about the performance of particular
security equipment, to critical concerns of classification
and security accreditation mismatches between
environments. Segregation and isolation of information
among exercise participants is also a major concern.
Segregation may be needed due to national policies (i.e.,
US or NL ONLY restrictions) or proprietary concerns.
In discussions with SPARTA and TNO-FEL, STRICOM
expressed a desire to provide a security solution which
will allow US and allied simulation activities to execute
cooperative exercises containing sensitive information
over unprotected networks. In particular, STRICOM is
working with its British and Dutch counterparts and would
like to provide a method of protecting information

exchanged among the parties as well as allowing parties to
restrict access of the other parties as needed.

The immediate problem is to provide a sensitivity
(privacy) protection mechanism, to US and non-US allied
simulation activities. This mechanism must provide to the
participants the ability to securely share information
which may ultimately be classified information.

3. Current security approaches

3.1 System High and Dedicated

Current practices within the defense modeling and
simulation community for protection of classified
activities fall into three basic camps. The first is the
traditional defense isolation of the classified computation
within a physically secured enclave. The systems, if more
than one is involved, are interconnected via standard
networking technologies and they all operate in a “System
High” or “Dedicated” mode (see Figure 3.1).

Simulator B
(SECRET)

Simulator A
(SECRET)

Protected Enclave

Wide Area Network
(UNCLASS)

Figure 3.1: System High Protected Enclave Network

This approach requires that all participants in the exercise
be cleared to the same level and are at one single location.
For many activities this is not an issue, but for large
exercises, requiring many players, possibly from allied or
coalition forces, the ability to clear all players in time for
all information in the exercise may not exist.

The next approach basically extends the boundaries of the
“protected enclave” through the use of network encryption
devices on a point to point basis. In this case, again, all
simulations operate at the same classification level in
either a “System High” or “Dedicated” mode (see Figure
3.2). This model can provide good performance for
distributed simulations, but at the expense of dedicated
telecommunications circuits between participating

enclaves. Note that a separate channel is required between
each site with two encryptors on each link.

Figure 3.2: System High Interconnected Enclaves

The third security option is that employed e.g. by the
Defense Simulation Internet (DSInet). This approach is
basically an extension of the second approach with
protected enclaves interconnected over networked
connections rather than point-to-point connections.
Theoretically this architecture provides the ability for
distributed simulations to interact with an arbitrary
number of protected enclaves through the use of a single
network connection using multi-casting protocols and a
single network encryption device. However, in addition to
the currently experienced performance problems with the
encryption devices, this architecture still does not provide
any protection beyond the “enclave” level.

3.2 HLA security architecture

A special security task force is targeted to develop a
security architecture for the High Level Architecture
(HLA) for Simulation. Several projects were granted by
DMSO to develop a multi-level security HLA
environment. Multi-level security in the HLA environment
means that a secret and below interconnect (SABI) guard
between a high classification level System High
environment, e.g. Secret, and a lower classification level,
e.g. Unclassified, secures the information flow between
both environments.
Only allowed and sanitized traffic flows should pass the
guard. Trusted Information Systems (TIS) is involved in
the study and design. TIS presented the diagram in Figure
3.3 at the 1997 Spring Simulation Interoperability
Workshop [2]. As shown the guard secures the
information flow between two classification levels, each
being a system high or dedicated environment. Note that
the connection arrow near MRCI stands for a bulk
encrypted wide area data link solution.

The sanitizing job of the guard is difficult. Different views
of the "same" information depending on one's
classification level or need-to-know in a distributed
simulation environment have to be presented. Solving this
complex information problem in such a way that a general
solution can be accredited by security agencies is
estimated to take several years. Note that this security
architecture has a pre-requisite System High or dedicated
local and/or wide area network for each security level.
However, within one single security domain no solution
for multiple segregated sensitivity compartments has been
presented.

SECRET
Domain

UNCLASSIFIED
Domain

RTI
HLA SECURITY GUARD FEDERATEHLA SECURITY GUARD FEDERATEHLA SECURITY GUARD FEDERATEHLA SECURITY GUARD FEDERATE

RTI

S1

RTI

S2

RTI

MRCI

RTI

U3

RTI

U2

RTI
U1

RTI

Figure 3.3: HLA Secured Combined Federation Architecture
(source: [2]).

4. The Multi-level Information Systems
Security Initiative (MISSI)

NSA's Multilevel Information Systems Security Initiative
(MISSI) and the Dutch TIBI aim at providing security
solutions to a wide variety of information systems
applications. Implementation of the security solutions is
accomplished through the use of several “building block”
security products.

PC Card (PCMCIA) format cryptographic devices which
were used in our project provide data encryption and
decryption, data integrity, user identification and
authentication, and user non-repudiation functions
(sign/verify, hash, time stamp). See Table 4.1.

Table 4.1: Overview of Fortezza functions and bit and key
lengths

Simulator B
(SECRET)

Simulator A
(SECRET)

Pro tec ted Enc l ave

Wide Area Netwo rk
(UNCLASS)

Simulator B
(SECRET)

Simulator A
(SECRET)

Protected Enclave

Point-to-point
Encryption Device

Point-to-point
Encryption Device

Cryptocard
Function

Name Description Standard

Public Key
Exchange

KEA Key Exchange Algorithm
160 bit private key

Fortezza
Diffie-Helman
variant

Message
Encryption

SKIPJA
CK

Type II Algorithm
80 bit key

NSA / FIPS 185

Digital Signature DSA Digital Signature
Algorithm
1024 bit modulus

NIST FIPS 186

Hashing SHA-1 Secure Hash Algorithm -
Rev 1 160 bit

NIST FIPS180-
1

Timestamp N/A Uses Secure Hash
Algorithm
Digital Signature
Algorithm (DSA)
160 bit

FORTEZZA

Password PIN 4-12 bytes Personal
Identification Number

FORTEZZA

Certificate N/A Fortezza 2820 bytes CCITT X.509

Table 4.2: The Fortezza Cryptologic Interface (CI) Library
functions (from [5])

Library Commands

CI_Initialize

CI_Terminate

Management Commands

CI_Close CI_Lock CI_Select
CI_GetConfiguration CI_Open CI_Unlock

CI_GetState CI_Reset CI_FirmwareUpdate

Cryptologic
Commands

CI_ChangePIN* CI_GetHash CI_Save

CI_CheckPIN CI_GetPersonalityList CI_SetConfiguratio
n

CI_Decrypt CI_GetStatus CI_SetKey
CI_DeleteCertificate CI_GetTime CI_SetMode

CI_DeleteKey CI_Hash CI_SetPersonality
CI_Encrypt CI_InitializeHash CI_SetTime*

CI_ExtractX* CI_InstallX CI_Sign
CI_GenerateIV CI_LoadCertificate CI_TimeStamp

CI_GenerateMEK CI_LoadDSAParameters CI_UnwrapKey
CI_GenerateRa CI_LoadInitValues* CI_VerifySignature

CI_GenerateRandom CI_LoadIV CI_VerifyTimestam
p

CI_GenerateTEK CI_LoadX CI_WrapKey
CI_GenerateX CI_RelayX CI_Zeroize

CI_GetCertificate CI_Restore

* Site Security Officer only function

There are two basic versions: Fortezza® for use in
sensitive but unclassified (SBU) environments and Secret
environments under certain circumstances; and Krypton®
for all levels of classification, with implementation
restrictions.

A wide variety of applications have been enabled to use
the Fortezza card, including: e-mail, file transfer, storage,
EDI/E-Commerce, search & retrieval, dbase access
authentication and WWW. All these applications make
use of a single software interface, the common crypto-
graphic application program interface or CAPI. On each
platform that supports Fortezza the CAPI is supported by
a cryptologic library, the CI_lib.

5. Application security, a new approach

Rather than securing an exercise at the communications
network level, and accepting the drawbacks embodied in
that approach, (performance bottleneck, single-level
system high or dedicated exercises), we propose to
provide security at the simulation application level
through the use of MISSI (or for the Netherlands: TIBI)
technology. The current MISSI approach is to migrate
security services from application independent areas (such
as a communications network) to application dependent
areas for systems on federations which are capable of, or
require, identification and segregation of information.
Distributed combat simulation network could be such a
case.

The SENSIM project was drafted to explore the efficiency
and problems associated with providing security services
at the simulation application to network interface using
Fortezza technology. Figure 5.1 is an adaptation of a
figure from [4], which depicts encryption/decryption of
information at the application interface by application
calls. Placing security at this level allows the simulation
host (and its applications) to segregate and protect data
based on simulation/exercise specific security policies. In
the current environments, such an architecture may be
used to isolate various categories of information at the
same security level (i.e. caveats within SECRET).
Migration of the simulation host operating system to a
trusted platform (such as a Compartmented Mode
Workstation) will allow segregation of information of
several security levels.

The intent is that the protected sensitive simulator (or
federate) is able to acquire information of both insensitive
and (other) sensitive simulators. The sensitive simulator is
able to keep in touch with sensitive cooperative simulators
by using security devices that belong to the same group
(having the same key). At the same time, the simulator is
able to sanitize information (e.g. entity state) and make
that available to all simulators.

LAN

WAN Network Interface

Outgoing PDUsIncoming PDUs

KEY
Entity State PDU

Detonation PDU

Voice Data Local Area Network

Encrypted PDU

S ecurity Interface
Simulat ion Host

Figure 5.1: Application-level secured simulation to network
interface

Technical implementation of this architecture can be
achieved by integrating Fortezza security services into the
DIS Interface Library (DIL) or the HLA Run Time
Interface (RTI). Integration at this level will allow security
services to be applied directly from the simulation
(through an expanded security interface), on a host or
class basis.

FORTEZZA

CI_Lib

D
R
I
V
E
R
S

DIL/
Se curity
Inte rface

Operating
S ystem Network

Interface

DIL

Simulation
Application

Figure 5.2: Fortezza enabled DIL-interface

Initially, in the SENSIM exploratory project, the system
performs security services on a per DIS PDU-type basis,
that is, all PDUs of a particular type being sent, will be
protected in the same manner (e.g. encrypted). This will
allow further unmodified simulations (such as MODSAF)
to exchange information through a Fortezza protected
channel.

Integration of Fortezza with the DIS Interface Library is
quite similar to other Fortezza integration efforts to date.
In the DIS-case, the underlying UDP protocol being
secured is “stateless” with each “package” being an
atomic event. This eases development since no persistent
protocol state must be kept on each package as it is
transmitted, and all information required to determine the
security services is included in the package. On the other
hand, additional overhead is introduced which might
conflict with the near real-time performance requirements.
The project investigated whether such drawbacks are
available or not.

The architecture of a Fortezza integrated simulator is
shown in Figure 5.2. Most of the security components are
non-developmental items. The only development required
is in the DIL/Security interface, which interfaces the
security services with the DIS Interface Library or the RTI
in the HLA environment. The scope of work for the
DIL/Security Interface entails designing the secured DIS
PDU format, developing the interface mechanism/API
between the DIL and Fortezza subsystem, and developing
the “security API” which may be exported to simulation
applications.

6. Proof of concept and expectations

6.1 Demonstration setup

In order to examine issues surrounding this security
architecture, SPARTA in conjunction with STRICOM
(US) and TNO-FEL (Netherlands), used multiple
MODSAF semi-automated force generators in simple
multi-level secure scenarios.

Figure 6.1 shows one of these scenarios, using RED,
BLUE and GOLD players. The system was set to allow
RED forces to interoperate and hide and protect certain
information from the BLUE forces and vice versa. The
GOLD players were able to receive and interact with both
sets of forces. Segregation of information was enforced by
selective distribution of cryptographic keys to the parties.
In particular, the RED forces only exchanged keys with
other RED forces and the GOLD players; similarly, the
BLUE forces exchanged keys with other BLUE forces and
the GOLD players.

The demonstration addressed several important Modeling
and Simulation issues. The first objective was the analysis
and testing of the Fortezza system performance in
distributed simulation applications. Measurement of the
throughput, delay, and overhead characteristics of a DIS
PDU level security system was made. Secondly, the

project explored all issues related to the use of such
“multi-level” secure simulations.

RED
Aircraft

RED
Tank

GOLD Player/Viewer

BLUE
Aircraft

BLUE
Tank

Unclassified
Actions/

External Attributes

Figure 6.1: Multi-level Secure scenario

6.2 Fortezza speed expectations

SPARTA made a pre-demonstration assessment on the
performance of Fortezza® PCMCIA cards and achieved
an average command time of 282 ms, zero byte message
time was 51 ms and a throughput of 2.4 Mbps using a
SUN workstation and an external SCSI PCMCIA-reader.
The throughput was limited by the commercial PCMCIA
card interface not the Fortezza processor (which at 40Mhz
and 8 bits per clock cycle runs at 320 Mbps). An average
PDU generation rate of approximately 10-15 PDUs per
second for a pair of tanks during a ground engagement
was assumed based on prior observed DIS results. These
figures were conservatively taken to be all entity state
PDUs of 1.528 kbit message length.

TNO-FEL also made some throughput measurements on
the Fortezza card using the ftzatest program supplied by
SPARTA on a SGI Indigo2 with a SCSI PCMCIA card
reader. Two different types of measurements were made:
a) executing the encryption and the decryption processes
in such a way that the Fortezza key management functions
are only called once per measurement, b) execute the
Fortezza key management functions for each
encrypt/decrypt cycle.
The initialization cryptographic functions are
CI_DeleteKey, CI_GenerateMEK (master encryption
key), CI_SetKey and CI_GenerateIV (initialization
vector). For obvious reasons process a) is the fastest. By
the way the CI_Encrypt and CI_Decrypt functions only
act upon tuples of 64 bits (8 bytes) using the (default) 64

bit Cipher Block Chaining (64 bit CBC) mode. Encryption
requires thus the data to be padded up to the next multiple
of 8 bytes.

From Appendix Figure A one can see that the time per
encryption or decryption call for a block of information is
nearly the same if no additional calls are necessary for
changing session keys (encrypt2/decrypt2 cases). For
block sizes up to 4 Kbytes the time per call increases is
quite flat: a delay of 46.4 ms plus roughly 2 ms/Kbyte.
Just above 4 Kbytes, an unexplained increased time/call
jump occurs. Note that there is an asymmetric effect
between encryption and decryption.

In our demonstration, we used the Fortezza card to
encrypt and decrypt DIS IEEE 1278.1 protocol data units
(PDUs). PDUs were required to fit into one UDP Ethernet
packet, limiting the PDU size to a maximum of 1500
bytes. The encryption and decryption speed for this
"working range" was expected to be just over 46 ms, a
time mainly required by the cryptologic library to verify
the PCMCIA card status, to initialize it for
encryption/decryption as well as the SCSI driver/interface
overhead.

Because of the relatively slow Fortezza CI_lib library
initialization time, the encryption/decryption throughput
more or less doubles with the block size (see the almost
straight logarithmic line in Appendix Figure B). The speed
doubles up to the block size of 9 Kbytes. For larger block
sizes a slow down occurs, probably due to non-Fortezza
issues (e.g. memory management).

6.3 Fortezza aware ModSAF

Rather than encrypting the content of all DIS protocol
data units or PDUs, SENSIM tried to encrypt only the
information of stealth entities. Technically, an additional
functionality has been added to ModSAF's low level
PDU-to-network interface. Both the encryption and
decryption flows are depicted in Figure 6.2 respectively
Figure 6.3.

The current experimental code determines the fact that an
ESPDU is of the stealth type by looking at the size of the
ESPDU. In case an arriving ESPDU is larger than 200
bytes, the PDU will follow the decryption path. As
optional articulation parameters (N*16 bytes) might cause
an ESPDU to become larger than this discriminating size,
in future new encrypted versions of the PDU types need to
be defined.

Outgoing PDU
type X

PDU to
network

Outgoing PDU
Type=

encrypted

Use
Fortezza to

encrypt

Entity type=
Stealth ?

no

yes

Figure 6.2: Processing Fortezza enhanced outgoing PDU stream
and encrypting stealth entity information

Incoming
PDU

PDU type X =
Stealth ?

Entity type=
Stealth ?
PDU

decryptable ?

Incoming
 PDU type X

PDU type X =
Stealth ?

PDU type X =
Stealth ?

PDU type X =
Stealth ?

PDU type =
Stealth ?

Use
Fortezza to

decrypt

Discard PDU

yes

no

yes

no

Figure 6.3: Processing Fortezza enhanced incoming PDU stream
and decrypting stealth entity information

The layout of encrypted ESPDU is shown together with
the standard IEEE 1278.1 ESPDU in Appendix Figure C.
Because of UDP delivery is not guaranteed (PDUs might
not arrive) cryptographic information needs to be added to
the ESPDU. This includes the 128 bytes Ra, which is the
encryption random number necessary for the Key
Exchange Algorithm (KEA); the 24 bytes Initialization
Vector (IV), and 12 bytes Message Encryption Key
(MEK). In total, the stealth ESPDU is 164 bytes larger
than a standard ESPDU. From Appendix Figure C one can
see that the ESPDU more than doubles in size when
containing encrypted information.

6.4 Proof of principle

The first intent of the SENSIM experiments was to show a
proof-of-principle of application based security. The
Fortezza-aware ModSAF code was developed by Sparta
under contract to STRICOM. For reasons of simplicity,
three different versions of ModSAF were built: ModSAF-
E (encrypting), ModSAF-D (decrypting) and ModSAF-U,
was a "Fortezza unaware" version that had to disregard
the encrypted ESPDUs that were longer in size.

ModSAF-U

ModSAF-E

ModSAF-D

Figure 6.4: The "stealth" entity (e.g. plane) is not seen by
normal DIS-players (ModSAF-U)

At the encrypting side, the public key of the decryptor is
required. This key had to be extracted from the
"personality" certificate loaded in the Fortezza card of the
decrypting side. In the same way, at the decrypting side
needed the public key from the encryptor to unpack the
session key. This required modifying a X.509 certificate
extraction program to extract the public KEA and DSS
keys.

With only minor problems being encountered, we
connected these ModSAF variants across the North
Atlantic using an ISDN-link. On the first attempt, a
backdoor was discovered. ModSAF also issues Synthetic
Environment Persistent Object (PO)-database information
on the network, allowing the ModSAF-U to learn about
the existence of the sensitive entities. Turning off the PO-
switch at the start of the ModSAF-E resulted in the
intended project result (see Figure 6.4).

7. Results of the experiments

7.1 Stealthy performance

TNO-FEL instrumented the encode and decode ModSAF
versions. At the relevant places in the code wall-clock
time calls were made. Analysis showed 116 ms encryption
initialization time and 575 ms needed for encryption and
key wrapping. This summed up to 692 ms on average. The
decoding was only a little faster with 556 ms resulting in
1.2 seconds per transferred ESPDU. These results were
far from the expected results and in no way match the
IEEE 1278.2 DIS maximum latency of 100 ms (tightly
coupled) and 300 ms (loosely coupled). [7]

7.2 Performance improvements

In attempt to identify the cause, TNO-FEL extracted the
essential code parts to avoid the lengthy recompile and
linking time of ModSAF. Two programs were developed:
one doing the encryption and writing PDUs to a file and
another doing the decryption. Each Fortezza CI_lib call
was measured. Appendix figure D contains the results.

Inspection showed that the Fortezza code encoded each
ESPDU with a new "session key". The process, requiring
a new random number and IV is very time consuming, as
can been seen in Appendix figure D. Unfortunately, due to
the stateless nature of the UDP protocol, an encrypted
session "stream" of packets, sending the session key
"envelope" only at the start, cannot be setup. As part of
each ESPDU, the public key of the recipient wrapped
session key needs to be sent in each UDP packet.

Rather than generating it each time again, a session key
can be generated only once at the start of ModSAF-E.
Then add the (now) static 164 bytes (Ra, IV, and MEK)
encryption session information need only to be included in
each encrypted ESPDU. The encryption routine would
encrypt only the "plain" entity state data. Experimental
code showed that this saves about 650 ms per ESPDU at
the generator (encrypting) side.

In the recipient code, there is another problem. As more
senders transmit encrypted ESPDUs, the Ra, IV, MEK-
combination for each is different. Some number of Ra,
IV, MEK sets can be cached at the receiving side. New
or out-of-cache ESPDUs require the whole sequence of
setting the proper encryption registers. Switching the
decoder between different stealth senders can be based
upon the Ra, IV, MEK-combination and an accompanying
assigned Fortezza card register set with CI_SetKey.
Shortcuts in the code determine whether the key is already
"on the hook" save nearly 500 ms in the decoding process
for a stealth ESPDU.

These code improvements lead to an encryption time per
ESPDU packet of 46.5 ms for the second and subsequent
packets, unless the initialization and random values need
to be changed for cryptographic reasons.

The decoding process now requires 46.5 ms when the
received packet comes from the same stealth sender as the
previous (encrypted) one. When another (known) stealthy
sender sent the packet, a context switch is required. The
decryption then takes 100 ms. In case a packet arrives
from an unknown sender, 100 + n*350 ms is required.
The number n is the number of tries needed to find the
correct key in the public key ring of the current exercise.

7.3 Packet loss and the cryptographic engine

In working with the encryption and decryption programs,
we simulated the drop of a UDP packet, and another issue
became apparent. As the standard Fortezza Skipjack
algorithm uses the encryption/ decryption outcome of
previous blocks, no packet loss can be tolerated. This
contradicts the DIS type of exercises where UDP packets
might be lost and simulators (federates) might join at any
time.

The only way to solve this in a non-reliable data stream
environment is to use weaker cryptographic algorithms,
e.g. ECB, that can recover immediately or after dropping
only one packet. Using such a weaker algorithm however,
might require more frequent changes of the random
values. This requires renewal of the algorithm
initialization values, meaning an interrupt of 1.2 seconds
of the exercise.

7.4 Missing group key concept

The Fortezza® encryption library and key management
system is designed for a secure one-to-one communication
path. In the Modeling and Simulation community, one
needs to talk securely to groups of (stealthy) simulators.

Fortezza currently does not support a 'group key' concept.
That means that each 'sender' and 'receiver' pair need to
exchange public keys. Moreover, the number of random
values plus keys-sets that can be loaded into the Fortezza
card is limited to eight. This limits the usability of this
solution at the present moment.

However, we were able to trick the Fortezza library and
reloaded the saved initialization materials of another card.
That meant that multiple senders could encrypt for the
same receiver.

7.5 Signatures

To avoid that one can spoof simulation management
information in a large exercise or the content of other data
packets, TNO-FEL investigated the idea of using digital
signatures and signature verification of for instance DIS
SIMAN PDU's as well. The current slowness of Fortezza
digital signature calculation (137 ms) and digital signature
verification (213 ms), apart from the time required for
hashing the PDU data, currently does not make this idea
worthwhile in a near real-time M&S environment.

8. Conclusions

From our experiments, we conclude that:
1. The principle of our new approach of application

based secured simulators and federates is valid.
2. The Fortezza card and library are designed for the

secure transfer of single messages as Email (setup time
is hardly noticed) and for data streams as file transfer
(high speed obtained after a slow initialization).
Fortezza currently seems to be poorly designed for
near real-time traffic with many short messages and
switching cryptographic key information for each
message.

3. Fortezza lacks a 'group key' concept which is ideal for
the Modeling and Simulation community. We
recommend NSA implement and document such a
concept within the MISSI products.

4. The maximum number of 8 active key sets in the
Fortezza is far too low for large-scale M&S exercises.

5. The security community should discuss which
encryption algorithms are allowed to be used for the
type of security we tried to demonstrate. The problem
of the recovery of 'lost packets' in the stream should be
addressed.

6. The Fortezza digital signature and signature
verification process is too slow for use in the near real-
time M&S environments.

7. The security community should look into key
management requirements and the frequency of
initialization vector changes for these encryption
algorithms. A trade-off between algorithm speed and
the near real-time requirements of the Modeling and
Simulation community should be made.

9. Suggested future work

First of all, the Fortezza performance problems can be
expected to improve greatly when new versions of the
Fortezza card become available having a high-speed
Cardbus™ interface. Whether the expectations about this
version hold in the near real-time Modeling and
Simulation community environment as well, has to be
validated.

Secondly, from [6] we understood that a software version
of Fortezza is to appear. That might be faster and very
useful in the simulator environment. Experiments should
be conducted, e.g. using our test programs, as soon as that
version becomes available.

NSA needs to implement a group key concept for the
Modeling and Simulation environment.

The implementation of application level security into the
HLA RTI requires a separate study. The overhead per
transferred packet might be even factors higher than that
within the DIS environment. The use of reliable
communication paths, however, might be beneficial in
respect to the encryption algorithms as an encrypted
'stream' concept can be maintained.

10. References

[1] Muckenheim,C., Dey,A., Correa,H., Garnsey,M.:
“Multi-Level Secure Encryption For Distributed
Simulation - Application of Fortezza to DIS”, 19th
I/ITSEC, Orlando (FL), USA, December 1-4, 1997.

[2] Filsinger, J., "HLA Security Guard Federate.", 1997
Spring Simulation Interoperability Workshop, Paper
No: 97S-SIW-163

[3] Filsinger, J., "A Security Engineering Process for the
HLA.", 1997 Spring Simulation Interoperability
Workshop, Paper No: 97S-SIW-041

[4] "DIS Vision", 13th Workshop for Standards of
Distributed Simulation, September 1995

[5] Valuable public information on the Fortezza card:
(photo of inside) http://www.litronic.com/images/-
products/fortezza/stack.GIF; (documentation)
http://www.rnbo.com/PROD/rmadillo/e/etoc.htm;
http://www.armadillo.huntsville.al.us/Fortezza_docs/-
index.html (e.g. the Fortezza Cryptologic Interface
Programmers Guide version 1.52, jan'96);
http://www.spyrus.com
http://www.rnbo.com/mykoweb/index.htm
http://www.nsa.org:8080

[6] See Missi and Fortezza conference articles at
Missilab, http://beta.missilab.com

[7] IEEE 1278.1:1995 plus Annex:1997: Standard for
Distributed Interactive Simulation - Communication
Services and IEEE 1278.2:1995: Standard for
Distributed Interactive Simulation - Application
Protocol

Acknowledgments

This project was sponsored by the US Army STRICOM
and the Royal Netherlands Army (RNlA) and was
conducted under the umbrella of the Mutual Weapons
Development Master data Exchange Agreement between
the US AMC/STRICOM and the RNlA/DMKL
(DEA Annex A-94-TN-1529).

The authors like to thank Micha Bloem and Lex Beijk
(TNO-FEL) for their contributions to the project.

Author Biographies

ERIC LUIIJF, M.Sc.Eng. is a principal research
consultant Telematics and Information Security at TNO-
FEL in the Netherlands. He was the network architect for
the first European DIS-demonstrations during two ITEC
conferences in The Hague, using ISDN connections to
link remote sites. He contributed to a joint
STRICOM/TNO-FEL project on time synchronization of
DIS-systems in Orlando with systems in The Hague (7243
km) using NTP and GPS. He is currently involved in end-
to-end information security projects and the coordination
of an information warfare-defense program.

AMITABH DEY, MSME, is the chief engineer for the
Distributed Interactive Simulation Division of SPARTA,
Inc.'s Information Systems Sector in Orlando, FL. He was
the lead engineer on the integration of FORTEZZA to
ModSAF portion of the joint STRICOM/TNO-FEL Multi-
level secure project. He is currently involved in systems
architecture modeling for JSIMS.

JAMES WATSON, PhD Eng. Mech, is the manager of
the Distributed Interactive Simulation Division of
SPARTA, Inc. Information Systems Sector in Orlando,
FL. He was program manager of the STRICOM MLS
concept study and developed the initial experimental
demonstration approach.

CARL MUCKENHIRN, MS, is the lead engineer on
SPARTA's MISSI development support to the US
National Security Agency. He provided key concepts
developed in the demonstration and principal technical
coordination with NSA for the loan of the FORTEZZA
technology in the SENSIM experiments.

MIKE GARNSEY is the STRICOM COTR and
international liason for the MLS Concept Development
BAA project.

Explanation of security terms

Compartmented Mode Workstation (CMW): a CMW
is a workstation that conforms to the Trusted Computer
Security Evaluation Criteria (TCSEC) B1 and parts of the
B2 and B3-level features. It is a secure and a flexible
multi-level, multi-compartment information processing
networked system.

Dedicated: a security environment with only one
classification level where all people are cleared to that
data security level.

Multi-level security (MLS): a security environment able
to process multiple classification levels simultaneously
while some users are not screened to all levels of
information in the system.

Secret and below interconnect (SABI): a trusted device
interconnects a secret domain with a security domain of
lower classification in a secure way [6].

System High: a security environment with multiple levels
of data sensitivity where all people are cleared up to the
highest data security level within that environment.

APPENDIX

Fortezza time/call versus block size

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

220.0

240.0

260.0

8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

4
6

0
8

4
8

0
0

4
8

9
6

5
0

0
0

6
1

4
4

9
1

9
2

1
8

3
8

4

3
6

7
6

8

6
5

4
0

8

Block size

m
ill

is
ec

o
n

d
s

/ c
al

l

Encrypt avg call (ms)
Decrypt avg call (ms)
Encrypt2 avg call (ms)
Decrypt2 avg call (ms)

Appendix Figure A: Fortezza encryption and decryption speed for time/call

Fortezza encryption/decryption speed

10

100

1000

10000

100000

1000000

Block size in bytes

L
o

g

B
yt

es
/s

ec

Encrypt/Decrypt

Encrypt2 call

Decrypt2 call

Encrypt/Decrypt 173 347 695 1391 2782 5556 10893 21333 40960 75851 127666 176000 227000 250000

Encrypt2 call 50 100 201 402 805 1610 3200 6360 12563 24500 49686 84718 136000 175000

Decrypt2 call 80 161 323 646 1292 2582 5120 10138 19883 38200 73536 117095 172300 209000

8 16 32 64 128 256 512 1024 2048 4096 9192 18384 36768 65408

Appendix Figure B: Fortezza encryption and decryption speed in bytes/sec

IP header
+ checksum

 26 bytes IP header
+ checksum

 26 bytes

UDP header
+ checksum

 16 bytes UDP header
+ checksum

 16 bytes

ESPDU Protocol 04 = DIS 2.0 ESPDU Protocol 1 byte (04 = DIS 2.0)

 header Exercise id 1 byte header Exercise id 1 byte

(12 bytes) PDU type 01 =
entity state

 (12 bytes) PDU type 01 =
entity state

 Protocol
family

01=entity
information

 Protocol
family

01=entity
information

 Time stamp 4 bytes Time stamp 4 bytes

 Length

2 bytes
342 (0x156)

 Length

2 bytes
132 (0x090)

 Padding 2 bytes Padding 2 bytes

Entity ID 6 bytes Entity ID 6 bytes

Encrypted
entity state

126+2 bytes

Includes 2
padding bytes
necessary for
Fortezza

 Entity state
information
126 bytes

Entity state
information in
clear

+ N*16 bytes Articulation
parameters

N* 16 bytes
(N= 0..)

Ra
128 bytes

Random
variable

Session key
information

IV
24 bytes

Initialization
vector

MEK
12 bytes

Message
encryption
key

Stealth
ESPDU

326 + N*16
bytes excl. IP
header

Max. 104%
overhead

 ESPDU in
clear

160 + N*16
bytes excl. IP
header

 352 + N*16
bytes incl. IP
header

Max. 89%
overhead

 186 + N*16
bytes incl. IP
header

Appendix Figure C: Layout of encrypted ESPDU versus the standard ESPDU

 Timing Used by
ModSAF
main.c

Used by
ModSAF-E

Used by
ModSAF-D

CI_Initialize (1) 78 ms X X X
CI_GetConfiguration (2) 1330 ms X X X
CI_GetState 7 ms
CI_Open (3) 33 ms X X X
CI_CheckPin 505 ms X X X
CI_GetPersonalityList 48.5 ms
CI_SetMode 27 ms
CI_Close 105 ms

CI_Decrypt (4) 47.5 ms X
CI_DeleteKey 27 ms X X X
CI_Encrypt (5) 46.5 ms X
CI_GenerateIV 34 ms X
CI_GenerateMEK 27 ms X
CI_GenerateRa 100 ms X
CI_GenerateTEK D 360 ms X
CI_GenerateTEK E 350 ms X
CI_LoadIV 27 ms X
CI_SetKey 27 ms X X

CI_SetPersonality 27 ms X X X
CI_UnwrapKey 27 ms X
CI_WrapKey 33 ms X

CI_InitializeHash 27 ms
CI_Hash (6) 34 ms
CI_GetHash 44 ms
CI_Sign 131 ms
CI_VerifySignature 238 ms

Notes:
(1) Varying times have been measured. Subsequent runs typically take 325-330 ms.
(2) Time during the first run of the program. Subsequent program starts take 4-5 ms.
(3) When already opened, subsequent calls to CI_Open take 0.037 ms.
(4) CBC64 and ECB64 modes. OFB mode requires 0.5 - 1 ms more.
(5) CBC64 mode. ECB64 requires 1 ms more; OFB mode nearly 2 ms more.
(6) No significant difference was measured between in hashing 64 byte and 128 byte blocks.

Appendix D: Fortezza library call timings (SGI Indogo2, SCSI PCMCIA reader)

