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ABSTRACT: Current security models in simulation environments depend on interconnected System High enclaves. A 
secret and below interconnect (SABI) using a guard might interconnect the various enclave classification levels. 
Problem areas include: restricted "need-to-know" (privacy/sensitivity) support, the dependence on expensive or 
capacity-limited link encryptors, the difficulty to clear all personnel involved in a multi-national and/or large exercise, 
and the throughput limitations associated with centralized guard mechanisms.  
In the joint Sensitive Simulation (SENSIM) project STRICOM, TNO-FEL and SPARTA Inc. researched the use of 
application level Fortezza® end-to-end encryption in a multi-level sensitive but unclassified (SBU) secured simulation 
environment. The use of digital signatures to authenticate and protect the integrity of simulation management 
information has been studied as well.  This paper discusses the background of this new approach, the international 
experiments using an ISDN link, the initial results, improvements made, conclusions and recommendations for further 
study.  This project was sponsored jointly by the US Army STRICOM and the Royal Netherlands Army (RNlA). 
 

1. Introduction 

To date, all USA and international efforts in securing 
distributed interactive simulations (DIS and HLA) are 
targeted towards network level security services, e.g.,  
data link encryption between multiple system high secured 
environments, the so-called enclaves.  
 
Current DMSO plans for the security architecture in the 
High Level Architecture for Simulations (HLA) rely upon 
system high environments and guards as sanitizing boxes 
between networks at different classification levels [2]. The 
reason is that multi-level security (MLS) in DIS and HLA 
environments is a complex technical and organizational 
issue. From [2], it is not expected that these MLS 

solutions will be accredited under the demanding security 
agency process for at least the next few years. 
 
Within these System High environments, data flows 
unencrypted through the network. Under certain 
circumstances one wants to protect sensitive information 
in simulators within the System High environment itself. 
Examples include stealth plane simulators, capabilities of 
advanced weapons systems and  tactical doctrine. 
 
In order to meet the demands of simulation architectures 
such as the DMSO HLA, security should be exercised 
closer to the actual consumers and producers of sensitive 
and potentially classified information. Eventually, support 
of multi-level simulations, that is a single simulation 
operating on, and producing, information at more than one 
security level (classification, compartment, caveat) will 



require the simulation (or a simulation framework) to 
directly access or perform security services. 
 
The US National Security Agency’s (NSA) Multi-level 
Information Systems Security Initiative (MISSI) or its 
Dutch equivalent, the Technisch Informatie Beveiligings 
Initiatief (TIBI), are producing technical security solutions 
which may be applied to the modeling and simulation 
environment. Of particular interest is use of the US 
Fortezza® cryptocard and the accompanying Fortezza 
cryptologic library to secure modeling and simulation 
applications. For background information on Fortezza, see 
[5] and [6]. 
 
STRICOM, SPARTA and TNO-FEL jointly developed a 
new approach to the aforementioned security problems by 
introducing application level security in the system high 
simulation enclave environment. Our Sensitive Simulation 
(SENSIM) project included joint experiments to 
demonstrate the approach in a multi-level sensitive, but 
unclassified (SBU) test environment. This environment 
comprised of one LAN at STRICOM in Orlando and one 
LAN at TNO-FEL in the Netherlands, interconnected via 
ISDN, with ModSAF computer generated force 
simulations using DIS protocols. 
 
The objective of this paper is to describe the new concept 
and demonstration of multi-level secure encryption at the 
application level supporting a multi-level secure 
distributed simulation. Results achieved are presented and 
discussed, leading to issues and directions for future work. 
 
The concept and intentions of the SENSIM project have 
been presented earlier at the ITSEC'97 conference [1]. 
This paper extends [1] with results and observations. 

2. Statement of the problem 

For some time, various security issues have limited 
training and simulation exercises. These have ranged from 
pedestrian concerns about the performance of particular 
security equipment, to critical concerns of classification 
and security accreditation mismatches between 
environments. Segregation and isolation of information 
among exercise participants is also a major concern. 
Segregation may be needed due to national policies (i.e., 
US or NL ONLY restrictions) or proprietary concerns. 
In discussions with SPARTA and TNO-FEL, STRICOM 
expressed a desire to provide a security solution which 
will allow US and allied simulation activities to execute 
cooperative exercises containing sensitive information 
over unprotected networks. In particular, STRICOM is 
working with its British and Dutch counterparts and would 
like to provide a method of protecting information 

exchanged among the parties as well as allowing parties to 
restrict access of the other parties as needed. 
 
The immediate problem is to provide a sensitivity 
(privacy) protection mechanism, to US and non-US allied 
simulation activities. This mechanism must provide to the 
participants the ability to securely share information 
which may ultimately be classified information. 

3. Current security approaches 

3.1 System High and Dedicated 

Current practices within the defense modeling and 
simulation community for protection of classified 
activities fall into three basic camps. The first is the 
traditional defense isolation of the classified computation 
within a physically secured enclave. The systems, if more 
than one is involved, are interconnected via standard 
networking technologies and they all operate in a “System 
High” or “Dedicated” mode (see Figure 3.1). 

Simulator B
(SECRET)

Simulator A
(SECRET)

Protected Enclave

Wide Area Network
(UNCLASS)

 

Figure 3.1: System High Protected Enclave Network 

This approach requires that all participants in the exercise 
be cleared to the same level and are at one single location. 
For many activities this is not an issue, but for large 
exercises, requiring many players, possibly from allied or 
coalition forces, the ability to clear all players in time for 
all information in the exercise may not exist. 
 
The next approach basically extends the boundaries of the 
“protected enclave” through the use of network encryption 
devices on a point to point basis. In this case, again, all 
simulations operate at the same classification level in 
either a “System High” or “Dedicated” mode (see Figure 
3.2). This model can provide good performance for 
distributed simulations, but at the expense of dedicated 
telecommunications circuits between participating 



enclaves. Note that a separate channel is required between 
each site with two encryptors on each link. 
 

Figure 3.2: System High Interconnected Enclaves 

The third security option is that employed e.g. by the 
Defense Simulation Internet (DSInet). This approach is 
basically an extension of the second approach with 
protected enclaves interconnected over networked 
connections rather than point-to-point connections. 
Theoretically this architecture provides the ability for 
distributed simulations to interact with an arbitrary 
number of protected enclaves through the use of a single 
network connection using multi-casting protocols and a 
single network encryption device. However, in addition to 
the currently experienced performance problems with the 
encryption devices, this architecture still does not provide 
any protection beyond the “enclave” level. 

3.2 HLA security architecture 

A special security task force is targeted to develop a 
security architecture for the High Level Architecture 
(HLA) for Simulation. Several projects were granted by 
DMSO to develop a multi-level security HLA 
environment. Multi-level security in the HLA environment 
means that a secret and below interconnect (SABI) guard 
between a high classification level System High 
environment, e.g. Secret, and a lower classification level, 
e.g. Unclassified, secures the information flow between 
both environments.  
Only allowed and sanitized traffic flows should pass the 
guard. Trusted Information Systems (TIS) is involved in 
the study and design. TIS presented the diagram in Figure 
3.3 at the 1997 Spring Simulation Interoperability 
Workshop [2]. As shown the guard secures the 
information flow between two classification levels, each 
being a system high or dedicated environment. Note that 
the connection arrow near MRCI stands for a bulk 
encrypted wide area data link solution. 
 

The sanitizing job of the guard is difficult. Different views 
of the "same" information depending on one's 
classification level or need-to-know in a distributed 
simulation environment have to be presented. Solving this 
complex information problem in such a way that a general 
solution can be accredited by security agencies is 
estimated to take several years. Note that this security 
architecture has a pre-requisite System High or dedicated 
local and/or wide area network for each security level. 
However, within one single security domain no solution 
for multiple segregated sensitivity compartments has been 
presented. 
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Figure 3.3: HLA Secured Combined Federation Architecture 
(source: [2]). 

4. The Multi-level Information Systems 
Security Initiative (MISSI) 

NSA's Multilevel Information Systems Security Initiative 
(MISSI) and the Dutch TIBI aim at providing security 
solutions to a wide variety of information systems 
applications. Implementation of the security solutions is 
accomplished through the use of several “building block” 
security products. 
 
PC Card (PCMCIA) format cryptographic devices which 
were used in our project provide data encryption and 
decryption, data integrity, user identification and 
authentication, and user non-repudiation functions 
(sign/verify, hash, time stamp). See Table 4.1.  
 

Table 4.1: Overview of Fortezza functions and bit and key 
lengths 
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Cryptocard 
Function 

Name Description Standard 

Public Key  
Exchange 

KEA Key Exchange Algorithm 
160 bit private key 

Fortezza 
Diffie-Helman 
variant 

Message  
Encryption 

SKIPJA
CK 

Type II Algorithm 
80 bit key 

NSA / FIPS 185 

Digital Signature DSA Digital Signature 
Algorithm 
1024 bit modulus 

NIST FIPS 186 

Hashing SHA-1 Secure Hash Algorithm - 
Rev 1   160 bit 

NIST FIPS180-
1 

Timestamp N/A Uses Secure Hash 
Algorithm  
Digital Signature 
Algorithm (DSA) 
160 bit 

FORTEZZA 

Password PIN 4-12 bytes Personal 
Identification Number 

FORTEZZA 

Certificate N/A Fortezza 2820 bytes CCITT X.509 

 

Table 4.2: The Fortezza Cryptologic Interface (CI) Library 
functions (from [5]) 

Library Commands   

CI_Initialize   

CI_Terminate   

 
Management Commands   

CI_Close CI_Lock CI_Select 
CI_GetConfiguration CI_Open CI_Unlock 

CI_GetState CI_Reset CI_FirmwareUpdate 

 

Cryptologic 
Commands 

  

CI_ChangePIN* CI_GetHash CI_Save 

CI_CheckPIN CI_GetPersonalityList CI_SetConfiguratio
n 

CI_Decrypt CI_GetStatus CI_SetKey 
CI_DeleteCertificate CI_GetTime CI_SetMode 

CI_DeleteKey CI_Hash CI_SetPersonality 
CI_Encrypt CI_InitializeHash CI_SetTime* 

CI_ExtractX* CI_InstallX CI_Sign 
CI_GenerateIV CI_LoadCertificate CI_TimeStamp 

CI_GenerateMEK CI_LoadDSAParameters CI_UnwrapKey 
CI_GenerateRa CI_LoadInitValues* CI_VerifySignature 

CI_GenerateRandom CI_LoadIV CI_VerifyTimestam
p 

CI_GenerateTEK CI_LoadX CI_WrapKey 
CI_GenerateX CI_RelayX CI_Zeroize 

CI_GetCertificate CI_Restore  

*  Site Security Officer only function 

There are two basic versions: Fortezza® for use in 
sensitive but unclassified (SBU) environments and Secret 
environments under certain circumstances; and Krypton® 
for all levels of classification, with implementation 
restrictions. 
 

A wide variety of applications have been enabled to use 
the Fortezza card, including: e-mail, file transfer, storage, 
EDI/E-Commerce, search & retrieval, dbase access 
authentication and WWW. All these applications make 
use of a single software interface, the common crypto-
graphic application program interface or CAPI. On each 
platform that supports Fortezza the CAPI is supported by 
a cryptologic library, the CI_lib. 

5. Application security, a new approach 

Rather than securing an exercise at the communications 
network level, and accepting the drawbacks embodied in 
that approach, (performance bottleneck, single-level 
system high or dedicated exercises), we propose to 
provide security at the simulation application level 
through the use of MISSI (or for the Netherlands: TIBI) 
technology. The current MISSI approach is to migrate 
security services from application independent areas (such 
as a communications network) to application dependent 
areas for systems on federations which are capable of, or 
require, identification and segregation of information. 
Distributed combat simulation network could be such a 
case. 
 
The SENSIM project was drafted to explore the efficiency 
and problems associated with providing security services 
at the simulation application to network interface using 
Fortezza technology. Figure 5.1 is an adaptation of a 
figure from [4], which depicts encryption/decryption of 
information at the application interface by application 
calls. Placing security at this level allows the simulation 
host (and its applications) to segregate and protect data 
based on simulation/exercise specific security policies. In 
the current environments, such an architecture may be 
used to isolate various categories of information at the 
same security level (i.e. caveats within SECRET). 
Migration of the simulation host operating system to a 
trusted platform (such as a Compartmented Mode 
Workstation) will allow segregation of information of 
several security levels. 
 
The intent is that the protected sensitive simulator (or 
federate) is able to acquire information of both insensitive 
and (other) sensitive simulators. The sensitive simulator is 
able to keep in touch with sensitive cooperative simulators 
by using security devices that belong to the same group 
(having the same key). At the same time, the simulator is 
able to sanitize information (e.g. entity state) and make 
that available to all simulators. 
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Figure 5.1:  Application-level secured simulation to network 
interface 

Technical implementation of this architecture can be 
achieved by integrating Fortezza security services into the 
DIS Interface Library (DIL) or the HLA Run Time 
Interface (RTI). Integration at this level will allow security 
services to be applied directly from the simulation 
(through an expanded security interface), on a host or 
class basis.  
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Figure 5.2:  Fortezza enabled DIL-interface 

 
Initially, in the SENSIM exploratory project, the system 
performs security services on a per DIS PDU-type basis, 
that is, all PDUs of a particular type being sent, will be 
protected in the same manner (e.g. encrypted). This will 
allow further unmodified simulations (such as MODSAF) 
to exchange information through a Fortezza protected 
channel. 
 

Integration of Fortezza with the DIS Interface Library is 
quite similar to other Fortezza integration efforts to date. 
In the DIS-case, the underlying UDP protocol being 
secured is “stateless” with each “package” being an 
atomic event. This eases development since no persistent 
protocol state must be kept on each package as it is 
transmitted, and all information required to determine the 
security services is included in the package. On the other 
hand, additional overhead is introduced which might 
conflict with the near real-time performance requirements. 
The project investigated whether such drawbacks are 
available or not. 
 
The architecture of a Fortezza integrated simulator is 
shown in Figure 5.2. Most of the security components are 
non-developmental items. The only development required 
is in the DIL/Security interface, which interfaces the 
security services with the DIS Interface Library or the RTI 
in the HLA environment. The scope of work for the 
DIL/Security Interface entails designing the secured DIS 
PDU format, developing the interface mechanism/API 
between the DIL and Fortezza subsystem, and developing 
the “security API” which may be exported to simulation 
applications. 

6. Proof of concept and expectations 

6.1 Demonstration setup 

In order to examine issues surrounding this security 
architecture, SPARTA in conjunction with STRICOM 
(US) and TNO-FEL (Netherlands), used multiple 
MODSAF semi-automated force generators in simple 
multi-level secure scenarios. 
 
Figure 6.1 shows one of these scenarios, using RED, 
BLUE and GOLD players. The system was set to allow 
RED forces to interoperate and hide and protect certain 
information from the BLUE forces and vice versa. The 
GOLD players were able to receive and interact with both 
sets of forces. Segregation of information was enforced by 
selective distribution of cryptographic keys to the parties. 
In particular, the RED forces only exchanged keys with 
other RED forces and the GOLD players; similarly, the 
BLUE forces exchanged keys with other BLUE forces and 
the GOLD players. 
 
The demonstration addressed several important Modeling 
and Simulation issues. The first objective was the analysis 
and testing of the Fortezza system performance in 
distributed simulation applications. Measurement of the 
throughput, delay, and overhead characteristics of a DIS 
PDU level security system was made. Secondly, the 



project explored all issues related to the use of such 
“multi-level” secure simulations.  
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Figure 6.1: Multi-level Secure scenario 

6.2 Fortezza speed expectations 

SPARTA made a pre-demonstration assessment on the 
performance of Fortezza® PCMCIA cards and achieved 
an average command time of 282 ms, zero byte message 
time was 51 ms and a throughput of 2.4 Mbps using a 
SUN workstation and an external SCSI PCMCIA-reader. 
The throughput was limited by the commercial PCMCIA 
card interface not the Fortezza processor (which at 40Mhz 
and 8 bits per clock cycle runs at 320 Mbps). An average 
PDU generation rate of approximately 10-15 PDUs per 
second for a pair of tanks during a ground engagement 
was assumed based on prior observed DIS results. These 
figures were conservatively taken to be all entity state 
PDUs of 1.528 kbit message length. 
 
TNO-FEL also made some throughput measurements on 
the Fortezza card using the ftzatest program supplied by 
SPARTA on a SGI Indigo2 with a SCSI PCMCIA card 
reader. Two different types of measurements were made: 
a) executing the encryption and the decryption processes 
in such a way that the Fortezza key management functions 
are only called once per measurement, b) execute the 
Fortezza key management functions for each 
encrypt/decrypt cycle. 
The initialization cryptographic functions are 
CI_DeleteKey, CI_GenerateMEK (master encryption 
key), CI_SetKey and CI_GenerateIV (initialization 
vector). For obvious reasons process a) is the fastest. By 
the way the CI_Encrypt and CI_Decrypt functions only 
act upon tuples of 64 bits (8 bytes) using the (default) 64 

bit Cipher Block Chaining (64 bit CBC) mode. Encryption 
requires thus the data to be padded up to the next multiple 
of 8 bytes. 
 
From Appendix Figure A one can see that the time per 
encryption or decryption call for a block of information is 
nearly the same if no additional calls are necessary for 
changing session keys (encrypt2/decrypt2 cases).  For 
block sizes up to 4 Kbytes the time per call increases is 
quite flat: a delay of 46.4 ms plus roughly 2 ms/Kbyte. 
Just above 4 Kbytes, an unexplained increased time/call 
jump occurs. Note that there is an asymmetric effect 
between encryption and decryption.  
 
In our demonstration, we used the Fortezza card to 
encrypt and decrypt DIS IEEE 1278.1 protocol data units 
(PDUs). PDUs were required to fit into one UDP Ethernet 
packet, limiting the PDU size to a maximum of 1500 
bytes. The encryption and decryption speed for this 
"working range" was expected to be just over 46 ms, a 
time mainly required by the cryptologic library to verify 
the PCMCIA card status, to initialize it for 
encryption/decryption as well as the SCSI driver/interface 
overhead.  
 
Because of the relatively slow Fortezza CI_lib library 
initialization time, the encryption/decryption throughput 
more or less doubles with the block size (see the almost 
straight logarithmic line in Appendix Figure B). The speed 
doubles up to the block size of 9 Kbytes. For larger block 
sizes a slow down occurs, probably due to non-Fortezza 
issues (e.g. memory management). 

6.3 Fortezza aware ModSAF 

Rather than encrypting the content of all DIS protocol 
data units or PDUs, SENSIM tried to encrypt only the 
information of stealth entities. Technically, an additional 
functionality has been added to ModSAF's low level 
PDU-to-network interface. Both the encryption and 
decryption flows are depicted in Figure 6.2 respectively 
Figure 6.3. 
 
The current experimental code determines the fact that an 
ESPDU is of the stealth type by looking at the size of the 
ESPDU. In case an arriving ESPDU is larger than 200 
bytes, the PDU will follow the decryption path.  As 
optional articulation parameters (N*16 bytes) might cause 
an ESPDU to become larger than this discriminating size, 
in future new encrypted versions of the PDU types need to 
be defined. 
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Figure 6.2: Processing Fortezza enhanced outgoing PDU stream 
and encrypting stealth entity information 
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Figure 6.3: Processing Fortezza enhanced incoming PDU stream 
and decrypting stealth entity information 

The layout of encrypted ESPDU is shown together with 
the standard IEEE 1278.1 ESPDU in Appendix Figure C.  
Because of UDP delivery is not guaranteed (PDUs might 
not arrive) cryptographic information needs to be added to 
the ESPDU. This includes the 128 bytes Ra, which is the 
encryption random number necessary for the Key 
Exchange Algorithm (KEA); the 24 bytes Initialization 
Vector (IV), and 12 bytes Message Encryption Key 
(MEK). In total, the stealth ESPDU is 164 bytes larger 
than a standard ESPDU. From Appendix Figure C one can 
see that the ESPDU more than doubles in size when 
containing encrypted information. 

6.4 Proof of principle 

The first intent of the SENSIM experiments was to show a 
proof-of-principle of application based security. The 
Fortezza-aware ModSAF code was developed by Sparta 
under contract to STRICOM. For reasons of simplicity, 
three different versions of ModSAF were built: ModSAF-
E (encrypting), ModSAF-D (decrypting) and ModSAF-U, 
was a "Fortezza unaware" version that had to disregard 
the encrypted ESPDUs that were longer in size. 

ModSAF-U

ModSAF-E

ModSAF-D

 

Figure 6.4:  The "stealth" entity (e.g. plane) is not seen by 
normal DIS-players (ModSAF-U) 

At the encrypting side, the public key of the decryptor is 
required. This key had to be extracted from the  
"personality" certificate loaded in the Fortezza card of the 
decrypting side. In the same way, at the decrypting side 
needed the public key from the encryptor to unpack the 
session key. This required modifying a X.509 certificate 
extraction program to extract the public KEA and DSS 
keys. 
 
With only minor problems being encountered, we 
connected these ModSAF variants across the North 
Atlantic using an ISDN-link. On the first attempt, a 
backdoor was discovered. ModSAF also issues Synthetic 
Environment Persistent Object (PO)-database information 
on the network, allowing the ModSAF-U to learn about 
the existence of the sensitive entities. Turning off the PO-
switch at the start of the ModSAF-E resulted in the 
intended project result (see Figure 6.4). 
 

7. Results of the experiments 

7.1 Stealthy performance 

TNO-FEL instrumented the encode and decode ModSAF 
versions. At the relevant places in the code wall-clock 
time calls were made. Analysis showed 116 ms encryption 
initialization time and 575 ms needed for encryption and 
key wrapping. This summed up to 692 ms on average. The 
decoding was only a little faster with 556 ms resulting in 
1.2 seconds per transferred ESPDU. These results were 
far from the expected results and in no way match the 
IEEE 1278.2 DIS maximum latency of 100 ms (tightly 
coupled) and 300 ms (loosely coupled). [7] 



7.2 Performance improvements 

In attempt to identify the cause, TNO-FEL extracted the 
essential code parts to avoid the lengthy recompile and 
linking time of ModSAF. Two programs were developed: 
one doing the encryption and writing PDUs to a file and 
another doing the decryption. Each Fortezza CI_lib call 
was measured. Appendix figure D contains the results. 
 
Inspection showed that the Fortezza code encoded each 
ESPDU with a new "session key". The process, requiring 
a new random number and IV is very time consuming, as 
can been seen in Appendix figure D. Unfortunately, due to 
the stateless nature of the UDP protocol, an encrypted 
session "stream" of packets, sending the session key 
"envelope" only at the start, cannot be setup. As part of 
each ESPDU, the public key of the recipient wrapped 
session key needs to be sent in each UDP packet. 
 
Rather than generating it each time again, a session key 
can be generated only once at the start of ModSAF-E. 
Then add the (now) static 164 bytes (Ra, IV, and MEK) 
encryption session information need only to be included in 
each encrypted ESPDU. The encryption routine would 
encrypt only the "plain" entity state data. Experimental 
code showed that this saves about 650 ms per ESPDU at 
the generator (encrypting) side. 
 
In the recipient code, there is another problem. As more 
senders transmit encrypted ESPDUs, the Ra, IV, MEK-
combination for each is different.  Some number of Ra, 
IV, MEK sets can be cached at the receiving side.  New  
or out-of-cache ESPDUs require the whole sequence of 
setting the proper encryption registers. Switching the 
decoder between different stealth senders can be based 
upon the Ra, IV, MEK-combination and an accompanying 
assigned Fortezza card register set with CI_SetKey.  
Shortcuts in the code determine whether the key is already 
"on the hook" save nearly 500 ms in the decoding process 
for a stealth ESPDU. 
 
These code improvements lead to an encryption time per 
ESPDU packet of 46.5 ms for the second and subsequent 
packets, unless the initialization and random values need 
to be changed for cryptographic reasons. 
 
The decoding process now requires 46.5 ms when the 
received packet comes from the same stealth sender as the 
previous (encrypted) one. When another (known) stealthy 
sender sent the packet, a context switch is required. The 
decryption then takes 100 ms. In case a packet arrives 
from an unknown sender, 100 + n*350 ms is required. 
The number n is the number of tries needed to find the 
correct key in the public key ring of the current exercise. 

7.3 Packet loss and the cryptographic engine 

In working with the encryption and decryption programs, 
we simulated the drop of a UDP packet, and  another issue 
became apparent. As the standard Fortezza Skipjack 
algorithm uses the encryption/ decryption outcome of 
previous blocks, no packet loss can be tolerated. This 
contradicts the DIS type of exercises where UDP packets 
might be lost and simulators (federates) might join at any 
time. 
 
The only way to solve this in a non-reliable data stream 
environment is to use weaker cryptographic algorithms, 
e.g. ECB, that can recover immediately or after dropping 
only one packet. Using such a weaker algorithm however, 
might require more frequent changes of the random 
values. This requires renewal of the algorithm 
initialization values, meaning an interrupt of 1.2 seconds 
of the exercise. 

7.4 Missing group key concept 

The Fortezza® encryption library and key management 
system is designed for a secure one-to-one communication 
path. In the Modeling and Simulation community, one 
needs to talk securely to groups of (stealthy) simulators. 
 
Fortezza currently does not support a 'group key' concept. 
That means that each 'sender' and 'receiver' pair need to 
exchange public keys. Moreover, the number of random 
values plus keys-sets that can be loaded into the Fortezza 
card is limited to eight. This limits the usability of this 
solution at the present moment.  
 
However, we were able to trick the Fortezza library and 
reloaded the saved initialization materials of another card. 
That meant that multiple senders could encrypt for the 
same receiver. 

7.5 Signatures 

To avoid that one can spoof simulation management 
information in a large exercise or the content of other data 
packets, TNO-FEL investigated the idea of using digital 
signatures and signature verification of for instance DIS 
SIMAN PDU's as well. The current slowness of Fortezza 
digital signature calculation (137 ms) and digital signature 
verification (213 ms), apart from the time required for 
hashing the PDU data, currently does not make this idea 
worthwhile in a near real-time M&S environment.  



8. Conclusions 

From our experiments, we conclude that: 
1. The principle of our new approach of application 

based secured simulators and federates is valid. 
2. The Fortezza card and library are designed for the 

secure transfer of single messages as Email (setup time 
is hardly noticed) and for data streams as file transfer 
(high speed obtained after a slow initialization). 
Fortezza currently seems to be poorly designed for 
near real-time traffic with many short messages and 
switching cryptographic key information for each 
message. 

3. Fortezza lacks a 'group key' concept which is ideal for 
the Modeling and Simulation community. We 
recommend NSA implement and document such a 
concept within the MISSI products. 

4. The maximum number of 8 active key sets in the 
Fortezza is far too low for large-scale M&S exercises. 

5. The security community should discuss which 
encryption algorithms are allowed to be used for the 
type of security we tried to demonstrate. The problem 
of the recovery of 'lost packets' in the stream should be 
addressed. 

6. The Fortezza digital signature and signature 
verification process is too slow for use in the near real-
time M&S environments. 

7. The security community should look into key 
management requirements and the frequency of 
initialization vector changes for these encryption 
algorithms. A trade-off between algorithm speed and 
the near real-time requirements of the Modeling and 
Simulation community should be made. 

9. Suggested future work 

First of all, the Fortezza performance problems can be 
expected to improve greatly when new versions of the 
Fortezza card  become available having a high-speed 
Cardbus™ interface. Whether the expectations about this 
version hold in the near real-time Modeling and 
Simulation community environment as well, has to be 
validated. 
 
Secondly, from [6] we understood that a software version 
of Fortezza is to appear. That might be faster and very 
useful in the simulator environment. Experiments should 
be conducted, e.g. using our test programs, as soon as that 
version becomes available.  
 
NSA needs to implement a group key concept for the 
Modeling and Simulation environment. 
 

The implementation of application level security into the 
HLA RTI requires a separate study. The overhead per 
transferred packet might be even factors higher than that 
within the DIS environment. The use of reliable 
communication paths, however, might be beneficial in 
respect to the encryption algorithms as an encrypted 
'stream' concept can be maintained. 
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Explanation of security terms 

Compartmented Mode Workstation (CMW): a CMW 
is a workstation that conforms to the Trusted Computer 
Security Evaluation Criteria (TCSEC) B1 and parts of the 
B2 and B3-level features. It is a secure and a flexible 
multi-level, multi-compartment information processing 
networked system. 
 
Dedicated:  a security environment with only one 
classification level where all people are cleared to that 
data security level. 
 
Multi-level security (MLS): a security environment able 
to process multiple classification levels simultaneously 
while some users are not screened to all levels of 
information in the system. 
 
Secret and below interconnect (SABI): a trusted device 
interconnects a secret domain with a security domain of 
lower classification in a secure way [6]. 
 
System High: a security environment with multiple levels 
of data sensitivity where all people are cleared up to the 
highest data security level within that environment. 
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Fortezza time/call versus block size
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Appendix Figure A: Fortezza encryption and decryption speed for time/call 
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Appendix Figure B: Fortezza encryption and decryption speed in bytes/sec 
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Appendix Figure C: Layout of encrypted ESPDU versus the standard ESPDU 

 



 Timing  Used by 
ModSAF 
main.c 

Used by 
ModSAF-E 

Used by 
ModSAF-D 

CI_Initialize   (1)    78 ms X X X 
CI_GetConfiguration (2) 1330 ms X X X 
CI_GetState       7 ms    
CI_Open   (3)    33 ms X X X 
CI_CheckPin  505 ms X X X 
CI_GetPersonalityList  48.5 ms    
CI_SetMode    27 ms    
CI_Close  105 ms    
     
CI_Decrypt    (4)  47.5 ms   X 
CI_DeleteKey     27 ms X X X 
CI_Encrypt    (5)  46.5 ms  X  
CI_GenerateIV     34 ms  X  
CI_GenerateMEK     27 ms  X  
CI_GenerateRa  100 ms  X  
CI_GenerateTEK D  360 ms   X 
CI_GenerateTEK E  350 ms  X  
CI_LoadIV    27 ms   X 
CI_SetKey    27 ms  X X 
     
CI_SetPersonality    27 ms X X X 
CI_UnwrapKey    27 ms   X 
CI_WrapKey    33 ms  X  
     
CI_InitializeHash    27 ms    
CI_Hash  (6)    34 ms    
CI_GetHash    44 ms    
CI_Sign  131 ms    
CI_VerifySignature  238 ms    
 
Notes: 
(1) Varying times have been measured. Subsequent runs typically take 325-330 ms. 
(2) Time during the first run of the program. Subsequent program starts take 4-5 ms. 
(3) When already opened, subsequent calls to CI_Open take 0.037 ms. 
(4) CBC64 and ECB64 modes. OFB mode requires 0.5 - 1 ms more. 
(5) CBC64 mode. ECB64 requires 1 ms more; OFB mode nearly 2 ms more. 
(6) No significant difference was measured between in hashing 64 byte and 128 byte blocks. 
 
Appendix D: Fortezza library call timings (SGI Indogo2, SCSI PCMCIA reader) 


