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ABSTRACT: Science-based models often involve substantial uncertainty that must be quantiñed in
a defendable way. Shortage of empirical data inevitably requires input from expert judgment. How this
uncertainty is best elicited can be critical to a decision process, as differences in eflicacy and robustness of
the elicitation methods can be substantial. When performed rigorously, expert elicitation and pooling of
experts'opinions can be powerful means for obtaining rational estimates of uncertainty.

Causes of uncertainty may be interrelated and may introduce dependencies. Ignoring these dependen-
cies may lead to large errors. Dependence modelling is an active research topic, and methods for depend-
ence elicitation are still very much under development. Dependence measures such as rank correlations
are commonly used in different types of models. Eliciting rank correlations and conditional rank correla-
tions from experts have been proposed and used in the past. Conditional rank correlations are not elicited
directly from experts, rather the experts are asked to estimate some other related quantities. In this paper
two methods for eliciting conditional rank correlations via related quantities are compared in order to
obtain insight about which of the two renders more accurate estimates of conditional rank correlations.
Our data shows that good performance in uncertainty assessments does not automatically translates into
good performance in dependence estimates. We show that, analogously to uncertainty estimates, combin-
ing experts' estimates of dependence according to their performance results in better estimates of the
dependence structure.

I INTRODUCTION

Dependence measures such as rank correlations
are commonly used in different types of models.
Whenever held data is available rank correlations
may be estimated directly from data. However,
many times field data is not available. In such
situations, one needs to make use of a structured
protocol for the elicitation of expert opinions.
Moreover, it has been recognized that when sev-
eral uncertain quantities are elicited, there is a need
to elicit the dependence structure between them
(French 201 1).

Methods for eliciting rank correlations from
experts have been proposed and used in the past.
See Cooke & Goossens (1999), Clemen & et al.
(1999) and Clemen & et al. (2000) for example.
One of the options is directly asking experts for
an estimate of the rank correlation between pairs
of variables. Another option is asking experts for

estimates of some other quantity, for example a
conditional probability of exceedance or prob-
abilities of concordance or discordance, and use

these to estimate rank correlations (under certain
copula assumptions). Though not conclusive, pre-
vious results indicate that the most accurate way to
obtain a subjective measure of bivariate depend-
ence is simply to ask the expert to estimate the
correlation between the two variables in question
(Clemen & et al., 2000).

Recently, Non-Parametric Bayesian Networks
(NPBN) have been introduced as flexible tools for
applications where dependence modeling is impor-
tant. See for example Ale et al. (2007), Hanea &
Ale (2009). The inputs for these models are uni-
variate marginal distributions and rank and con-
ditional rank correlations. When held data is not
available, rank and conditional rank correlations
have been assessed from experts through the elici-
tation of Conditional Probabilities of Exceedance
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(CPE, see Morales et al. (2008)) or ratios of rank
correlations (RRC, see Morales-Nápoles et al.
(2013). To our knowledge, there is no experimen-
tal study available that would give some indication
as to the accuracy of experts in estimating condi-
tional rank correlations. Hence even less can be
expected about evidence of one option being pref-
erable than the other. In this study we describe data
collected from a controlled exercise. The question
of interest is whether experts can estimate more
accurately conditional rank correlations through
estimates of conditional probabilities of exceed-
ence or through directly estimating bivariate rank
correlation coefïicients.

2 THEEXERCISE

A pilot study was conducted at the TU Delft on
December 201l. The objective was to obtain data
to start addressing the question of interest. We
gathered a group of 14 experts. The group con-
sisted of 9 graduate students from the TU Delft
with formal training on statistics and 5 researchers
from the TU Delft and TNO.

For the exercise two sets of data were used. Both
describe the relationship between SO, emissions
and concentrations of fine particulate matter,
PM' in Alabama, United States. This problem is
of interest because PM- exposure has been asso-
ciated with adverse health effects. Vy'e however did
not concentrate on these health effects but rather
in models describing the relationship between pol-
lutants. This data has been used before in the con-
text of NPBN (Hanea & Harrington 2009).

The two data sets were generated from the
model in Figure L The model consists of variables
Xt,...,Xe. Variables X,, ..., X, are SO, monthly
emissions gathered from electricity generating sta-
tions. Variable Xu corresponds to monthly mean
concentrations of PMr., gathered from a collection
site. The naming of variables is based on the direc-
tion and distance from the monitoring site. Ring
"a" consists of power plants within 100 miles of
the monito¡ site, ring "b" to 100 250 miles. The

numbers l,3, 5, 6 and 8 in the variables' names
correspond to several zones from a total of 8 zones
whose bisectors are the compass directions NNW,
proceeding counterclockwise to NNE.

By specifying one dimensional marginal distri-
butions, conditional rank correlations, the directed
acyclic graph and a family of copulae, the joint dis-
tribution is completely and uniquely determined. For
more details regarding NPBNs the reader is referred
to Hanea et al. (2006). It is suflicient here to say that
choosing the no¡mal copula to realise the rank and
conditional rank correlations assigned to the arcs
of a NPBN offers many computational advantages.
For this ¡eason the normal copula assumption is
usually used and validated when data allows. In this
exercise, marginal distributions for both data sets
were the same but the dependence structures were
different. Model I was quantihed directly from
the original data. This model was validated for the
normal copula assumption with the techniques pre-
sented in Hanea & Harrington (2009). All rank cor-
relations in Model I are positive. For Model 2 the
magnitude of the rank correlations was changed.
Additionally, one of the unconditional rank cor-
relations in Model 2 was chosen to be negative.
Both data sets used in the experiment were gener-
ated under the normal copula assumption. This was
explicitly mentioned to the participants.

Two large data sets were produced with Mod-
els I and 2 and sent to the 14 experts with some
background information about the data and the
type of questions to be asked in order to assess the
dependence measures of interest. One week later a
half day workshop was held at the TU Delft where
both subjects (the data and the methods to be used)
were further discussed with the group. The group
of experts was further divided into two groups of
7 experts each. Group I consists of experts A, B,
C, H, I, K, N and group two of experts D, E, F,
G, J, L, M. Group I was asked for the dependence
measures of interest in Model I with CPE and in
Model 2 with RRC. Inversely, group 2 was asked
CPE to obtain the measures of interest in Model
2 and RRC for Model I (see Table 2). We will
denote further the four cases as MIRRC, MICPE,
M2RRC and M2CPE

The type of questions asked for CPE were:

l. Consider model i. There are Nr., samples (out of
500,000)þr which variable SO2_a3 is at least
10,466 (median). Consider tlrc indices of all
variables corcesponding to this subset. In other
words, conditionalíze on this subsel. In hotv
metny of these indices wíll the vahte o/ PM2.5_
Alabama be at least 14.82 (median)?

Consider model i. Tlrcre are Nr,, sumples (out
o/ 500,000) for which variable SO2_a3 is ut

15,6f 1,2J,4

,| \
fx-¿-ror;Ì-,r,'-.@ :

Figure l BN of interest.
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Ieast 10,466 (mediør), SO2_a5 is at least 7,256
(medtun), SO2_bl is at least 26,091 (median),
SO2_a8 (median) Ìs at least 3,429 (median)
und SO2_a6 is at least 21,908 (median). Con-
sider the indices of all variables corresponding
to this subsel. In otlrcr worcls, conditionalize on
this ntbsel. In ltow many of these inclices will
the vcilue of PM2.5_Alabama be at least 14.82
(median)?

For RRC:
6. Consider model i. Wlrut is the rank correlatiott

. between SO2 a3 and PM2.5 Alabama?

10. Consider model i. LVhctt is the ratio of the
rank correlation bettveen SO2 a6 and PM2.5
Alabama to the retnk correlation benpeen SO2
a3 and PM2.5 Alabatna?

A total of 20 questions were asked to each
participant, l0 of which were additionally used
as calibration variables. The classical method for
structured expertjudgment (Cooke 1991) was used
to investigate experts' performance as uncertainty
assessors.

3 RESULTS

3.1 Calibration & information

The classical model is a performance-based lin-
ear pooling model based on statistical hypothesis
testing. It aggregates individual experts' PDFs in
order to obtain one combined PDF for each vari-
able. Experts give pre-dehned quantiles of distri-
butions, typically 5%, 50% and 95o/o. Experts can
be weighted equally or according to their (relative)
expertise, as indicated by their performance on seed
variables. Seed (calibration) variables are variables
lrom the experts'f,reld whose realizations are (or
will be) known to the analysts, but unknown to the
experts.

The individual experts'weights are based on two
quantitative measures of performance: calibration
and information. Calibration measures the statis-
tical likelihood that the realizations of the seed
variables correspond, in a statistical sense, with
an expert's assessments. If this likelihood score
is below a certain cut-off level, the expert is un-
weighted. The cut-off could be chosen by the ana-
lyst or determined by optimizing the performance
of the combined virtual expert.

The calibration score takes values between
0 and l, with a high score implying that the
expert's PDFs are statistically supported by
the set of seed variables. Information repre-
sents the degree to which an expert's PDFs are
concentrated, relative to some chosen back-
ground measure, and it is always positive. Good

uncertainty assessors are those exhibiting good
calibration and high information. The virtual
(combined) expert resulting from the combina-
tion of experts'opinions will also have a calibra-
tion and an information score. The individual
experts' performance-based weights are propor-
tional to the product of calibration and informa-
tion. For a detailed discussion about the classical
method see Cooke (1991).

Table I shows calibration and information
sco¡es for groups I and2. AT the bottom, the equal
weight combination (all experts assigned equal
weights regardless of their performance on seed
variables) and the performance base combination
(Global) are also shown. Notice that for group l,
the equal weight combination is better calibrated
(by far) than individual experts. For group 2 the
equal weight combination is better calibrated than
every individual expert except expert F who has a
rather high calibration score. The price for high
calibration in the case of the equal weight com-
binations is wide distributions (low information
score).

The performance weight combination in the
case of group I is better calibrated than individual
experts and also than the equal weight combina-
tion. The information score is however on the
order of the less informative experts from this
group, but still higher that the information of the
equally weighted combination. In group I the per-
fiormance based combination would be formed
with experts A and B. Given experts'A and B cali-
bration and information scores (and their respec-
tive products) one can notice that the normalized
weight of expert A is 0.93, whereas that of expert
B is 0.07. Even though both experts are added to
the combination, the features ol expert's A distri-
bution will dominate. For group 2, the perform-
ance based combination would give all weight to
expert F.

Table L Calibration and inlormation scores for
experts.

Group I Group 2

Id. Calibr. Inform. Id. Calibr. Inform.

D
E
F
G
J

L
M

Eq

Gl.

A
B
C
H
I
K
N

Eq.

Gl.

0.0139 2.092
0.0013 1.662

1.3x108 1.89

4.1x106 2.336

4.9 xl07 1.474

0.0011 1.209

3.5xl0s 2.378

0.2282 0.0263

0.8283 1.459

5.9x l0a 1.86

24xl0rt 2.49

0.0028 1.169

0.00131 3.84

0.0357
0.0063
0;Ì069

0.5503

0.7069

2.745

1.497

0.7 571

0.3009

0.7571
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3.2 In¿liviclual estimates of conditional rank
correl4tiotls

For each case of interest MIRRC, MICPE,
M2RRC and M2CPE we have a total of 49
estimates. That is, seven expert estimating each of
the seven (conditional) r'ank correlations shown in
figure 1. We denote the true estimates (unknown to
the expert) r,,r,, where D corresponds to the con-
ditioning set-corresponding to the arc ol interest
from the NPBN in hgure 1. The corresponding esti-
mate lor diflerent experts is denoted as r¡",,r. The
absolute difference between the true estimâtes and
experts'individual answers for each particular case:

4 =l ,;,¡to- r,i¡1o I where c e {MlRRC, MICPE,
Fisure 2.

aíd ffzc'E ur"
The largest value

his does not hold
for all other models. The average across experts

ãr,..u = 0.43,¿"r** c= 0.46 and ¿rr.ru = 0.49
are similar andlarger than ¿r,o*"=0.23. The
average across all observations in Figure 2 is

l. = 0.a'' One way to investigate whether the estimates
for cases MIRRC, M1CPE, M2RRC and M2CPE

(a) lr¡,i lo - rfi ¡o I 
for Model t

(b) lr¡,; to - rfi ¡¡ I for Model z

Figure 2. Absolute difference between the true esti-
mates and experts individual answersl r,.n o - r,'.,, o I lor
Models I and 2 with RRC and CPE.

are statistically different is through a two-sample
Kolmogorov-Smirnov test. This is based on the
distribution of Q,,,, = l.u.b. I S,,(x)- 4,(x) |

, where S,,(x) and 7,,(x) arc the empirical distri-
bution functions of two samples of size m and n
respectively of mutually independent random vari-
ables having a common distribution function f'
(see Feller (1948) and Feller (1950)).

A two-sample Kolmogorov-Smimov test is per-

the distributions are different cannot be rejected on
the basis of this test. It is worth stressing that the
distribution that seems significantly different than
the others is that ol áMlRRc. Recall that Model I

was the true model tliat was quantified with the
original data and hance made more physical sense.

Another way to investigate the "homoge-
neity" of data is through analysis of variance
(ANOVA). The hypothesis to_be tested is ÌIu:
5t,.ru = Svznnc =\nnM2cta = Surtnnc' The
hypothesis is tested by comparing two unbiased
estimates ol o- which is the unknown but equal
variance across sub-populations. One of these is
based on the variation from sample to sample and
the other one on the variations within samples, that
ts, Total .SS = S.lT + S.lE. Where îoløl S.S stands
for total sum of squares, SST for sum of squares
for treatments or between groups and SSE for sum
of squares of errors or within a group. If each
term in the sum of squares in .lSZ and S^S.E comes
from equal variance
then uld come from
an F nr+...+n¡-k)
degrees of freedom. The p-value for the hypoth-
esis that árr"ru = ãir¿znnc = Svtzcpp.= á¡,a¡¡¡ç is
0.0016. This casts statistical evidence to reject the
null hypothesisr.

In order to get further insight into the differences
of means the Tukey test based on "allowances" is
used (see Ramachandran & Tsokos (2009, ch.10)
and Duncan (1955, p. 29-31)). Tukey's procedure
estimates confldence intervals or "allowances"
lor Ho: 5,- j, ftom a randomized design such as

the one way ANOVA procedure described briefly
above. Tukey showed that if îi , i : l, . . ., k denote
the sample means computed with equal sample size
and ¿ the true means, then the probability that all

Ij] Oin r.n..s 6,- 6¡ will simultaneously satisly

ihé inequalities:

rIf sample sizes are equat ANOVA is robust to
violation ol normality and equal variance assumptions
(Ramachandran & Tsokos 2009, ch.l0).

CPE

,zl_9l
"r ,f

--o3l

o6l
l

041

orl
i

r362



(8i-6.)-ct".t,,1,-yn SSEi(trr+...+¿¿-t) -; = ,
, >ò¡-òl>

lss¿¡f r,*r,-tl
lõ¡ - 6 il + qd.k (¿-l)Å \/---jjl¡ .-

rs (l- ø), where t1o,r,, is the upper ø critical value
of the Studentized range distribution based on k,
v degrees of freedom. If for a given i andT zero is
not contained in the interval above inequality, F\:
å,= õ ¡may be rejected at the ø signiflrcance level.
The T"ukey procedure applied to the data shown in
Figure 2 would rend_er á",*". significantly differ-
ent lromn e4vrcpa, áivrznnc and ¿y2çpE atThe 5Yo

level. The same hypothesis of equality of means
would not be rejected for all other pairs of means
for the same significance level.

Finally, it is worth mentioning that there appears
to be a positive correlation between { and the
cardinality of the set D. This would indicate that
larger errors would tend to appear in the elicita-
tion of higher order conditional rank correlations.
These correlations are 0.23,0.35,0.06 and 0.21 for
MIRRC, MICPE, M2RRC and M2CPE respec-
tively. Nevertheless, given the sample size, only
values higher than 0.21 (at a 0.05 level of signifi-
cance for a nondirectional two-tailed test) can
be considered as signihcantly different than zero
(Fisher & Yates 1974).

3.3 Inclividual models

The main question of interest is whether experts
can approximate a multivariate model through one
or the other technique investigated in this paper to
a desired level of accuracy. In Hanea et al. (2010) the
determinant of the correlation matrix of a NPBN is
proposed as a summary measure of dependence to
be used in a data mining procedure. The r¡ain reason
is that the determinant may be written as a function
of the partial correlations corresponding to the arcs
of the NPBN. Notice that the arcs in a NPBN are
associated with conditional rank correlations. Under
the normal copula assumption, the corresponding
partial correlations may be calculated. From the par-
tial correlation specification and the (conditional)
independence statements embedded in the graph,
the correlation matrix of interest may be computed.

Theorem Let K be the determinant of an
n-dimensional correlation matrix (K 2 0). For any
partial correlation NPBN specification

K= ll (t- Å.,,,,,)
IeE(NPBN\ (l)

where p,,,,r., is the partial correlation associated
with the árc between nodes i and7, with condition-
ing set Q,r, and the product is taken over the set ol
edges (E(NPBN)) in the NPBN.

The determinant K of an n-dimensional
correlation matrix for the partial correlation
NPBN specifìcation can take values between 0 and
l. Where I corresponds to independence and 0 to
perfect linear dependence. In order to address the
question of interest one would like a protocol by
which one could decide if experts have approxi-
mated sufliciently the target correlation matrix.
The first idea could be to follow the protocol
described in Hanea et al. (2010) fo¡ data mining
which is based on the determinant of the corre-
lation matrix. For example one might sample a
number of times from the normal distribution with
correlation matrix corresponding to the model of
interest. For each sample compute the correla-
tion matrix and its determinant thus obtaining
an empirical distribution. Then observe whether
experts' estimated correlation matrix falls within
the empirical distribution. However, the determi-
nant of the correlation matrix in the case of expert
judgments is not an appropriate test statistic. This
may be seen in the following lemma.

Lemma Fix K e (0, l) and a NPBN structure
(the DAG of a NPBN). There exist inhnitely many
different partial correlation NPBN specifìcations,
hence infinitely many correlation matrices with
determinant K.

Proof. Let K be in (0, 1) and assume we have a
NPBN structure given, but the values of the par-
tial correlations are still .lree to choose. Rewrite
equation I as K= n i:,i- ål where M is
the number ol edges in ihè NPBN structure. We
can specify any value e(-1, l) for the po. This is
an M-dimensional function, whose equality to
K describes an M- I dimensional hyperplane,
which will have inhnitely many points. More rig-
orously: thus
infinitelv Then
tl- Å¡> equal
to Kr: = (rK,l)
. Now we can continue this process by choosing
inlinitely maîy f,2.1-ufi- f¡.tft- ¡ç¡¡ . Con-
tinue in the same way ûntil we rèach p, which

may be set equal to t(Jl- Ktll';':,'0- ål\.
The lemma above eñtails that different experts

may provide different dependence estimates that
will yield the same (or approximately the same)
determinant for the NPBN structure of interest.
This is obviously not desirable if the procedure
previously described based on the determinant
of experts'correlation matrices was to be used to
decide upon experts dependence estimates. Even
though in practice the number of correlation matri-
ces with the same determinant is not strikingly high
in all situations, especially in higher dimensions,
for determinants larger than 10 2, we would prefer
a different measure of performance. Instead of a
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summary measure of dependence we would like
to use a measure of distance for our protocol for
deciding if experts have approximated sufficiently
the target correlation matrix. In this example we
know that the underlying copula corresponds to
the normal copula. Hence we would look at meas-
ures of distance for the multivariate Gaussian
distribution. In Abou Moustafa et aJ. (2010) sev-

eral measures of distance between Gaussian den-
sities are discussed. For the rest we consider the
Heillinger distance dn(Nr W)=,þ1(U1, tl)
where ly',(,t-t,, Ir) and Nr(ttz,Ðr) are two gaussian
densities with covariance matrices 2t,2r., and vec-
tor means l\, lrz, and 4 is as in equation 2:

,letrE,i det(2"1!
4Nt,N2)=---:;r:---;-!ix

,ler(jår+ jårtr (2)
i -t r

exp{-;(Á - /tz)' 
121 

+ -22Ç4 - ¡t2\}

When assuming the normal copula the marginal
distributions are transformed to standard nor-
mals, hence the exponent term in equation 2 van-
ishes and I,, I, correspond to correlation matrices.
Moreoveç in our case the Heillinger distance satis-
hes the usual axioms of a metric: it equals zero iff
2t= 2z,it is symmetric, and it satishes the triangle
inequality. Its maximum value is l, which it reaches
tf det(åt)= 0 (there is perfect dependence between
certain variables) atd det(Ðr)= I (independence)
or vice versa. Table 2 presents results of comput-
ing the Heillinger distance between the real rank
correlation matrix and the elicited rank correla-
tion matrix, per model and elicitation technique of
interest for each of the 14 experts.

The three smallest distances (< 0.3) are observed
between the dependence structure given by experts
G M and D for MIRRC. The largest distances
(> 0.9) are observed between expert L dependence

'lable 2. Results lrom expert judgment elicitation of
dependence.

Expert A B C

structure for MIRRC, and between expert F
dependence structure for M2CPE. The correlation
matrices for the two experts with smallest value
of d,,pet model are shown in Table 3. In general

smaller values for do are observed for model I
regardless of the elicitation technique.

Averaging across experts MICPE shows smaller
average value (0.49) fot do. The average value
across experts for MIRRC is (0.52). The averages

for M2RRC and M2CPE are 0.75 and 0.69 respec-
tively. An ANOVA analysis as in previous section
based on r/r, would indicate no signihcant differ-
ence between the four groups.

Following our previous discussion, a procedure
for deciding whether an expert has approximated
suffrciently the target correlation mat¡ix is to con-
structtheempiricaldistributionol d ¡1 (2,,,2,,.,nu,t,t,1
where 1,,, corresponds to the target correlaiion
matrix and >m,suntpte to the correlation matrix

Table 3. Correlation matrices for experts with smallest
r/¡1 per model.

s-
100 0

I 0 0.58

t0
I

0 049

0 0.21

0.s9 0.10

0 0.31

I 0.19

I

-G.¡ÍtRR('-
100 0

I 0 0.48

l0
I

0 0.41

0 0.12

0 45 0.20

0 0.33

r 0.12

t

Z,u,vtnnc -
r 00 0 0 0.51

I 0 0.76 0 021

l 0 0.76 0.10

r 0 0.33

I 0.32

I

L,tt2 -
100

l0
I

0

-0.57
0

I

2 o,¡tzcp¿ :
0 0.10 I O O 0

0 0.58 l0-0.51
0.90 0.30 I 0

0 0.10 I

I 0.34

I

0 0.31

0 0.33

0.91 0.31

0 -0.11

I 0.23

I

d o(2,n,2,,,)

du(2,,,,2,,,)

Expert

do(2,n,2".,)

dH(2,,,,2".t)

m=Ml l=MICPE
0.54 0.35 0.68 0.72

nt=M2 f = M2RRC
0.87 0.48 0.90 0.68

DEFG*
m=Ml ¿ = MIRRC
0.29 0.49 0.88 0.13

m=M2 ¡= M2CPE

0.36 0.38 0.37

0.68 0.91

0.69

M

0.25

0.82

J

0.83

L

. R,M2RRC _

1000 0 0.51

100 0 0.41

I 0 0.81 021

l 0 0.26

r 0.36
0.40 0.68 0.91 0.5t 0.83 0.84 0.68
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estimated from a sample of size M from the normal
copula with correlation matrix >,¡,.r,r,,¡", and test if
a particular value (calculated per expeit, per model.¡
is below agiven percentile (significance level) of this
distribution. The empirical distribution of interest
is obtained by a bootstrapping procedure. By such
a procedure the correlation matrix Io,r1^^. is
found signihcant at a 0.05 level of significance with
sample size up to 300.

4 COMBINATION OF EXPERTS
DEPENDENCE ESTIMATES

In Table I we showed how combining experts with
regard to their assessments of the one dimensional
uncertainty distributions, taking into account both
calibration and inlormation scores, may result
in combined estimates for the distributions that
perform better than any one of the experts. We
now propose an approach of combining experts'
dependence assessment in a simila¡ fashion. First,
we define the calibration of an experts' estimate
of the dependence structure (correlation matrix)
via the Heillinger distance: considering model rz,
actual correlation matrix I,,, corresponding to this
model and an expert's estimation I" of the corre-
lation matrix we define The d-calibratio,,r score as:
l- dH(2,,>").

The d-calibration takes values between 0 and l,
with a high score implying that the expert's correla-
tion matrix is statistically close to the actual correla-
tion matrix. In order to measure this d-calibration
in an expert judgment session we need to include
variables with a known dependence structure, in
addition to some unknown dependence structure we
would like to assess as a main goal of the session.

Now we can discuss combining dependence
structures. Observe that the set of all n x n col-
relation matrices is a convex subset of the set of
all nx n matrices, meaning that the normalized
weighted sum of correlation matrices will yield a
correlation matrix2.

As in the case of estimating one dimensional
uncertainty distributions mentioned earlier, experts
can be weighted equally or according to their (rela-
tive) performance in dependence assessments, as
indicated by their d-calibration score.

If the d-calibration score is below a certain cut-
off level, the expert is un-weighted and thus not
used in the combined dependence estimation. The
cut-off could be chosen by the analyst or deter-
mined by optimizing performance of the combined
virtual expert. Here we choose the latter.

'zWeighted combinations of conelation matrices might
not, in general, preserve the cond'itional independence
embedded in the graph.

Table 4. d-calibration scores of combined expert
judgment of dependence.

nr=Ml l= MICPE nt= M2 ¡= M2RRC

Equal 0.74 0.37
Global 0.76 0.52

m=Ml ¡=MIRRC m= M2l=M2CPE
Equal 0.66 0.37
GIobal 0 95 0.60

This yields the results as displayed in Table 4.
'Equal'denotes equal weighting of the experts
estimates, while 'Global' denotes the weighting
according to d-calibration score with the optimal
cut-off.

In order to compare these d-calibration scores
to Table 2, note that we need to compute I minus
the values in Table 2 to obtain the d-calibration
scores ol individual experts.

We can make several observations: Only for
MlCPE does the equal weighting come close to
the global weighting in terms of d-calibration.
In the other three settings the global weighting
d-calibration score is significantly higher than the
equal weighting d-calibration score. For MICPE,
the best individual expert's d-calibration score
equals 0.65, which means that the equal weight-
ing gives a better score than individual experts. In
all other settings there are individual experts that
outperform the equal weighting. For the global
weighting in MICPE, the estimates of the experts
B, I, K and N are combined, while in MIRRC,
the estimates of experts G and M are combined.
Especially in the latter case, a significant improve-
ment is made in d-calibration when consider-
ing individual experts versus global weighting.
From 0.87 (expert G) to 0.95 (weighted com-
bination of G and M). The correlation matrix
corresponding to the global weight solution is
presented in equation 3. This may be compared
with individual expert estimates in Table 3. For
both M2RRC and M2CPE, the global weighting
gives full weight to the best expert, expert B and
D respectively.

100 0 0 0.46

100.ól 0 0.16

l 0 0.60 0.16s-
'Clohø|. ití I RRC - (3)I 0 0.33

1 0.21

I

While expert B is among the best d-calibrated
expert (in his group) for both the CPE and RRC
elicitation techniques, this is not the case for
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any of the other experts. Expert L has the worst
d-calibration score for both CPE and RRC.

Further exploration of these and other meth-
ods for combining experts estimates of depend-
ence structures is necessary to find out which has
the highest potential to lead to best dependence
estlmates.

5 DISCUSSION AND FINAL COMMENTS

We have presented an exercise aiming at answering
the question of whether estimates of conditional
rank correlations may be elicited more accurately
from ratios of rank correlation or conditional prob-
abilities of exceedence. This question is meaningful
if experts are able to elicit the required quantities
to a certain accuracy. In this particular exercise at
least the estimates from expert G (MlRRC) would
confer the required level of accuracy. On average
experts' assessments for MIRRC performed sig-
nihcantly better that the other three groups. This
tendency however is not preserved for individual
models. No signifìcant difference was observed lor
individual models across the elicitation techniques
explored.

We have suggested some first steps in tackling
the issue of combining experts'dependence assess-
ment. Some further comments are in line. Compar-
ing tables L and2 we may see that good calibration
(at least in the sense of the classical model) does
not warranty that experts' would provide best
dependence estimates. From group 1 expert A
would dominate the linear pool. However her val-
ues for do are in the higher side (0.54 for MIRRC
and 0.87 M2RRC). The situation for group 2 is
more acute since expert F would be the recom-
mended "combination" based on performance
measures for one dimensional uncertainty distri-
butions. Her d, values would be 0.88 for MIRRC
and 0.93 for M2RRC. In an uncertainty analysis,
when the dependence between quantities of inter-
est is relevant, it would be desirable to provide the
best advise possible also with respect to depend-
ence. The suggested approach via the Heillinger
distance presents a first step towards this goal.
As observed, the global weight combination of
dependence shown in equation 3 would also confer
the required level of accuracy. The d-calibration
philosophy might be combined with the classical
ca.libration methods for one dimensiona.l uncer-
tainty distributions. This is the subject of authors'
current research.
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