
Safety, Reliability and Risk Management - Steenbergen & van Gelder (eds)
@ 20l4Taylor & Francis Group, London, ISBN 978-1-138-00123-7

Reliability based structural design

A. C.W.M. Ton Vrouwenvelder
TU-Delft, TNO, Delft, The Netherlands

ABSTRACT: According to ISO 2394, structures shall be designed, constructed and maintained in such
a way that they are suited for their use during the design working life in an economic way. To fulfil this
requirement one needs insight into the risk and reliability under expected and non-expected actions. A key
role in this respect is played by the structural reliability analysis (SRA). In this paper the present state of
the art will be summarised, including the simplifications to semi-probabilistic calculations as being used
in daily practice. Although in principle the adopted Bayesian reliability approach should be able to take
care of all uncertainties involved, present practice still uses other safety concepts like Robustness Design
and Quality Assurance as tools for achieving the safety objectives of design and assessment.

Keytuords: Risk based decisions, structural reliability, time variant and time invariant models, structural
system reliability, uncertainty modelling, code calibration

I INTRODUCTION

Structural reliability analysis (SRA) comprises a
set of methods and models that can be used for
the probability and risk based decision making
with respect to design and assessment of structural
systems. The widest application may be found in
building, civil and offshore engineering, sometimes
explicit but in most cases in the form of so called
semi probabilistic procedures.

The core business of SRA is the estimation of
the lifetime (or annual) failure probability for a

given structure. As input the calculation pro-
cedure requires structural behaviour models as

well as a probabilistic description of all relevant
actions, material properties and geometrical
parameters. The establishment of these models
themselves is in fact already an essential part of
the SRA. Failure may be defined with respect to
all kinds of structural performances, but usually it
is related to collapse or to the violence of service-
ability limits.

One should realise that the calculation of the
failure probability is not a goal is itself. The final
goal is to make decisions with respect to the design
of new structures and inspection or repair pro-
grams for existing ones. This means that we also
need to have insight into the consequences of
failure, the corresponding risks and cost optimisa-
tion. This final goal also determines the choice of
Bayesian probability theory as the basis of SRA.
We will return to this statement later on in this
paper.

2 SRA IN A NUTSHELL

The response of a structural system depends on the
loading characteristics and the geometrical and mate-
rial properties of the structure itself. Two main cat-
egories of structural responses may be distinguished:
the desired state and the adverse or undesired state.
The boundary between the two is referred to as the
limit state. A structure being in the undesired state
is considered as having failed. Given the scatter and
uncertainties in the various loading and structural
parameters as well as in the models, we may derive
the probability of failure according to:

Pr = P(s(X)< 0) = I"1_,;.0 fy@) ctx (1)

where X is the vector of basic random variables,
g(x) is the limit state function for the failure mode
considered andfr@) is the joint probability density
function of the random variables X. The limit state
function g(¡) is defined in such a way that negative
values correspond to failure and positive values to
non-failure.

Instead of the failure probability P, the reliabil-
ity of the structure may also be expressed by means
of the so called reliability index fl which may be
obtained from:

þ =-a-'Q) Q)

where O (..) is the standard normal cumulative dis-
tribution function. For p in the range from 1 to 4
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the approximation P, = l0-þ is adequate and serves
the purpose of getting a first impression of the
relation between these two equivalent measures of
reliability.

In many SRA-techniques all random variables
X are transformed into the so called U-space, that
is a set of independent normal variables with zero
mean and unit standard deviation. If the variables
Xu are independent, the transformation may be
performed by:

Õ(Uu) = F** (Xo) (3)

for every variable Xo. For a Gaussian distributed
variable, the relation between Xo and Uo is simply
given by Xu= ltu+ Uk ok.In case of dependent varia-
bles the transformation is more complex and usually
referred to as the Rosenblatt transformation (Rosen-
blalt,1952, Hohenbichler and Rackwitz l98l).

The integral (l), of course, can be solved by
straightforward numerical integration. This, how-
ever, requires a large number of so called "limit
state function evaluations". If the limit state func-
tion g( ) is a simple 'one liner', \ /e may still be able
to handle problems with say a maximum of 7-10
random variables. For more complex limit state
functions, requiring the call of large computer
codes, the method may hardly be feasible. An alter-
native is Monte Carlo simulation. This method at
least is not sensitive to the number of random vari-
ables, but also requires alarge number of limit state
function evaluations in case of small probabilities.
Some special Monte Carlo techniques exist to
reduce this problem (Rubinstein, l98l). Examples
are Directional Sampling, Importance Sampling,
Latin Hypercube sampling, possibly in combina-
tion with response surface techniques. However,
for large systems this still may be cumbersome.

Another way to reduce the calculation time is
provided by fìrst and second order approximations
(FORM, SORM) that have become very popular
in SRA (Hasofer and Lind, 1974; Hohenbichler
and Rackwitz, 1983). Standard FORM is based
on a linearization of the limit state function in
the U-domain and SORM provides a local second
order correction (Breitrng, 1994). The method
works very well for linear or almost linear failure
surfaces in the U-domain. FORM usually is for-
mulated as an optimisation problem. The reliabil-
ity index fl found by the method can be interpreted
as the minimum distance in the U-space from the
origin to the limit state equation g(r) = Q;

É= min ll ¡¿ ll, sub g(u) = Q (4)

The point in the U-space where the minimum
occurs is called beta point or design point. It has
to be found using an iterative calculation scheme.

In the case of ¿ variables every calculation step
requires (n + l) limit state function evaluations (one
at the design point and one for flrnding all deriva-
tives). The number of iterations depend on the
type of problem and the calculation method. In the
course of time a large variety of possible calculation
procedures have been developed and can be found
in the literature (see Rackwitz 2001). When using
FORM, three types of problems may however be
encountered: (l) no convergence is achieved, (2)
convergence is achieved but at a local (instead of
a global) minimum and (3) convergence is achieved
but there is loss of accuracy due to high non-linear-
ity. The first problem at least has the advantage that
it is recognised, the other two may go unnoticed.

In some cases it may be advantageous to use a
mix of methods, including analylical results. As an
example, consider a case where one or two variables
are known to be responsible for a heavy non-linear
aspect. In that case we may combine the method
of numerical integration and FORM by the using
Total Probability Theorem:

P,=lP@(Ø < 0l¿r")) g(u,) du,, (5)

In this approach we may derive the conditional
probabilities P(S(D < 0 I u") using FORM for a
series of a,,-values.

3 TIME DEPENDENCY

The parameter time plays an important role in reli-
ability engineering. Practically all statements on
the reliability of a structure are meaningless with-
out making reference to a certain period of time.
It is helpful to state this explicitly in the problem
statement and to reformulate (l) as:

Pr = P(min{c(X, Ð}< 0) (6)

The elements of X may refer to random vari-
ables as well as to time dependent random proc-
esses. The minimisation is performed over the
period of consideration, say 0 < r < Z. The time
dependency may be the result of variation in the
loads, but also of various degradation processes in
the structure.

Loads on a structure may have short and long
scale fluctuations. Slowly varying, long term fluc-
tuations may represent changes over hours of
even years. In SRA the slow component is often
modelled as a time series of constant blocks (FBC
processes). Fast and short scale mechanical load
fluctuations are often modelled as Poisson pulse
processes or continuous Gaussian processes. The
short term fluctuations may cause dynamic effects
in the structure. In that case spectral analysis
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techniques are often used to deal with them. In
some load models both types of fluctuations may
be present. Figure I shows a schematized wind
load as the sum of a slowly changing hourly mean
vale and a fast fluctuating Gaussian gust process

Also the resistance is usually not constant in time.
In most cases structural properties may deteriorate
under the influence of (random) mechanical, chem-
ical, physical or biological influences. Typical exam-
ples are fatigue (mechanical), corrosion (chemical)
and freezing-thawing (physical) mechanisms. In
all these cases it is preferred to have physics based
models for the deterioration processes to feed the
limit state functions in the reliability analysis. Many
deterioration processes, however, are so complex
that no physics based models exists. In that case a
classification system of structural states as indicated
in Fig. 1 could be useful. Markov models may be
applied to describe the transition probabilities from
one state to another in an empirical way. Another
option is to formulate an empirical function for the
conditional failure rate /r (see next section).

One popular option to elaborate (6) is by dis-
cretizing the time axis and looking to the survival
probability:

l-P, - P(s(t) > 0 n g(/) > 0 n ....)
= P(g(t,) > 0) II{P{g(/') > 0In g(/j) > 0} (7)

where i=2 ... n, j runs from I to (i - l) andn is the
number of time intervals. Within one time interval,
one may consider the g-functions as being constant
in time. By taking load parameters on their maxi-
mum and resistance parameters on their minimum
an approximation on the safe side is obtained. The
result of (7) can be further developed into:

lrT lPr(o,r)=t-exn{-Juh(r)drl (8)

where h(r) dr is the probability to fail in the inter-
val (t, r + dr), conditional upon no failure before

that interval. In terms of the discrete time intervals
and limit state functions this comes down to:

/'t(t,¡ = 1¡o P(g(lJ < 0 I g(/) > 0 for 0 < t,< t')lL (9)

with Â = t¡- ti-,. The function å is referred to as

the conditional failure rate; in many engineering
mechanics applications it is often taken as a con-
stantvalue: á=1".

Cramer and Leadbetter (1967) showed that if
the random vector process X(t) is a sufficiently
mixing process, the above expressions may be
approximated by replacing the conditional failure
hO rafe by the outcrossing rate v( ):

(10)

Note that (10) usually is obtained by assum-
ing that individual outcrossings are independent
events. If failure at the start of the period (t = 0) is
also taken into account we arrive at:

4(0,7)= 4(0)
+tr - r,(o)l(r - ".n[-jJ, no 4) 

(1 1)

The outcrossing approach is quite accurate in
case of ergodic processes. So when substantial non
ergodic elements are present (e.g. the resistance)
one can better take care of them separately. The
same holds for slowly varying processes. So, for
instance, in the case of windloading we may have:

Pr = En{Pr(O) + (1 - exp n Eo(l - exp(- Iv*) dr))}
(t2)

where E* and Eo indicate expectations over the
constant variables R and the intensities Q of the
slowly varying processes respectively and v*o is the

4 e,r)= t - *o 
{-lr' 

r<rla r}
v(t) =limP(g(r¡) < 0 I g(/i-r) > 0)/^
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Figure l. Example of the sum of an FBC Block process
and a Gaussian process.
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Figure 2. Relative frequency of structural conditions
states as function of time (Kallen and Noortwijk, 2005).
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outcrossing rate of the fast fluctuating gust proc-
ess conditional upon R and Q. The integration
runs over the duration { of an individual FBC
block (single storm, sea state..) and n = 7"/{ is the
number of FBC-blocks.

4 SYSTEM EAILURE

In reliability theory a system failure is a failure
defined as a combination of events and condi-
tions, using logic operators like AND and OR.
Structural system behaviour is often represented
using elementary parallel and series models, fault
trees, event trees, failure trees, Bayesian Networks,
and so on.

The distinction between a single mode failure
and a system failure however is often very subtle.
Consider for instance a series system of two ele-
ments I and2, for which we have:

Failure={gr<0ugr<0}

One may now simply introduce the function
I = min (9, < 0, 9z < 0) and claim that this is a sin-
gle mode limit state function. It would not help
to "forbid" the use of "min" of "max" operators,
because we can easily produce analytical functions,
continuous and infinitely many times continuously
differentiable, but showing effectively the same
behaviour as (13).

Monte Carlo and Numerical Integration can
easily take system complications on board, but
FORM-procedures are not giving appropriate
results in the case of strong system effects, hid-
den or not. In those cases one needs to address
the system effects explicitly. The general proce-
dure is that as a start for all individual modes
a FORM analysis is performed, resulting in a
vector of reliability indices B, and a matrix of
influence coefficients øu. Based on these results
a treatment of the system effects is possible.
Methods for this type of System Analysis are
widely available in the literature (Stevenson and
Moses 1973, Ditlevsen 1979, Hohenbichler and
Rackwitz 1983). One of the advantages of such
an explicit system procedure compared to direct
calculation is that valuable intermediate results
become available.

In the case of continuum structural systems
(beams, plates, slopes) the notion of one or more
dimensional random fields enters the game. For
relative simple problems the outcrossing approach
mentioned before, but then in space domain, may
be of value. For more complex systems the stochas-
tic FEM (Finite Element Method) may be applied.
Many publications exist, below we give a short
overview on the basis of (Karadeniz et al,2004).

In the linear elastic case the focus is on the deriva-
tion of mean values and the covariance matrix of
the response (displacements, strains and stresses).
In fact this is comparable to the mean value approx-
imation of the FORM family. Suitable methods
based on perturbation techniques are outlined in
(Sudret and Der Kiureghian, 2000, Chakraborty
and Bhattacharyya, 2002). In the Neumann series
expansion (Haldar and Mahadevan, 2000) the ran-
dom stiffness matrix is split up into its mean and
deviatory parts as:

K: Ko+ Ku (14)

where Ko is the stiffness matrix associated with the
mean value of the structural properties and Ku is
the stiffness matrix which contains deviatory part
of the random properties. The resulting displace-
ment vector w may be found from a recursive solu-
tion of:

(13) Kn ,n,', - F - K, s,ti-tl (15)

In deriving the solution one should keep track
of the correlation between the (random) load vec-
tor F and displacement vector w.

For the nonlinear structural behaviour a variety
of options exist. (Morutso, (1983), Gierlinski et al
(1991), Guiterez (1999). Very popular is the use of
the Response surface method (Bucher and Bour-
gund, 1990): the idea is that the limit state func-
tion is generated for a number of selected points
in the u- or x-space. One option is to set up the
response surface first and do the reliability calcu-
lations afterwards. Another option is to develop
the surface as a part of the reliability procedure
and to adapt the set of selected points in order to
get better and more accurate results. An advanced
and interesting calculation scheme by mixing
Directional Sampling and an Adaptive Response
Surface Technique (DARS) has been proposed by
Waarts (2000). He proved that the total number
of actually needed limit state function evaluations
may be as low as 7n, where r is the number of ran-
dom variables.

Clearly, at the operational edge of SRA is the
combined nonlinear dynamic analysis. The spec-
tral approach is usually restricted to linear sys-
tems but linearization techniques for nonlinear
frequency domain analysis are available (Robert
and Spanos, 1990, Schuëller et al, 1991). Also
time domain analysis is an option, again in com-
bination with FORM or Monte Carlo. In the lat-
ter case an interesting reduction in calculation
time may be obtained if use is made of so called
Constrained Simulation (Harland et aI, 1999),
which may be conceived as a kind of importance
sampling.
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5 INSPECTION AND MAINTENANCE

Once a structure has been built, it can be inspected.
In order to combine the data from the measure-
ments with the original data, Bayesian updating
procedures can be used. In principle two proce-
dures for updating are available (JCSS, 2000). In
the first procedure one updates the probability
density distributions of all random variables and
then recalculates the probability of failure. One
may also directly update the probability of failure.
The first procedure is more informative, but some-
times more complex.

An essential point in the updating procedure is

the reliability of the inspection method itself. First
of all there is the Probability of Detection (PoD),
for instance in the case of inspecting fatigue cracks
in steel structures. For many techniques PoD
curves are available but not for all. At present this
is a typical omission in the reliability assessment
of existing structures. A second important piece
of information is the accuracy of the inspection
method: if we measure a fatigue crack of 3 mm,
could in reality this also be 2 mm or 4 mm? The
same holds for most non-destructive test methods
estimating the strength of materials.

Apart from explicit inspections, all kinds of
observed behaviour of the structure should be
included in the updating analysis like permanent
deformations, settlements, cracks, loose elements,
corrosion and so on. It should be realized that these
phenomena may require a double treatment in the
SRA: (l) it directly affects the structural model as

such (e.g. a cracked beam instead of a non-cracked
beam as a starting model) and (2) a change in the
statistical models of possibly all random variables:
the presence of a crack might for instance may be
an indication that the load is higher than originally
expected.

Given the extra data we may update the prob-
ability of failure or the reliability index beta.
Figure 3 gives an example of the original and

10 f5
time lyearl

Figure 3. Effect of (latigue) inspection at year l0 on the
anrual reliability index beta (example with disappointing
inspection result leading to a lower reliability index alter
some time).

u(s,ro,a,(ì)

Figure 4. Decision event tree lor inspection planning.

updated reliability index after inspecting a crack
in a steel structure, both as functions of time. It
is interesting to see that the reliability index first
increases, because of reduced uncertainty, but
later on (in this example) becomes lower than the
original one, because of a somewhat disappointing
measurement result.

The ultimate test is the proof load. Although it
looks an easy concept, it is recommended to con-
sider carefully the uncertainties still present.

Performing inspections and processing the
results is a costly matter. So one should find out
which inspections are worth the effort and which
are not. The theoretical tool to support those deci-
sions is the so called Preposterior Bayesian Analy-
sis (JCSS, 2000). Preposterior means that we try
to find out beforehand whether the result will be
profitable or not. As the outcome of the inspection
beforehand is random, we can only optimise on the
basis of expectations. The idea is often presented
in the form of an event-decision tree as in Figure 4.
We first have to choose an inspection plan or strat-
egy "s". Once we have chosen our strategy, nature
will come with an inspection result "ú)". Given this
inspection result we have to choose an action "a"
(do nothing, repair option A, B, C.., reduce the
use, demolish the structure, etc.) and finally this
may result in costs (or utilities) "u" depending
on the state of nature "0". For instance, we may
choose to check some strength parameter, decide
(in case of a positive result) to do nothing, but have
a failed structure in the end after all. Taking the
expectations over all random outcomes (ro,0) and
the optimum over all decisions (s,a) we arrive at
the optimal strategy. In practice this might prove
to be a tedious procedure, but even when using a
more pragmatic procedure, it always pays to keep
the principles in mind. A simple example is: try in
advance to find out which outcome is necessary to
change a decision and estimate how likely such an
outcome is. The proflrt then should outweigh the
product of inspection costs and the probability of
a good outcome.

6 TYPES OF UNCERTAINTY

In the previous sections we discussed the elabora-
tion of equation (1). The structural models and
probability distributions were assumed to be given
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and correct. But, how sure can we be about these
models themselves. We might easily forget some
important action or mechanism and we may have
very limited technical and statistical information.

For the sake of discussion we will split the haz-
ards (actions or mechanisms) into the following
three categories:

- Foreseeable and dealt with.
- Known in principle, but unrecognized or ignored.

- Unknown or unforeseeable.

Table I gives an overview of the category of fore-
seeable hazards in structu¡al engineering. The list
is not claimed to be complete, if such completeness
would ever be possible. In principle similar lists for
degradation and collapse mechanisms exist on the
resistance side. Information on the most relevant
(deterministic) load and resistance models can be
found in codes and text books. Information on the
statistical modelling of the variables in those regu-
lar types of loads and resistances may be found in
the literature or data bases and in particular in the
JCSS Probabilistic Model Code (JCSS, 2001).

Howeve¡ all models are approximations of
reality for which reason we have to introduce the
notion of so called model uncertainties and statis-
tical uncertainties Given the usually present sub-
stantial lack of substantial information to come
to objective quantifications, a frequentistic prob-
ability in SRA interpretation is not meaningful.
Therefore, in SRA the Bayesian intuitive degree of
belief approach is generally adopted as the basis to
step forward (Ditlevsen, 1988). The advantage of
this approach (above other options) is that treating
aleatory and epistemic uncertainties in the same
way opens the possibilities to combine them in a
coherent probabilistic decision making processes.

Further-more, when new or additional informa-
tion becomes available, it can easily be incorpo-
rated using the concepts of Bayesian updating.

If we move to Column 4 of Table 1, we see a
list of human influences, actions that are not acci-
dental but deliberate. These actions are extremely
difficult to model as in general the aim is to get
a load higher than the resistance. We will not dis-
cuss them here. Finally the last column shows the
various types of human errors. Methods of human
reliability analysis (HRA) are under progress but
a meaningful interaction between SRA and HRA
is still far away. In structural design procedures

Quality Assurance and SRA, until now, live next
to each other a separate life.

In addition to the uncertainties and errors in the
treatment of the known and recognised hazards
we must face the fact that certain phenomena may
be completely overlooked or, until now, objectively
unknown (the so called black swans). Let us first
observe that the completely black swans are very
seldom. More important, but essentially not very
different, are the forgotten, neglected or under-
estimated hazards or mechanisms. To deal with
those issues the notion of robustness has been
developed.

Technically speaking, robustness is related to
scenarios where due to unintentional or unforeseen
exposures the resistance of the structural system
has been reduced. An illustration is presented in
Figure 5 (from Eurocode EN 1991-l-7). Due to an
exposure of any nature (a), local damage (b) may
occur. Given the direct or local damage the struc-
ture may survive or (partly) collapse. Robustness
requirements are especially related to the step from
(b) to (c), i.e. to avoid that a local damage, regard-
less its origin, develops to total collapse (Faber,
2011).

Estimating some reasonable number for
the pattern and probability of the initial dam-
age may give the opportunity to bring robust-
ness design again within the scope of structural
optimisation.

Table 1. Overview of foreseeable actions.

Normal loads
(including tail values) Accidental/natural Accidental/manmade Human influences Human Errors

Self-weight
Imposed loads
Car park loads
Traffic
Snow
Wind
Hydraulic

Earth-quake
Landslide
Hurricane
Tornado
Avalanche
Rock fall
High ground-water
Flood
Volcano eruption

Internal explosion
External explosion
Internal fire
External fire
Impact by vehicle etc.
Mining subsidence
Environmental attack

Vandalism
Demonstrations
Terrorist attack

Design error
Material error
Construction error
Misuse
Lack of maintenance
Miscommunication
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Figure 5.

robustness.

7 TARGETS AND OPTIMISATION

According to lSO2394,structures shall be designed,
operated, maintained and decommissioned such as

to support societal functionality. Mathematically
expressed one may state that one should aim at the
optimisation of the total benefits, incorporating all
relevant socio-economic cost items. In the elemen-
tary case one may search for the minimum of the
sum of direct building costs and the risk:

C,o,= Cu+ PrCI (16)

Such an optimisation may be performed over the
intended lifetime of the structure, but one should
keep in mind that the design lifetime of the struc-
ture may be an object of optimisation in itself.

Note that although the crisp limit state concept
is very dominant in structural analysis (both deter-
ministic and probabilistic), one may also think of
applications where the distinction between desired
and undesired states is more graduaVdiffuse or
where the consequences of failure depend heavily
on X. In those cases we may want to combine the
probability and risk calculations, leading to:

(t7)

In many cases the function C(x) is so complex
that FORM methods for reliability analysis can-
not be applied and only the more time consuming
Numerical integration or Monte Carlo will work.
One interesting exception is if Cis a monotonically
increasing function from zero to one. In that case
the integral can be interpreted as a convolution
and a corresponding artihcial limit state function
can be formulated, enabling FORM to solve the
case (Gollw itzer, 2004).

Optimising the costs for a given fixed design
lifetime leads approximately to the result that the
optimal life time failure probability is independ-
ent from the length of the design working life.
(Holiclcj, 2012). This means that the economically

Pf for rcfrr¡ncc prriode I a

Annual rneasure imposed

Life-time measure impose d

Figure 6. Schematic relationship between the annual
and lifetime failure probability Pf and the design work-
ing life (from Bigaj, 2013).

optimal annual failure probability is high for short
periods and low for longer design lives. Spending
money on safety makes sense if one can have a
longer period to profit from it.

When human safety is at stake, one should add
an amount of money to the damage costs (either a
formal compensation value or some real economic
value). Techniques exist to make proper estimates
(Nathwani, J. et aI,2009). However, theremay also be
ethical or legal reasons to consider limits on human
safety. Usually they will be formulated as a maximum
acceptable value per year. So, the target curves may
be presented as in Figure 6: for short design periods
the annual value form human safety is governing, for
longer periods the economic optimum.

Eurocode EN 1990 gives a standard value of
þ, = 3,8 (P¡, = 8 ' 10r) for a design working life
T¿= 50 a. The target value of 3,8 is raised to 4.3
for high failure consequences and lowered to 3,3
for less consequences. The value does not depend
on the structural costs involved to reach a higher
safety level as theory demands. Also no informa-
tion is given as to which criterion (economy of
human safety) is the governing one and no guid-
ance on what to do for shorter or longer design
life time. This indicates that in the world of code
makers this is still an unsolved problem.

8 CODIFICATION USING
SEMI-PROBABILISTIC METHODS

Most codes of practice offer the reliability
requirements in the form a Partial Factor (or

(b)

Illustration of the basic

(c)

concepts ln

c,o,=cb+Jc1*¡¡¡*¡a*
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similar) format, where well defined characteris-
tic values for loads and resistances are combined
with corresponding partial factors, combina-
tion factors, importance factors, and so on. To
some extent these factors have been calibrated
to consequence dependent reliability targets.
This is also referred to as the semi-probabilistic
method.

The partial factor method is based on the fol-
lowing assumptions:

- strength and loads are independent random var-
iables with known distributions;

- characteristic values of strength and loads (Xr)
are defined as specified fractiles of the respective
distributions.

- uncertainties are taken into account by trans-
forming characteristic values (Xo) into design
values (X), by applying partial factors y (mul-
tiplying with load factors, dividing by material
factors) or additional elements for geometrical
properties;

- the assessment of safety is considered as suffi-
cient if the design action effects do not exceed
the design strengths.

A relatively simple way (JCSS, 1996) of deriv-
ing partial factors is by first calculating the design
or beta point values for each variable according to
(assuming normal distributions):

Xo=¡t(l-ap,n (18)

where ¡z is the mean value, V is the coefficient of
variation, þ, the target reliability index for struc-
ture and a The averaged FORM sensitivity factor
(-1 < o < 1); averaging is over a well-chosen set
of representative structural elements. Given for the
same variables the characteristic vahte X,,,

Xo=¡t(l-kn (1e)

(usually with Æ = 0 for actions and k = 1.64 for
material properties) the partial factor for resistance
respectively actions follow from:

T=xJxo or T=xJXo (20)

If loads of different types are involved several
load combinations may have to be checked.

In the case of non-normal distributions the
formulas become more complex, but the principle
remains the same. More advanced methods for
receiving partialfactors exist. One may for instance
minimize the sum of @ - Þ,u,r"r)t for a large set of
structures in the area of application (Faber and
Sorensen, 2003) or require that the averaged failure
probability is less than the target.

9 CLOSURE

In the course of the past half century, Structural
Reliability Analysis has developed into an impres-
sive set of computational techniques. High speed
computers enable the use of these techniques for
quite realistic structures, in particular in a research
environment. Daily practice still uses primarily
semi probabilistic methods, but good calibration
procedures, linking safety factors to reliability
requirements, are available.

Although much progress has been made, there
still remains important research and development
work to be done. To start with, an increased level
of user friendliness of presently available computer
codes is necessary in order to reach a larger group
of engineers. Reliability methods should be cou-
pled to standard engineering calculation software
in the same way as is available for partial factor
methods. Consider by way of example an engineer
who has assessed his structure using the standard
code requirements and found that some of the unity
checks were not satisfactory. In the ideal case it
should then be not more than a relatively simple job
to start up a reliability calculation for the same struc-
ture and the same limit states. The reliability analy-
sis should use the same structural (FEM) model and
automatically transform the semi-probabilistic input
into input formulated in terms of means, standard
deviations and correlation patterns. The use of data
bases like the JCSS Probabilistic model code could
be of help. The user, of course, should select meth-
ods and strategies of calculation, but even there an
expert system could give valuable suggestions.

Next to such integration of semi-and full prob-
abilistic methods, the probabilistic methods them-
selves still require improvements, both from the
theoretical as from the operational point of view.
The necessary research involves a wide spectrum
of topics, like model uncertainties, degradation
processes, fire safety, inspection and monitoring,
repair, failure consequences and risk estimates. But
also more fundamental issues like human safety
considerations, cost optimisation, robustness
requirements and interaction between SRA and

Quality Assurance will ask in the years to come
our full attention.
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