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Stellingen
behorende bij het proefschrift:
'Seismic reservoir characterisation employing factual and simulated wells'

. Het combineren van diverse ondergrondse gegevens en kennis vereist
dat deze vergelijkbaar gemaakt worden middels een consistente
beschrijving aan de hand van een geologisch model (dit proefschrift,
hoofdstuk 2).

. Het integratie framework, zoals gedefinieerd in dit proefschrift, is een
generieke beschrijving van de ondergrond die het mogelijk maakt litho-
stratigrafie, sequentie-stratigrafie, genetische eenheden en fysische
eigenschappen te verbinden en in een computer te manipuleren (dit
proefschrift, sectie 2.4.3).

. Het visualiseren en interpreteren van seismische horizon patronen,
bijvoorbeeld door middel van de segmentatie techniek heeft de potentie
om uit te groeien tot een standaard techniek bij 3D-seismische
intepretatie studies (dit proefschrift, hoofdstuk 6).

. Bij veel op objecten gebaseerde geologische modellering systemen,
wordt de geologische realiteit ondergeschikt gemaakt aan het
rekenkundige model.

. Het gebruik van fractalen voor het modelleren van geologische
schaalniveaus is onjuist wanneer men op verschillende schalen de vorm
van de geologische entiteiten betracht (b.v. Fig. 2:3 van dit
proefschrift).

. De aandacht besteed aan de ontwikkeling van een olieveld is vaak
omgekeerd evenredig met zijn omvang.

. De toekomst van geofysische inversie ligt in de geologie en niet in de
fysica.

. De projectmatige benadering van onderzoek in Europa mist een
economische en strategische invalshoek. Voor innovaties buiten direct
project verband is geen plaats in de huidige cultuur.



9. De complexiteit van geologische processen, de fragmentarische kennis
van de ondergrond en de onzekerheden betreffende voorspellingen in de
geologische tijd zou tot een éénduidig verbod moeten leiden ten aanzien
van oplossingen voor het ondergronds opbergen van nucleair afval
waarbij terugwinning uitgesloten wordt.

10.Het zou interessant zijn te onderzoeken hoeveel professionele
hulpverleners hulp behoeven.

Enschede, 20 september 1995 Paul de Groot
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PREFACE

In the beginning of 1991, I was transferred from Shell Petroleum
Development Company of Nigeria to Shell International Petroleum
Maatschappij in The Netherlands. In my new position as interpretation
support geophysicist I came across artificial neural networks and realised
that here was a tool with potential for seismic reservoir characterisation
studies. By the middle of 1991 I decided that the best way to develop my
ideas was to start my own company: Quest Geophysical Services B.V.

With the support of TNO Institute of Applied Geoscience in Delft, the
Netherlands, whom I joined in 1992, I was able to achieve the first part of
my quest by the end of 1992, i.e. the formation of the PROBE consortium.
The objective of PROBE was to develop and test, in proprietary case
studies, a seismic reservoir characterisation system based on neural
networks and stochastic modelling techniques. PROBE attracted
sponsorship from Saudi Arabian Oil Company, BEB Erdél und Erdgas
GMBH, IBM Nederland N.V., High Tech Automation B.V., SINTEF,
TNO, the European Union and the Norwegian Research Council.

The greater part of the research which finally led to this thesis has been
carried out within the PROBE project. I wish to thank the participating
companies for making this possible and also for the interest and stimulating
discussions during the sponsor meetings. Special thanks go to Saudi
Arabian Oil Company and BEB for the permission to use their data in this
thesis.

PROBE was jointly carried out by TNO and the Norwegian R&D
organisation SINTEF. I wish to thank my Norwegian colleagues: Ragnar
Havaaldsen Jr, Mats Carlin, Bjgrn Lillekendlie and Gunnar Berre, for their
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dedication and enthusiasm, which resulted in the neural network module of
the GeoProbe system. Special thanks to my counterpart in the project: Tom
Kavli. Thanks Tom, for many interesting discussions and for your
willingness to implement the segmentation approach, even though the
money was gone. It not only saved the project, it also saved my thesis!

Many thanks also to all TNO colleagues who participated in the PROBE
project. I specifically like to mention the contributions of Harry Wedemeijer,
Wim Immers, Bert Bril, Ewan Campbell and Frans Floris. Harry
implemented the seismic processing module and became indispensable when
data had to be loaded. Wim helped me greatly with many of the drawings
that appear in this thesis. Bert Bril is one of the very rare persons who
combines domain expertise with extra-ordinary software engineering skills.
Bert has designed the GeoProbe software system and a.o. invented the
coding system for the integration framework. Ewan played a crucial role in
the case studies which are described in Chapter 6 of this thesis. Moreover,
he edited my Dutch-English into Scottish-English and was never tired of
searching for yet another reference that I could not omit. Frans Floris has
solved the problem of drawing correlated multi-variate stochastic variables
one-by-one, which is included as Appendix I of this thesis. This solution is
inspired by earlier work of Peter Defize from TNO-TPD.

I also wish to thank Eddie Szulc and Koen Schilders of High Tech
Automation for their work early on in the project and Rosana Cisneros, an
independent consultant, for testing the software and applying it to another
proprietary case study.

Special thanks are due to my promoters Prof. Weber and Prof. Fokkema for
reviewing my work. I especially appreciated the sessions with Prof.
Fokkema and Ir. Peet and thank them for their constructive criticism
regarding my writing.

Finally, sincere thanks to my family. Marieke, Michelle, Nadine and Bart
I'm sorry I could not give you the attention you deserved. Mieke, all credits
and thanks go to you. I could not have done this without you.

Paul de Groot
Delft, July 1995




TABLE OF CONTENTS

Preface..iciiiiiieierisieisiceecsiesecsssssacsssssanssssassssssssacass i
Table of Contents....ccoiuiinieieiercirsssssscsrcesssssssssnssnns iii
INtroduction.....coveviieiiisireinessssesseesssseissassossssanscnnss 1
1.1 Statement of the problem............coooiiiiiiiiiiiiiiii i 1

1.2 Total sSpace INVErSION..........cceoiieeiinreimeiiriiniriinnieniierrannees 3

1.3 Outline of this thesis ........coooviiiiiiiiiiiii 4
Seismic Reservoir Characterisation..........ccoceieiveneinnnne, 7
2.1 IntroduCtion ......vvvnnniiiiniiiiiiii i 7
AT 11 111 015 T) 11 N 8

2.3 Overview existing techniques. ............c.covvieiiiiiinininnn... 10

231 General.....coiiiiiiii e 10

2.3.2 Attribute analysiS.....ccc.cccuvveririiiinniriiiiiiiieeen. 11

2.3.3 Acoustic impedance inversion.......................... 12

2.3.4 Stochastic sSimulations..........cccovvviiinieiiineennnn.. 13

2.4 Towards a new technique .............ccoovviiiiiiiiiniiinn. 13
241 General. ..o 13

2.4.2 The scale problem......ccccooceriiiniiiiniiiiniiinnn, 16

2.4.3 The integration framework..........cccccccovvrnnnnniin 21

2.4.4 Total space INVersioN .........ouvveiuiiiiiinerninnennn.s 24

Introducing the various Techniques......... Ceeeecescntantenanas 27
S I 116 ¢oTe 1111500 | S PPN 27

3.2 Artificial Neural Networks ........oovviviiniiiiiiiiiiiiiienenee. 28

320 General......oiiiiiii 28

3.2.2 Multi-layer perceptrons (MLP)......................... 29

3.2.3 Radial Basis Function Neural Networks (RBF) ..... 33

3.2.4 Unsupervised Vector Quantiser (UVQ)............... 35



Table of contents v

3.3 Monte Carlo StatiStiCS.....cceeeivirrvrirereiriireeiiiiieeiieeiienn, 39
Simulating wells...c.ovineiiiiiiiiiiiiiiiriireissatsssseenssnnsanns 43
4.1 IntrodUCtioN ....eovviiiiit it 43
4.2 Simulation algorithm.............cooiiiiiiiiii i 43
4.3 Simulation eXample ........ccovieiiiiiiiiiii e 48
Experiments with simulated data...........ccoviviiiiinieienanns 53
5.1 INtrodUCtion ....vvv i 53
S2Initial model..........ooiiiiiii 54
S3EXPEriments......oc.ovvviiiiiiiiiii i 55
5.3.1 Network design.........ccooovvviiiiiiiiiiiiinininnenn... 57

5.3.2 Geological model complexity........ccccoevrnnnen.... 59

5.3.3 Seismic bandwidth variations .......................... 63

5.3.4 Additional information ...............coooiiiii i, 64

5.4 Discussion of the results.........ccooooeiiviiiiiiiiiiinn. 64
5.5 CONCIUSIONS ..o vvevtee et eenieaeaans 68
Case studies.....covveviniiiniiieiirrenineeieetecnersiecessssscnnns 71
6.1 INtrodUCHION ...cuveent it 71
6.2 Rotliegend case study.............coviiiiiiiiiiiiiiii 72
6.2.1 Available data...........coooiiiiiiiiiiiin 72

6.2.2 GEOLOZY . cuniiiiiiiiii e e 73

6.2.2.1 Tectonic OVerview.........ccccevevvveneennen. 73

6.2.2.2 Stratigraphy.......c.cocoviiininnninnnin. 74

6.2.2.3 Depositional Facies and Reservoir Geology75

6.2.3 Integration framework.........ccocoovererniiinininanne. 77

6.2.4 Well data preparation ...........o.ccevveeiiiiiiiinnnenns 79

6.2.5 DIir€Ct INVEISION ...evvivneneriinreiiiieniieereeneieanas 82

6.2.6 Segmentation ..........oceveiiiiiiiiiieiiie 86

6.3 Middle Eastern case study.........c.coceeeevieiiiiiiiiiiiiin... 95
6.3.1 Available data...........ccoooiiiiiiiiinninnn. 95

6.3.2 GEOIOZY ..t 96

6.3.2.1 Tectonic OVerview.........c..eveeeveenennnen. 96

6.3.2.2 Stratigraphy......coccoveviviiiriiniiiinnennnn. 97

6.3.2.3 Depositional facies and reservoir geology . 98

6.3.3 Integration framework.................coooeeiieiiil. 99

6.3.4 Segmentation .........ooeeeiiiiiiiiieiiiiiii s 101

6.4 CONCIUSIONS ... v vt ettt 117
Practical aspects......cciuvivieiiiireieiniieiniiretenesecnecnnes 119
T INrOdUCHION ... 119
7.2 True amplitude seiSmiC pProcessing............c.ooevvveeiniernninn.. 119
7.3 Seismic trace balancing ............c.oooiiiiiiiii 121
7.3 Reference horizon ..........oooeiiiiiiiiiiiiiiiii s 122

7.4 Applicability.....coooiiiiiiiiii 124




Table of contents v

Suggestions for future work.........ccoevveiiiiinninniiiannnes 127
8.1 INtrodUCtiON .. .vvvutttitie e e et et e eainaaea e 127
8.2 Geostatistical implementation.............coovveiiiniieiiani., 128
8.3 Pre-stack implementation.............c.oevveiiiiiiiiiiniiiiian 129
8.4 Fluid replacement simulations ..............cccooeiiiiiinin. 130
8.4 Well 10g PreproCesSOT....cccuiiimuriinireneeieeinieiieriienannes 133
8.5 Supervised segmMeNtation ...........coovvivivieiiirineiiieananne. 134
8.6 StEP-WiSE INVETSION . ..evuvinnnenntiii ettt e, 135
8.7 General use of the integration framework......................... 135
Conclusions...... ceseeene Cheaesescececnteceniatatssssssretenenns 137
0.1 General ...oivieeee it e 137
0.2 CONCIUSIONS . .. euutteterttetee ettt r e caeanaeas 138
ReferenCeS ciieiieieeeeeresecossossesssesscscsassessseescasasees 141
Monte Carlo statisticS ....vvvivreereieeiiriieriitiirenecnncennes 149
Simulation specifications .....cceevveiiiiiierieririiiecieeenn, 157
Performance statistics simulated data experiments........... 165
SUMMALY t00teietrtireeeesoetssessccscscssasassssscscsssnsoscens 177
Samenvatting.......c...oven.. Cesasesecasasetesnanas ceeersrrennns 179

Curriculum A4 1 1 1 - PP 183






INTRODUCTION

1.1 Statement of the problem

The seismic reflection method measures the response of the subsurface, in
space and time, due to a generated source wavefield (Fig. 1.1). On land,
dynamite and seismic vibrator sources are commonly used to generate the
source wavefield. In general for the marine case airgun sources are used.
The response is measured by a distribution of geophones (land) or
hydrophones (marine). The seismic experiments are repeated multiple times,
at different locations, in order to obtain a proper sampling of the subsurface.
If the seismic measurements are acquired along a line, a two-dimensional
profile is acquired (2D-seismic). If the measurements are acquired such that
the seismic coverage is equal, to and perpendicular to, the recording
direction, a three-dimensional dataset is acquired (3D-seismic). In the
seismic processing phase, the measurements are transformed to sections in
space and time (sometimes space and depth) of the subsurface. These
sections need then to be interpreted in order to obtain structural images of
the subsurface.

Apart from information on the structural framework of the subsurface, the
seismic measurements, also carry information about rock and fluid
properties in the subsurface. This type of information is valuable, from an
economic perspective, for characterising zones of interest, such as
hydrocarbon reservoirs. This process of inferring information about the
subsurface properties from the seismic measurements is called seismic
reservoir characterisation. It plays an important part in total field
development and reservoir management.
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Seismic reservoir characterisation must be approached from a geological
perspective. The reason for this is that seismic reservoir characterisation
results must ultimately be combined with results obtained from other data
inversions and interpretations aimed at delineating and describing the
reservoir model. The only way to obtain commensurable results is to use a
common subsurface model for all relevant data descriptions. This common
subsurface model must be based on a geological description.

The goal of this thesis is to describe a seismic reservoir characterisation
method, based on a geological approach, that is aimed at extracting the
greatest possible stratigraphic and lithological detail from post-stack
migrated seismic data.

Fig. 1.1 The principle of the seismic method. Seismic waves are
generated by a seismic source. They propagate through the
subsurface, get reflected by layer boundaries and
propagate back to the surface where they are recorded by
the geo-/hydrophones.
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1.2 Total space inversion

Seismic reservoir characterisation techniques have a requirement to integrate
data and knowledge from other sources and disciplines. Integration of such
data and information is not trivial because of the varying datatypes, scales
and accuracies involved. Another major problem is that well data is often
limited and geological knowledge and reasoning can best be entered into the
problem via stochastic methods. Hence, there is a requirement to combine
stochastic and deterministic data.

Integration
framework

Simulated
well
Synthetic
seismic traces

Factual
well
Factual
seismic traces

3D seismic
data

Relationship

Lateral predictio
result

Fig. 1.2 Total space inversion concept.

Relevant data, from a seismic reservoir characterisation perspective, are
described, in this thesis, in terms of a common subsurface model: the
integration framework. Factual wells, i.e. one-dimensional (1D)
stratigraphic profiles with attached physical properties, and simulated wells,
described in terms of the integration framework, are commensurable. The
factual well data is combined with the surface seismic traces at the well
locations. This part of the problem space is defined as real space. Simulated
wells and corresponding synthetic seismograms are part of the problem
space that is defined as model space. The combination of real space and
model space is defined as total space. Datasets consisting of wells with
corresponding seismic responses can then be compiled from factual and/or
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simulated data. The objective is to arrive at a dataset that is representative of
the target zone in a particular study area. The seismic reservoir
characterisation technique uses the representative dataset to establish
relations between seismic response and underlying salient well properties.
The technique is referred to as fotal space inversion.

1.3 Outline of this thesis

This thesis after outlying existing seismic reservoir characterisation
techniques, describes how neural network technology and Monte Carlo
statistics, can be applied to total space inversion. The method is then applied
to two case studies and the results evaluated.

The thesis is divided in 9 chapters as follows:
Chapter 1 is an introduction to the problem and an outline of the thesis.

Chapter 2 is an introduction to seismic reservoir characterisation. The basic
assumptions made in this thesis are presented here and an overview of
existing techniques given. The problems related to the integration of
different data types, scales and accuracies are then discussed. An
introduction to the integration framework and the total space inversion
technique follows.

Chapter 3 introduces the techniques used in this thesis for seismic reservoir
characterisation, namely, artificial neural networks and Monte Carlo
statistics. The network paradigms described here are:

e Multi-Layer-Perceptrons (MLP)

» Radial Basis Functions (RBF) and the

» Unsupervised Vector Quantiser (UVQ).

The simulation algorithm used to generate wells is then introduced. This
simulation algorithm is discussed in more detail in Chapter 4. In Chapter 5
experiments with simulated data, aimed at determining the feasibility of

direct inversion, are discussed. ~

In Chapter 6, the application of the total space inversion method to two
separate case studies is described. The first study deals with an aeolian gas-
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filled reservoir. The second study examines an oil-filled fluviatile reservoir
model.

In Chapter 7, practical aspects, dealing with the application of the total space
inversion method are discussed. Chapter 8 puts forward suggestions for
future applications of the technique while the conclusions are presented in
Chapter 9.

Appendix I contains the mathematics behind the Monte Carlo simulation
algorithm. In Appendix II, the simulation specifications used to simulate
wells in Chapters 4 and 6 are given. Finally, in Appendix III, the neural
network performance statistics for the experiments described in Chapter 5,
are presented.






2

SEISMIC RESERVOIR CHARACTERISATION

2.1 Introduction

Post-stack seismic reservoir characterisation (or lateral prediction) studies
have been carried out since the first "bright spots" were recognised some 25
years ago (Brown, 1991). In the early days seismic attributes were
measured along an interpreted seismic horizon. These attributes were then
calibrated at well locations to physical rock properties, such as porosity. The
attribute measurements away from the well bore yielded prediction results
for the calibrated rock property. In the eighties acoustic impedance inversion
was introduced as an alternative seismic reservoir characterisation technique
(e.g. Savit and Changseng Wu, 1982, Neidel et.al., 1986). The aim of
acoustic impedance inversion is to increase the seismic band-width in order
to increase the amount of detail that can be extracted from the data. In
general, acoustic impedance inversion is followed by additional inversion
steps, in which the seismic impedance traces are transformed into physical
rock properties. In the nineties stochastic simulations were introduced (e.g.
Haas and Dubrule, 1994). With this technique, objects, or properties, are
generated and distributed in space. The simulated data can be constrained by
the recorded seismic data. A number of stochastic models are generated for
each seismic location. These stochastic models can then be analysed to
obtain information.on physical rock properties.

The ultimate aim of seismic reservoir characterisation is to delineate and
describe, in the greatest possible detail, reservoir properties from recorded
seismic data. The final output is a prediction of subsurface properties. These
properties can be physical properties, such as porosity or fluid content, or
they can be geological properties, such as lithology and bed thicknesses.
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Invariably, seismic reservoir characterisation techniques have a requirement
to combine data and information from other sources in order to be able to
relate seismic response with the properties of interest. A major problem is
that, in general, information is available from a variety of sources, over a
wide range of scales and with greatly varying accuracies. Integration of all
relevant information cannot be achieved using existing techniques.
Consequently, it seems impossible to arrive at a reservoir model that is
consistent with all information available, unless the diverse data types are
made commensurable.

In this thesis seismic reservoir characterisation is approached from a
geological perspective. It is argued that integration can be achieved only if
one consistent subsurface model is used throughout to describe all relevant
data and information. The model used here incorporates an acoustic-
stratigraphic integration framework. The scale problem is solved by
grouping framework entities at three scale levels.

1D-stratigraphic profiles with physical properties, i.e. factual wells, are
described in terms of framework entities. Physical properties are attached to
the smallest scale entities. For example, sonic and density log measurements
are blocked at this scale and parameterised at top and bottom. Factual wells
described in this way are combined with the recorded seismic trace at the
well location. The combined seismic and well data is then used to generate a
dataset, representative of the target zone, that is used in the seismic reservoir
characterisation process. Wells with corresponding physical properties can
also be simulated. The simulated acoustic properties can then be used to
synthesise seismic traces. Because the simulated dataset is described using
the same integration framework, factual and simulated data can be combined
to create a representative dataset when well data is scarce.

In Section 2.2 the basic assumptions made in this thesis are outlined. This is
followed by a section in which the most popular existing seismic reservoir
characterisation techniques are presented. In the next section it is described
how geological and engineering data and information can be integrated with
seismic data via an integration framework. Finally, the "total space
inversion" concept is introduced.

2.2 Assumptions

This thesis deals with post-stack seismic reservoir characterisation. The
seismic datasets used are three-dimensional post-stack datasets comprising
P-waves, or compressional waves, only. It is assumed that seismic
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processing has correctly imaged and focused the seismic signals and has
removed unwanted energy, such as multiples. It is assumed that "True
Amplitude" seismic processing has preserved the amplitude information of
the seismic reflection events, see Section 7.2. Variations in the post-stack
response are assumed to be directly related to lateral geological variations.

If sonic and density logs are used, it is assumed that these logs have been
edited for noise bursts, cycle skips, fluid replacement etc.

When seismic data is synthesised, the convolutional model is assumed. A
discrete seismic trace s,, = S(nAt) n = 1,..., N, where At is the temporal
sample rate is computed as:

L
sy = Q. wimy,_i, n=1,.,N, 2.1)
i=1

where:
w; = w(iAr) is the discrete version of the seismic wavelet with

i=1,...,L, m; =m(iAr) is the discrete impulse earth response filter with

i=1,...N.

The convolutional model for the generation of a seismic trace is based on the
following assumptions:

« The subsurface can be described as a one-dimensional space. In other
words it consists of stacked horizontal homogeneous layers without
lateral variations.

e The seismic wavelet does not change as it travels through the
subsurface.

o The seismic trace is reasonably represented by compressional plane
waves that arrive at layer boundaries at normal incidence. In other
words, shear waves are not taken into account.

When seismic wavelets are used in this thesis, it is assumed that a single
wavelet can be used to synthesise seismic traces. It is further assumed that
this wavelet can be obtained, either, via seismic processing (e.g. Verschuur,
1991), or, via a statistical wavelet estimation procedure in which a match
between synthetic seismic trace and field seismic trace is enforced. Both
procedures of wavelet determination have been applied in this thesis.
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2.3 Overview existing techniques

2.3.1 General

Conventional lateral prediction comprises a group of techniques in which
seismic reflection amplitudes are analysed and transformed via true-
amplitude processing and integration into acoustic impedance values. The
acoustic impedance values are subsequently interpreted in terms of reservoir
properties. Most conventional lateral prediction techniques can be applied to
both 2D- and 3D-seismic data. The term 'conventional' is used here to
indicate that these techniques are applied to post-stack seismic data involving
only P-waves (compressional waves).

—

Fig. 2.1 Well-to-seismic calibration. The synthetic seismic trace is
spliced into the surface seismic section at the well location
(Courtesy K. J. Weber., Delft University of Technology).

The basic concept in conventional lateral prediction is calibration of the
seismic response to well log measurements. Variations in the response,
away from the well, are then assumed to reflect changes in rock properties.
Seismic data can be calibrated at well locations with the aid of acoustic
impedance and reflectivity logs. Acoustic impedance is defined as the
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product of seismic wave propagation velocity and medium density.
Therefore, an acoustic impedance log may be derived from sonic and
density logs. From the acoustic impedance log a reflectivity log can be
derived. The reflectivity logs are converted from depth to time and
resampled to the seismic sampling rate. After convolution with the seismic
wavelet, the resulting synthetic seismic trace can be compared with the
recorded field seismic traces. The seismic events can now be identified and
tied to the well data. It is noted, that after wavelet processing the synthetic
seismograms and the field seismic traces should have the same amplitude
and phase characteristics.A separate trace balancing step might be required
should the amplitudes differ due to different processing histories. An
example of a well-to-seismic calibration is shown in Fig. 2.1.

Seismic reservoir characterisation techniques can be, arbritarily, divided into
three groups of techniques. The first group uses attributes, derived from the
seismic response, to predict reservoir properties. The second group aims to
increase the vertical seismic resolution by transforming the seismic time
response into broad-band acoustic impedance profiles. This is known as
acoustic impedance inversion. The third group is that of stochastic
simulations where objects or properties are generated and distributed in
space.

2.3.2 Attribute analysis

Seismic attributes are features extracted from a seismic signal at or near an
interpreted seismic event. They have been studied for over 25 years. Initially
attributes were extracted in special cases only, e.g. to map direct
hydrocarbon indicators. Nowadays different attributes are routinely
measured and displayed as part of a 3D-seismic interpretation (Brown,
1991). A variety of features can be extracted from a seismic signal.
Examples are: minimum amplitude, maximum amplitude, loop area, zero-
crossing positions, peak-to-peak amplitudes etc. Other types of seismic
attributes can be obtained after signal transformations such as Fourier or
Hilbert transformations. Examples of these attributes are: dominant
frequency, instantaneous amplitude, instantaneous phase, instantaneous
frequency etc.

The extraction of seismic attributes on modern seismic workstation is a
routine task. Analysis of the results, aimed at establishing a relation
between measured attributes and meaningful reservoir properties, is,
however, not trivial and can be time-consuming. Many techniques have
been tried by different workers. Examples are classical statistical methods,
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such as regression analysis, discriminant analysis, cluster analysis etc.
Sometimes the same attributes are measured on simulated data in a
controlled experiment. For example, Neff (1992) uses synthetic seismic data
to measure seismic amplitudes and isochrons (time-delay between two
events). He then uses three-variable cross-plot analyses to determine the net-
pay zone of a reservoir formation. The derived cross-plot information is
then applied to the amplitudes and isochrons measured along an interpreted
horizon of the factual data. This method has some similarity with the total
space inversion method introduced in Section 2.4.3.

2.3.3 Acoustic impedance inversion

Acoustic impedance inversion aims at increasing the seismic band-width in
order to increase the amount of detail that can be extracted from the data.
The method is known by a number of different names, such as broadband
constrained inversion, stratigraphic inversion, or geology-based inversion.
Usually the resulting acoustic impedance profiles are considered to be an
intermediate result. The acoustic impedance traces are related to lithologies
and/or reservoir properties only in subseqent steps. An example of this is
the method by Martinez et. al. (1992) which will be described here.

The method is a step-wise inversion scheme applied to a 2D-seismic survey.
The method comprises three consecutive steps. In the first step the seismic
section is transformed into an acoustic impedance section. An initial acoustic
impedance model is first built, using the available well data and seismic
structural and stratigraphic interpretations; the geological a priori constraints.
This model is then parameterised in terms of event reflectivity and delay
time. A synthetic seismic trace is generated from the model and compared
with the field seismic trace. This yields a residual error which is used to
update the model parameters. Constraints provided by the model and data
variances are used to control the stability and resolution of the inversion
process. In the case of Martinez et. al. (1992) the solution is based on a
Bayesian approach to inversion (Duijndam, 1988). For the set of all
possible impedance cross-sections an a priori (Gaussian) probability
function is defined. This a priori probability function is described by the
expectation, being the initial acoustic impedance model and the
corresponding covariance operator. The optimal model is found by
maximising the a posteriori probability function given the observation, i.e.
the measured seismic data (the maximum-likelithood criterion). Several
iterations may be required to converge to a final model due to the non-linear
relationship between the parameters.
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In the second inversion step well logs are inverted to estimate lithological
parameters. In this particular case, sonic, density and gamma ray logs are
inverted into sand and shale volume fractions and porosities.

The third and last inversion step in this scheme combines the broadband
acoustic impedance model with the sand and shale volume fractions and
porosities at the well locations. This last inversion step yields a final model
for each of the lithologic parameters.

2.3.4 Stochastic simulations

Stochastic simulations have been used for some years for reservoir
modelling (Dubrule 1989). Two main categories of stochastic reservoir
modelling can be distinguished (Haldorsen and Damsleth, 1990):

¢ Object-based simulations; geological bodies are generated and
distributed in space (e.g. Chessa, 1995).

+ Pixel-based techniques; distributions of properties are obtained as a set
of gridded values (e.g. Haas and Dubrule, 1994).

Only recently is seismic data being used as a constraint in the construction of
stochastic simulations. For example Haas and Dubrule (1994) describe a
method in which seismic impedance traces are simulated along vertical traces
conditioned by well data information using a Gaussian sequential
geostatistical algorithm. A simulated impedance trace is converted into a
synthetic seismic trace and compared with the factual seismic trace. If the
comparison is not considered satisfactory, another impedance trace is
simulated. When the impedance trace is accepted, another location is
selected by random draw and the procedure is repeated. Operating in this
way for each location a number of impedance traces are generated. These
impedance traces are subsequently analysed and used to derive petrophysical
variables (porosity, permeability etc.) or lithologic parameters (sand, shale,
bed-thickness etc.).

2.4 Towards a new technique

2.4.1 General

Sherrif (1992) defines reservoir geophysics as 'the use of geophysical
methods to assist in delineating, describing, or monitoring a hydrocarbon
reservoir'. In this definition geophysics can play an important role in every
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step of the field's life cycle from appraisal and early development through to
production and enhanced recovery (EOR) schemes. In fact, for economic
reasons early and accurate characterisation of the reservoir warrants
geophysical techniques to be employed early in the cycle for many cases.
High resolution geophysical measurements such as 3D-seismic, VSP's and
cross-hole tomography, closely integrated detailed geological and
engineering data, are becoming increasingly important in the description and
characterisation of the reservoir.

The economic optimisation process, called reservoir management, is the
driving force behind the application of these reservoir characterisation
techniques. Robertson (1989) defines reservoir management as 'maximising
the economic value of a reservoir by optimising recovery of hydrocarbons
while minimising capital investments and operating expenses'. Reservoir
geophysics plays an important role in the definition of the reservoir model, a
key parameter in reservoir management. The interaction between the three
basic disciplines; geology, geophysics and engineering (pertrophysical as
well as reservoir) is schematically shown in Fig. 2.2.

Three-dimensional seismic surveying is the geophysical tool that has had the
greatest impact in reservoir management. Numerous case studies have been
reported in geophysical literature on the applications of 3D-seismic data to
reservoir management (e.g. Sherrif, 1992). Such applications include
improvements in the definition of the geometric framework, predictions of
rock and fluid properties and flow surveillance in EOR schemes.

Seismic reservoir characterisation is the objective of this thesis. As
described in the previous section various techniques have been, and are
being, employed to extract reservoir properties from seismic data. These
techniques have a common requirement to integrate data from other sources.
There are three reasons for this requirement:

* The seismic signals must be calibrated and transformed to meaningful
reservoir properties.

* Additional non-seismic information is required to constrain the inherent
non-unique seismic inversion solution.

* The seismic reservoir characterisation result delineates and describes
only part of a reservoir model. This result must be consistent with
results obtained from other sources such as production history matching
results and high resolution sequence stratigraphic interpretations.
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de{msitional environment,lithology,
paleontology, correlation panels,
1s0-pach maps, depth sections, continuity
of pay zones etc.

Engineering

logs, core analyses, net-to- 2D and 3D seismic, VSP's,
gross payzones, fluid cross-hole seismology,
samples, well tests, reservoir horizon maps, fault maps,
models, reservoir continuity of zones, aquifer
simulations, economics etc. size etc.

Fig. 2.2 The role of reservoir geophysics (solid lines) in the

definition of the reservoir model and the relationship
between the three basic disciplines (solid + dashed lines);
geology, geophysics and engineering (petrophysical as
well as reservoir). Modified after Richardson and Sneider
(1992).

Here, it is argued that the only way to obtain seismic reservoir
characterisations that are consistent with other data inversion and
interpretation results, is to use a common subsurface model for all data
descriptions. It is further argued that this subsurface model must be based
on geologic parameters (lithology, sequence stratigraphy, bed-thickness
etc.) rather than physical parameters (density, wave-propagation velocity
etc.). The argument is based on the fact that geological events have a one-to-
many relation with physical parameters. In other words many physical
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parameters can be attached to a single geological event such as a sandstone
layer. In the following section, the different data types, scales and
accuracies involved in seismic reservoir characterisation are discussed.

2.4.2 The scale problem

Information about a reservoir is, in general, obtained from different data
sources with greatly varying relative scales and accuracies. The scale of the
information ranges from the 100-1000 km, basin scale to the 10-100 pm,
grain and pore scale. The complete description of a reservoir from an
engineering perspective requires integration of all these data types and
knowledge (Fig. 2.3).

At the basin scale, important parameters are the basin size, the subsidence
rate and regional tectonic events. At the reservoir level the stress fields
related to these parameters may have influenced the stratigraphy and the
position and direction of faults and fractures. Techniques operating at this
scale are 2D-seismic and gravity measurements. These techniques are,
however, in general, primarily acquired for exploration purposes. Gravity
data is usually acquired to determine the basin depth. Regional 2D-seismic
lines are acquired to delineate (seismic-)stratigraphic units and tectonic
events.

At the formation scale we are interested in describing the geometric
framework and the overall reservoir stratigraphy (i.e. sand, shale, sandy
shale etc.). The most important technique operating at this scale is the 3D-
seismic method. The scales involved are in the 1-10 km's range laterally and
in the 100-1000 m range vertically. Horizons, faults and unconformities are
mapped at this scale. Seismic interpretation techniques include structural as
well as seismo-stratigraphic mapping.

At the layer scale the internal architecture of the reservoir is described in
terms of sediment bodies, such as channels, barrier bars, point bars etc. At
this scale we wish to describe the dimensions, shapes, orientations and
spatial disposition of these bodies. The size of the sediment bodies is in the
100-1000 m range laterally and in the 5-50 m range vertically. Subsurface
information is obtained from the interpretation of well-log shapes and (under
favourable conditions) from surface seismic data. Seismic lateral prediction
techniques operate at this scale.
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Basin
Formation
Layer
RTINS 1ntra layer
== —
Intra-bed

sediment structure

Grains & Pores

Fig. 2.3 Relevant geological scales for reservoir modelling. Ranges
are typical ranges that can vary considerably for different
geological settings. Modified after Weber (1986).

The intra-layer scale is in the meters range. It is the scale at which the
internal heterogeneity of sediment bodies and their effect on fluid flow are
described. It is typically the scale at which net-to-gross ratios in a reservoir
are determined. The information is obtained primarily from well logs, such
as the gamma-ray, neutron, resistivity, sonic and density logging tools.
High resolution geophysical techniques, such as offset VSP's, cross-well
seismology operate at this scale.
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Dimension X Regional 2D- seismi 3D i Offset VSP's
Y
Z
Dimension X 10-100 km by 5-20 km by 200-1000 m by
Y - 10-100 km by 5-20 km by 0 m by
Z 1-5 km 1-5 km 1-2 km
Resolution X 1-10 km by 10-50 m by 10-25 mby
Y - i-16 km by 10-50 m by 0 m by
Z 10-50  m 10-50 m 1025 m
Basin 100-1000 km by basin size, regional
100-1000 km by tectonics, stress fields,
1-10 km subsidence rates, seismo-
stratigraphic events

fault position, seismic-
well-tics, lateral
continuity stratigraphic
units, dips, prediction

ahead of the bit etc.

100-1000 m by
5-50 m

boundaries, lithology etc.

1-10 km by geometric framework, | geometric framework,
1-10 km by faults, stratigraphic units, | faults, stratigraphic
100-1000 m volumes, dimensions, { units, volumes,

shapes ctc. dimensions, shapes ctc.
100-1000 m by fluid contacts, | volumes,

dimensions, shapes,
orientations, small scale

faults, fluid contacts,

lithology etc.

lateral continuity, small
scale  fawlts, fluid
contacts,

boundaries ete.

1-10 m by
1-10 m by
1-10 m

Intra-bed sediment 1-10 em by

structure 1-10 cm by

1-10 cm

Grains & 10-100 um by
Pores 10-100 pm by
10-100 pm

Dimensions at which the integration framework in this thesis operates.
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Thin sections / SEM1

Cross-well tomography / | Logs Cores / Side Wall
seismology Samples
100-250 m by 0 m by 520 cm by 0-1 cm by Dimension X
0 m by 0 m by 5-20 cm by 0-1 cm by Y
100-250 m 2-3 _km 10-100_m 0-1 mm Z
1 m by 0 m by 0-1 c¢m by 10-100 pm by Resolution X
0 m by 0 m by 0-1 cm by 10-100 um by Y
1 m 1-30 cm 0-1 cm 10-100 um Z
depositional cnvironment Basin
fault positions,
formation tops, dips. eic.
lateral continuity, small | depositional environment
scale [laults, fluid
contacts,
boundaries etc. - -
boundaries, lateral | hydrocarbon saturations, | depositional
continuity etc. nct-to-gross payzones, | environment,
fluid contacts, porosities, | characterisation  of
fracture identification, | sedimentary bodies,
permeabilities etc. fractures, porosities, -
permeabilities,
saturations etc.
lithology, vertical | lithology, vertlical Intra-bed sediment
- heterogeneity, porosity, } heterogeneity, porosity, structure
permeability etc. ermeability etc. -
grain density, clay | grain density, | grain and pore-size | Grains &
volume and (yping, | mincralogy, distribution, pore-wall | Pores
sandstone classification, | cementation, porosity, | roughness, packing
- porosity etc. permeability ctc. arcangement, porosity
type, mineralogy,

cementation, diagenesis

clc.

! Scanning Electron Microscope

Table 2.1

Tools and techniques in relation to the geological objects
to be described. Ranges are typical ranges that can vary considerably for
different geological settings.
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The next scale of interest is that of the, intra-bed sedimentary structure,
Subsurface information at this scale is available from cores and logs. The

resolution is in the order of 10-2 m for core descriptions and the highest
resolution logs such as the televiewer. Information obtained at this scale
typically describes reservoir properties such as saturations, permeabilities,
porosities, lithologies, depositional environments and heterogeneities i.e.
cross bedding, laminations and fractures. Logs and cores provide us with
1D-continuous profiles along the well track.

The smallest scale relevant to the geological reservoir model, is the scale at
which grains and pores are studied. The subsurface information comes from
cores, side wall samples and cuttings. Thin sections are studied using
optical microscopes, or, Scanning Electron Microscopes (SEM). Pore and
grain size distributions, mineralogy, cementation, diagenisis and other
microscopic factors are determined. The scale of objects under a SEM are in

the order of 10-5 m.

Well testing and sampling is another important source of information in the
characterisation of a reservoir. Information on formation pressures, pressure
gradients, fluid contacts, permeability estimates and water-cut estimates can
be obtained from devices such as the Repeat Formation Tester (RFT). In
addition physical fluid samples can be retrieved from the reservoir yielding
information on the chemical composition and physical properties of the
fluids.

In this review of scales and accuracies in reservoir characterisation dynamic
aspects have, so far, been excluded. Dynamic aspects deal with changing
reservoir properties over time intervals. Examples are pressure histories,
coning effects and sweep efficiencies in Enhanced Oil Recovery (EOR)
schemes. Seismic reservoir characterisation techniques have been employed
to study dynamic effects (e.g. Greaves and Fulp, 1987). The method
requires the 3D-seismic acquisition to be repeated at regular time intervals.
This is called time-lapse 3D-seismic and may be used to monitor reservoirs
under production. ‘

Table 2.1 summarises the geological objects and the techniques used to
characterise these. The dimensions and resolutions given in this table are
typical values that may vary considerably.
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2.4.3 The integration framework

In the previous section, the problem associated with integrating data from
different sources with widely varying relative accuracies has been reviewed.
This section will show how these data, relevant to seismic reservoir
characterisation, can be combined (or integrated). First, the integration
requirements are discussed followed by a description of the solution
presented in this thesis: the integration framework.

To define the requirements for data integration from a seismic reservoir
characterisation perspective it is useful to first realise what the seismic tool is
actually measuring. In this thesis we are only considering post-stack seismic
data, comprising P-waves, or compressional waves (Section 2.2). These
data contain information about acoustic properties of the sub-surface.
Acoustic properties comprise the bulk density of the medium and seismic
wave-propagation velocity. Seismic reflections occur when the acoustic
properties of the medium changes. The earth's reflectivity is related to
geological changes, such as changes in lithology, fluid content, or
stratigraphy. The measured seismic signal is the composite response of the
earth's reflectivity to the seismic wavelet. The vertical resolution of the
seismic tool ultimately determines the detail of information that can be
extracted from the seismic signals. On vertical seismic sections the
reflections occur in patterns corresponding roughly to geological structure
and stratigraphy. The study of these patterns has triggered the discipline of
seismic-stratigraphy which in turn has fuelled the development of the
geological concept of sequence-stratigraphy (e.g. Vail et al., 1977, Wagoner
et.al., 1990).

Successful data integration from a reservoir characterisation perspective has
the following requirements:

It must be possible to include information on lithology, fluid content and
sequence-stratigraphy.

It must be possible to enter acoustic properties.
» It must be possible to enter other properties.

The last requirement has been included because it is feasible that the seismic
response may be related to other properties. This is possible even when the
underlying rock physics are not known. Such examples include production
rates, or permeabilities which might be related to the shale content, or
fracturing and hence, the seismic response of a reservoir unit.



2. Seismic reservoir characterisation 22

These requirements have led to the definition of a generic integration
framework (Table 2.2).

In this generic framework the geology of the target zone is defined in terms
of acoustic-stratigraphic entities. The entities are grouped at three
hierarchical scale levels; units, sub-units and lithologies, respectively. The
smallest scale level (the lithology level) typically corresponds to beds in the
1-10 m range with a similar lithological composition, .e.g. sand, shale, silt
etc. The intermediate scale level (the sub-unit level) typically corresponds to
a stratigraphic para-sequence or depositional facies consisting of one or
more, lithologies. The largest scale level (the units level) typically
corresponds to a lower order stratigraphic sequence and consists of one, or
more, sub-units. It is stressed that the scale levels are user-defined and
should not be confused with, or constrained to, strict geological
stratigraphic classifications. They are chosen such that the geological setting
is represented in an optimal way. This is area and target dependent. It is
very possible to define an integration framework based on a combination for
litho-stratigraphy, sequence-stratigraphy and genetic units. The key issue to
be addressed during definition of the integration framework, is how
important geological entities must be specified. These entities can then used
to describe factual and simulated wells. Individual codes for each entity
ensure that all elements of the model can be uniquely identified.

unit sub-unit lithology [rocktype code
A I a reservoir A.la
b seal A.lb
I a reservoir B.1ll.a
c waste B.1l.c
B a reservoir B.l.a
I b waste B.I.b
c reservoir B.l.c
C 11 d reservoir B.III.d
Table 2.2 Part of an integration framework, showing the hierarchy of

scale levels.

The typical scale range that is covered by the integration framework is
indicated in Table 2.1. A rocktype is assigned to each lithology in the
framework, to accommodate the requirement for entering fluid contents.
Three rocktypes are defined: seals, reservoirs and waste rocks. Seals are
used to attach hydrocarbon columns. Reservoir rocks are defined as
lithologies that can have a moveable fluid-fill. Waste rocks are considered
non-economic but non-sealing. The requirement of integrating other
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properties is fullfilled by allowing user-defined parameters to be attached to
any framework entity. For example it is possible to attach a production rate
either to the entire framework, or, to any defined entity in the framework,
either unit, sub-unit or individual lithology.

Wells (factual and simulated) can now be described in terms of the
integration framework. The following rules for this description apply:

Units always occur in the sequence that they have been entered into the
integration framework. They are, either, present, or, absent. They
cannot repeat.

Sub-units may occur in any order and multiple times within the unit they
belong to. They may be missing. Sub-units occurring more than once
get an occurrence number attached to the code, such that they can be
identified uniquely. Sub-units can be ordered if necessary.

Lithologies can occur in any order and multiple times within the sub-unit
they belong to. They may be missing. Lithologies occurring more than
once get an occurrence number attached to the code, such that they can
be identified uniquely. Again, lithologies can be ordered or random as
required.

Litho-

Stratigraphy Well description Blocked logs
unit} sub-unit {lithology | rock type code
a reservoir | A.La
A I . ]
b seal Alb
. | B.ILagas : _::_ —:
I a reservoir [pyp |
C waste B.ILc —_
B " reservoir |BLla |73 |
1 d waste B.Lb
c waste B.Le(2) | _ |
C 111 a reservoir | C.IILd
sonic density
Fig. 2.4 Description of well information in terms of the integration

framework. Acoustic information is parameterised at the
top and bottom of the smallest scale framework entities
(lithologies, or reservoir layers with similar fluid content).
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When the stratigraphy of the well has been described, the acoustic properties
can be entered. These are attached to the smallest scale entities: the lithology
level, or, in case of reservoir layers, acoustic blocks with similar fluid
contents. The acoustic properties: sonic logs (i.e. acoustic slowness) and
density logs, are parameterised at top and bottom of each block (Fig. 2.4).
The boundaries of the acoustic blocks must coincide with those of the most
basic framework entities. User-defined physical properties, such as
production rates, permeabilities etc., are also entered (or simulated).

When a number of factual wells have been described in this way, the
physical properties can be analysed. Each property can be analysed at each
scale level of the integration framework. For example it is possible to study
the thickness variations associated with unit A, or sub-unit II of unit B, or
all lithologies 'a’ within sub-unit II of unit B. It is even possible to examine
variations in physical properties associated with, say the fifth occurrence of
lithology 'a’" within the second occurrence of sub-unit II of unit B, should
the need arise.

2.4.4 Total space inversion

In the previous section it has been shown that a generic integration
framework can be created to describe the data required for seismic reservoir
characterisation. Factual and simulated wells, described in terms of this
framework, are commensurable. Consequently, it is thus feasible to
combine both factual and simulated data. This is the basic precept behind the
seismic reservoir characterisation technique described in this thesis.

| seismicdata § | horizon grids | [ welldata ]
|

subset

( create rep. dataset )

horizon
slice

(train neural network )

v

ly neural network

| lateral prediction grids l

Fig. 2.5 Direct inversion flow diagram
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[ seismicdata | [ horizons grids I [ welldata |
subset I locations
create rep. seismic create rep. seismic +
dataset wells dataset
horizon, slice Y
train UVQ classifier )
A 4
apply UV apply UV

Analyse seismic
classes

+ degree of match
grids

geological class '
description

seismic classification |

Fig. 2.6 Segmentation flow diagram

Datasets comprising well information and corresponding seismic responses
are compiled from factual and/or simulated data (Fig. 1.2). The factual well
data is combined with the surface seismic traces at the well locations. The
seismic data for simulated wells come from synthetic seismograms. The
objective is to arrive at a dataset that is representative of the target zone in the
study area. This dataset can then be used in the reservoir characterisation
process.

A software product utilising the total space inversion concept has been
developed. This product, called GeoProbe has been used extensively in this
thesis. In the GeoProbe system there are two options available for analysing
the relationship between seismic response-and salient well properties: direct
inversion and segmentation (Fig. 2.5 and 2.6, respectively).

In direct inversion, artificial neural networks, i.e. Multi-Layer Perceptrons
(MLP's) or Radial Basis Functions (RBF's) networks, are trained to
recognise specific well properties from the seismic response. Optionally, the
data are transformed prior to analysis, e.g. seismic attributes are calculated,
or a reservoir property is calculated from acoustic properties. Application of
the trained network to a seismic horizon slice, yields one lateral prediction
output grid per network output node. ‘
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In segmentation the seismic response is clustered (or segmented). First, a
subset of a seismic horizon slice is selected. As with direct inversion it is
possible to combine the selected seismic responses with simulated
responses. In general, however, this is not done. The selected seismic
responses are presented to an Unsupervised Vector Quantiser (UVQ)
network, which will train itself to cluster the data into a number of classes.
Application of the trained UVQ to the entire horizon slice yields two output
grids: a seismic classification grid and a degree of match grid. The latter grid
shows how close the response is to the centroid of the winning class for
each seismic trace. The seismic classification output grid can be used for
subjective geological interpretation. To quantify the meaning of the different
seismic classes, the UVQ can also be applied to a seismic dataset with
known well information (factual and/or simulated). The clusters can then be
analysed to yield a statistical description of the clusters in terms of the
framework entities.

In the following section, the basic techniques (artificial neural networks and
Monte Carlo statistics) as used in this thesis will be introduced.
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INTRODUCING THE VARIOUS TECHNIQUES

3.1 Introduction

In the previous chapter it was shown that many techniques exist to extract
reservoir properties from seismic data. These geophysical inversion
methods have a common requirement to integrate data and knowledge from
other sources and disciplines. It has been argued that the only way to obtain
a seismic reservoir characterisation result, consistent with other data
inversion and interpretation results, is to use a common subsurface model
for all data descriptions. The requirements for such a subsurface model have
now been defined. This has resulted in the definition of a generic, acoustic-
stratigraphic integration framework. This allowed factual and simulated
wells to be described in terms of this integration framework, which makes
them commensurable. From this aspect came the total space inversion
method. In this method factual and simulated wells with corresponding
factual and synthetic seismic responses may be combined into a dataset,
representative of the target interval. This dataset is used in the seismic
reservoir characterisation process.

Many inversion algorithms can, in principle, be used for the total space
inversion method, to establish relations between seismic response and
salient reservoir properties. For instance classical statistical techniques such
as regression analysis, discriminant analysis and cluster analysis may be
employed. In this thesis, however, artificial neural networks have been
chosen for the inversion step. The main reasons for this choice are the
expected higher performance and user-friendliness of neural networks.
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An algorithm is used for the simulation of wells, which combines geological
reasoning with stochastic input. The algorithm makes use of an innovative
Monte Carlo statistics procedure in which correlated multivariate stochastic
variables are drawn one-by-one.

In this chapter, an introduction to artificial neural networks and Monte Carlo
statistics is given. :

3.2 Artificial Neural Networks

3.2.1 General

Artificial neural networks, or connectionist models as they are sometimes
referred to, have been inspired by what is known as the 'brain metaphor'.
This means that these models try to copy the capabilities of the human brain
into computer hardware or software. The human brain has a number of
properties that are desirable for artificial systems (e.g. Schmidt, 1994):

» It is robust and fault tolerant. Even if nerve cells in the brain die (which
is known to happen every day), the performance of the brain does not
deteriorate immediately.

* It is flexible. This means that the human brain can adjust itself to new
situations and can learn by experience.

* It can deal with information that is inconsistent, or contaminated with
noise.

» It can handle unforeseen situations by applying knowledge from other
domains and extrapolating this to new circumstances.

* It can deal with large amounts of input data and quickly extract the
relevant properties from that data.

* Itis highly parallel, hence it has a high performance.

Neural network research started in the forties. McCulloch and Pitts (1943)
described the logical function of a biological neuron. They described that the
transmission of neural signals is an all-or-nothing situation. A neuron fires
only, if the cell has been stimulated above a certain threshold. The output
signal will, in general, have a constant strength. In their paper, McCulloch
and Pitts, described that networks consisting of many neurons might be
used to develop the universal Turing machine (a kind of computer described
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by Turing (1937) that could, in principle, solve all mathematical problems).
Research in neural networks was suddenly stopped following a publication
by Minsky and Papert (1969). In this paper, it was shown that a relatively
simple problem (the so-called XOR-problem) could not be solved by the
linear algorithms used at the time. The major breakthrough which re-
launched the interest in this technique has been the discovery in the eighties
of a non-linear optimisation algorithm overcoming the previous limitations
(Rumelhart et. al, 1986).

Neural networks have emerged in the last decade as a promising computing
technique which enable computer systems to exhibit some of the desirable
brain properties. Various types of networks have been applied successfully
in a variety of scientific and technological fields. Examples are applications
in industrial process modelling and control, ecological and biological
modelling, sociological and economical sciences, as well as medicine
(Kavli, 1992). Within the exploration and production world, neural network
technology is now being applied to geologic log analysis (Doveton, 1994)
and seismic attribute analysis (Schultz, 1994).

In this thesis neural networks are used for pattern recognition. Three
approaches can be recognised in neural network pattern recognition
(Lippmann, 1989): supervised training, unsupervised training and combined
supervised-unsupervised training. Supervised training approaches require
the existence of representative datasets. Unsupervised techniques find
structure in the data themselves, thereby extracting the relevant properties.
In this thesis Multi-Layer Perceptrons and Radial Basis Function networks
are used in the supervised training approach. A vector quantiser is used for
the unsupervised approach. In this thesis, the vector quantiser network is
called UnSupervised Vector Quantiser. The networks used in this thesis are
introduced in the following sections.

3.2.2 Multi-layer perceptrons (MLP)

The most general and most widely used neural network model is the ‘multi-
layer perceptron (MLP)'. The basic building block of this model is the
perceptron (Fig. 3.1), a mathematical analogue of the biological neuron,
first described by Rosenblatt (1962).

The mathematical expression of the biological neuron can be written as an
activation function A applied to a weighting function W, defined as:

L
W(y)= Xw;y;, (3.1)
i=0
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dendrites

cell body

axon L VENW (y) — A (W)—

electrical Wy,
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Fig. 3.1 A biological neuron and a Perceptron
a) Perceptron b) Sigmoid
AR) A(R)
¢ — 11—
3 2 a9 1 2 3 3 2 1 2 3
-1- —R -1 —R
¢) Linear d) Ramp
AR) AR)
T l_‘/ ¢ IV—
3 2 1 2 3 3 2 - 1 2 3
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e) Tangent hyperbolic
AR) ) Tangent hyp

Fig. 3.2 Different activation functions for MLP networks. The
Linear, Ramp, Sigmoid and Tangent hyperbolic functions
have been used in this thesis (Chapter 5).
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where:
Yy is the neural network input vector written as y; with i=1,...,L and

weighting vector w; with i =1,..., L.

The activation function of the classical perceptron (Fig. 3.2a) can now be
written in the following form:

1 W>l1
AW)= (3.2)

0 wW<o

In MLP's the binary activation function is often replaced by a continuous
function. The most widely used activation function is the sigmoid function
(Fig. 3.2b). This function has the following form:

2
-1
1+ exp(-W)

A(W)= (3.3)

Other activation functions used in this thesis are the linear, ramp and tangent
hyperbolic functions. The linear function (Fig. 3.2¢) is defined as:

AW)=W. (3.4)

The ramp function (Fig. 3.2d) is given by:

-1 W<-1
AW)=<W —-1<W<I. (3.5)
1 W>1

The tangent hyperbolic function (Fig. 3.2e) is written as:

exp(W) —exp(—W)
exp(W) +exp(-W)

A(W) = (3.6)

Two other activation functions are used in this thesis: the prime-sigmoid and
prime-tangent hyperbolic. These functions have the same mathematical
expressions as equations (3.3) and (3.6), respectively. The training
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algorithm treats the two types of functions differently. For the sigmoid and
tangent hyperbolic functions, the derivative is used to update the weighting
vector (Rich and Knight, 1991). For the prime-sigmoid and prime-tangent
hyperbolic functions an offset is added to the absolute value of the
derivative. This is done exclusively to avoid saturation problems during
learning, where saturation means that continued learning does not lead to
improved network performance. This modified procedure is used to update
the weighting vector.

processing connection
elements weigths

Information
flow —p
Input Hidden Output
layer layer layer
Fig. 3.3 Schematic representation of a feed-forward layered neural

network, such as a Multi-Layer Perceptron and a Radial
Basis Function network.

In a MLP the perceptrons are organised in layers (Fig. 3.3). In its simplest
form, there are three layers; an input layer, a hidden layer and an output
layer. There are no connections between neurons belonging to the same
layer. The data flow between the layers is feed-forward. MLP's are trained
on a representative dataset. This is a form of supervised learning. Known
examples, consisting of input patterns and corresponding output patterns,
are repeatedly offered to the network during the training phase. The 'back-
propagation’, learning, algorithm that is widely used to train this type of
network attempts to minimise the error between the predicted network result
and the known output by adjusting the weights of the connections. The
algorithm was derived independently by a number of researchers. The
modern form of back-propagation is often credited to Werbos (1974),
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LeCun (1985), Parker (1985) and Rumelhart et. al. (1986). A fast variation
of backpropagation is given by Fahlman (1988).

MLP's have two properties of interest: abstraction and generalisation.
Abstraction is the ability to extract the relevant features from the input
pattern and discard the irrelevant ones. Generalisation allows the network,
once trained, to recognise input pattern which were not part of the training
set.

3.2.3 Radial Basis Function Neural Networks (RBF)

Radial basis functions have been used for data modelling (curve fitting) by
many researchers, e.g. Powell (1987) and Poggio and Girossi (1989).
Recently these functions have been put in a neural network paradigm in
what is called Radial Basis Function (RBF) Neural Networks (Broomhead
and Lowe (1988), Moody and Darken (1988), Lee and Kil (1988), Platt
(1991)). Schultz et.al. (1994) applied RBF networks in a seismic reservoir
characterisation study.

Input Hidden Output
layer layer layer

Fig. 3.4 Schematic representation of a Radial Basis Function
network for the case of a single input variable, two basis
functions and one output variable.

RBF networks have the same feed-forward layered architecture as MLP
networks (Fig. 3.1), but the weighting function W and the activation

function A are different. With RBF networks, there are only weights
between output layer and hidden layer (Fig. 3.4). Each node in the hidden
layer has a unique function, called the basis function. For the simple
network of Fig. 3.4 with a single input, single output and two basis
functions, the output is given by the sum of the two basis functions, each
multiplied with its own weighting factor. In principle, any type of function
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can be used to act as basis function. For example, spline functions are used
(Kavli, 1992), but the identification RBF network, applies only if radial
basis functions are used.

Radial basis functions give local support to data points. The output of the
hidden nodes, peaks when the input is near the centroid of the node, and
then falls of symmetrically as the Euclidean distance between input and the
centroid of a node increases (Fig. 3.5). The consequence of this behaviour
is that RBF networks are good for data interpolation, but not good for data
extrapolation.

Several different radial basis functions are in use, with the Gaussian
function (Fig. 3.5a), being the most widely used. If the radial basis centre

R is defined as:

2
L(v. —y.
yi— M
R= z_——(’ 2’) , (3.7)
i=1 O'i
where:

UL; represents the centre location of each basis and O; indicates a scaling of
the width of each basis, then the Gaussian activation function is given by:

R2
A(R)=exp -5 | (3.8)

Multiplication of the activation function A(R) with a weighting factor w
then yields the output o (Fig. 3.4).

Another widely used RBF function is the so-called Inverse Multi-Quadratic
Equation (IMQE, Fig. 3.4b), defined as:

1

VR+k2

A(R) = (3.9)

where:

k is an empirically determined smoothing factor. In this thesis a value of
0.5 has been used for k.
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Note, that the widths in RBF functions are specified independently from
each input dimension, making the functions elliptic rather than spherical.
Note as well, that unlike the activation functions for MLP's no bias is
included in the RBF functions.

a) Gaussian b) IMQE
AR) AR)

f

Fig. 3.5 Activation functions used in this thesis for RBF networks.
TheGaussian function has a Uof 0 and a Oof 1. The

IMOQE function has a [Lof 0, a O of 1 and a kof 0.5.

Centre locations are typically determined by randomly selecting training
examples from a large set of training data. The smoothing parameters and
the number of nodes are typically adjusted empirically during training. RBF
neural networks and MLP's have been compared by many workers. Kavli
(1992) reported consistently better performance of RBF networks in five
independent experiments. Another important aspect when comparing RBF
networks and MLP's is the training speed. RBF networks can be trained
within a fraction of the time that is required for training MLP's. RBF
networks, however, generally require more nodes to obtain similar
performances.

The training algorithm used in this thesis for RBF's is the so-called HSOL
algorithm (Lee and Kill, 1989, Carlin, 1992). HSOL uses standard back
propagation for updating the function parameters, but this learning algorithm
also dynamically allocates new nodes in the hidden layer during training.

3.2.4 Unsupervised Vector Quantiser (UVQ)

In the preceding sections Multi-Layer Perceptrons and Radial Basis
Functions networks were introduced. Both types belong to the category of
supervised learning approaches. Datasets with known input and target
vectors are used to train and test these networks. In this section a type of
network is introduced that belongs to the category of unsupervised, or



3. Introducing the various techniques ‘ 36

competitive learning: the Unsupervised Vector Quantiser (UVQ). The
general aim of competitive learning is to find structure in the data themselves
and thereby extracting the relevant properties or features. In the case of the
UVQ the aim is to segment (cluster, classify) the data. Similar input vectors
must be classified in the same category. The classes are found by the
network itself from the correlations of the input data. Therefore, these
networks are sometimes referred to as self-organising networks.

- Vector Quantiser —W— Post-processing -

index p
degree of
match m
Input Hidden Output
layer layer layer
Fig. 3.6 Schematic representation of the Unsupervised Vector

Quantiser, as implemented in this thesis. The network
consists of a vector quantiser part and a post-processing
part. Two outputs are generated: the index of the winning
hidden node (i.e. the class) and a degree of match, which
indicates how close the input vector is located near the
centre of the class.

The UVQ in this thesis is a modified version of a Learning Vector Quantiser
(LVQ). Vector quantisation is an important application of competitive
learning for data encoding and compression (Hertz et. al., 1991, and
Haykin 1994). In vector quantisation an input vector is replaced by the
index of the winning output unit. Vector quantisation requires a set of
classes, or codebook to exist. Normally, a set of prototype vectors is used.
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The class is found by calculating the Euclidean distance to the prototype
vectors. The nearest prototype vector is the winner. LVQ's are a supervised
version of vector quantisation. In this case the prototype vectors are updated
closer to the input, following a successful classification and further away
from it when the classification is unsuccessful.

The unsupervised vector quantiser (UVQ) is quite similar to the LVQ. The
prototype vectors are in the unsupervised case initialised as random vectors.
The vector closest to the input vector is updated in the direction of the input
vector.

The UVQ, implemented in this thesis, consists of a two-layer vector
quantiser followed by a post-processing output-layer (Fig. 3.6). In the

vector quantiser part of the network, a single layer of hidden nodes A; with
i=1,...,K, where K indicates the number of classes, is fully connected
with a set of input nodes y; with j=1,..., L via excitatory connections

Wi j For each hidden node the net output is computed as:

L
hi(y)= 2 wijy; i=L..K. (3.10)
Jj=1
In the learning phase the net outputs of all hidden nodes (classes) are
compared in the post-processing layer. The hidden node with the smallest
net output is designated the winner. The weighting vector w, ; associated
with the winning node p is then updated according to:

' Wi j i=1,.,p—-Lp+Lk j=1,.,L
L,] wp,j+7‘l(yj~wp’j) j=1...,L,
(3.11)
where:
7 is a empirically determined learning rate parameter and Wij is the

updated weighting matrix. This update rule is known as the standard
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competitive learning rule. Updating is continued until no noticeable changes
in the prototype vectors are observed.

In the application phase, the output layer consists of two nodes: one giving
the index number of the winning node, and one giving a degree of match
between the input vector and the prototype vector of this node. The degree
of match m is computed as:

m—(l— d ) (3.12)
rL )’ '

where:
d is the Euclidean distance given by:

L

d= Zl(yj—wp,j)?', (3.13)
i

and r is the variation range for the training data.

In this thesis, the input variables are rescaled so that they all fall in the range
from -0.8 to 0.8 (therefore, #=1.6). The degree of match m can thus vary
from O (minimum match) to 1 (perfect match).

The implication of rescaling is that all input variables will contribute equally
to the classification result. In our application seismic signals are classified
by feeding the UVQ network amplitudes at discrete sample positions. The
samples are selected relative to a reference horizon (Section 7.3). The
rescaling procedure equalises the dynamic range at each sample position. It
must be realised that some situations may exist where this approach does not
yield an optimum result. For example, if, for the signals to be classified, a
maximum amplitude and a zero-crossing always occur at the same sample
positions, than the amplitude variations around the zero-crossing are
relatively amplified.

This concludes the discussion on neural networks and their use in seismic
inversion. In the following section, Monte Carlo statistics and there use in
forward modelling are introduced.
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3.3 Monte Carlo Statistics

Monte Carlo statistics is a procedure which involves sampling based on
probabilities to approximate the solution of mathematical or physical
problems. Monte Carlo statistics are used for a variety of different problems
and have a long history of application (e.g. Tarantola, 1987). In geo-
scientific applications, the method is used e.g. for reserves estimations,
prospect evaluations and modelling litho-stratigraphic sequences (e.g.
Sinvhal and Sinvhal, 1992). In this thesis, Monte Carlo statistics are used to
simulate wells, i.e. 1D-stratigraphic profiles with attached physical
properties. The simulated sonic and density log responses of these wells are
used to compute acoustic impedance and reflectivity logs, which in turn are
converted to synthetic seismic traces by wavelet convolution and resampling
processes. The simulated wells can be combined with factual wells in order
to arrive at a representative dataset for the target level of the study area
(Section 1.2).

Variables are simulated in a computer using a (pseudo-) random number
generator. When random variables are correlated, however, it is not simple
to simulate random draws using a (pseudo-) random number generator. The
conventional way to solve this problem is to transform the dependent system
to a system where stochastic variables can be drawn independently. Back
transformation than yields the correlated stochastic vectors. In case of
normally distributed random variables, it is possible to draw the variables
consecutively from the marginal distributions. Each time a variable is
drawn, its marginal distribution must first be updated for the already drawn
variable to with it is correlated.

There are two main advantages in drawing stochastic variables instead of
stochastic vectors:

» the random draw can be controlled by geological reasoning
» the drawn value can be evaluated against hard constraints.

The statistical description of the simulation algorithm is given in Appendix L.
A theorem is presented for the drawing of a variable which is correlated to
an already drawn other variable, e.g. drawing a sonic value for a particular
lithology with a given density value. This theorem requires a full correlation
matrix, which is, in general, not supplied by the user. Therefore, a second
theorem gives the way to fill missing elements of the correlation matrix. An
example is given to illustrate how the correlation matrix is filled and a set of
values for correlated variables drawn.
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In the simulation algorithm wells are constructed from integration
framework entities. The selection of framework entities is a stochastic
process, controlled by the user with a set of geology-related rules. These
rules, determine for example that a particular sub-unit must be filled with
lithologies in a random, or sequential order. The wells are constructed one-
by-one. Each well is constructed from top to bottom following the scheme
of the framework. For each of the selected framework entities, thicknesses
and properties (acoustic, user-defined) are simulated, one-by-one, by
random draws. The simulated properties are attached to the selected
framework entities in the same way as factual wells have been described in
the system.

A hypothetical simulation based on the framework of Table 3.1 will be used
as an example to illustrate the simulation procedure.

unit sub-unit lithology rocktype code
top marine shale-a seal top.mar.shl
deltaic sand-a reservoir bas.del.snd
shale-b waste bas.del.shl
base sand-b reservoir bas.flu.snd
fluvial silt-a waste bas.flu.slt
shale-c waste bas.flu.shl

Table 3.1 Hypothetical integration framework.

The following input has been specified to control the simulation:

* Probability density functions describing the thickness variations of the
individual framework entities (top, marine, shale-a, base, deltaic, sand-
a, shale-b, fluvial, sand-b, silt-a and shale-a).

* A probability density function describing the thickness variation of the
gross gas-column. The gas-column is attached to a sealing shale-a.

* Probability density functions describing the variations in acoustic
properties (sonic and density at top and bottom) of the acoustic blocks
(shale-a, water-filled sand-a, gas-filled sand-a, shale-b, water-filled
sand-b, gas-filled sand-b, silt-a and shale-c).

* An xor rule with a 60/40 ratio, attached to the base unit. This implies
that a simulated well can have, either, a deltaic sub-unit, or, a fluvial
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sub-unit. Sixty percent of all simulated wells will have a deltaic sub-unit
and forty percent a fluvial sub-unit.

o Iterate random rules attached to the deltaic and fluvial sub-unit. This
implies that first a thickness will be simulated for the sub-unit. Then a
lithology for that sub-unit is selected at random and a thickness for the
selected lithology is simulated. This process is repeated until the sub-
unit is completely filled.

+ A generation constraint of 20 percent attached to the shale-b lithology.
This implies that the shale-b lithology has a reduced chance of being
selected as compared to the sand-a lithology during the filling up process

described above. The result is that sand-rich deltaic sub-unit are
simulated.

« Correlation coefficients for pairs of sonic and density variables.
» A hard constraint set to the maximum gross gas-column.

Given these input constraints and rules wells can be simulated thus:
o  Unit defined as Top is selected and a thickness is simulated.

o The marine sub-unit is selected; the thickness is set to the thickness of
unit Top.

o Shale-a is selected; the thickness is set to the thickness of the marine
sub-unit.

« The acoustic properties for shale-a are drawn at random.

s+ A gross gas-column is drawn at random. The value is evaluated against
the hard constraint and is drawn again if necessary.

e Unit defined as Base is selected and a thickness is simulated.

« Either, the deltaic sub-unit, or, the fluvial sub-unit, is selected. Let us
assume the deltaic sub-unit is selected (it has a higher chance of being
selected). The thickness of the deltaic sub-unit is set to the thickness of
unit Base.

« Either, sand-a, or, shale-b, is selected. A thickness is simulated by
random draw for the selected lithology.
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* The acoustic properties for the selected lithology are simulated by
random draw. If the lithology is sand-a, it is evaluated whether the sand
falls within the gross gas-column. If so, the acoustic properties are
drawn from the gas-filled acoustic probability density functions. If sand-
a falls partly within the gross gas-column, acoustic properties are
simulated for both the gas-filled and the water-filled part.

* The last two steps are repeated until the cumulative thickness of the
simulated lithologies exceeds the thickness of the deltaic sub-unit. The
thickness of the last lithology simulated is clipped accordingly.

The procedure is repeated for as many wells as the user desires. The
algorithm is capable of simulating user-defined properties. Each time a
framework entity is selected, it is evaluated whether, or not, a user-defined
property has been defined in the integration framework. If so, it is simulated
by random draw.

This concludes the discussion on the statistical framework used in this
thesis. In the next chapter, the simulation algorithm and the different
geology-related rules that have been implemented in the GeoProbe system
are described.
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SIMULATING WELLS

4.1 Introduction

In the previous chapter the techniques used in the total space inversion
method have been introduced. It was stated that, in principle, many types of
inversion algorithms can be used to establish relations between seismic
response and salient reservoir properties. In this thesis artificial neural
networks have been chosen for the inversion step, because of the expected
good performance and user-friendliness. Three types of neural networks
have been introduced: Multi-Layer-Perceptrons, Radial Basis Functions and
Unsupervised Vector Quantisers.

For the simulation of wells, i.e. 1D-stratigraphic profiles with attached
physical properties, an algorithm, based on Monte Carlo statistics, has been
introduced. The algorithm simulates correlated stochastic variables one-by-
one. Therefore, at any time, it can be evaluated whether a variable must be
simulated, and which constraints should be satisfied. The mathematics is
explained in Appendix L. In this chapter the simulation algorithm will be
described in more detail. The capabilities of the algorithm are demonstrated
by describing an existing oil field with a fluvio-deltaic, labyrinth-type
reservoir.

4.2 Simulation algorithm

The aim of the simulation is to generate a set of 1D-stratigraphic profiles
with attached physical properties. These simulated wells with their
corresponding synthetic seismograms can be combined with factual wells
which in turn have been combined with factual seismic traces (Section 1.2).
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Operating in this way a representative dataset is generated which can be
analysed for relations between seismic response and underlying well
properties.

Input to the simulation algorithm is a combination of stochastic information
and geological knowledge. It is considered important that simulated models
are realistic representations of the subsurface. This implies that the
simulation must be controlled by geological reasoning and that unrealistic
stochastic realisations can be redrawn. The algorithm has some similarities
with Markov chain models (see e.g. Sinhval and Sinhval, 1992). In Markov
chains, stratigraphic sequences are simulated using probabilities that a series
of lithologies follow each other in a predictable pattern. In our simulation
algorithm the predictable patterns are captured in terms of geology-related
rules and constraints attached to the entities of the defined integration
framework (Section 2.4.3). The rules will be explained hereafter.

Two types of constraints are used by the algorithm: simulation constraints
and hard constraints. Simulation constraints are a special kind of geology-
related rules. They determine the probability of a framework entity to be
used in the construction of a well. Hard constraints are constraints set on the
upper and lower boundary of probability density functions (pdfs).
Stochastic realisations are evaluated against these boundaries. If the hard
constraints are not satisfied, the value can either, be drawn again, or, the
boundary value is accepted.

To deal with the uncertainty, stochastic input is supplied in the form of pdfs
and correlation coefficients. Pdfs and correlation coefficients are in practice
determined from factual well data. For this purpose the GeoProbe system
offers a well data analysis module. The information derived from factual
data may be modified in the simulation to reflect geological probabilities of
area’'s not penetrated by the drill-bit.

The simulation algorithm requires the following input to be specified:

* Pdfs for each of the physical properties: thickness of geological entity,
sonic and density at the top of each lithology.

* Hard constraints on the upper and lower boundary of the pdfs.
* Correlation coefficients between pairs of stochastic variables.
* Geology-related rules. The following rules have been implemented in

the GeoProbe system: xor, sum, iterate, relative. The last three rules
have two versions: one in which the smaller scale entities are selected in
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a random order and one in which they are selected in the order in which
they have been defined in the framework.

These rules are best explained with an example. We will describe the
simulation of the deltaic sub-unit of the hypothetical framework of Table
3.1. For convenience, this table is repeated here (Table 4.1).

Attaching the xor rule to the deltaic sub-unit means that sand-a
and shale-b are mutually exclusive. The thickness of the deltaic
sub-unit is simulated from the defined pdf, the thickness of the
selected lithology is made equal to the simulated deltaic sub-unit
thickness. The xor rule supports an optional parameter to
indicate the probability for a smaller scale entity to be selected.
For example xor 40/60 denotes that sand-a has a 40% chance to
be selected against a 60% chance for shale-b.

Attaching the sum rule to the deltaic sub-unit means that the sub-
unit is constructed from one sand-a and one shale-b lithology.
The thickness of the deltaic sub-unit is the sum of the simulated
thicknesses of sand-a and shale-b.

Attaching the iterate rule to the deltaic sub-unit means that the
sub-unit is constructed from as many sand-a and shale-b
lithologies as are required to fill the simulated sub-unit
thickness. First a thickness for the sub-unit is simulated from
the defined pdf. Subsequently, lithologies sand-a and shale-b
are selected and thicknesses for these are simulated from their
respective pdfs. This process is continued until the sum of the
lithology thicknesses exceeds the simulated sub-unit thickness.
The thickness of the last selected lithology is adjusted
accordingly.

Attaching the relative rule to the deltaic sub-unit means that the
sub-unit contains one sand-a and one shale-b lithology while the
thickness-ratio is maintained in the final realisation. The
thicknesses of the simulated lithologies are adjusted (stretched
or squeezed) to fit the simulated thickness of the deltaic sub-
unit. In other words, the relative thickness (or thickness-ratio) is
kept constant.

» Simulation constraints. The following rules have been implemented in
the GeoProbe system: presence, generation, occurrence.
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These constraints are used in combination with the geology-related rules
explained above. To illustrate these constraints we will again describe
the simulation of the deltaic sub-unit of the hypothetical framework
(Table 4.1).

The presence constraint operates on the full simulation dataset. It
denotes that the entity can be present in a percentage of the
simulated wells only. A 60% presence attached to the deltaic
sub-unit means that only 60% of the simulated wells comprise
the deltaic sub-unit.

The generation constraint indicates the probability of an entity to
be selected. An 80% generation attached to sand-a and a 20%
generation attached to shale-b, in combination with the iterate
rule attached to the deltaic sub-unit indicates that the sub-unit
will be sand-prone.

The occurrence constraint operates on a well-by-well basis. It
denotes the number of occurrences of the entity per well. An
occurrence of 2 attached to sand-a, in combination with the
iterate rule attached to the deltaic sub-unit indicates that only 2
sand-a lithologies can be selected to fill the sub-unit.

Additional input can optionally be specified in the form of:

Pdfs for sonic and density at the bottom of each lithology in order to
simulate linear trends as a function of depth over an interval.

Pdfs for gross hydrocarbon column lengths.

Pdfs for hydrocarbon filled sonic and density variables at the top of each
reservoir lithology.

Pdfs for hydrocarbon filled sonic and density variables at the bottom of
each reservoir lithology.

Pdfs for user-defined variables.

Combination of rules, constraints and correlations are used to control the
simulation. Various stratigraphic settings can be simulated in this way.
Examples of what can be done with these input specifications are presented
hereafter.
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unit sub-unit lithology rocktype code
top marine shale-a seal top.mar.shl
deltaic sand-a reservoir bas.del.snd
shale-b waste bas.del.shl
base sand-b reservoir bas.flu.snd
fluvial silt-a waste bas.flu.slt
shale-c waste bas.flu.shl
Table 4.1 Hypothetical integration framework.

Correlations are used for variables which are dependent. For example, sonic
and density variables are often correlated negatively. Also bed-thicknesses
may be correlated to reflect a thickening sequence. User-defined physical
properties, such as production rates or permeabilities may be correlated with
acoustic properties, such as the density of a reservoir sand.

Simulation constraints determine whether a framework entity can be
selected. The presence constraint dictates how many wells, out of the total
number of simulations, will feature a specified entity. It can be used for
example to control erosional effects. The generation constraint determines
the frequency of framework entities per well. The constraint is evaluated
before a framework entity is selected and is used in combination with the
geological iteration rule. Generation is used to control the composition of an
entity that is being filled up. The occurrence constraint dictates how often an
entity can occur per simulated well. Occurrence is typically used for entities
that defy normal stratigraphic behaviour. It could be used e.g. to simulate a
volcanoclastic layer cutting through a sedimentary sequence.

Hard constraints are evaluated after a variable is drawn from its marginal
distributions. If the simulated value does not satisfy the hard constraints, it
is either drawn again, or the boundary cut-off value is accepted. Hard
constraints are used to eliminate non-realistic values. For example, when
simulating gross hydrocarbon columns, a hard constraint can be set to the
maximum column length in order to avoid simulating unrealistically large
columns.

Geology-related rules are attached to units and to sub-units. The rules
dictate how thicknesses of larger scale entities are determined and how these
are filled with smaller scale entities. The xor rule can be used in situations
where large lateral changes in a geological entity occur. For example to
simulate a shaling-out sand package. The sum rule is typically used in area's
with laterally extensive units, such as in carbonate platform environments.
Iteration is used e.g. to simulate cyclicity as observed in deltaic settings. If
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the iteration rule is applied in combination with the generation constraint, it
is possible to control the composition of the entity. The relative rule is used,
for example, to simulate pinch outs.

In general, the input information for the simulation algorithm will be derived
from factual well data. The available factual wells will be analysed to obtain
information on thickness, presence, occurrence, acoustic properties etc. For
this purpose, a well data analysis module has been implemented in the
GeoProbe system. Additional information on sediment architecture and
transition probabilities can always be obtained from literature (e.g. Mijnssen
et.al., 1993).

This concludes the discussion on the simulation algorithm. In the next
section a simulation example is described.

4.3 Simulation example

The simulation algorithm is applied to simulate wells in the oil field that will
be described as the labyrinth case study in Chapter 6. The reservoir is an
Upper Carboniferous to Lower Permian fluvial / fan assemblage sitting
unconformably on Silurian marine shales. The reservoir formation is in turn
conformably covered by Upper Permian carbonates. The field can be
considered a labyrinth of interconnecting and isolated reservoir bodies. Oil
production rate is primarily a function of reservoir development.
Considerable volumes of oil can be produced from relatively thin (3-8 m)
sandstone intervals. The reservoir formation deposits are predominantly
floodplain and playa lake deposits with reduced sand / shale ratios.
Between the wells, there are no laterally correlatable horizons within the
reservoir formation, but the top reservoir can be mapped on seismic
data. Fig. 4.1 is a hypothetical cross-section through the crest of the
structure. The geological setting is described in detail in Chapter 6.

An integration framework was established for the field, based on the major
structural elements and sedimentology (Section 6.3.3, Table 6.6).
Integration sub-unit subdivisions and lithology typing were derived from
analysis of well data and formation analysis logs of the real field. Based on
the factual well data and the geological setting it was decided to feed the
simulation algorithm with the following information:

e The random iterate rule for Carbonate D unit, Reservoir unit and each of
the sub-units.
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* The sum sequential rule for Carbonate C, Seal and Bottom units.

» Pdfs for thicknesses of all framework entities, for gross oil column
thickness, for sonic and density of each lithology, for sonic and density
of oil-filled reservoir lithologies.

* Correlations for sonic and density, for sonic of oil-filled and sonic of
brine-filled reservoir lithologies to reflect that porefill is independent of
rock properties, for the sonic of the Type 3 sand with the sonic of all
other reservoir lithologies to reflect reservoir compaction and
diagenesis.

* A hard constraint for the minimum and maximum oil column length and
minimum and maximum thickness of the Reservoir unit. Values were
redrawn until these constraints were met.

* Generation constraints for the reservoir lithologies to control the
sand/silt ratios of the various sub-unit entities.

The complete simulation specification are given in Appendix II.

Fig. 4.1 Hypothetical cross-section through the oil field.
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Fig. 4.2 30 Hz Ricker wavelet used to generate synthetic
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Fig. 4.3 Acoustic impedance logs for the simulated wells with

corresponding synthetic seismograms. The top reservoir
coincides with the large impedance break on the logs at
around 100 ms.
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The simulation algorithm was used to simulate 50 wells. The acoustic
properties of these wells were used to create reflectivity logs. These were
converted into synthetic seismograms by depth-time conversion, anti-alias
filtering to 2 ms and convolution with a 30 Hz Ricker wavelet (fig. 4.2).
The acoustic logs with corresponding synthetic seismograms are shown in
Fig. 4.3. It must be realised that for each of the simulated wells, the
complete stratigraphic sequence, described in terms of the integration
framework, is also available.

In this chapter the well simulation algorithm, used in this thesis, has been
described in detail. In the following chapter the algorithm is used to simulate
wells in different geological settings. The simulated wells with
corresponding synthetic seismograms are then used to test the performance
of different neural network paradigms and architectures.






EXPERIMENTS WITH SIMULATED DATA

5.1 Introduction

The previous chapter described the algorithm used to simulate realistic 1D-
stratigraphic profiles with attached physical properties. The simulated
acoustic properties of these wells can be used to generate synthetic
seismograms. Datasets generated in this way can be used in feasibility
studies aimed at establishing relations between seismic response and
underlying well properties. Based on simulated data only, it can be
determined how far the seismic data can be pushed in the inversion process.
It is important to know which inversion technique gives the best
performance. As stated in Section 3.1, many techniques can, in principle, be
used in the inversion phase. In the GeoProbe system, artificial neural
networks have been chosen to carry out the inversion. The paradigm (MLP
or RBF), the architecture (number of layers, number of nodes) and the type
of activation functions (sigmoid, ramp, tangent hyperbolic etc.) are
important factors influencing the network performance.

In this chapter a number of experiments with simulated data are described.
In the first set of experiments, the network design, i.e. number nodes in the
input and hidden layer and the type of activation function, is varied. After
each variation, the network performance on the test data set is measured. In
the second set of experiments, the network is fixed, but the geological
model is made more complex by introducing new variables that affect the
seismic response. In the third set of experiments the seismic bandwidth is
varied. In the final experiment it is demonstrated how network performance
can be increased by feeding the network additional (non-seismic)
information.
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In the following section (5.2), the initial model is described. The
experiments are presented in Section 5.3. This is followed by a discussion
of the results in Section 5.4. Conclusions are given in Section 5.5.

5.2 Initial model

The starting model is a gas field, consisting of a sealing shale with constant
acoustic properties overlying a carbonate reservoir (Fig. 5.1). The acoustic
properties of this reservoir vary due to changing porosities and fluid
content. The framework of this model is given in Table 5.1.

The simulation specifications for this model are given in Table 5.2. The
simulation algorithm was used to generate 200 wells. The acoustic
properties of the simulated wells were used to create reflectivity logs. These
were converted into synthetic seismograms by depth-time conversion, anti-
alias filtering to 4 ms and convolution with a 30 Hz Ricker wavelet (Fig.
4.2). Sample impedance logs and corresponding synthetic seismic traces are
shown in Fig. 5.2.

Fig. 5.1 Cross-section through the simulated field
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Unit Sub-unit Lithology |Type Code

Top Marine Shale Seal top.mar.shl
Bottom Marine Carbonate Reservoir bot.mar.car
Table 5.1 The integration framework for the initial model

Code Thickness (m) | Sonic (us/m) * | Density (kg/m3) *
top.mar.shl c91.4 ¢ 377 ¢ 2500

bot.mar c91.4

bot.mar.car n 2789 11.5 n 2280 50
bot.mar.car.gas ** n 2953 16.4 n 2100 100

Gas column *** n15.2 15.2

*  Sonic and density distributions are correlated negatively (cor. coefficient=-1); the
sonic distribution of the gas filled carbonate is correlated positively (cor.
coefficient=1) with the sonic distribution of the brine filled carbonate.

** The acoustic properties of the carbonate reservoir depend on the fluid content

*%* Maximum thickness = 45.6, minimum = 0. Values are repicked until these
constraints are met.

Table 5.2 Initial model simulation specifications. Probability density
functions are specified as normal distributions with a mean
and a standard deviation (n valuel value2) or as constants
(c value).

5.3 Experiments

In all experiments training and test data sets consist of 100 patterns each.
Sampling rate of the seismic data is 4 ms. A 30 Hz Ricker wavelet was used
to generate the synthetic seismic traces in experiments 1 until 6 and 8. In
experiment 7 different Ricker wavelets (20,30,40,50 Hz frequency) were
used. The reference time for selecting the seismic data was the time
corresponding to the top of the reservoir. Selected seismic samples were
interpolated relative to this reference time.

In all experiments, networks are trained to estimate the net thickness of the
gas column and the average density of the gas-filled reservoir rock from the
seismic response. The average density is calculated as:
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where:
P is the density, A the layer thickness, i the layer index and # the number
of layers.

The network specifications are presented per set of experiments in a table.
The performances of the test dataset are summarised in Table 5.12 for all
experiments. Complete performance statistics and graphics are given in
Appendix III. The results are discussed in Section 5.4.
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Fig. 5.2 Example of impedance logs and corresponding synthetic

seismic traces of the initial model.
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5.3.1 Network design

In this experiment 1 the network design is varied. The size of the input layer
is progressively reduced from 25 in experiment A to 13, 7 and 1, in
experiments B, C and D, respectively.

Experiment 1
Network paradigm Multi-Layer-Perceptron
Number of nodes: input-hidden-| A) 25-3-2
output B) 13-3-2
C) 7-3-2
D) 1-3-2
Seismic time gate relative to the| A)-25-75
reference time-pick (ms) B)-25-25
C)-12-12
D)0-0
Output average density, net gas column
thickness
Activation function input layer none
Activation function hidden layer sigmoid
Activation function output layer linear
Training algorithm backpropagation

Table. 5.3 Experiment 1 network specifications. The size of the input
layer is varied

In experiment 2 the size of the hidden layer is varied. In experiment A, the
size of the hidden layer is first increased to 9. Then in experiment B, the size
is reduced to 1 node. In experiment C, the network size is increased again
with the introduction of a second hidden layer. The results of these
experiments can be compared with the results of experiment 1A where three
nodes were used in the hidden layer.

In experiment 3 Radial Basis Function networks are tested. In experiment
A, a Gaussian activation function is used in the hidden layer and in
experiment C the IMQE activation function is used (see Section 3.2.2).
Training is stopped after 50.000 patterns. This is identical to other
experiments, described in this chapter. Training is continued for another
150.000 patterns, because the RBF networks are still learning. The results
of these prolonged training sessions for experiments A and C are reported in
experiments B and E, respectively. In the RBF experiments, the HSOL
training algorithm of Lee and Kill (1989) and Carlin (1992) is used.
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Experiment 2

Network paradigm Multi-Layer-Perceptron
Number of nodes: input-hidden-| A) 25-9-2
output B) 25-1-2

’ ) C) 25-9-3-2

Seismic time gate relative to the|-25to 75 ms
reference time-pick (ms)

Output average density, net gas column
thickness

Activation function input layer none

Activation function hidden layer sigmoid

Activation function output layer linear

Training algorithm backpropagation

Table. 5.4 Experiment 2 network specifications. The size of the
hidden layer is varied

Experiment 3

Network paradigm Radial Basis Functions

Number of nodes: input-hidden- [ 25-3-2 (end of training 25-3-2)
output

Seismic time gate relative to the|-25-75
reference time-pick (ms)

Output average density, net gas column
thickness

Activation function input layer none

Activation function hidden layer A) Gaussian
B) Gaussian
C) IMQE
D) IMQE

Activation function output layer linear

Training algorithm HSOL
A) 50.0000 patterns trained
B) 200.000 patterns trained

C) 50.0000 patterns trained
D) 200.000 patterns trained

Table. 5.5 Experiment 3 network specifications. Radial Basis
Functions; activation functions are varied along with the
number of patterns trained.
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In experiment 4, the final design experiment, different activation functions
of the hidden layer are tested for MLP networks. In experiment A, a tangent
hyperbolic function is used, followed by a prime tangent hyperbolic, a
prime sigmoid, a ramp and a linear function, in experiments B, C, D and E,
respectively (see Section 3.2.1). The results can be compared with the
results of experiment 2A, where a sigmoid activation function is used in the
hidden layer in a similar network configuration.

Experiment 4

Network paradigm Multi-Layer-Perceptron
Number of nodes: input-hidden-|25-9-2
output

Seismic time gate relative to the|-25to 75 ms
reference time-pick (ms)

Output average density, net gas column
thickness

Activation function input layer none

Activation function hidden layer A) tangent hyperbolic

B) prime tangent hyperbolic
C) prime sigmoid

D) ramp

E) linear
Activation function output layer linear
Training algorithm backpropagation

Table. 5.6 Experiment 4 network specifications. MLP network with
varying activation functions in the hidden layer.

5.3.2 Geological model complexity

In the following experiments the geological model complexity is increased
by introducing new variables that affect the seismic response. The network
specifications are kept constant in these experiments (Table 5.7).

In the first geological complexity experiment (Experiment 5), shale
intercalations are introduced into the carbonate reservoir. The framework is
given in Table 5.8 and the simulation specification in Table 5.9. Examples
of impedance logs with corresponding seismic responses are shown in Fig.
5.3.
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Experiments 5, 6 and 7

Network paradigm Multi-Layer-Perceptron

# of nodes: input-hidden-output 25-9-2

Input time gate -25to 75 ms

Output average density, net gas column
thickness

Activation function input layer none

Activation function hidden layer tangent hyperbolic

Activation function output layer linear

Training algorithm backpropagation

Table 5.7 Network specification experiments 5, 6 and 7.

Unit Sub-unit Lithology |Type Code

Top Marine Shale Seal top.mar.shl

Bottom Marine Carbonate Reservoir bot.mar.car
Shale Waste bot.mar.shl

Table 5.8 The integration framework for the carbonate-shale model

Code Thickness (m) | Sonic (us/m) * | Density (kg/m3) *

top.mar.shl c91.4 ¢ 3773 ¢ 2500

bot.mar c91.4

bot.mar.car n 9.14 3.05 n 2789 11.5 n 2280 50

bot.mar.car.gas *** n 295.3 16.4 n 2100 100

bot.mar.shl nlS51.5 n 360.9 6.6 n 2550 50

Gas column *** n 152 15.2

*  Sonic and density distributions are correlated negatively (cor. coefficient=-1); the
sonic distribution of the gas filled carbonate is correlated positively (cor.
coefficient=1) with the sonic distribution of the brine filled carbonate.

#* The acoustic properties of the carbonate reservoir depend on the fluid content

##% Maximum thickness = 45.6, minimum = 0. Values are repicked until these
constraints are met.

Table 5.9 Carbonate-shale simulation specification. Probability
density functions are specified as normal distributions with
a mean and a standard deviation (n valuel value2) or as
constants (c value).
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Fig. 5.3 Examples of acoustic impedance logs and corresponding
synthetic seismic traces of the carbonate-shale model.

Code Thickness (m) | Sonic (us/m) * | Density (kg/m3) *
top.mar.shl c91.4 n 377.3 16.4 n 2500 500
bot.mar c91.4
bot.mar.car n 9.14 3.05 n 2789 11.5 n 2280 50
bot.mar.car.gas *** n 295.3 16.4 n 2100 100
bot.mar.shl nl51.5 n 360.9 6.6 n 2550 50
Gas column *** n 15.2 15.2

*  Sonic and density distributions are correlated negatively (cor. coefficient=-1); the
sonic distribution of the gas filled carbonate is correlated positively (cor.
coefficient=1) with the sonic distribution of the brine filled carbonate.

*#* The acoustic properties of the carbonate reservoir depend on the fluid content

*k%  Maximum thickness = 45.6, minimum = 0. Values are repicked until these
constraints are met.

Table 5.10  Overburden model simulation specifications Probability
density functions are specified as normal distributions with
a mean and a standard deviation (n valuel value2) or as
constants (¢ value).
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Fig. 5.4 Impedance logs of the overburden model with
corresponding synthetic seismograms (A=20, B=30,
C=40 and D=50 Hz Ricker wavelets).
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In experiment 6 carbonate-shale model complexity is increased by varying
the acoustic impedance properties of the overburden. The simulation
specification are given in Table 5.10 and examples of acoustic impedance
logs with corresponding seismic responses are shown in Fig. 5.4B. When
interpreting these results, it must be realised that the standard deviation of
the acoustic properties of the overburden is much larger than that of the
target zone layers.

5.3.3 Seismic bandwidth variations

In the following experiment (Experiment 7), the synthetic seismic traces of
the overburden model are convolved with different wavelets to investigate
the influence of the seismic bandwidth on the inversion results. The
wavelets are 20, 30, 40 and 50 Hz zero-phase Ricker wavelets (Fig. 5.5).
The impedance logs and various synthetic seismic traces are presented in
Fig. 5.4. The network specification are given in Table 5.7.

Ricker wavelets

Amplitude

Time (ms)

Fig. 5.5 Ricker type wavelets used to generate synthetic
seismograms
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Experiment 8

Network paradigm Multi-Layer-Perceptron

# of nodes: input-hidden-output 26-9-2 (25 seismic samples +

gross gas-column)

Input time gate -25to 75 ms

Output average density, net gas column
thickness

Activation function input layer none

Activation function hidden layer tangent hyperbolic

Activation function output layer linear

Training algorithm backpropagation

Table 5.11 Network specifications of experiment 8.

5.3.4 Additional information

In the following experiment a carbonate-shale model with a constant
overburden acoustic impedance is used (Table 5.9). The network input
consists of 26 input nodes which are fed by 25 seismic samples and a gross
gas-column thickness. There are no constraints to the design of networks in
the GeoProbe system. It is possible to design (and train) networks that are
fed by a combination of seismic and well data. Application of such networks
to the factual horizon slice, is possible as well. The only condition is, that
the well information is supplied in the form of a XYZ grids. Therefore, any
property that can be mapped, can, in principle, be used to constrain the
inversion process. In the case of experiment 8, a gross gas-column grid
should be supplied together with the seismic horizon slice.

The network specification of experiment 8 is presented in Table 5.11.

This concludes the description of the experiments with simulated data. The
results have been summarised in Table 5.12 and will be discussed hereafter.
Additional performance statistics are presented in Apendix III.

5.4 Discussion of the results

Experiment 1 shows that gas column thickness prediction depends on the
size of the input layer. The normalised RMS error increases from 0.33
through 0.44 and 0.54 to 0.97, when the number of input nodes is reduced
from 25 to 13, 7 and 1, respectively. This behaviour can be explained as
follows: when the number of nodes is reduced, the network is offered a
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smaller time-gate around the reference time. Large gas columns will have a
seismic effect outside this gate. The network must therefore extrapolate,
rather than interpolate the data. Consequently the prediction results
deteriorate.

Experiment Norm. RMS Density Norm. RMS Gas
column
1A 0.28 0.33
1B 0.29 0.44
1C 0.32 0.54
1D 0.51 0.97
2A 0.24 0.32
2B 0.93 0.48
2C 0.31 0.39
3A 0.46 0.37
3B 0.33 0.30
3C 0.45 0.31
3D 0.29 0.19
4A 0.18 0.25
4B 0.18 0.27
4C 0.22 0.36
4D 0.13 0.44
4E 0.13 0.43
5 0.29 0.58
6 0.83 0.60
7A 0.87 0.61
7B 0.83 0.60
7C 0.85 0.66
7D 0.83 0.60
8 0.28 0.21

Table 5.12  Normalised RMS errors on the test datasets for the average
density of the gas-filled carbonate rock and the net gas-
column thickness.

The density prediction depends much less on the size of the input layer. This
is because the density variations (= impedance variations, since density and
sonic were correlated with a -1 correlation coefficient in the simulation)
affect the seismic amplitudes and not the waveform. Because of tuning
effects, seismic amplitudes are not linearly related to density, however. For
this reason, a one-node network cannot predict the density as well as the



5. Experiments with simulated data 66

larger-size networks, normalised RMS errors are 0.28, 0.29, 0.32 and 0.51
for 25, 13, 7 and 1 input nodes.

In experiment 2 the size of the hidden layer was varied. These results can be
compared with the results of experiment 1A. It is clear that with one node in
the hidden layer, experiment 2B, two variables cannot be predicted
simultaneously. The training performance graph (App. III) shows that
training initially gives a reasonable result for the density prediction. When
training is continued, the gas column prediction improves at the expense of
the density prediction performance. The best results are obtained with 9
nodes in the hidden layer, with normalised RMS errors of 0.24 for density
and 0.32 for gas column prediction. Adding another hidden layer,
experiment 2C, deteriorates the prediction results to 0.31 and 0.39 for
density and the gas column, respectively.

Radial Basis Functions networks were tested in experiment 3. These
networks are normally applied to lower dimensional problems (up to 5
dimensions), where a strong correlation exists between the input variables.
In these experiments a strong correlation between the input variables does
exist, but the dimension of the problem is much larger than in standard RBF
applications. Still RBF networks give good results, especially for the
prediction of the gas column thickness where a normalised RMS error of
0.19 is reached after prolonged training using the IMQE activation function.
In comparison with MLP networks, RBF networks take longer to converge.
The IMQE activation function performs better than the Gaussian function in
these experiments.

In experiment 4 different activation functions in the hidden layer were
tested. These experiments can be compared with experiment 2A, where the
sigmoid function was used. Comparing experiments 2A and 4A shows that
the tangent hyperbolic activation function performs better than the sigmoid
function. Normalised RMS errors for density and gas column are 0.18 and
0.25 for tangent hyperbolic and 0.24 and 0.32 for sigmoid functions,
respectively. Also the prime tangent hyperbolic function scores better (0.18
and 0.27) than the sigmoid and prime sigmoid (0.22 and 0.36). The ramp
and linear functions score very well when predicting the density (both
0.13), but perform less well when predicting the more difficult gas column
thickness (0.44 and 0.43, respectively). The good performance on the
density can be explained by the fact that seismic amplitudes outside the
tuning range are related linearly to the density.

In experiments 5 and 6, the geological model was made more complex.
These results are compared with the results of experiment 4A.
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Shale intercalations introduced in experiment 5 have a considerable effect on
the gas column prediction. The normalised RMS error decreases from 0.25
in experiment 4A to 0.58 in experiment 5. This result can be explained by
the fact that non-unique solutions exist in the carbonate-shale model space.
The introduction of shale layers into the reservoir, will have a large effect on
the net column thickness and the seismic response. These effects, however,
are not necessarily related, and, depending on the random selections made in
the Monte Carlo simulations, completely different seismic signals might be
related to similar net gas columns. The seismic amplitudes are less affected
by the introduction of shale intercalations. Moreover, the average density is
corrected for thickness of individual layers (Equation 5.1). Therefore, the
decrease in performance of the density prediction is not so significant (from
0.18 in experiment 4A to 0.29 in experiment 5).

In experiment 6 the geological model complexity was increased by
introducing a variation in the acoustic impedance properties of the
overburden. Such variations affect the seismic amplitudes and hence the
prediction performance of the reservoir density. Performance decreases
from 0.29 in experiment 5 to 0.83 in experiment 6. Please note, however,
that the standard deviation of the acoustic properties of the overburden is
almost a factor of 10 higher than the standard deviations of the acoustic
properties of the carbonate rock (Table 5.6). Changes in seismic amplitude
are, therefore, primarily caused by changes in the overburden, which are
completely independent of the property of interest. The performance of the
gas column prediction is hardly affected by the variations in the overburden;
a slight decrease in normalised RMS errors was observed: from 0.58 to
0.60.

In experiment 7 the seismic bandwidth was varied. The results show that the
frequency content of the seismic data does not affect the performance of the
density prediction. The normalised RMS errors are 0.87, 0.83, 0.85 and
0.83 for 20 Hz, 30 Hz, 40 Hz and 50 Hz Ricker wavelets, respectively.
Since the density prediction depends primarily on the seismic amplitudes,
this result is in line with the expectations. The performance of the gas
column prediction was expected to be affected by the frequency content. The
vertical resolution increases with increasing bandwidth, hence an increase in
gas column prediction performance was anticipated with increasing
frequency. The results do not show this increase. Instead the gas column
prediction performance is independent of the frequency content. The
normalised RMS errors are 0.61, 0.60, 0.66 and 0.60 for 20 Hz, 30 Hz, 40
Hz and 50 Hz Ricker wavelets, respectively. A possible explanation for this
behaviour is that the property of interest, i.e. the gas column thickness, was
calculated at the well data scale, while the inversion works on the seismic
scale. In the up-scaling from well data to seismic data, the impedance logs
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were resampled to the seismic sampling rate. This non-linear transformation
determines whether, or not, the seismic response is related to a well

property.

In experiment 8 the gross gas-column was supplied to the network in
addition to 25 seismic samples. These results are compared with the results
of experiment 5 where the network was trained on seismic samples only. As
expected the average density is predicted equally well by both networks
(normalised RMS errors are 0.29 and 0.28 for experiment 5 and 8,
respectively. Also, as can be expected, the prediction of the net gas-column
thickness is far better for experiment 8 then for experiment 5 (normalised
RMS errors are 0.21 and 0.58, respectively.

5.5 Conclusions

From the aforementioned experiments, the following conclusions are drawn:

» In order to avoid extrapolation of results, the seismic time-gate to be
analysed must cover the response of the largest thickness, for thickness-
related inversions.

» The size of the hidden layer should not be chosen too small.
« A one node hidden layer can predict one variable only.
*  One hidden layer is sufficient.

» Performance of RBF networks is comparable to MLP networks. RBF
networks performed slightly better on the thickness inversion and
slightly worse on the density inversion.

» Convergence of RBF networks is slower than that of MLP networks.

» The tangent hyperbolic activation function gives the best overall
prediction performance for MLP network. For RBF networks the IMQE
activation function gave a better performance than the Gaussian
function.

* Prediction performance of the linear and ramp activation functions is
good for the density because this is a linear problem outside the tuning
range.

» Network performance deteriorates when new variables are introduced
which affect the seismic response and the target variable independently.
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In other words; performance deteriorates when non-unique solutions are
introduced in the training set.

» Variations in the impedance of the overburden affect the seismic
amplitudes and therefore the prediction performance of impedance-
related properties of the target level.

e The introduction of new layers affect the seismic waveform and
therefore the prediction performance of thickness-related properties of
the target level.

» Performance of the predictions of density and gas-column thickness are
independent of the seismic band-width.

» Performance of the prediction can be increased by supplying additional
(non-seismic) information to the network.






CASE STUDIES

6.1 Introduction

It has been shown that simulated data and factual data are commensurable if
they are described in terms of the same subsurface model. The subsurface
model used to describe the data has been defined as the integration
framework. Artificial neural networks are used in the seismic inversion
phase while 1D-stratigraphic profiles with attached physical properties are
simulated using Monte Carlo statistics. So far, the performance of different
network paradigms and architectures have only been investigated on
simulated data.

In this chapter the total space inversion method is applied to real data, in two
separate case studies.

The first study is a Rotliegend unit comprising gas-filled aeolian sandstones
located in onshore Germany. The study area is covered by 3D-seismic data
and is a subset of a study which included information from 19 wells.

The second case study involves a fluvial-clastic oil reservoir from the
Middle East. The reservoir unit consists of sands and silts in a labyrinth type
architecture. The area is covered by 3D-seismic data and the reservoir has
been extensively penetrated by numerous wells, 61 of which were used in
this study.

In both studies, the objective was to extract the greatest possible detail from
the seismic response in order to delineate the sediment architecture and
define an accurate depositional history of the reservoir unit. For each study,
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the available data will first be described, along with a summary of the
geological setting. This is followed by the application of the techniques and
a discussion of the results.

6.2 Rotliegend case study

6.2.1 Available data

The Rotliegend case study area is covered by a 1991-1992 vintage 3D-
seismic dataset. The data have been acquired using a combination of
dynamite and vibroseis sources. The field layout consisted of 8 parallel
receiver lines, each with 60 geophone groups. Source and receiver intervals
were 50 m, yielding a 25 by 25 bin size with a nominal fold of 15.
Acquisition sampling rate of 2 ms was resampled to 4 ms in processing. The
vibroseis data have been matched to the dynamite data in two steps, pre-
stack and post-stack. A post-stack zero-phasing filter was applied at the end
of the processing sequence which included 2 passes of residual statics,
DMO and post-stack 3D-migration.

Several seismic horizons were mapped by the client. The top Wustrow
horizon, corresponding to the top of the main reservoir unit, is the reference
horizon used in this study (Fig. 6.11).

In the greater Rotliegend area some 40 wells have penetrated the target
interval. From these, 28 wells lie inside the study area, 19 of which were
selected and loaded into the GeoProbe system. The area shown in this thesis
is a subset containing 11 wells (Fig. 6.1). A full suite of logs was available
in digital format for the 19 wells. These included: sonic, density, neutron,
calliper, gamma-ray, resistivity, corrected elan-litho logs, time-depth
curves, and blocked acoustic impedance curves for Rotliegend and basal
Zechstein. In addition cross-plots of acoustic impedance vs. porosity and
permeability, and a set of stratigraphic profiles were also available on paper
copies.
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6.2.2 Geology

6.2.2.1 Tectonic Overview

The structural history of the Rotliegend gas play area is typical of the
structural development of Northern Germany. An overview of this can be
found in Ziegler (1990).

An extensional tectonic regime dominated prior to deposition of the
Zechstein. The tensional stresses present in the late Carboniferous and Early
Permian gave rise to the development of North West-South East trending
horsts and grabens. These structures were locally modified by minor
wrench faults (Gast, 1988).

Continued subsidence and subsequent sediment loading (up to 1000 m)
triggered halokinesis in the Zechstein during the Late Triassic. Diapir
formation resulted in tectonic deformation of the overlying formations.
Continued flow of the salt gave rise to the formation of discontinuous
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anhydrite (Z3) blocks. These blocks are visible on seismic as 'rafts or
floating blocks' within the salt. The upward movement of the salt triggered a
series of tectonic re-adjustments in the Mesozoic succession resulting in
collapse faulting of the overlying formations.

The effects of Alpine and Atlantic tectonism beginning in the Late
Cretaceous gave rise to fault reactivation and basin inversion well into the
Tertiary.

6.2.2.2 Stratigraphy

While the targets in this case study are restricted to the three main reservoir
sands of the Rotliegend, it was necessary to include the overlying
formations for seismic simulation purposes. Therefore, in the following
section the general description of the regional stratigraphy covers not only
the interval between Upper Carboniferous, through the Rotliegend, to the
Zechstein, but also the Buntsandstein as well.

Late Carboniferous to Permian Rotliegend

Late Carboniferous to Early Permian red beds lie unconformably on rifted
basement volcanics of the Variscan continent. There is no distinct
unconformity at the top of the Carboniferous as there is with the Saalian
unconformity (Ziegler, 1990) in the southern gas basin of the North Sea.
The redbeds are dominated in the beginning by fan and dune deposits
indicative of an arid aeolian environment which become more dune and
shoreline dominated towards the top. These in turn are overlain by the
shales and sandstones of the Heidberg-Bahnsen formation.

Of the reservoir formations, the lowermost is the Schneverdingen. This is
followed by the Dethlingen This is in turn overlain by the Ebstorf formation.
The uppermost reservoir formation of the Rotliegend in this region is the
Waustrow formation.

Permian Zechstein

The base of the Zechstein is indicated by a copper shale, the Kupferschiefer.
There follows a thin layer composed of interbedded anhydrite and
carbonates of the Zechstein 1 and 2 cycles. This is overlain by the halite of
the Zechstein 2 and 3 cycles. The thickness of this layer varies (due to
halokinesis). The anhydrite of the Zechstein 3 series is present as
discontinuous blocks or rafts in the Z2 and Z3 halite.
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Triassic

The Triassic sediments overlie a Zechstein halite succession of variable
thickness. The Lower Triassic (Bunter) is composed of terrestrial clastics
(Buntsandstein) while the Upper Triassic comprises marine clastics
carbonates, and evaporites.

6.2.2.3 Depositional Facies and Reservoir Geology

Deposition of the Lower Rotliegend was dominated by arid aeolian and
alluvial fan processes in a horst and graben system. As deposition of the
Lower Rotliegend progressed subsidence decreased and sabkha lakes to the
north of the region began to transgress over the aeolian deposits as the
grabens were filled in. By the end of deposition of the Wustrow the trough
had essentially been filled in. Lake, shoreline and sabkha deposits
dominated in the north while dunes and alluvial fans dominated the south.
These deposits were then conformably overlain by the thick shale and sand
deposits of the Upper Rotliegend, Heidberg-Bahnsen clastics. Sediment
from the Upper Rotliegend was probably sourced by the Variscan
mountains to the South (Kulke et.al., 1993).

The Rotliegend 'desert’ was subsequently flooded by the shallow Zechstein
Sea. This transgression is marked over N.W. Europe by a copper shale
deposit (Kupferschiefer). Evaporation led to cyclical series of "evaporite”
deposits being laid down conformably over the Upper Rotliegend clastics.
The lower two evaporitic cycles, however, are dominated by the
development of carbonate platforms with anhydrite sabkhas.

The lower clastic sequence of the Buntsandstein formation is a monotonous
succession of silts, anhydritic shales and claystones deposited in fluvial,
lacustrine and shallow marine environments (Ziegler, 1990).

The reservoir geology of the three main Rotliegend reservoir formations: the
Waustrow, Dethlingen, and Schneverdingen Formations will be dealt with in
more detail in the following three sections.

Schneverdingen Facies and Reservoir Geology

Deposited in arid conditions upon a rifted volcanic terrain the
Schneverdingen comprises dune sandstone with locally thick fanglomeratic
deposits. Coarse, proximal, conglomerates, breccias and gravels are to be
found adjacent to, what were then active, faults. Fan material, however,
becomes thinner and more mature towards the north of the grabens and
distally, away from the edges of the graben. The large amount of volcanic
material eroded off the horsts resulted in a high argillaceous (clay) content
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within fan sediments. These clays were also deposited in the silty shales of
the interdune areas.

Dunes were formed in the lows (ergs) away from the graben margins. The

dunes are comprised, of "dry" dunes and "wet" dunes. This distinction has

nothing to do with depositional environment but, instead, refers to the

diagenetic history and subsequent reservoir quality of the dune sands. Dry
dunes have hematite cements which formed above the water table during

early diagenesis. Wet dunes underwent early diagenesis when saturated. as

a result the pores are clogged with illite cement.

The Schneverdingen formation can be considered as a stack of
fanglomerates, wet and dry dunes and silt/shale levels. There are occasional
volcaniclastic or basaltic layers. The Schneverdingen may be completely
absent on the horst blocks. The formation is capped by a sealing shale
member separating it from the Dethlingen formation. While the
fanglomerates and wet dunes may be gas charged, only the dry dunes have
sufficient permeability and porosity to produce gas and are the target within
this formation.

Dethlingen/Ebstorf Facies and Reservoir Geology

The lower members of the Dethlingen formation show a similar composition
and distribution to the Schneverdingen formation. However,
synsedimentary tectonism was reduced and the graben had begun filling up.
Extensive fanglomerates were restricted to the south and graben margins
with wet dunes predominating elsewhere.

The upper members of the Dethlingen formation show the onset of a marine
transgression from the north. In this level fanglomerates are restricted to the
faulted margins while dry dunes predominate in the south of the area.
Moving northwards, the dry dunes pass into a belt of wet dunes then sandy
sabkhas and finally shoreline sands. The shoreline sands have chlorite
cement and are free from illite.

The overlying Ebstorf can be considered a result of the marine
transgression that occurred prior to deposition of the Wustrow. The Ebstorf
comprises a sandy member and a lower shale member. In places, the lower
shale is missing and the sand member is considered to rest directly on the
Dethlingen. The onset of this transgression explains the shoreline sands in
the Dethlingen and the lack of shales in the presumed contact between the
Ebstorf and the Dethlingen in places.
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The porous and permeable shoreline sands are the main reservoir formation
in the Dethlingen/Ebstorf interval. Both Dethlingen and Ebstort sandstones
are charged with gas. The sealing formation for this gas column is shale
interval at the base of the Wustrow.

Wustrow Facies and Reservoir Geology

The Wustrow can be considered to be comprised of an upper and a lower
member. The lower Wustrow comprises dune sandstones and fan deposits,
and locally some volcaniclastics. Shoreline deposits occur only in the
extreme northern part of the area.

The upper Wustrow unit comprises predominantly more shoreline and
sabkha lake deposits and represents the onset of a major marine
transgression prior to deposition of the Heidberg-Bahnsen shales. Wet
dunes occur in the south of the depression, while fans are restricted to the
southern extremities and, locally, along the margins. The north of the area
comprises shoreline sands and sabkha deposits. The sabkhas are clay rich
and reduce the reservoir quality of the sandstone when interbedded. Well
studies indicate a pronounced asymmetry in the distribution of the shoreline
sands towards the western edge of the depression. Shoreline deposits also
thin out towards the south.

The shoreline deposits of the Wustrow are the uppermost reservoir
formation of the Rotliegend in this area. The gas column is capped by a
shale layer at the base of the Heidberg-Bahnsen.

6.2.3 Integration framework

The framework for the Rotliegend case study is shown Table 6.1. The
framework entities correspond, in general, with sequence and lithological
boundaries although some concessions were made to increase the flexibility
of the well simulation algorithm. The following, is a description of the
framework, describing the Rotliegend and overlying sediments in the study
area:

« Nine main units and four seals were chosen. Each unit has one or
several sub-unit (geological or seismic). The third column shows the
lithologies comprising each sub-unit, while the fourth column shows the
user-defined codes.
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Unit Sub-unit Lithology GeoProbe Code
Buntsandstein Upper Sandstone unt.up.snd
Shale bunt.up.shl
Lower Sandstone bunt.fow.snd
Limestone unt.low.lim
Shale ‘bunt.low.shl
Upper Zechstein Z3to L7 Halite uze.z37.hal
Anhydrite (A3) uze.z37.a3
Shale uze.z37.shl
Basal Zechstein Z2 to 71 Anhydrite (AZ) bze.z12.a2
Carbonate bze.zl2.car
Anhydrite bze.z12.anh
Copper Shale bze.z12.cop
Heidberg-Bahnsen Top Rotliegend Sandstone heid.topr.snd
Shale heid.topr.shl
eal | Seal Shale seall.seal.shi
Wustrow Wustrow 1 Evaporite wus.wul.eva
Silt/Shale wus.wul.sil
Shoreline” Sandstone wus.wul.sho
‘Wet Dune Sandstone wus.wul.wet
Dry Dune Sandstone wus.wul.dry
Fanglomerate wus.wul.fan
Volcanics wus.wul.vol
Wustrow 2 Wet Dune Sandstone wus.wu2.wet
Dry Dune Sandstone wus.wu2.dry
Fanglomerate wus.wu2.fan
1lt/Shale wus.wuZ2.sish
Volcanics wus.wu2.vol
Seal 2 Seal Shale sealZ.seal.shl
Ebstorf Shoreline horeline Sandstone ebs.shor.shor
11t/Shale ebs.shor.sish
Wet Dune Wet Dune Sandstone ebs.wet.wet
Silt/Shale ebs.wet.sish
Seal 3 Seal Shale seal3.seal.shl
Dethlingen Dethlingen 1 Shoreline Sandstone det.detI.sho
“Wet Dune Sandstone det.detl. wet
Fanglomerate det.detl.fan
Silt/Shale det.detl sish
nhydrite/Carbonate det.detl.anc
Dethlingen 2 ‘Wet Dune Sandstone det.det2. wet
Dry Dune Sandstone det.det2.dry
Fanglomerate det.det2.tan
[ Silt/Shale det.detZ.sish
Anhydrite/Carbonate det.det2.anc
Seal 4 Seal Shale seal4.seal.shl
Base Schneverdingen Wet Dune Sandstone base.schn.wet
Dry Dune Sandstone base.schn.dry
Fanglomerate base.schn:fan
Silt/Shale base.schn.sish
Lower Rotliegend Volcanics Volcanics lowr.vol.vol
Carboniferous Sandstone lowr.car.snd
Shale lowr.car.shl

Table 6.1

Rotliegend case study integration framework
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e  Within the Buntsandstein, the names of the lithologies may not represent
the real lithology observed in the well. However, these names have
been kept since they will not influence the final outcome.

» The Wustrow unit was divided into two sub-units: Wustrow 1 and
Waustrow 2. The main difference is the presence of shoreline sands and
evaporites in the Wustrow 1 sub-unit. The Dethlingen unit was similarly
divided into two sub-units.

+ Reservoir sands occur in the Wustrow, Ebstorf, Dethlingen and
Schneverdingen units. Most important reservoir sands are the chlorite
and hematite rich sands. Chlorite sands correspond to shoreline sands.
Hematite rich sands correspond to the dry dunes lithology. Wet dune
sands contain illite, which kills the porosity and permeability, so
reducing the reservoir quality of these sands. For the purpose of this
study they are regarded as waste rocks.

« Each sub-unit entity has several lithologies.

o Seals between different units have been placed in order to define the
separate hydrocarbon columns. This is a requirement of the GeoProbe
system. In order to identify hydrocarbons in the system, columns must
be attached to a sealing layer. In factual wells the last shale layer above a
reservoir was called the seal. No seal was entered in cases where no
shale was present between subsequent reservoir units.

e Seal 3 (between Ebstorf and Dethlingen) may or may not be present in
southern wells. The Ebstorf is always sandy; sometimes with shale at
the base, although, this may be absent. When this occurs the Ebstorf
appears "welded" to the top of the Dethlingen. (On logs it is impossible
to differentiate the two when this occurs).

» Seal 4 has been arbitrarily introduced as a 1 m shale since there seems to
be a new gas column starting at the top of the Schneverdingen.
However, the lithology of what may constitute the seal, is not clear from
the well data.

6.2.4 Well data preparation

The factual wells had to be entered into GeoProbe. First, the well
stratigraphy was described in terms of framework entities. This description
was based primarily on the elan-litho logs. Next, the sonic and density logs
were entered into the system. These logs were parameterised (i.e. blocked)
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at the lithology scale of the integration framework. The gas-content of
reservoir layers was not entered, due to the absence of information.

Simulated well data was additionally required in order to supplement factual
wells and include aspects of the geological reasoning. For this reason,
factual well data were analysed in order to obtain information on the
variations in thickness, sonic and density properties, per framework entity.
These analyses yielded the stochastic input for the well simulation
algorithm. Geological input to the simulation was based primarily on
regional knowledge. The main geological rules are presented in Table 6.2.
The complete simulation specifications are given in App. IL

Units Rule Sub-unit Rule
Buntsandstein Sum S. Upper Iterate S.
Lower Iterate S.
Upper Zechstein | Sum S. Z3t0Z7 Iterate S.
Basal Zechstein | Sum S. Z2t07Z1 Iterate S.
Heidberg- Sum S. Top Rotliegend | Sum S.
Bahnsen
Seall Sum S. Seal Sum S.
Wustrow XOR Wustrow1 Iterate R.
Wustrow?2 Iterate R.
Seal? Sum S. Seal Sum S.
Ebstorf XOR Shoreline Iterate R.
Wet dune/Fluv. | Iterate R.
Seal3 Sum S. Seal Sum S.
Dethlingen XOR Dethlingen1 Iterate R.
Dethlingen2 Iterate R.
Seal4 Sum S. Seal Sum S.
Base Sum R. Schneverdingen | Iterate R.
Lower Sum S. Volcanics Sum S.
Rotliegend
Carboniferous Relative R.
Sum: The thickness of the entity is constructed by taking the sum of the
thicknesses of the smaller scale entities.
Tterate: The entity is filled with smaller scale entities
XOR: Only one of the smaller scale entities is selected
S. Sequential selection of minor scale entities
R. Random selection of minor scale entities
Table 6.2 Geological rules for the simulation algorithm
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Example of impedance logs and corresponding synthetic
seismic traces of simulated wells.
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In addition to the geological rules, simulation constraints were set. The most
important constraints were generation rules applied to lithologies and sub-
unit entities. These constraints act in combination with the defined
geological rule. E.g. an iteration rule applied to a sand-shale sequence with
10% shale generation and 100% sand generation yields a sand-prone sub-
unit. The Bundsandstein was excluded in the simulation; it was given a
presence of 0%. A percentage was assigned also to entities with an XOR
rule attachment. The simulation algorithm was further constrained by the
correlation of sonic and density distributions with a correlation coefficient of
-1. Effectively this implies that acoustic impedances were simulated rather
than independent sonic and density variables.

The acoustic properties of the simulated wells were used to create reflectivity
logs. These were then converted into synthetic seismograms by depth-time
conversion, anti-alias filtering to 4 ms and convolution with a wavelet
derived at well location B (Fig. 6.2). Some acoustic logs with
corresponding synthetic seismograms are shown in Fig. 6.3.

6.2.5 Direct inversion

In this section the application of the direct inversion approach is described.
A representative dataset for network training was created in total space. The
training data set comprised 500 simulated wells with corresponding
synthetics extended with 19 factual well, each with 25 factual traces. Two
test dataset were used: one consisting of 500 simulated wells with
corresponding synthetic seismic data and one consisting of the factual wells
with one factual seismic trace. Note, that these seismic traces had been used
in training the network and, therefore, cannot be considered an independent
test case. A 200 ms RMS trace equalisation was applied to all seismic data.
The target variable is the weighted average impedance of the Wustrow,
calculated as:

n
ZiA;

Z==—— (6.1)
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Direct inversion

Training data 500 simulated wells +
19 factual wells with 25 traces each

Test data A) 500 simulated wells
B) 19 factual wells with 1 factual
trace

Network paradigm Multi-Layer-Perceptron

No.of nodes: input-hidden-output 15-9-1

Input time gate -10 to 50 ms, relative to Top
Wustrow

Output weighted average impedance
Wustrow

Activation function input layer none

Activation function hidden layer prime tangent hyperbolic

Activation function output layer inear

Training algorithm backpropagation

Table. 6.3 Network specifications. All seismic data have been
balanced using a 200 ms RMS scaling around the reference

horizon.

Training variables Normalised RMS RMS Mean Absolute Max Absolute
Impedance 0.85 714460 kg/s*m? 586098 kg/s*m> 2075477 kg/s*m>
Test variables A Normalised RMS RMS Mean Absolute Max Absolute
Tmpedance 0.72 671576 kg/s*m> 546593 kg/s*m?2 2495753 kg/s*m?®
Test variables B Normalised RMS RMS Mean Absolute Max Absolute
Impedance 0.93 746647 kg/s"‘m2 670127 kg/s"‘m2 1237221 kg/s"‘m2
Table. 6.4 Network performance statistics. A) 500 simulated wells B)
factual wells with one factual seismic trace.
where:

Z is the impedance, A the layer thickness, i the layer index and n the
number of layers.

The network specifications are given in Table 6.3. The results are shown in
Fig. 6.4 and Table 6.4. The prediction of the network on the factual wells is
shown in Fig. 6.6.

It is concluded that the weighted average impedance of the Wustrow
formation can be predicted from seismic data. The accuracy of the network
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prediction has a RMS error of 671576 kg/s*m2 on simulated data. This
corresponds to less than 6%. The RMS error on the factual seismic traces at

the factual well locations is 746647 kg/s*m2, which corresponds to less
than 7%. Note, however that these traces have been used in training the
network and therefore, this RMS error cannot be used to quantify the
prediction error. The trained network was subsequently applied to the
seismic horizon slice yielding a lateral prediction grid for the weighted
average impedance of the Wustrow formation (Fig. 6.7).
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Fig. 6.4 Network performance on the test datasets A) 500 simulated

wells B) factual wells with one factual seismic trace.
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class 2
class 3
class 4

UVQ segmentation of the Wustrow seismic response into
4 classes. The time-gate is -10 to 50 ms with respect to the
Top Wustrow reference horizon
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Fig. 6.6 Network errors when predicting the weighted average
impedance of the Wustrow on factual wells using the
factual seismic response at the well location. Note, that
these seismic traces have also been used to train the
network and, therefore, this is not an independent test of
the network prediction performance.

6.2.6 Segmentation

In this section the segmentation approach is described. First a subset of the
seismic horizon slice was created by selecting 25 (5x5) traces around the
factual and dummy well locations (Fig. 6.1). Seismic data was selected in a
gate of -100 to +100 ms around the reference horizon. The seismic traces
were balanced using a 200 ms RMS equalisation. A gate of -10 to 50 ms
around the reference horizon (15 samples) was used to train 5 separate UVQ
networks with 2, 3, 4, 5 and 6 classes, respectively. Output of the UVQ's is
the index of the winning network node (the class) plus a degree of match
between input vector and centroid of the class (Equation 3.10). Trained
networks were then applied to the seismic horizon slice yielding seismic
class distribution maps and grids showing the degree of match. The seismic
class distribution map of the UVQ network with four output classes is
shown in Fig. 6.5 and the corresponding degree of match map in Fig. 6.10.
Note, that, apparently, the area around wells C and D could not be
clustered. Interpretation of the top Wustrow is difficult in this area because
of halokinesis in the overburden. The top Wustrow amplitude map is shown
in Fig. 6.12. A comparison with the segmentation map reveals that the
classes are not merely a function of seismic amplitudes.
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Fig. 6.7 Neural network lateral prediction grid for the weighted
average impedance of the Wustrow formation.
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Average distribution of sedimentary facies and palaeo-
geography over the Wustrow formation interval based on
well data only.
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Fig. 6.10 UVQ degree of match corresponding to seismic response
segmentation of the Wustrow into 4 classes. The degree of match
indicates the Euclidean distance to the class centroid. It can vary

from O (minimum match) to 1 (perfect match).
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Fig. 6.11 Trained UVQ with 4 classes applied to synthetic
seismograms. The top of the Wustrow is at 100 ms. The
seismic gate used by UVQ to classify the response is -10
to 50 ms (15 samples) relative to Top Wustrow.
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Fig. 6.12 Top Wustrow amplitude map (Courtesy Autonini, BEB Erdil
und Erdgas GMBH).
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Comparison of the distribution map of seismic classes with the well-based
sedimentary facies & palaeco-geography map of the Wustrow formation
(Fig. 6.5 and 6.8, respectively), shows an excellent correlation. The classes
appear to correspond to the sedimentary facies identified by the client. To
verify this hypothesis the UVQ classifier was also applied to the seismic
signals of a representative dataset.

First 500 wells were simulated. The synthetics from these well were
balanced in the same way as the factual seismic traces with a 200 ms RMS
scaling in a gate of 100 to 100 ms relative to the top Wustrow. Application
of the trained UVQ to the selected time-gate of -10 to 50 ms yielded four
classes that were analysed. The synthetic seismic responses of these classes
are shown in Fig. 6.11. The seismic responses are clearly different. Class 1
is characterised by a low energy response, class 2 has a strong first loop,
class 3 shows a double loop and class 4 has a hybrid response. The classes
can be clearly identified on seismic inline A-A' (Fig. 6.9).

The simulated classified datasets were analysed in terms of relative
abundance of framework entities (Fig. 6.13). These results, in combination
with their shape and aerial distribution led to the following interpretation:

Class 1 (Red on Fig. 6.5) corresponds to the (poor reservoir) wet dune
distribution of the sedimentary facies map of the Wustrow interval. The
simulation specification indicated a thick Lower Wustrow with wet dunes
predominating.

Class 2 (Yellow on Fig. 6.5) corresponds to the (good reservoir) shoreline
sands of the sedimentary facies distributions. The simulation specifications
emphasised a thicker Upper Wustrow with a predominantly shoreline
composition. Class 2 occurs to the north of the area and adjacent to the
western margin of the graben.

Class 3 (Green on Fig. 6.5) follows the trend of sabkha and southern fan
deposits. The simulation specification detailed a thick Lower Wustrow with
a large percentage of wet dunes with a relatively large silty/shale content.
The UVQ class may be picking up the effect of interbedded shale in both the
sabkha and distal alluvial fans. Alternations between class 2 and 3 may
indicate belts of shoreline deposits separated by interdune sabkhas.

Class 4 (Cyan on Fig. 6.5) corresponds strongly to the position of marginal
fanglomerates on the sedimentary facies map. While the simulation
specification is similar to that of Class 1, the seismic signature is a hybrid of
the Class 1 and 3. This could represent the interbedded and more random
nature of acoustic impedance distributions within interfingering fan units.
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Relative thickness of Wustrow framework entities per
class. Classes were generated by applying the trained UVQ
to a dataset comprising 500 simulated wells. The total
Wustrow thickness per class sums t0100%.

This concludes the discussion on the Rotliegend example. In the following
section the Middle Eastern case study will be described.
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6.3 Middle Eastern case study

6.3.1 Available data

The Middle Eastern study area is covered by a 1992 vintage 3D-seismic
dataset. The data have been acquired using vibroseis sources generating 10-
80 Hz frequencies with a 10 s sweep length. The field layout consisted of 4
parallel receiver lines, each with 96 geophone groups. Source and receiver
group intervals were 50 m, yielding a 25 by 25 bin size with a nominal fold
of 24. Acquisition sampling rate of 2 ms was resampled to 4 ms in
processing. A post-stack zero-phasing filter was applied at the end of the
processing sequence which included linear noise removal using a Radon
transform, 2 passes of residual statics and velocity analyses and post-stack
D2D finite difference migration.
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Fig. 6.14 Well locations

Several seismic horizons were mapped by the client. The top reservoir
horizon has been used in this study as the reference horizon (Fig. 6.17).
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Horizon maps in time and depth at top carbonate, top reservoir and top
source unit were available on paper copies.

The well database consisted of 88 wells. Not all wells had a complete set of
information, however. Eventually, 61 wells were loaded into GeoProbe, 49
of which fell inside the 3D-seismic data area (Fig. 6.14). For these wells,
the following information was available on paper:

* Full suite of logs; most wells had FDC/CNL, BHC-Sonic, Gamma-ray,
Resistivity and Calliper, some wells also had Dipmeter, Induction,
Formation micro-scanner and ELAN-litho logs

e Correlation panels

e Core descriptions

* Well log and sample description

*  Well testing reports

¢ Cluster formation analyses reports

» Composite logs

» Formation tops; print out from the corporate database

¢ Sedimentology reports

» Various other reports on casing, perforations, formation analyses etc.

6.3.2 Geology

6.3.2.1 Tectonic Overview

The area is located onshore in the Middle East. Early Palacozoic epicratonic
sagging of the crust led to the deposition of marine sediments on a
Precambrian basement complex (Beydoun, 1991). Deposition took place
from the Early Cambrian till the Devonian. Orogenic rejuvenation towards
the end of the Palaeozoic (al Laboun, 1986) led to uplift which resulted in a
Late Devonian unconformity and erosion of the Early Palacozoic sediments
to the level of the Silurian shales. Late Carboniferous to Early-Middle
Permian terrigineous clastics were then deposited. Continued margin
subsidence resulted in a marine transgression and the development of
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extensive carbonate shelves. Deformation took place during the Cretaceous
which resulted in gentle folding and the development of the trap structures in
the field. Additional deformation took place during the Early Tertiary as a
result of the collision of the Arabian plate with Asia. The field architecture is
a gentle structural dome with a parasitic fold on the limb of a regional
monocline.

6.3.2.2 Stratigraphy

The zone of interest can be divided stratigraphically into three components.
The lowermost formation is the 'source' unit comprising shales which are
unconformably overlain by the 'reservoir' formation which in turn is
conformably overlain by the 'carbonate’ formation comprising carbonates
and anhydrites.

Source Unit _

Within the study area the source unit comprises marine shales with a
moderately high clay content and correspondingly high gamma ray
signature. The shales are massive in nature where encountered.

Reservoir Formation

The reservoir formation is of Late Carboniferous to Early Permian in age.
Its base is an unconformity which in the study area is eroded into the top of
the source unit shales (Fig. 6.15). The reservoir comprises terriginous
clastic material in an alluvial plane setting. To the south of the study area the
lowermost beds of the formation are comprised of massive silty-shales
which appear to infill the erosion topography at the basal unconformity. In
the east of the area there is a trough like structure which is infilled with
massive sands. It is impossible to correlate major events from well to well
over any great distance. No laterally extensive vertical layering in the
reservoir unit is discernible. The final few beds in the reservoir unit
comprise restricted marine sandstones with caliche and root horizons
towards the top. There is occasionally evidence for a thin limestone horizon
below the carbonate unit. The upper surface of the reservoir unit can be
considered to be a peniplain. The upper beds mark the development of a
marine transgression and development of a carbonate shelf.

Carbonate Formation

Conformably overlying the reservoir formation are the capping carbonates
and anhydrites of the carbonate unit. This formation is of Middle Permian to
Late Permian in age. The carbonate unit represents the formation of an
extensive evoporitic carbonate platform shelf (Murris, 1980) and is divided
into four members A, B, C and D. The lowermost carbonate is the D
member which was included in our study. The member comprises well
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bedded limestone-shale alternations at its base. These alternations become
progressively more massive towards the top of the D unit where the
limestones become more dolomitic. The succession contains more bedded
anhydrite towards the upper D member which is capped by a massive
anhydrite layer. All well logs were blocked to the top of the massive D unit
anhydrite. The D unit is constant and unvarying throughout the study area
and was in turn overlain by a thick succession of C member carbonates.

6.3.2.3 Depositional facies and reservoir geology

Oil is trapped in the sands and silts of the reservoir formation. The reservoir
unit is capped by the D unit carbonate-shales in a gentle dome structure. The
oil column is limited to the upper beds of the reservoir, which has a
maximum thickness of app. 200 m in the study area. The source unit shales
are considered regional source rocks by Beydoun (1991) and are possibly
the source for the oil in the field.

Reservoir sedimentology

Both wireline logs and cores show discrete lithological divisions with very
few fining or coarsening upward trends. The blocky nature of the beds and
the lack of distinct fining upwards trends is indicative of bedload channels
on a riverine or montaine alluvial plain (Galloway and Hobday, 1983). The
terrestrial alluvial-plane deposits, typical of the reservoir unit, give way to
marine dominated sandstones with rootlet beds and caliche horizons in the
top few metres prior to the onset of evaporitic shelf conditions.

The silty sands are indicative of suspended load or lower energy deposits.
On the flood plain, this may take the form of sheet-like crevasse splays. The
flood plain sands are well bedded and interspersed with distributary
channels and braided river deposits. There is little clay present throughout
the reservoir unit. What little there is, appears to be confined to clay plugs of
abandoned channels. The shales, silts and very fine grained non-porous
sandstones were considered to be one lithotype for the purposes of this
study, namely low-energy, suspended load units.

The channels and associated sands may be clustered into trends that were
initially controlled by the erosional relief of the basal unconformity. The
laterally non-correlatable lower reservoir unit has a tendency to be massive
(either silty shale or sandstone) in the south of the study area and in the zone
of the trough. These trends may have become less important as the palaeo-
relief was filled up and the peniplain developed.
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Reservoir geology

The reservoir formation shows all the features of a classic labyrinth type
reservoir (Weber & van Geuns, 1990). The reservoir formation deposits are
predominantly alluvial plain deposits with reduced sand:shale ratios. From
well-to-well, there are no laterally correlatable horizons within the reservoir
formation, even though the top reservoir can be mapped on seismic data.
Earlier interpretations by the client had divided the reservoir unit into an A
and B member with a 'silt plug' in the middle of the A member. There
seems to be no evidence for this division, however. Within the area of the
field, there are no lacustrine or laterally extensive clay horizons throughout
the formation that would act as field wide permeability barriers or seals.

High production rates occur in all sandstone types, including the thinner
laminated sands. The production rate depends on the presence of sandbodies
within the oil column and is seemingly independent of structural setting and
stratigraphic position within the formation. Considerable volumes of oil can
be produced from relatively thin (3-8 m) sandstone intervals.

Laminated sands of the alluvial plain, while thinner and less likely to
interconnect, may be more laterally extensive. Channel sands, however,
may be locally thicker and laterally less extensive but more likely to
interconnect with other bodies at different levels. More massive flow units
may trend parallel to larger channel cluster trends. It is impossible to predict
distribution and connectivity of the various sand bodies from the well data.
Understanding the distribution of these sandstone flowunits within the
structural closure is crucial in understanding the reservoir response. The
objective of the study was to extract geological information from the 3D-
seismic data that would help in delineating and describing the complex
reservoir architecture of this field.

6.3.3 Integration framework

The framework for the Middle Eastern case study is shown in Table 6.6.
Special attention was given to the reservoir formation, as it was the target
interval. Using a combination of the gamma-ray and formation analysis
logs, four genetic sub-units were recognised within the reservoir unit. These
units were averaged over 50 foot intervals and plotted on scaled depth
sections at each well location. The genetic units served as an indicator for
the average depositional energy (grainsize/porosity). Also plotted were
production rates for each unit for each well. No spatial relationships or
correlations were observed, underlining the high degree of stochastic
behaviour in this labyrinth type reservoir.
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The framework for this study is as follows:

e The framework consists of 4 main units. Each unit has one or several
sub-units (geological or seismic). The third column shows the
lithologies used, and the fourth column shows the GeoProbe codes
given. ’

e The four main units occur sequentially as shown in the framework. Sub-
units within the carbonate units occur sequentially while sub-units
within the reservoir can vary. The reservoir unit has been divided into
four sub-units: Massive Type 3, Massive Type 2, Massive Silt-Shale,
and Laminated. This subdivision is based on common grouping of
certain lithologies observed in the Formation Analysis logs and
corresponds to the genetic units of the formation. In individual wells,
the sub-units order may vary. Sub-unit could be completely absent or
present multiple times.

Unit Sub-unit Lithology Code
Carbonate C Carbonate Carbonate crbe.crb.crb
Shale crbe.crb.shl
Carbonate D Massive Anhydrite crbd.msv.anh
Carbonate crbd.msv.crb
Anhydrite Anhydrite crbd.anh.anh
Carbonate crbd.anh.crb
Shale crbd.anh.shl
Alternating Carbonate crbd.alt.crb
Shale crbd.alt.shl
Seal Seal Seal seal.seal.seal
Reservoir Massive Type 3 Type 3 Sand res.mt3.t3s
Silt/Shale res.mt3.slt
Massive Type 2 Type 2 Sand res.mt2.t2s
Silt/Shale res.mt2.slt
Massive SiltShale | Silt/Shale res.msl.slt
Type 2 or 3 Sand | res.msl.snd
Laminated Type 2 or 3 Sand res.]am.snd
Silt/Shale res.lam.slt
Source Marine Shale sou.mar.shl
Table 6.6 Middle Eastern case study integration framework
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e FEach sub-unit is assigned several lithologies. The lithological
composition of an interval determines a particular sub-unit type. Type 3
sandstones, for example, can only occur in Massive Type3 sub-unit or
Laminated sub-unit while Type 2 sandstones will only be found in
Laminated or massive Type 2. Lithologies could occur in any order,
repeat themselves, or be completely absent.

 Oil-bearing sands occur only in the reservoir unit. Essentially, all sand
lithologies, regardless of which sub-unit they belong to, are considered
to be producing if they occur within the oil column. The fine grained
non-producing sandstones, silts and shales were grouped into one
lithotype (Silt/Shale) for the purposes of this study and are considered
waste zones.

e There is only one hydrocarbon column, which is attached to the
overlying seal at the base of the carbonate unit.

GeoProbe recognises hydrocarbon columns by the seal to which the column
has been attached. If the lithology of the layer directly overlying the
reservoir can vary, as in this case, GeoProbe has a problem. For this
reason a virtual seal has been introduced immediately above the reservoir
unit. In the factual wells and the simulations this seal is given a constant
thickness of 0.1 foot. :

6.3.4 Segmentation

In this case study it has been attempted, without success, to train Multi-
Layer-Perceptrons to recognise the weighted average impedance and the
overall thickness of the reservoir unit from its seismic response. In separate
runs, training and test datasets were constructed from simulated data and
from factual data respectively. It was concluded that direct inversion could
not be used to quantify properties of the reservoir unit. It was decided to
apply the segmentation approach in order to visualise and interpret the
resuiting seismic patterns. Segmentation requires the UVQ network to be
trained on a representative seismic dataset. In the examples described in this
thesis, the representative seismic dataset was created by selecting 25 (5x5)
traces around the factual well locations (Fig. 6.14). Seismic data was
selected in a gate of -50 to +50 ms around the top reservoir reference
horizon. This seismic response was balanced using a 100 ms RMS
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equalisation!. A gate of -8 to 32 ms around the reference horizon (10
samples) was used to train the UVQ's. The seismic response of the
reservoir unit has, in this way, been segmented into 2, 3 and 4 classes,
(Fig. 6.21, 6.24 and 6.25, respectively). Given the remarkably constant
acoustic impedance profile of the overlying carbonate unit and the unvarying
nature of the source unit, any variation in the seismic must be due to lateral
variations within the reservoir formation.

Comparison of the UVQ segmentation maps reveals general trends that are
present on all maps. The dominant channel-like trends in the data are
apparent, even on the 2 class segmentation map. Comparison with the basal
unconformity depth map (Fig. 6.15) shows that the basic trends are related
to the palaeo-topography.

Channel distribution may have become more random as the alluvial plain
matured and relief diminished. The channel-like features are major
sedimentary distribution trends. They consist of stacked deposits of massive
sands and silts. The areas outside the channel-like trends have higher
compositions of laminated, well-bedded, alluvial-plain sub-unit. The layered
and more heterogeneous impedance distribution is reflected in the higher
frequency content of the seismic response.

Comparison of the 2 and 3 class segmentation maps reveal that the channel-
like features have been sub-divided into two classes. An interesting seismic
pattern is mapped in the centre of the field (Fig. 6.24). The shape, location
and aerial distribution indicated the tool was indeed picking up the
depositional architecture. The three seismic classes were analysed using the
factual well information in order to attach a geological significance to these
patterns.

The 49 factual wells were combined with the factual seismic traces at the
corresponding well locations in a -50 to 50 ms window either side of the
reference horizon. These traces were offered to the UVQ classifier with 3
classes after trace balancing over the 100 ms window. The impedance logs
and seismic responses of the resulting classes are shown in Fig. 6.16 and
6.17, respectively. The classification results are indicated on seismic inline
A-A' (Fig. 6.26).

1 Trace balancing was applied because it was anticipated that simulated wells with
corresponding synthetic seismic traces would be used in the analysis. It was later
decided to analyse factual wells only, making the trace balancing step unnecessary.
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Fig. 6.15 Basal reservoir unconformity.
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Fig. 6.16 Impedance logs of factual wells classified by the trained
UVQ network into 3 classes. Classification is based on
the seismic response within a time-gate of -8 to 32 ms
relative to the top reservoir horizon. The top reservoir
reference marker is floating at app. 150 ms at the base of
the alternating high impedance layers.
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Fig. 6.17 Factual seismic traces at factual well locations, classified

by the trained UVQ network into 3 classes. Classification
is based on the seismic response in a gate of -8 to 32 ms
relative to the top reservoir horizon.
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Fig. 6.18 Relative proportion of framework sub-units per class (top)
and relative proportion sands and silts (bottom). Total
thickness of the reservoir unit per class equals 100%.

The seismic classes are characterised by:

. a small positive kick in the middle of the broad white loop for class 1

. a slope in the lower part of the broad white loop for class 2

. a higher frequency content for class 3

The stratigraphic and lithologic differences have been analysed per class

(Fig. 6.18 and 6.19). These analysis in combination with the shape and

aerial distribution of the seismic patterns have led to the following geological
interpretation:
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Fig. 6.20 Factual seismic traces at real well locations, classified by

the trained UVQ network into 4 classes. Classification is
based on the seismic response in a gate of -8 to 32 ms
relative to the top reservoir horizon.
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Fig. 6.21 Segmentation result for 2 classes.
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Fig. 6.23 Relative proportion of framework sub-units and relative

proportion sand and silt per class. Total thickness of the
reservoir unit per class equals 100%.

 Class 1 maps inside a channel-like trend. The sediment composition of
the reservoir shows a relative abundance of the massive sub-unit types
(either sand or silt). The overall sand percentage for this class is 53%.
The massive sands and silts in this class are most likely to be
distributary channel and braided river deposits while occasionaly point
bars may be also present within the braided trend. Lateral continuity of
individual sandbodies is limited, but sandbodies are likely to erosionally
interconnect in such environments. Examination of the wells showed the
positive peak between the double trough to be associated with a possible
lacustrine level in the middle of the succession. This interval was
characterised by thick clays or large washouts on the log data. The wells
in this class do not support the theory that this pattern is associated with
a "silt-plug" but there is a tendency towards non-bedload sedimentation
over intervals in the log.
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Fig. 6.24 Segmentation result for 3 classes.
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Fig. 6.25 Segmentation result for 4 classes.
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* Class 2 also maps inside the channel-like trend. The sediment
composition is very comparable with that of class 1, with a relative
abundance of the more massive sub-unit types. Massive sands and silts
are predominantly distributary channel and braided river deposits.
Overall sand percentage is 54%. The positive peak between the double
trough might be associated with a possible lacustrine level. However, in
this class, the level is multiple and generally occurs higher-up in the
succession. The main difference between class 1 and class 2, is a gentle
stepwise trend for acoustic impedance towards the base of the
succession in class 2. This trend might be geologically explained by
differences in diagenesis and early compaction of the topographic fill.

« Class 3 maps outside the channel-like trend. The sediment composition
shows a high abundance of the laminated, well-bedded sub-unit. The
overall sand percentage is 50%. The laminated sands appear as sheet-
like crevasse splays, interspersed with flood-plain silts. Lateral
continuity of the sheet-like sands is probably greater than the continuity
of the sands in classes 1 and 2.

It can be concluded that interpretation of general trends in the seismic
patterns can be confidently made for the segmentation result with two
seismic classes. Interpretation of the segmentation run with three classes, is
more complicated. The difference between massive trends and floodplain are
also clearly revealed on the three class segmentation result. However, the
seismic classes 1 and 2 are too similar for the analysis to reveal any
differences. Given the remarkably constant impedance of the overburden,
there seems to be no doubt, however, that the seismic patterns are related to
geological variations within the reservoir unit. The analysis results indicate
that the geology within the seismic classes is overlapping. Consequently, it
seems logical to also analyse the 4 class segmentation result.

Comparison of the segmentation maps with 3 and 4 classes (Fig. 6.24 and
6.25, respectively) reveals that the basic difference is a further sub-division
of what has been mapped as class 2 in the 3 class segmentation run.

The 4 class UVQ classifier was applied to the 49 balanced factual seismic
traces. The classified seismic responses are shown in Fig. 6.20.
Comparison with Fig. 6.17 reveals that:

» Class 1 is characterised by the slope in the lower part of the broad white
loop in combination with the small positive kick in the middle of the
broad white loop.
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Class 2 is characterised by the small positive kick in the middle of the
broad white loop (class 1 in the 3 class UVQ, only one well has not
been classified in this class by the 4 class UVQ)

Class 3 is characterised by the higher frequency content (also class 3 in
the 3 class UVQ, only one well has not been classified in this class by
the 4 class UVQ).

Class 4 is characterised by the slope in the lower part of the broad white
loop and the absence of the small positive kick in the middle of the broad
white loop.

The analysis results are shown in Figs. 6.22 and 6.23. The separation of the
classes in terms of the sedimentological composition has improved with
respect to the 3 class result (Figs. 6.18 and 6.19). The interpretation for
these 4 classes is as follows:

Class 1 (red in Fig. 6.25) has the largest amount of the massive
Silt/Shale sub-unit (43%) and the largest amount of the silt/shale
lithology (38%). The overall sand content is 46% (Fig 6.23) which is
the lowest for any class. The predominance of silty shale in the massive
trend indicated by the analyses points to this class being the trend of
abandoned channels that filled with ponded and suspended-load
sediments. Porous, high producing, sands do occur but are less likely
than in the other classes.

Class 2 (yellow in Fig. 6.25) while containing relatively high
percentages of Massive Type 2 and Laminated sub-units (29 and 36%,
respectively, Fig. 6.23) also contains the highest percentage Type 3
sand lithology producing oil (Fig. 6.22). This lithology is the most
productive of all the sand lithologies due to its coarseness and high
porosity and permeability. Class 2 is the most silt/shale poor and
represents a sand rich channel trend whose distribution (NE-SW, Fig.
6.25) may have been controlled by the palaco-relief shown in Fig 6.15.
This class statistically contains the most oil saturated Type 3 sands.
These sands are the most productive if located within the oil column
and, hence, class 2 should be considered a major target if located within
the area of structural closure of the field.
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* Class 3 (green in Fig. 6.25) has the highest percentage of the Laminated
sub-unit (53%). While the overall sand percentage is only 49% and the
class is high in silt, high production rates can be achieved from the
coarser, of what are thin and probably laterally more extensive, sheet
sands. The Laminated sub-unit of Class 3 represents the well-bedded
flood plain deposits where sheet sand and suspended load deposits
alternated away from the massive channel trends. Class 3 corresponds to
the locations of the highs in the palaeo-topography (Fig. 6.15).

» Class 4 (blue in Fig. 6.25) has the highest percentage of the Massive
Type 2 sub-unit (33%) in addition to the laminated sub-unit (32%). The
overall sand content is high (54%). Examinations of the wells associated
with Class 4 show the Massive Type 2 sub-unit to be predominantly
associated with very massive Type 2 sand beds that appear to fill in the
palaco-relief of the base reservoir unit. The aerial distribution of this
class corresponds to this hypothesis while the relatively high percentage
of Laminated sub-unit would indicate that the relief had been filled and a
'normal' alluvial distributory architecture had been established halfway
during the deposition of the reservoir formation.

6.4 Conclusions

In this chapter the total space inversion method has been applied to two case
studies. It has been shown that in both studies useful geological information
could be extracted from the seismic signals. Especially the horizon slice
segmentation approach yielded exciting results. In the Rotliegend study, it
has been possible to map the extent of the good reservoir shoreline sands by
segmentation. In the Middle Eastern study, the segmentation results revealed
seismic patterns that could be related to sediment architecture and deposition
of genetic units.






PRACTICAL ASPECTS

7.1 Introduction

In the previous chapter two case studies have been presented. It has been
shown that, in both cases, interesting results were obtained with the total
space inversion method. The segmentation approach, especially, yielded
exciting results. As with other seismic reservoir characterisation techniques,
total space inversion is not a trivial process. The reason being that data types
and knowledge from different sources and disciplines need to be combined
for an optimal result (Chapter 2).

In this chapter, practical aspects related to the total space inversion method
will be discussed. First, seismic processing and the importance of
preserving amplitudes in the seismic processing sequence is reviewed. This
is followed by a discussion on trace balancing. This is a necessary, but
unwanted, process in the inversion scheme. Trace balancing is required
when simulated data and factual data are both taken into account. Then the
importance of the reference horizon is highlighted. Finally the applicability
of total space inversion and other post-stack seismic reservoir
characterisation techniques are discussed.

7.2 True amplitude seismic processing

The aim of seismic inversion methods is to relate variations in seismic
response to variations in geology, especially those associated with lithology,
porosity and fluid content. It is, therefore, of great importance that no
artificial variation is introduced during acquisition and processing of the
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seismic data. This implies that the total seismic wavefield, both signal and
noise events, must be sampled correctly during the acquisition phase. The
noise can then be removed in the subsequent processing phase. The
processing sequence should be aimed at preserving the amplitude
information of the seismic refection events. This is called true amplitude
processing.

In any processing sequence the recorded amplitudes must be corrected for
attenuation, caused by spherical spreading, reflection and transmission
losses and absorption. Spherical spreading refers to the decay in amplitude
caused by the fact that the seismic energy is spread over an increasing area
as the wavefront spreads out. Transmission and reflection losses occur at
each interface and inhomogeneity in the earth. Amplitude attenuation has a
frequency dependent and a frequency independent component. The
frequency independent component is often compensated for with a
deterministic scaling function. The frequency dependent component is often
difficult to estimate. To some extent it can be compensated for by time
dependent deconvolutions. Sometimes Automatic Gain Control (AGC),
also called Automatic Volume Control (AVC) is applied to correct the effects
of amplitude attenuation. With AGC, the energy within a sliding time
window is equalised. If the window is larger than, say 1000 ms, the relative
amplitude strengths are still maintained. With smaller time windows the
relative amplitudes are distorted. The resulting seismic data should, hence,
not be used in a seismic inversion exercise.

Another important step in the seismic processing sequence with respect to
amplitude information is deconvolution. Many different types of
deconvolution can be applied during a seismic processing sequence. If
predictive deconvolution is applied to sharpen the wavelet, or, to remove
multiples, the prediction gap needs to be chosen such that the seismic
wavelet is not altered. In practice, this means that prediction gaps should not
be smaller than the dominant wavelength of the seismic wavelet. When
predictive deconvolution is applied, it must be realised that the seismic data
is assumed to be minimum phase. If this assumption is not valid, the
deconvolution process will affect the seismic wavelet and, hence, the
amplitude/phase characteristics of the seismic data. Another type of
deconvolution that is nowadays routinely applied, is wavelet deconvolution.
This process removes the effect of the seismic wavelet on the seismic record
yielding zero phase data. Wavelet deconvolution improves the vertical
resolution and interpretability of the data. To apply wavelet deconvolution,
the seismic wavelet needs to be estimated. The assumption made in most
wavelet deconvolution processes, is that the wavelet is spatially invariant. If
the seismic wavelet does change, the resulting seismic data set will have
laterally varying amplitude/phase characteristics.
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7.3 Seismic trace balancing

In this thesis two types of seismic wavelets have been used:
» Synthetic wavelets, such as the 30 Hz Ricker wavelet (Fig. 4.2), and
» Wavelets derived statistically (Fig. 6.2).

The latter type of wavelet has been calculated as the transfer filter between
reflectivity well log and seismic trace. The seismic trace may have been
averaged over a number of traces near the well location. Both types of
wavelets have been used to generate synthetic seismograms for simulated
wells. Generated synthetic seismograms are scaled to the level of the factual
seismic traces around the well bore, in case the wavelet has been calculated
as a transfer filter. If, on the other hand, a synthetic wavelet has been used
in the seismic synthesis process, factual and synthetic seismic amplitudes
are not comparable. In this case, a trace balancing step is required to
equalise both datasets.

In practice it seems unavoidable to balance synthetic and factual seismic
traces. Even in the case of transfer filters, trace balancing will be carried out
to eliminate the effect of laterally varying wavelets. Trace balancing can be
carried out in various ways. For example, if a large impedance break occurs
within the simulated stratigraphic sequence, the corresponding seismic event
can be used to equalise the factual and synthetic seismic traces. This
approach assumes the acoustic impedance break to be constant within the
survey area. Although this condition will never be met completely in many
geological settings, it can be applied with success. For example, in the
Rotliegend case study, the acoustic impedance break occurring at the top of
the Z2 Anhydrite could have been used. In this thesis, however, a RMS
equalisation has been used in both case studies. In the Middle Eastern case
study trace balancing was not a pre-requisite, since only factual data was
ultimately used. The trace balancing was included because, at the start of the
Middle Eastern study, it was anticipated that synthetic seismic data would
also be required. It is important to use a large equalisation gate, in case
RMS trace equalisation is applied. This implies that the simulated
stratigraphic interval must be as large as possible. In practice this means that
part of the overburden and underlying sediments must be included in the
simulation.
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If seismic amplitudes change laterally, not because of geological variations,
but due to processing artefacts or laterally changing wavelets, the lateral
prediction results will deteriorate. For this reason, it is important to estimate
wavelets at different spatial positions, e.g. using the statistical approach at
the well locations. Well-to-seismic matches must also be investigated at all
well locations (Fig. 2.1). If the match is poor, additional well log editing
might be required. In practice, sonic logs often require squeezing, or
stretching, to match the seismic response. In addition fluid-replacement
editing must be considered to eliminate acoustic hydrocarbon effects. It is
also possible that a poor match is caused by a disturbance of the seismic
response, e.g. as a result of multiple interference, migration noise etc. Even
the location of the seismic-to-well match must be examined carefully. When
laterally varying overburden velocities exist, points in the sub-surface are
migrated to the wrong spatial position, in the time-migration process. This
phenomenon is known as the 'Hubral' effect. The proper location is found
by shifting the synthetic seismogram to the seismic position where the best
match is observed.

Different wavelets might well be used when synthesising seismic traces, if
the wavelet changes laterally. Separate data sets could then be compiled for
neural network training and testing. Trained networks are subsequently
applied to separate parts of the factual seismic dataset. This approach might
be considered for datasets comprising more than one vintage.

7.3 Reference horizon

The seismic time-gate to be analysed is selected relative to a reference
horizon, during the inversion process. This means that the reference horizon
determines which seismic samples are offered to a particular network node.
The reference time, as interpreted on a 3D-seismic workstation, will
generally not coincide with a seismic sample. Certainly not, when an
autotracker has been used, or when the interpreted horizon has been
'snapped’ to the nearest event. Therefore, a maximum error of one sample
position can occur. This error is eliminated here by resampling the selected
samples relative to the reference horizon.

The reference horizon should be as close as possible to the geological target.
There are in principle two types of reference horizons (Fig. 7.1):
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seismic marker

| geological marker

Fig. 7.1 Two types of reference horizons; geological markers and
seismic markers. The position of the seismic marker can
change laterally relative to the position of the geological
marker.

» geological markers
* seismic markers

In general the seismic markers are mapped. In a seismic interpretation a
good seismic reflector, closest to the target event is followed. Let us
assume, the top of a reservoir has been mapped on seismic data. When the
geology of the reservoir changes laterally, the seismic event will change as
well, which is exactly what we need for the reservoir characterisation
process. If, on the other hand, the overburden geology changes, the seismic
event will change as well, irrespective of changes in the reservoir (see
Experiment 6, Section 5.3.2). As a consequence, prediction performance of
a reservoir property from the corresponding seismic response will
deteriorate. Overburden effects may also cause the position of the seismic
event to change relative to the top reservoir. The implication of this is that a
different seismic response is selected for the inversion process, resulting
also in a deterioration of the prediction performance.

It can, therefore, be argued, that the geological marker is the preferred
reference horizon. Within the GeoProbe system, it is possible to investigate
the difference in prediction performance between geological and seismic
markers. As stated above, the majority of seismic interpretations seismic
markers are mapped. Let us, therefore, assume that a seismic event, say a
maximum amplitude, has been mapped close to the top of a reservoir. Wells
can be simulated that describe the variations in the target zone using the
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simulation algorithm in GeoProbe. When synthetic seismograms are
generated for these wells, the reference time is also determined. Two sets of
synthetic seismograms are generated in this way:

» one set with the reference time picked at the maximum amplitude near
the top reservoir (seismic marker) and

» one set with the reference time picked exactly at the top reservoir
(geological marker).

It can now be established for both datasets, whether, or not, well properties
can be predicted from the synthetic seismic response. If good results are
obtained for the seismic marker experiment for training and test datasets, the
trained network can be applied to the entire 3D-seismic dataset. If, on the
other hand, the seismic marker experiment does not give acceptable results,
whilst the geological marker experiment does, the interpreted seismic
horizon can be converted to a geological marker horizon.

The following procedure is proposed for converting seismic markers into
geological markers:

» Generate synthetic seismograms for all wells in the survey.

o Measure the two-way time difference between the geological marker and
the seismic marker.

» Map the time differences, e.g. using a Kriging algorithm.

e Add the time difference map to the seismic marker horizon map.

7.4 Applicability

In this section the seismic reservoir characterisation techniques mentioned in
Chapter 2 are compared with the total space inversion method. Total space
inversion offers two options for seismic reservoir characterisation; direct
inversion and segmentation. Direct inversion aims at establishing a
relationship between seismic response and the relevant well property. The
established relation is subsequently applied in a lateral prediction exercise
(Fig. 2.5). Segmentation is applied in two steps (Fig. 2.6). In the first step
the seismic response is clustered. This is followed by a step in which a
representative dataset, comprising well data and corresponding seismic
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traces, is compiled and classified by the same classifier. The resulting
classes are then analysed to give a geological description of the clusters.

Most seismic reservoir techniques have been applied to a variety of different
geological settings. For example, successful acoustic impedance inversions
have been reported in fluvio-deltaic environments, carbonates, aeolian
deposits and turbidites. The same is true for attribute analysis. In addition
stochastic modelling successes have been reported for different settings. It is
therefore, argued that the choice of technique is primarily determined by the
objective of the study and the kind of data and knowledge available.

If limited well data is available, acoustic impedance inversion or
segmentation can be applied. The advantage of segmentation is that it is
completely data-driven, whereas most algorithms for acoustic impedance
inversion require considerable user-interaction to obtain a useful result.
Interpretation of the inverted impedances, or the segments, in terms of rock
and fluid properties, however, is not trivial and requires further study and
additional information.

If the area is well known, attribute analysis, the direct inversion approach of
total space inversion and stochastic simulations can be applied. Attribute
analysis and direct inversion have the same objectives, i.e. to relate the
seismic response to salient well properties. The benefit of total space
inversion is that factual wells can be combined with simulated wells to create
a more representative dataset. Moreover, by using artificial neural networks
for the inversion, it is possible to use the complete seismic response, rather
than just a few attributes. The benefit of stochastic modelling is that it can
incorporate the existence of spatial patterns in the variations of the rock
patterns into the model. Spatial relations are ignored in the simulation
algorithm used in this thesis (Chapter 4). The advantage of this particular
simulation algorithm is that geological knowledge and stochastic input can
be combined to yield realistic 1D-stratigraphic profiles with attached
physical properties.






8

SUGGESTIONS FOR FUTURE WORK

8.1 Introduction

In this thesis a method for seismic reservoir characterisation has been
described: the total space inversion method. In this method factual and
simulated data are made commensurable by being described in terms of the
same subsurface model: the integration framework. The application of the
method has been limited to post-stack seismic data and wells (1D-
stratigraphic profiles with attached physical properties) without spatial
information. An algorithm has been used for the simulation of wells, in
which geological knowledge and stochastic input can be combined to yield
realistic wells. Seismic traces are synthesised for the simulated wells using
the convolutional forward model. Artificial neural networks are then used to
segment seismic responses and to establish relationships between seismic
response and salient reservoir properties.

In this chapter suggestions are made about how the work presented in this
thesis may be continued and improved. This work has been closely related
to the Probe project in which the GeoProbe software was developed.
Suggestions are made in this section about a number of ways in which
GeoProbe may be improved. One suggestion is to extend the well
simulation algorithm with a geostatistical option. in this way spatial
information is taken into account by use of simulated wells. A suggestion is
then made to implement a pre-stack option, in order to extract additional
information from Amplitude Versus Offset data. Also improvements in the
modelling of acoustic hydrocarbon effects can be made by using the Biot-
Gassmann equation. It is further suggested to implement a pre-processor for
well logs data. The preprocessor clusters well log responses in framework
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entities and blocks sonic and density logs according to the required format.
Improvements in the quantification of properties, may be possible by
applying the total inversion in two steps; segmentation followed by direct
inversion of the segments. Finally it is suggested that the integration
framework concept is a powerful new technique with relevance for other

geoscientific applications.

8.2 Geostatistical implementation

The simulation algorithm in this thesis simulates 1D-stratigraphic profiles
with attached physical properties. No spatial locations are attached to the
simulated wells. Therefore, an important information source is not utilised;
the spatial relation to existing wells. It is possible to extend the algorithm to
include this information. The extension involves attaching a variogram to
each of the integration framework entities. The inversion scheme comprises
the following steps:

» Selection by random draw of a location.
« Simulate a well conditionally to existing wells.
« Generate a synthetic seismogram for the simulated well.

« Correlate the synthetic trace with the factual seismic trace, if the
correlation is not considered satisfactory, simulate another well (go back
to step 2).

« A simulated well that is retained is merged with the data. It is now
considered to be an existing well and will be used to condition other
wells.

« Go back to step 1 until all locations have been processed following a
random path.

The algorithm described above has been used by Haas and Dubrule (1994)
to simulate acoustic impedance traces. The difference with the proposed
scheme is that geological profiles with attached physical properties would be
simulated rather than the physical properties alone. There are two
advantages to this approach: first and foremost, the spatial relationships
belong to geological entities and not to physical properties. In the scheme
described by Haas and Dubrule, one variogram is used to describe the
impedance variations in a heterogeneous shaly sandstone reservoir. In an
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environment with sand-shale intercalations, it is expected however, that the
shales are laterally more extensive than the sands. Different variogram could
be attached to these entities in the proposed scheme. The second advantage
is that the final objective of an inversion, i.e. the derivation of petrophysical
variables (porosity, permeability etc.), or lithology, is considerably easier
because it follows automatically from the simulations.

8.3 Pre-stack implementation

Amplitude Variation with Offset (AVO) analysis is a seismic reservoir
characterisation technique in which amplitude variations as a function of
offset are studied on pre-stack seismic data. AVO studies are of particular
interest in the exploration for gas. Several successful AVO case studies,
aimed at predicting gas-fill, have been reported in literature (e.g. Allen et.
al., 1993). The theory behind AVO exploration for gas is based on the
differences in the response of both compressional (P-waves) and shear-
waves (S-waves) of a porous reservoir rock, depending on its gas-
saturations. Even a relatively low gas-saturation will substantially lower the
P-wave velocities, whilst the S-wave velocities will be relatively unaffected.
The ratio of P-wave velocity to S-wave velocity is an important factor in the
partitioning of an incident P-wave when it strikes an interface. Thus, a
change in amplitude can be expected along a reflector (i.e. as a function of
offset) depending on the gas-fill. For some reservoirs the reflections
associated with gas-bearing rock increase in amplitude with offset relative
to other reflections. Such an increase with offset is anomalous; most
reflections decrease in amplitude with offset. Most AVO studies try to detect
such anomalies.

The concept of total space inversion can be applied equally well to pre-stack
data. The additional AVO information can then be utilised to push the
inversion results even further. A considerable effort is, required, however,
for a pre-stack implementation. For the simulation, the module generating
the synthetic seismograms should be modified. The simple convolutional
model must be replaced with a wave-equation based algorithm which
correctly models AVO effects. The input to the inversion software should
also be modified to accept pre-stack data. Finally the pre-stack data must be
made available for each study. This requires a change in conventional
seismic processing practice. Input to the inversion algorithm should ideally
be depth migrated pre-stack data. In this case, the reference horizon must be
interpreted on the same depth migrated data. Both these conditions of depth
migration and corresponding interpretation are, however, never met in
practice. Alternatively, time migrated pre-stack data can also be used. As
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with depth migration, it is not standard practice, however, to apply time
migration pre-stack due to the computational effort required. Moreover,
standard pre-stack migration algorithms will not save pre-stack results. This
implies, that in most cases, a special pre-stack migration must be applied
prior to a pre-stack lateral prediction exercise.

8.4 Fluid replacement simulations

In the current version of the well simulation algorithm, hydrocarbon effects
are simulated by drawing acoustic reservoir properties from different
distributions depending on the layer's fluid-fill. In general hydrocarbon-
filled and brine-filled acoustic properties are correlated in the simulation's
input specifications to reflect that rock matrix properties are independent of
fluid-fill. This implies that acoustic hydrocarbon properties are assumed to
be linearly related to brine-filled acoustic properties. This assumption is an
oversimplification, as will be explained in the following section.

The velocity and density of a porous medium are influenced by the fluids
that are present in the pore space. The bulk density p as a function of

porosity ¢ is formulated in the following equation:

p=0-0)ps+0py, (8.1)

where:
ps denotes the density of the solid fraction and p ¢ the density of the pore
fluid.

The relationship between velocity, porosity and fluid content is more
complicated. Willie's time average equation, or (empirical) extensions to this
formula have been used by many workers (e.g. de Haas, 1992). Willie's
equation (Wyllie et.al., 1958) is formulated as:

t=(1— @)ty + ¢ty . (8.2)

where ¢ denotes sonic travel time of the rock, g the travel time in the solid
matrix (i.e. empty porous rock), 7 ¢ travel time for the pore fluid and @ is
the porosity.
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This equation and the empirical extensions thereof, are not very reliable
when used as fluid replacement algorithms, especially not for the gas-fill
replacements.

The most widely used fluid-replacement algorithms, is the so-called Biot-
Gassmann equation (see, e.g. Crans and Berkhout):

L (I—ij N (1-B)>
P e\t ) 1= g(/xp-1) )

where:
Cp denotes the seismic velocity for compressional waves. For an

explanation of the other symbols see Table 8.1.

(8.3)

Parameter | Description Unit
K compressibility modulus solid N/m2
Ky compressibility modulus fluid N/m?2
o}, Poisson ratio -

0 Porosity -

P density solid kg/m3
pr density fluid kg/m3
o density bulk kg/m3
¢p P-wave velocity m/s
Table 8.1 Rock and pore parameter definitions.

Direct application of this equation to calculate rock velocities is of limited
use since the Poisson ratio 0, and the compressibility moduli K. , K are,

in general unknown. However, if the velocity of a rock with a given
saturation is known, then the Gassmann equation can be used to calculate
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the velocity of the same rock with a different saturation. The proposed
modification of the current simulation algorithm would be to specify
acoustic reservoir probability density functions for brine-filled rocks only
and calculate the hydrocarbon-filled properties when required. Simulating
wells with hydrocarbon effects in the proposed scheme comprises the
following steps:

Generate a lithology (see chapter 6).

Simulate the acoustic properties. For reservoir rocks, use the brine-filled
acoustic probability density functions. Evaluate whether hydrocarbon
effects are to be simulated. If so continue with the next step, else skip
it.

Comput the hydrocarbon-filled properties from the simulated brine-filled
properties. It is assumed that K;,, Kpc, Sy» Shes Ops Ps» Py and
Py are input parameters specified by the user. For a description see
Table 8.1; the index hc denotes hydrocarbons. First calculate the
porosity ¢ using (8.1) for the brine-filled case. Then calculate O ¢
using Sy,, Spe. Py and Ppe. Now calculate the density of the
hydrocarbon-filled case using (8.1). Use Wood's law for the
compressibility modulus of the fluid mixture K r. Wood's law is
formulated as:

1/Kf ISW/K'W-I'ShC/KhC. (8.4)

Now the Gassmann equation (8.3) can be employed to calculate the
velocity of the hydrocarbon-filled rock. The Gassmann equation, as a
fluid replacement algorithm is applied in two steps. In the first step, the

frame strength 3 defined as K, /Ky Where K, is the compressibility

modulus of the matrix, is derived from the sound velocity of the brine-
filled rock. Defining 7} as:

y=3(1-o0p)/(1+0}p), (8.5)
and B as:

B=¢(K‘S/K‘f—1) , (8.6)
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then 3 can be calculated as:

B=1-A%\(A+B)* -(B2/1-7)), 8.7)
with:
A=((pc; /Ks)+ y(B-1)) /2(1— 7). (8.8)

In the second step of the fluid replacement algorithm the assumption is

made that ¢, B and O}, are independent from the fluid properties.
Substitution of these variables together with the properties of the fluid
mixture in (8.3), yields the velocity of the hydrocarbon filled rock. The
sonic travel time follows as the reciprocal of this velocity.

It is noted, that the Gassmann equation assumes the velocity to be
independent from frequency. Biot (1956b) has proved, however, that
velocity does depend on frequency. At low (seismic) frequencies this effect
can in general be ignored. Anderson (1984) proved that this effect can be
significant in special cases, e.g. low permeability rocks with low saturation
gas in the pores.

8.4 Well log preprocessor

In this thesis, well log data have been entered manually in a spreadsheet.
Sonic and density logs have been parameterised at top and bottom of each
Jayer. Subsequently, framework entities were attached to these layers. This
is a time-consuming effort that can be automated in various ways.

One possibility is to use existing detailed stratigraphic interpretations to
parameterise the data. These interpretations can, either, be downloaded from
a corporate database, or, taken from ELAN-type logs.

Another possibility is to implement an option to make litho-stratigraphic
interpretations based on available well logs. This requires an import facility
for all relevant well logs, such as gamma-ray, SP, FDC/CNL, sonic,
neutron, resistivity etc. In the proposed algorithm the UVQ network is
employed to divide the well log responses into a number of segments. The
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number of segments equals the number of framework lithlogies. The output
of the UVQ is a segment number at each well log sample position. This, is,
obviously, too detailed for well log parameterisation. Therefore, the
segmentation must be followed by an upscaling process, e.g. with a moving
average algorithm, in which the segments are grouped to the blocking scale.
Sonic and density logs are then automatically parameterised at block
boundaries. Next, the framework entities must be attached to the well-log
blocks. As a first approximation the block segment numbers can be
transformed into the framework lithologies. The user can attach the larger
scale entities; units and sub-units to the parameterised logs in following
interactive sessions.

8.5 Supervised segmentation

The segmentation described in this thesis is an unsupervised, or competitive
learning approach. The seismic data itself determines how it can be
classified. The UVQ's input consists of seismic data vectors (time-samples)
selected relative to a reference horizon, and the number of classes into which
the data is to be segmented. No information is required about the classes
themselves. However, if class information is available, it seems logical to
utilise it. In other words, train a network on a representative dataset, to
recognise classes from the corresponding seismic expressions. Application
of the trained network to a 3D-seismic horizon slice then yields the spatial
distribution of these classes. This approach is quite similar to the direct
inversion approach, described in this thesis. With the direct inversion
approach, MLP and RBF networks were trained to obtain a quantitative
measure of a property of interest. With the supervised segmentation
approach a different network is used to obtain a qualitative description of the
data. The obvious network for supervised segmentation is the Learning
Vector Quantiser (LVQ, see Section 3.2.3).

Class information is, off course, available at well locations, but sometimes
class information can also be inferred from spatial positions. For example,
consider a gas discovery in a faulted structure. Based on the well
information and the structural depth-map, the lateral extent of the gas can be
derived within the drilled fault-block. Other undrilted fault-blocks might, or
might not, contain gas. Either possiblility might be supported by the seismic
data if a supervised segmentation is carried out. The representative dataset
for training the LVQ could be compiled as folllows:




8. Suggestions for future work 135

e Seismic traces within the drilled fault block are selected to represent
class 1; the gas-filled reservoir.

« Seismic traces off-structure are selected to represent class 2; the brine-
filled reservoir.

If the LVQ can be trained, i.e. when the network converges, it can be
applied to the entire 3D-horizon slice. In the ideal case, undrilled fault
blocks will be classified, either, entirely as a 2, or, as a 1 above the GWC
and as 2 below it.

8.6 Step-wise inversion

In chapter 5, it has been shown that the direct inversion approach breaks
down as soon as many non-unique solutions exist in the representative data
set. MLP and RBF networks do not converge in these cases, hence no
meaningful lateral prediction results can be obtained. Convergence of
networks can be achieved only, if additional geological constraints can
reduce the solution space (Experiment 8, Section 5.3.4).

One obvious way to constrain the solution space is to divide the space into a
number of segments. In other words, apply segmentation prior to direct
inversion. If the segments are interpreted as representing different geological
facies, then for each of the segments a different data set can be created in
total space. Separate networks must now be trained for each dataset.
Network predictions are valid only within each corresponding segment.

8.7 General use of the integration framework

In this thesis, a integration framework is used to describe simulated and
factual wells. Data, described in terms of this integration framework are
commensurable. As a consequence, it is feasible to combine factual and
simulated data: the total space concept. The framework, as defined in this
thesis, has proven to be a powerful way of describing geology in a generic
way. The concept allows events, occurring multiple times, to be described
in the framework, once only. For example, a succession of sands and shales
need only be described in the framework by one sand and one shale
lithology. The grouping of lithologies into sub-units and sub-units into
units, ensures that data can be described at different scale levels. Because,
there are no constraints to this grouping, it possible to describe the
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subsurface as a combination of lithologies, stratigraphic sequences and
genetic units, dictated only by the geological setting.

It is suggested here, that this concept of describing data in terms of the
integration framework be used for other geoscientific applications. For
example, in production history matching, the objective is to establish a
subsurface model, that can be used to forecast and explain the production
behaviour of a hydrocarbon reservoir. This is done in a reservoir simulator.
The reservoir model is a description of the reservoir in terms of physical
parameters, such as horizontal and vertical permeabilities. These parameters
are updated, by the simulator, until a satisfactory match is obtained with the
measured production data. It is possible, but unlikely, that the final
subsurface model is consistent with a seismic reservoir characterisation
result. As argued in this thesis, the only way to obtain consistent results is
to describe all relevant data in terms of the same subsurface model. This
model must be based on geological parameters (Section 2.4.1). In the case
of reservoir simulations, it is suggested that the reservoir model be built
with the aid of the integration framework. Relevant physical properties can
then be attached to framework entities. In the matching process, the
geological model with its attached physical properties is updated. Operating
in this way, a final model is obtained that can be compared directly with
results obtained from seismic reservoir characterisation studies. Moreover, it
becomes feasible to combine the two inversion processes. For example, it is
then possible to constrain the updating of the reservoir model, in the history
matching process, with results obtained from seismic inversion studies.




CONCLUSIONS

9.1 General

In this thesis a technique for post-stack seismic reservoir characterisation
has been described: the 'total space inversion method'. In this method
seismic reservoir characterisation is approached from a geological
perspective. It has been demonstrated that factual and simulated data are
commensurable, when they have been described in terms of an acoustic-
stratigraphic integration framework. The objective of total space inversion is
to analyse a dataset comprising well information and corresponding seismic
responses, that is representative of the zone of interest. Two approaches
have been described:

« Direct inversion: in this approach the representative dataset is tested for
relations between seismic response and salient reservoir properties. The
established relations are subsequently applied to the factual seismic
horizon slice.

+ Segmentation: in this approach the factual seismic response is segmented
into a number of classes. Subsequently, a representative dataset is
classified and the well information is analysed to arrive at a geological
description of the seismic classes.

In Chapter 5, various artificial neural network paradigms and architectures
have been tested on different simulated datasets. In Chapter 6, the method
has been applied, successfully, to two separate case studies: the Rotliegend
case study and the Middle Eastern case study.
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9.2 Conclusions

The conclusions related to the theoretical and practical aspects of the total
space inversion method are as follows:

¢ Simulated data can be combined with factual data, if both datasets have
been made commensurable. In this study, this was achieved by
describing the datasets in terms of the integration framework.

* The integration framework defines the acoustic-stratigraphic entities, of
a target zone in a study area, at three scale levels (Section 3.3). As a
consequence, seismic reservoir characterisation results in total space
inversion can be related to three scale levels.

* The integration framework allows the subsurface to be described as a
combination of litho-stratigraphic-, sequence-stratigraphic- and genetic-
units. The framework has the potential to be used for other geoscientific
applications (Section 8.7).

* Simulating correlated stochastic multivariate variables one-by-one,
makes it feasible to control the random draws by using geological
reasoning and to evaluate the drawn value against hard constraints
(Section 3.3). This is the basis for the simulation algorithm that has been
used in this thesis to simulate 1D-stratigraphic profiles with attached
physical properties.

* Horizon slice segmentation, as presented in this thesis, is a tool to
visualise seismic patterns. The patterns can be interpreted, either
directly, or, with the support of a classified representative dataset. Poor
seismic data areas, or areas where the seismic horizon interpretation is
poor, will show up in the segmented result as areas with random class
distributions. Therefore, horizon slice segmentation is also a quality-
control tool.

* Direct inversion, as presented in this thesis, is feasible, only if the
problem space is unique. If the problem space is non-unique, as in most
factual cases, it must be constrained. Two possible approaches have
been formulated to constrain the problem space:

1. Feed additional (non-seismic) information to the inversion
algorithm (Experiment 8, Section 5.3.4).

2. Apply segmentation before direct inversion (Section 8.6).

* Performance of RBF networks is comparable to MLP networks
(Chapter 5). RBF networks performed slightly better on the thickness
inversion problem and slightly worse on the density inversion problem.
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« Network performance can be controlled by the design, i.e. choice of
paradigm, number of layers, number of nodes, activation functions etc.

o The total space inversion technique has been tested on post-stack seismic
data and wells (1D-stratigraphic profiles with attached physical
properties) without spatial information. The method can, in principle be
extended to pre-stack data and wells with spatial information (Section
9.3 and 9.2, respectively).

In conclusion it may be stated that total space inversion, especially the
segmentation approach, is a powerful new technique for inferring geological
information from seismic signals.
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Appendix I

MONTE CARLO STATISTICS; SIMULATING
CORRELATED MULTI-VARIATE
STOCHASTIC VARIABLES

The following mathematical description is used in a simulation algorithm
aimed at simulating wells, i.e. 1D-stratigraphic profiles with attached
physical properties. In the algorithm, wells are constructed from so-called
integration framework entities. These entities are grouped at three different
scale levels. It is considered important that geological knowledge controls
the selection of framework entities and that unrealistic realisations of
variables can be redrawn. This implies that wells must be constructed one-
by-one, entity-by-entity and variable-by-variable.

Variables in a computer are simulated using a (pseudo-) random number
generator. When random variables are correlated, it is not simple, however,
to simulate random draws using such a (pseudo-) random number
generator. This is especially true when the variables must be drawn one-by-
one, as in our application. The realisations of already drawn variables will in
that case influence the realisation of the variable to be drawn. For example,
let us assume that a positive correlation exist between the thicknesses of two
layers. When for the first layer a small thickness is drawn, then also for the
second layer a small thickness must be drawn. In the case of normally
distributed random variables, it is possible to draw the variables
consecutively from the marginal distributions. Each time a variable is to be
drawn, its marginal distribution must first be updated for the already drawn
variables to which it is correlated.
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In the following discussion X is a stochastic vector. In our algorithm, X
comprises all stochastic variables required for the simulation. A component

of X is denoted by X;. Examples of components are sonic, density,
thickness and user-defined variables attached to framework entities. Each
component X; is assumed to be normally distributed with expectation U;

and variance O l2 , symbolically written as: X; ~ N(U;, 0 12 ). The vector
of expectation will be denoted U i The components are assumed to be

correlated. The covariance between components { and j is indicated by
;- Note, that the covariance between component I and itself, O}; equals

o 12 . The matrix of covariances will be denoted as Y. When the covariance

o ij is normalised with the standard deviations 0; and O j» we obtain the

O' .e
correlation coefficient p;; , symbolically written as: pij = Y .
(01 o)

The matrix of correlation coefficients will be denoted by C. Sets of
components can be grouped into subvectors of X denoted by X (l), An

example of a subvector X () is that part of stochastic vector X comprising
correlated thicknesses of a set of layers. The theorems given hereafter apply
to the general case of drawing entire subvectors. However, for design
reasons, the variables are, drawn one-by-one, in the final implementation of

the algorithm. In other words the subvector X () to be drawn has only one
component. This is illustrated by the example at the end of this Appendix.

We require two theorems for our algorithm to work. Theorem 1.1 is used
for updating the expectation and covariance matrix of a variable to be drawn,
given some already drawn correlated variables (Mardia, 1979). This
theorem requires the covariance matrix to be specified completely. In
general, the user will not be in a position to specify all coefficients.
Therefore, the unspecified correlation coefficients must be approximated
first. This is accomplished with Theorem 1.2 (Meeuwissen et.al., 1994).

In the following discussion, first the two theorems are given, followed by
an illustration of their use with an example.
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Theorem 1.1

First we introduce some notation. Let X be a n-dimensional
stochastic vector which is partitioned as follows:

x®
with expectation E[ X] equal to [L:
,Lt(l)
'l.i =E[X]= —(2) , (1.2)
d
and a positive definite covariance matrix Cov(X) given by:
z )y
Z=COV(}_()=( H 12). (1.3)
o1 222

Suppose X is multivariate normally distributed with expectation [

and covariance matrix X, which can be symbolically written as:
X ~ MVN(u.Z). (1.4)

Here ~ denotes 'is distributed as' and MVN indicates multivariate
normally distributed. Then the conditional distribution of X(1) given

a realisation gc_(z) of X 2) is multivariate normally distributed with
expectation:

~(1 -1

AV =p® 43,55 (3@ -p®@), (1.5)

where yA_ M) is the updated expectation. The updated covariance matrix

211 is given by:
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S =211 - ZpZnZ (1.6)
Theorem 1.2
Suppose Xj, Xp and X3 are correlated random variables which
satisfy:
E[X1|X; =x5] is linear in Xy, (1.7)
and
E[X1|X3 =x3] is linear in x3. (1.8)

Then, given the correlation coefficients pjp between the pairs X
and Xo and pj3 between X and X3, the correlation coefficient
P73 is given by:

P23 = P12P13- (1.9)

The conditions in the theorem imply, say for Xj, X», that given a
realisation x; of variable X5, the expectation of X1 shifts linearly

towards Xo. For normal distributions this is always satisfied, as can
be seen from theorem 1.1, equation (1.5).

Although this theorem applies to three variables with one missing correlation
coefficient only, we are going to use it also, without strict theoretical
justification, for more than three variables where several correlation
coefficients may be missing. We must note here, that, for more then three
correlated variables, the positive definiteness of the covariance matrix may
be violated by this procedure. In practice we have seen this happen only in
some rare cases.

We will illustrate the use of these theorems with the following example.
Suppose the correlation matrix has been specified for five variables as
follows:
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1 0 0 0
0 * 0.8 %
c=[o * 1 * 06| (1.10)
0O 0.8 * 1 0.4
0 * 06 04 1 |

In this particular example, P24 , P35 and Pyg5 are known coefficients

and P34 , Pp5 and Pp3 are unknown, which is indicated in the matrix by

the * symbol. Using 1.9 we can determine two of the unspecified
correlation coefficients.

P34 = P35P54 =0.24, (1.11)

and

P25 = P24P45 =0.32. (1.12)

However, P93 cannot be determined by combination of two of the given

correlation coefficients. In a second step, we can approximate it using the
previously determined correlation coefficients:

P23 =P24P43 (1.13)

which can be expanded using 1.11 to:

P23 = P24P35P54 = 0.192. (1.14)

Note, that we could also have used:

P23 = P25P53 = P24P45P53- (1.15)

In this particular case, the same value for pp3 will be obtained for (1.14)
and (1.15). In general, however the approximation is not unique. If several
combinations are possible, in which the number of initially specified
correlation coefficients differs, then a selection is made from the
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combinations with the least number of initial coefficients. From these we,
arbitrarily choose one of the possible combinations. Thus, if in a different

example, 073, P34, P35, P45 would have been specified, then we can
obtain P75, either from:

P25 = P23P35- (1.16)
or, from:
P25 = P23P34P45- (1.17)

The former expression is favoured because it contains less specified
correlation coefficients.

With respect to the approximate nature of the procedure, we emphasise that
after multiplying correlation coefficients, the resulting number comes closer
and closer to zero. Therefore, the effect of the resulting approximation of the
correlation coefficient decreases rapidly. Hence, we argue that making an
error in the approximation has little effect when many terms are involved.

After application of the above procedure, the correlation matrix of (1.10) can
be approximated by:

1 0 0 0 0
0 1 0.192 0.8 0.32
0 0.192 1 0.24 0.6 |. (1.18)
0

(@Y
Il

0.8 0.24 1 0.4
0 032 06 04 1

L .

We can now draw samples for all variables. Suppose we would like to draw
them in the order X3, X5, X|, Xp, X4. When selecting X3, no other
has been drawn, so we can just draw it from its marginal probability density

function X3 ~ N(U3, O'% ). Now X5 must be drawn, conditioned on the
x3 value. Using theorem 1.1, we find:

fis = s + 035(03)7 (x3 — 113), (1.19)
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and

63 = 0% — 035(03) " 033, (1.20)
where

035 = P350303, (1.21)
is the covariance between X3 and X5. Now X5 can be drawn from
N(fis,62).
Now X is to be drawn. Since it is independent of Xy, X3, X4 and X5
it can be drawn from its marginal distribution N ({1, 0‘12 ). Finally, for X»

and X4 we use:

-1
2
o; O X3 —HU
. 3 35 37H3
fiy = o +[023075] 2 [ , (1.22)
O35 0'5 X5 —HUs
2 _].
A oy © o
62 =02 —[o93055] > [ 23}, (1.23)
and
) -1
0, 023 O35 |X,—H,
A 2
flg =14 +[024034054] 023 03 035 | | x -4, |

Os5 O35 Os Xs = Hs

(1.24)
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-1
2
0, 023 O35 024

A2 2 2
04'—‘04—[024034054] 023 O3 O35 034 |
2
025 O35 Ojf 054
(1.25)
respectively.

This allows us to draw the variables one by one in any order. Also, we can
redraw any one of the variables when needed, and condition on the latest
drawn value for each of the correlated variables.
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SIMULATION SPECIFICATIONS

In the GeoProbe software system simulation specifications are entered in
three separate tables:

» A general table to specify geological rules and probability density
functions (pdfs) for thicknesses of framework entities and for sonic and
density variables at top and bottom of each lithology. Separate sonic and
density pdfs can be specified for brine-filled and hydrocarbon-filled
reservoir lithologies. Also pdfs for user-defined parameters can be
specified in this table.

« A correlation table in which correlations between pairs of variables are
specified.

A special constraints table in which hydrocarbon columns, simulation
constraints and hard constraints are specified.

In the general table the integration framework can be recognised in the
columns 1, 4 and 7. Geological rules are specified in the columns 2 and 5.
The rules are attached to the entity in the preceeding column. The S. and R.
in the rule name refer to sequential and random selection, respectively. Two
types of pdfs can be specified: normal distributions and constant
distributions. Normal distributions are specified by the letter n followed by
two values: the mean and standard deviation. Constant distributions are
specified by the letter ¢ followed by the value. SonicTop indicates the sonic
variable at the top of a lithology. SonicTopOil indicates the oil-filled sonic
variable at the top of a reservoir lithology.
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In the following tables the simulation specifications, as used in this thesis,
are presented. The first three tables correspond to the Middle Eastern case
study simulation (Chapter 4). The next three tables correspond to the
Rotliegend case study (Chapter 6).
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Correlation table

Code Parameter Code Parameter Coefficient
crbc.crb.crb SonicTop crbe.crb.crb DensityTop -1
crbc.crb.shl SonicTop crbc.crb.shl DensityTop -1
crbd.msv.anh SonicTop crbd.msv.anh DensityTop -1
crbd.msv.crb SonicTop crbd.msv.crb DensityTop -1
crbd.anh.anh SonicTop ¢rbd.anh.anh DensityTop -1
crbd.anh.crb SonicTop crbd.anh.crb DensityTop -1
crbd.anh.shl SonicTop crbd.anh.shl DensityTop -1
crbd.alt.crb SonicTop crbd.alt.crb DensityTop -1
crbd.alt.shl SonicTop crbd.alt.shl DensityTop -1
crbd.alt. Anh SonicTop crbd.alt.Anh DensityTop -1
seal.seal.seal SonicTop seal.seal.seal DensityTop -1
res.mt3.t3s SonicTop res.mt3.t3s DensityTop -1
res.mt3.slt SonicTop res.mt3.slt DensityTop -1
res.mt2.t2s SonicTop res.mt2.t2s DensityTop -1
res.mt2.slt SonicTop res.mt2.slt DensityTop -1
res.msl.snd SonicTop res.msl.snd DensityTop -1
res.msl.slt SonicTop res.msl.slt DensityTop -1
res.lam.snd SonicTop res.lam.snd DensityTop -1
res.lam.slt SonicTop res.lam.slt DensityTop -1
sou.mar.shl SonicTop sou.mar.shl DensityTop -1
res.mt3.t3s SonicTopOil res.mt3.t3s SonicTop 1
res.mt3.t3s SonicTopOil res.mt3.t3s DensityTopQil -1
res.mt2.t2s SonicTopOil res.mt2.t2s SonicTop 1
res.mt2.t2s SonicTopOil res.mt2.t2s DensityTopOil -1
res.msl.snd SonicTopOil res.msl.snd SonicTop 1
res.msl.snd SonicTopOil res.msl.snd DensityTopOil -1
res.Jam.snd SonicTopOil res.Jlam.snd SonicTop 1
res.Jam.snd SonicTopOil res.lam.snd DensityTopOil -1

Middle Eastern case study
Framework, see Table 4.1
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Constraints table

Code Parameter Constraint Value
seal.seal.seal OilColumn Distribution n 5050
seal.seal.seal QilColumn MaximumRedraw 150
seal.seal.seal 0Oi1lColumn MinimumRedraw 0
crbe.crb.crb Carbonate Generation 100
crbe.crb.shl Shale Generation 100
crbd.msv.anh Anhydrite Generation 100
crbd.msv.crb Carbonate Generation 100
crbd.anh.anh Anhydrite Generation 45|
crbd.anh.crb Carbonate Generation 20
crbd.anh.shl Shale Generation 35
crbd.alt.crb Carbonate Generation 55
crbd.alt.shl Shale Generation 40
crbd.alt.Anh Anhydrite Generation 5
res.mt3 Generation 20
res.mt3.t3s Type 3 Sand Generation 35
res.mt3.slt Silt/Shale Generation 65
res.mt2 Generation 20
res.mt2.t2s Type 2 Sand Generation 55
res.mt2.slt Silt/Shale Generation 45
res.msl Generation 30
res.msl.snd Type 2 or 3 Sand Generation 20
res.msl.slt Silt/Shale Generation 80
res.lam Generation 35
res.Jam.snd Type 2 or 3 Sand Generation 40
res.lam.slt Silt/Shale Generation 60

Middle Eastern case study
Framework, see Table 4.1
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Correlation table

Code Parameter [Code Parameter |Coefficient

seall.seal.shl SonicTop seall.seal.shl DensityTop -1
wus.wul.eva SonicTop wus.wul.eva DensityTop -1
wus.wul.sil SonicTop wus.wul.sil DensityTop -1
wus.wul.sho SonicTop wus.wul.sho DensityTop -1
wus.wul.wet SonicTop wus.wul.wet DensityTop -1
wus.wul.dry SonicTop wus.wul.dry DensityTop -1
wus.wul.fan SonicTop wus.wul.fan DensityTop -1
wus.wul.vol SonicTop wus.wul.vol DensityTop -1
wus. wu2.wet SonicTop wus.wu2.wet DensityTop -1
wus.wu2.dry SonicTop wus.wu2.dry DensityTop -1
wus.wu?2.fan SonicTop wus.wu2.fan DensityTop -1
wus.wu2.sish SonicTop wus.wu2.sish DensityTop -1
wus.wu2.vol SonicTop wus.wu2.vol DensityTop -1
seal2.seal.shl SonicTop seal2.seal.shl DensityTop -1
bunt.up.snd SonicTop bunt.up.snd DensityTop -1
bunt.up.shi SonicTop bunt.up.shl DensityTop -1
bunt.low.snd SonicTop bunt.low.snd DensityTop -1
bunt.low.lim SonicTop bunt.low.lim DensityTop -1
bunt.low.shl SonicTop bunt.low.shl DensityTop -1
uze.z37.hal SonicTop uze.z37 .hal DensityTop -1
uze.z37.a3 SonicTop uze.z37.a3 DensityTop -1
uze.z37.shl SonicTop uze.z37.shl DensityTop -1
bze.z12.a2 SonicTop bze.z12.a2 DensityTop -1
bze.zl2.car SonicTop bze.z12.car DensityTop -1
bze.zl12.anh SonicTop bze.z12.anh DensityTop -1
bze.z12.cop SonicTop bze.z12.cop DensityTop -1
heid.topr.snd SonicTop heid.topr.snd DensityTop -1
heid.topr.shl SonicTop heid.topr.shl DensityTop -1
ebs.shor.shor SonicTop ebs.shor.shor DensityTop -1
ebs.shor.sish SonicTop ebs.shor.sish DensityTop -1
ebs.wet.wet SonicTop ebs.wet.wet DensityTop -1
ebs.wet.sish SonicTop ebs.wet.sish Density Top -1
seal3.seal.shl SonicTop secal3.seal.shl DensityTop -1
det.del.sho SonicTop det.del.sho DensityTop -1
det.del.wet SonicTop det.del.wet DensityTop -1
det.del.fan SonicTop det.del.fan DensityTop -1
det.del sish SonicTop det.del.sish Density Top -1
det.del.anc SonicTop det.del.anc DensityTop -1
det.de2.wet SonicTop det.de2. wet DensityTop -1
det.de2.dry SonicTop det.de2.dry DensityTop -1
det.de2.fan SonicTop det.de2.fan Density Top -1
det.de2.sish SonicTop det.de2.sish DensityTop -1
det.de2.anc SonicTop det.de2.anc DensityTop -1
seald.seal.shl SonicTop seal4.seal.shl DensityTop -1
base.schn.wet SonicTop base.schn.wet  |DensityTop -1
base.schn.dry SonicTop base.schn.dry DensityTop -1
base.schn.fan SonicTop base.schn.fan DensityTop -1
base.schn.sish SonicTop base.schn.sish  |DensityTop -1
lowr.vol.vol SonicTop lowr.vol.vol DensityTop -1
lowr.car.snd SonicTop lowr.car.snd DensityTop -1
lowr.car.shl SonicTop lowr.car.shl DensityTop -1

Rotliegend case study
Framework, see Table 6.1
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Constraints table

Code Parameter Constraint Value

wus.wul.eva Thickness Generation 5
wus.wul.sho Thickness Generation 45
wus.wul.sil Thickness Generation 25
wus.wul.wet Thickness Generation 35
wus.wul.dry Thickness Generation 5
wus.wul.fan Thickness Generation 5
wus.wul.vol Thickness Generation 2
wus.wu2.wet Thickness Generation 50
wus. wu2.dry Thickness Generation 5
wus.wu2.fan Thickness Generation 10
wus.wu2.sish Thickness Generation 30
wus.wu2.vol Thickness Generation 5
bunt Thickness Presence 0
ebs.shor.shor Thickness Generation 100
ebs.shor.sish Thickness Generation 5
ebs.wet.wet Thickness Generation 80
ebs.wet.sish Thickness Generation 20
det.del.sho Thickness Generation 10
det.del.wet Thickness Generation 35
det.del.fan Thickness Generation 25
det.del.sish Thickness Generation 10
det.del.anc Thickness Generation 20
det.de2.wet Thickness Generation 60
det.de2.dry Thickness Generation 5
det.de2.fan Thickness Generation 30
det.de2.sish Thickness Generation 5
det.de2.anc Thickness Generation 2
base.schn.wet Thickness Generation 30
base.schn.dry Thickness Generation 40
base.schn.fan Thickness Generation 30
base.schn.sish Thickness Generation 5

Rotliegend case study
Framework, see Table 6.1




Appendix III

PERFORMANCE STATISTICS SIMULATED DATA
EXPERIMENTS

The results of the experiments on simulated data, discussed in chapter 5, are
presented in this appendix. The performance statistics on fraining and test
datasets are presented in one table per experiment. The performance on the
test dataset, 1s presented in three figures, for each experiment. The left-hand
figure shows the normalised RMS error as a function of training patterns.
The solid line indicates the training performance of the average density
variable, the dashed line indicates the net gas-column thickness. The middle-
and right-hand figure show the network estimated values versus the target
values of the test variables (average density and net-gas column thickness,
respectively). In the experiments 1 until 5, these values have been scaled to
a range between -1 and +1. In experiment 8 unscaled values are shown.
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1A Training variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.28 13.47 kg/m> 9.63 kg/m> 51.48 kg/m>

Gas column 0.33 3.67 m 2.26 m 16.56 m
1A Test variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.28 14.29 kg/m3 11.20 kg/m 38.65 kg/m3

Gas column 0.33 3.16 m 2.17 m 13.40 m
1B Training variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.29 14.33 keg/m> 1053 kg/m> 57.95 kg/m>

Gas column 0.46 5.16 m 3.12 m 22.48 m
1B Test variables Normalised RMS RMS Mean Absolute Max_ Absolute
Density 0.29 1453 kg/m3 1092 kg/m® 42.16 kg/m>

Gas column 0.44 4.22 m 2.66 m 18.54 m
1C Training variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.32 14.53 kg/m> 14.53 kg/m> 1453 kg/m3

Gas column 0.56 6.23 m 4.17 m 24.84 m
1C Test variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.32 16.32 kg/m® 1210 keg/m> 48.73 kg/m>

Gas column 0.54 5.19 m 3.60 m 21.09 m
1D Training variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.54 26.15 kg/m> 2004 kg/m> 104.10 kg/m3

Gas column 0.98 10.95 m 9.03 m 28.47 m
1D Test variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.51 25.69 kg/m3 2049 kg/m> 7535 kg/m®

Gas column 0.97 9.36 m 8.08 m 20.31 m
2A Training variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.22 1091 kg/m’ 7.95 kg/m> 4251 kg/m>

Gas column 0.31 3.43 m 2.09 m 15.79 m
2A Test variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.24 12,10 _kg/m’ 9.10 kg/m> 3350 ke/m>.

Gas column 0.32 3.06 m 1.92 m 12.62 m




Appendix III: Performance statistics simulated data experiments

167

2B Training variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.92 44.85 kg/m® 3535 kg/md 114.50 kg/m3

Gas column 0.44 4.92 m 3.56 m 19.08 m
2B Test variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.93 46.94 ke/m3 38.34 kg/m> 119.23 kg/m3

Gas column 0.48 4.60 m 3.51 m 16.49 m
2C Training variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.30 1471 kg/m> 10.65 kg/im> 53.70 kg/m3

Gas column 0.41 4.59 m 2.84 m 18.86 m
2C Test variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.31 15.65 ke/m> 1245 kgimd 41.98 kg/m3

Gas column 0.39 3.81 m 2.51 m 16.08 m
3A Training variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.46 22.51 kg/m3 16.24 kg/m> 70.51 ke/m>

Gas column 0.45 497 m 3.05 m 21.44 m
3A Test variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.46 23.28 kg/m> 17.59 kg/m> 85.49 kg/m>

Gas column 0.37 3.62 m 2.36 m 15.30m
3B Training variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.32 15.48 kg/m® 11.22 kg/m> 66.20 kg/m>

Gas column 0.32 3.58 m 2.39 m 21.52 m
3B Test variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.33 16.49 kg/m® 11.55 kg/m> 78.70 kg/m3

Gas column 0.30 2.86 m 1.88 m 15.58 m
3C Training variables Normalised RMS RMS Mean Absolute Max Absolute
Deansity 0.47 22.75 kg/m> 17.22 kg/m3 84.07 kg/m3

Gas column 0.35 3.92 m 2.56 m 20.88 m
3C Test variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.45 22.67 kg/m3 17.75 keg/m> 64.95 kg/m’

Gas column 0.31 3.04 m 2.30 m 12.37 m
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3D Training variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.29 14.05 kg/m> 10.48 kg/m® 43.84 kg/m3

Gas column 0.23 2.54 m 1.44 m 19.50 m
3D Test variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.29 14.48 ke/m> 11.15 keg/m3 4034 kg/m>

Gas column 0.19 1.81 m 1.33 m 7.86 m
4A Training variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.17 8.14 kg/m> 6.29 kg/m’ 29.49 kg/m>

Gas column 0.21 2.33 m 1.53 m 10.28 m
4A Test variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.18 9.02 kg/m> 7.08 kg/m> 2172 kg/m>

Gas column 0.25 2.45 m 1.55 m 14.03 m
4B Training variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.18 8.55 ‘ke/m> 6.72 kg/m> 25.97 kg/m>

Gas column 0.24 2.72 m 1.92 m 9.15 m
4B Test variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.18 9.01 kg/m3 7.04 kg/m3 25.95 kg/m>

Gas column 0.27 2.63 m 1.74 m 16.71 m
4C Training variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.21 1013 kg/m> 7.57 kg/md 4013 kg/m>

Gas column 0.35 3.93 m 2.46 m 14.96 m
4C Test variables Normalised RMS RMS Mean Absolut Max Absolute
Density 0.22 10.97 kg/m> 8.20 ke/m> 2849 kg/m>

Gas column 0.36 3.49 m 2.18 m 15.23 m
4D Training variables Normalised RMS RMS Mean Absolut. Max Absolute
Density 0.13 6.32 kg/m3 4.96 kg/m> 17.33 kg/m3

Gas column 0.39 430 m 3.12 m 1591 m
4D Test variables Normalised RMS RMS Mean Absolute Max Absolute
_Density 0.13 6.34 ke/m> 5.01 kg/m> 16.59 kg/m>

Gas column 0.44 4.24 m 2.87 m 7 26;2m
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4E Training variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.12 5.85 kg/m> 473 kg/m3 13.91 kg/m3

Gas column 0.40 4.42 m 3.05 m 17.76 m
4E Test variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.13 6.51 ke/m> 5.17 kg/m> 18.18 ke/m>

Gas column 0.43 4.14 m 271 m 27.58 m
5 Training variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.22 11.69 kg/m> 8.70 kg/m> 41.43 kg/m>

Gas column 0.50 5.17 m 3.93 m 14.40 m
5 Test variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.29 14.47 kg/m3 11.41 kg/m> 41.64 kg/m3

Gas column 0.58 5.73 m 4.20 m 20.08 m
6 Training variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.82 37.95 kg/m> 29.19 kg/m> 122.35 kg/m>

Gas column 0.53 5.76 m 4.54 m 14.85 m
6 Test variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.83 41.73 ke/m> 33.36 kg/m° 112.32 kg/m>

Gas column 0.60 6.52 m 475 m 23.54 m
7A Training variables Normalised RMS RMS Mean Absolute Max Abseclute
Density 0.80 37.11 ke/m3 29.27 kg/m 118.03 kg/m>

Gas column 0.54 5.83 m 4.53 m 14.21 m
7A Test variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.87 43.63 kg/m> 34.53 kg/m° 128.14 ke/m3

Gas column 0.61 6.66 m 4.84 m 26.51 m
7B Training variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.82 37.95 kg/m3 29.19 keg/m> 122.35 ke/m>

Gas column 0.53 5.76 m 4.54 m 14.85 m
7B Test variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.83 41.73 kg/m3 33.36 kg/m> 112.32kg/m>

Gas column 0.60 6.52 m 4.75 m 23.54 m
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7C Training variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.82 37.93 kg/m> 29.88 kg/m> 11471 kg/m>

Gas column 0.59 6.37 m 4.93 m 14.89 m
7C Test variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.85 42.72 kg/m3 34.26 kg/m> 125.99 kg/m>

Gas column 0.66 7.23 m 5.38 m 22.21 m
7D Training variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.82 37.95 kg/m3 29.19 kg/m> 122,35 kg/m

Gas column 0.53 5.76 m 4.54 m 14.85 m
7D Test variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.83 41.73 kg/m3 33.36 kg/m> 11232 kg/m3

Gas column 0.60 6.52 m 475 m 23.54 m
8 Training variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.25 13.62 kg/m3 1037 kg/m3 35.86 kg/m>

Gas column 0.13 1.34 m 0.91 m 5.69 m
8 Test variables Normalised RMS RMS Mean Absolute Max Absolute
Density 0.28 14.26 kg/m3 11.20 kg/m3 40.19 kg/m3

Gas column 0.21 2.07 m 1.52 m 6.84 m
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SUMMARY

In this thesis a new method for post-stack seismic reservoir characterisation
is described. In this method the seismic reservoir characterisation process is
approached from a geological perspective. Factual and simulated wells, i.e.
one-dimensional stratigraphic profiles with attached physical properties are
described in terms of a common subsurface model: the integration
framework. The integration framework defines the acoustic-stratigraphic
entities, at three scale levels within the target zone for a particular survey
area. Factual and simulated wells described in this way, are commensurable.
The factual wells are combined with the surface seismic traces at the well
locations. Simulated acoustic properties of the simulated wells are used to
generate synthetic seismic traces. Operating in this way, datasets consisting
of well information and corresponding seismic responses are combined in
what is defined as: model space (simulated data only), real space (factual
data only), or fotal space (combined factual and simulated data). The
objective is to arrive at a dataset that is representative of the geological and
physical variations in the target zone. These data are used in the seismic
characterisation process; the so-called rotal space inversion method.

In this study two approaches within the total space inversion concept are
described:

« Direct inversion: in this approach the representative dataset is tested for
relations between seismic response and salient reservoir properties. The
established relations are subsequently applied to a factual seismic
horizon slice, yielding lateral prediction results.
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* Segmentation: in this approach the factual seismic response is segmented
into a number of classes. A representative dataset is subsequently
segmented by the same classifier and the well information is analysed to
arrive at a geological description of the seismic classes.

In this thesis, artificial neural networks are employed in the inversion phase.
Unsupervised Vector Quantisers (UVQs) are used in the segmentation
approach and Multi-Layer-Perceptrons (MLP) and Radial Basis Functions
(RBF) networks are used in the direct inversion.

An algorithm is used for the simulation of wells, which combines geological
reasoning with stochastic input. The algorithm makes use of an innovative
Monte Carlo statistics procedure in which correlated multi-variate stochastic
variables are drawn one-by-one.

A number of experiments on simulated data, describing different geological
settings, are presented. Different network paradigms (MLP, RBF) and
designs (number of layers, number of nodes, activation functions) are tested
in these experiments.

The total space inversion method has been applied to two case studies. The
first study deals with a Rotliegend unit comprising gas-filled aeolian
sandstones. The second study involves an oil-filled fluviatile reservoir. It is
shown that in both studies exciting results were obtained by visualising,
analysing and interpreting seismic patterns. In the Rotliegend study, it was
possible to map the extent of the good reservoir 'shoreline' sand-deposits.
In the second study major sedimentary distribution trends and patterns in a
labyrinth-type reservoir were revealed. Utilising the integration framework,
the classes could be analysed for geological content. This revealed a number
of distributary trends comprising channelised sandbodies, silts and clays
within an ancient avulsing floodplain environment.

The information extracted from the seismic signals using total space
inversion is useful to production geologists and reservoir engineers, as it
helps explain reservoir body distribution, connectivity, drainage and
injection models in addition to giving an indication of net oil in place.

In conclusion it may be stated that total space inversion, especially the
segmentation approach, is a powerful new technique for inferring geological
information from seismic signals.




SAMENVATTING

Seismische reservoir karakterisatie met behulp van reéele en gesimuleerde
putten

In dit proefschrift wordt een nieuwe methode beschreven voor post-stack
seismische reservoir karakterisatie. In deze methode wordt het seismische
reservoir karakterisatie process benaderd vanuit een geologisch perspectief.
Reéele en gesimuleerde putten, d.w.z. één-dimensionale stratigrafische
profielen met bijbehorende fysische eigenschappen, worden beschreven in
termen van één en hetzelfde model van de ondergrond: het integratie kader.
Het integratie kader definieert de akoestisch-stratigrafische entiteiten van het
beoogde interval, in een bepaald studie gebied, op drie schaal nivo's. Putten
die op deze wijze worden beschreven zijn vergelijkbaar. Reéele putten
worden gecombineerd met de seismische sporen op de put lokaties. De
gesimuleerde akoestische eigenschappen van gesimuleerde putten worden
gebruikt om seismische sporen te synthetiseren. Door deze manier van
werken worden gegevens, bestaande uit put informatie en seismische
signalen gecombineerd, in, wat is gedefinieerd als: model ruimte (enkel
gesimuleerde gegevens), reéele ruimte (enkel re€ele gegevens), of fotale
ruimte (zowel reéele, alsook gesimuleerde gegevens). Het streven is, een
databank te creéeren, die representatief geacht wordt voor de variaties in
geologische- en fysische-eigenshappen van het beoogde interval. De
gegevens worden gebruikt in het seismische reservoir karakterisatie process;
de zogenaamde fotale ruimte inversie methodiek.

In dit proefschrift worden twee methodieken binnen het totale ruimte
inversie concept beschreven:
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* Direkte inversie. In deze methodiek wordt de representatieve databank
onderzocht naar relaties tussen seismische signalen en onderliggende,
belangwekkende reservoir eigenschappen. Vastgestelde relaties worden
vervolgens toegepast op de re€ele seismische horizon-snede. Dit levert
een ruimtelijke voorspelling van de eigenschap op.

* Segmentatie. In deze methodiek wordt de re€ele seismische horizon-
snede gesegmenteerd in een aantal klasses. Vervolgens wordt een
representatieve databank geclassificeerd met behulp van dezelfde
classificator. De putgegevens in de resulterende klasses worden dan
geanalyseerd om tot een geologische beschrijving te komen van de
seismische klasses.

In dit proefschrift worden kunstmatige neurale netwerken toegepast tijdens
de inversie fase. Niet-begeleide vector kwantificeerders (UVQs) worden
gebruikt voor de segmentatie methodiek en meer-laagse perceptrons (MLPs)
en radiale basis functies (RBF) netwerken worden gebruikt voor de direkte
methodiek.

Voor het simuleren van putten is een algoritme gebruikt waarin geologische
redenaties gecombineerd worden met stochastische invoer. Het algoritme
maakt gebruik van een innovatieve procedure om gecorreleerde multivariaat
verdeelde stochastische variabelen één-voor-é€n te trekken.

Een aantal experimenten met gesimuleerde data worden gepresenteerd. De
simulaties beschrijven meerdere geologische modellen. Verschillende
netwerk paradigma's (MLP, RBF) en ontwerpen (aantal lagen, aantal
knopen, activatie functies) zijn getest in deze experimenten.

De totale ruimte inversie methodiek is toegepast in twee studies. De eerste
studie betreft een Rotliegend eenheid bestaande uit gas-gevulde aeolische
zanden. De tweede studie heeft betrekking op een fluviatiel olie reservoir.
Beide studies laten zien dat bruikbare geologische informatie aan de
seismische signalen kon worden onttrokken. Vooral de horizon-snede
segmentatie methodiek leverde opwindende informatie op. In de Rotliegend
study bleek het mogelijk door middel van segmentatie de, vanuit een
reservoir perspectief gezien, goede 'kustzand' afzettingen, te karteren. In de
tweede studie werden sediment distributie trends en patronen zichtbaar in
een 'labyrint-type' reservoir. Door middel van het integratie kader konden
de seismische klassen gerelateerd worden aan de geologische inhoud. Dit
leidde tot de interpretatie van een aantal sediment distributie trends bestaande
uit gekanaliseerde zandlichamen, silt- en klei-afzettingen in een avulsief
overstromingsgebied.




Samenvatting 181

De informatie die met behulp van de totale inversie methodiek aan de
seismische signalen kon worden onttrokken, is van belang voor produktie
geologen en reservoir ingenieurs. Het geeft inzicht in zandlichaam
distributie, connectiviteit, drainage en injectie modellen en helpt bij de
bepaling van de netto koolwaterstof reserves.

Concluderend kan worden gesteld dat, met name de segmentatie methodiek,
in het totale ruimte inversie concept, een krachtige techniek is om
geologische informatie te onttrekken aan seismische signalen.
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