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Abstract

The radiation characteristics of an antenna are fully
determined by its aperture distribution. Measured
Near Field data gives an impression but this is not
good enough to detect small anomalies. For good
antenna diagnostics, the field at the aperture plane is
required.

The Near Field Measurement Technique calculates
the Far Field of the AUT is by determining the so
called Plane Wave Spectrum (PWS) from the
measured Near Ficld data. Once the PWS is known,
the electric field at any location can be calculated. In
fact, the Far Field is only a limiting case of the
PWS. Using the PWS, the field at the aperture of the
AUT can be calculated. This aperture image is much
“"sharper” than the measured Near Field. Even small
anomalies, hardly visible in the measured Near Field
data, appear quite clearly. To determine the
excitation coefficients of array elements, the Far
Field data has to be corrected for the element
radiation pattern. Unfortunately, some steps in the
processing confine the accuracy of these methods.

The Plane Wave Spectrum
Wang [1] gives a clear derivation of the Near Field
to Far Field transformation. Part of this paper is
reproduces here in brief.
The radiation of an antenna is described by the time-

harmonic Maxwell equations for a source-free free-
space region:

VZE+k’E=0 (1a)

V’H+k*H=0 (1b)
VE=V.H=0 @

It can be shown that the following expressions
constitute a solution to the above equations:

E(x,y,2)= %H Ak, k,).e ™ dk dk, (3)

kA= @
where k, and k, are real variables and
k=k&+k,§+k,2 o)
k*=kk 6
r=xk+yy+2z2 ¥))
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A (k. k, )&+ A, (K, Kk, )7+ A, (k. k, )2 ®

A is called the Plane Wave Spectrum because the
expression

Ak, k, ) e ©)

represents a uniform plane wave propagating in the
direction k.

Assume the AUT is placed in the region z< 0.
Expression (3) is then valid forz>0. A is only a
function of k. and k,. Assuming that the frequency
and thus k (= 2xn/A) is a given parameter, k, can not
be chosen. It has to fulfill (6) and the radiation
condition for z > 0, which means:

(10)
- j‘/k: +k?-k*  otherwise

A negative imaginary k, corresponds to an
evanescent PWS which is rapidly attenuated away
from the z = 0 plane. The area with a real k, is

called the visible space.
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Assume the Planar Near Field measurement plane is
located at z= z > 0. E follows from (3a):

E(x,y,2) =

1 T LN a-ikiz o-i(kextk,y) (11)
EHA(kx,ky).e o g KbV dk,

This can be written as an inverse Fourier Transform:

E(x,y,z,) = F'{A(k,.k,). e =) (12)
Now it is quite clear how to determine the PWS
from the measured Near Field data:

A(k, k)= e** F{E(x,y,2,)} (13)

The Far Field of the AUT is the limit of r — oo of
expression (3). This limit can be expressed as:

—]kf

lim E(x,y,2) = ,e——k Ak, K,) (14)
with
k, = k.sin(0) cos(¢) = k.sin(AZ)cos(EL)
= k.sin(B)sin(¢p) = k.sin(EL) (15)
= k.cos() = k.cos(AZ)cos(EL)

In practical situations the PWS as determined by
(13) will be the product of the PWS of the AUT and
the probe antenna. Probe correction is a common
technique in Near Field measurements. However, it
has consequences for the calculation of the aperture
field as will be shown later.

The aperture field at z = 0 follows from (3):

Bx,.0) = 5= [ Al K, ) ek gk,
{A(kx, k,)} (16)

Expression (16) clears also why this aperture field
calculation is often called "backtransformation".
Note that the PWS in (16) should be the PWS of the
AUT only!

An example of the measured Near Field and the
corresponding backtransformed aperture field is
shown in figure 1.
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Array Element Excitation

The Far Field of an array antenna is the product of
the element radiation pattern and the array factor.

When the PWS of an element is given by P, , then
the total PWS of the array is:

A(kx: y) elem(kx’ y)C(kx! y) (17)

The array factor C of a rectangular array is given by
expression (18):

C(k,, k)= z Zc

)

(18)

d, and d, are the element spacings in the x- and y-
direction.

This expression can be rewritten as a Digital Fourier
Transform (DFT):

ok, ddzzzmxmk,unkd)dd

2
dd

.DFT{c,.} (19)

y

The element excitation factors can be calculated
from the array factor by inverse DFT:

d,d
Ca(md,,nd, ) = =L DFT{C(k, k, )} @0

It looks as if the array factor C(k,,ky) can be derived
easily from (17) as

Ak,k,) v)

—_ Y @
elem(k y)

Clk,.k,)=

but the quotient of two quantities is not necessarily a
scalar. A pragmatic way to tackle this problem is to
restrict (21) to the co-polar component.

More details about this technique, including a
sensitivity analysis for most parameters, e.g. the
S/N-ratio of the Near Field data, can be found in [2].
An example of a comparison of the backtrans-
formation and a direct measurement is shown in fig.

2.




Practical problems

There are some problems, inherently connected with
the theory described above. In the FFT-processing
the sampling spacing and the spectral extends are
related as follows:

with k,, = n/d,
with k,, = x/d,

k, €[-KymKyn]
ky €[-kyms kym|

The spectral spacings and the spectral extends are
also related:

22)

with x_, = n/dk,
with y,, = n/dk,

X €[~Xn, X ]

(23)
Y €[~Yms Y]
The number of sampling points in both the spectral
and spatial domain are equal in FFT-processing. Let
there be Ny and N, sampling points in the x- and y-
direction. Then the spacings and extends are related
as

2x, =N,d,
2y, =N,d,
(24)
2k,, = N, dk,
2k,, = N dk,

In Near Field measurements the sampling spacing is
chosen near to A/2. From (22) it follows that the k-
space is limited by [-k k] in both directions. With
this sampling spacing, the k-space encloses the
whole visible space as defined by (10). However, the
corners of this k-space are outside the visible space
&k’ + kyz > k?). This is the region of the evanescent
waves which don't exist anymore in the Far Field.
Besides that, the Far Field of the probe antenna is
measured in an anechoic chamber so there is no
knowledge about spectral components outside the
visible space. In practice, one can not do anything
else than eliminate the spectral components outside
the visible space. From a mathematical point of
view, this is a multiplication with a window- or
block-function. The theory of Fourier Transforms
leamns that a multiplication in one domain results in
a convolution in the other domain. The 1-
dimensional case is well-known. The transform of a
block-function is then a sin(x)/x-function. Those

~s

2E%

who are familiar with measurements on a HP8510
NWA probably have seen this phenomenon in the
time-domain. A band-limited frequency
measurement can be described as a product of a
block-function and a frequency-unlimited response.
In the 2-dimensional case, the transform of a
circular block-function is a first order Bessel-

function.

In this way the backtransformed field at the aperture
plane is influenced by values of the points around it.
Of course, the same happens in the calculation of the
element excitations conform (20). For elements,
spaced at A/2, the interaction of neighboring
elements is -15 dB [2].

Since the evanescent waves don't exist anymore in
the Far Field, these cannot be present in the
backtransformed field. The backtransformed field is
only an image of the radiating field components, not
of the total field at the aperture.

Another practical problem arises in the calculation
of the element excitations. When the spacing of the
elements is not equal to the sampling spacing of the
Near Field data, the k-space has to be resampled to
fulfill the relations of (22-24). With the
interpolation, involved with the resampling, some
accuracy is lost.

There are methods to overcome these problems.
First, one can use the fact that the convolution
function is known. One can try to calculate a
deconvolution. This requires quite some
computational power since one has to deal with large
matrices. However, similar techniques have been
used in optics with defocused pictures. Sometimes it
is also described as super-resolution technique.
Another approach is to apply a beam synthesis
approach. Originally, this technique was developed
to calculate a best-fitting set of excitation
coefficients to approximate a prescribed field, given
the array configuration and the element radiation
patterns. This technique uses an iterative scheme in
which only the forward transform is used. The
difference between the calculated field and the
prescribed field is used to adapt the excitation
coefficients. This technique too requires quite some
computational power. By using the measured Far
Field as the prescribed field, this technique can be
used to determine the excitation coefficients. At
TNO-FEL such a program is developed [3] but up



to now not applied to Near Field measurements. The
program has to be adapted to the k-plane format of
the Near Field calculations. The number of points
might be a problem.

Conclusions

As the total Far Field of an AUT is known, the
radiating field at any place can be calculated by
means of backtransformation. For antenna
diagnostics the aperture field is very interesting.
Planar Near Field measurements are most suitable
for this technique because the data formats match
the processing requirements. When the element
radiation pattern is known, the element excitation
coefficients can be obtained in a similar way. This is
useful for alignment of active elements in an array.
The accuracy is confined by some convolution
effects, introduced by the processing.

Array Element Excitation
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Fig.2 Example of the determination of the Array Element Excitation by means of backtransformation. The data
is compared to a direct measurement of the excitations on the modules. The antenna is a Phased Array SAR

antenna, consisting of 2 rows of 24 elements.
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