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ABSTRACT

Land mines are a major problem in many areas ofthe world. In spite ofthe fact that many different types ofland mines
sensors have been developed, the detection of non-metallic land mines remains very difficult. Most landmine detection
sensors are affected by soil properties such as water content, temperature, electrical conductivity and dielectric constant.
The most important ofthese is water content since it directly influences the three other properties. In this study, the ground
penetrating radar and thermal infrared sensors were used to identify non-metallic landmines in different soil and water
content conditions.
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1. INTRODUCTION

The detection and disposal of anti-personnel and anti-tank landmines is one ofthe most difficult and uncontrollable problems
faced in ground conflict. Since mines remain lethal long after military actions have terminated, they also have become a
humanitarian disaster. Today at least 100 million landmines are scattered across more than 60 countries. Unfortunately, no
perfect landmine detection technique is currently available. One reason is that sensor developers often have not taken into account
the effect of soil moisture regimes in different soils and different climates on land mine detection by ground penetrating radar
and thermal infrared sensors."2'3'4'5

Two types of sensors have shown great potential for detecting landmines under various environmental conditions: microwave
radar and infrared imaging sensors. These mine detection sensors are affected by soil properties such as water content,
temperature, electrical conductivity and dielectric constant. The most important of these is water content since it directly
influences the three other properties. Previous work has focused on the modeling of the effect of soil water content changes on
mine signatures obtained with radar and thermal infrared sensors.

The objective ofthis study is to conduct field experiments at Socorro, New Mexico, to measure the impact of soil water content
changes on mine detection using ground penetrating radar and thermal infrared sensors. The measurements will be used to
validate our modeling results and to defme optimal environmental conditions to use these sensors.

2. MODEL OF RADAR RESPONSE

The radar response from a soil and land mine depend on a number of soil properties such as bulk density, specific density of
the soil particles, texture, volumetric water content, temperature, and radar frequency. Using a collection of models from the
literature we can determine whether or not field conditions are suitable for use of GPR for detection of an antitank As
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a GPR signal travels through the soil, it is attenuated at a rate determined by the complex dielectric constant ofthe soil. The
round trip attenuation loss (AL) is given by

Attenuation Loss=17.3718da (1)

where d is the depth to the object from which the GPR signal is reflecting and ais

(2)

where

(3)

and

c/ = [//iia]1/a

where PB is the density ofthe soil particles, P5 is the bulk density ofthe soil, c,is the dielectric constant of soil particles,

Cs 5 the dielectric constant of bulk soil, 0 is the volumetric water content, fis the frequency, Cfr is the dielectric constant of
free water and a is a constant (0.65).

13' = 127.48-0.519S-0.152C (5)

1" = 1.33797-0.603S-0.166C (6)

where S is the fraction of sand particles and C is the fraction ofthe clay particles.
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where e0 is the dielectric permittivity of free space, c0 is the static dielectric constant ofwater, c is the high
frequency limit of e , and is the relaxation time of water.

A second factor that determines the performance ofthe GPR for land mine detection is the strength of signal
reflection when it reflects back from the landmine. The reflection loss (RL) is given by

Reflection Loss = — 10 log ri2 (9)
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where

r " m
(10)

where is the dielectric constant for the bulk soil, and Cm i5 the dielectric constant of mine.

The reflection coefficient depends on the difference between dielectric constants ofthe mine and the soil. As these constants
approach each other, the strength ofthe reflected wave goes to zero, and the mine becomes invisible.

The mathematical models described here have been integrated into a MATLAB package that can be used to predict the
performance of ground penetrating radar systems under field conditions. The necessary input data consists of the soil texture
(in the form of sand and clay fractions), the bulk soil density, and the volumetric soil water content.

3. THERMAL SIGNATURE OF LANDMINE

DePersia et al.6 reported on thermal signatures in areas with land mines. They pointed out that the localized thermal
variances ofthe soil are generated by the buried landmines because landmines impact the soil moisture distribution and heat
capacity as well as cause a surface disturbance during burning the mine. The major principle ofthermal infrared sensors for
mine detection is based on detecting localized temperature differences introduced by the mines.

4. METHODS AND MATERIALS

Study Site
Two study sites were located in the Sevilleta National
Wildlife Refuge near Socorro NM. A sand site was located
near the Rio Salado sand dunes. The sand had a composition
of 95% sand and 5% clay. The silt site was located close to
the Rio Salado. The soil was classified as a silt loam with a
composition of 10% sand, 1 5%clay, and 75% silt. At each
ofthese sites we buried an antitank mine (Figure 1). During
dry, intermediate and saturated field conditions, thermal
images, GPR profiles , and water content profiles were
recorded. Figure 1 : Inert Antitank Mines (0.3 m diameter).

Equipment
We used a ground penetrating radar (pulseEKKO 1000) system manufactured by Sensors and Software Ltd, Canada. We
chose the 900 MHz antenna with an antenna separation of 0.170 cm. For data collection we used a step size of 2.5cm,
reflection mode survey type, and 64 stacks at each point. This provided sufficient spatial resolution to locate the mines.
When we processed the data we set our gains to automatic gain control (AGC), did not use any time or spatial filters, and set
our trace correction to the DEWOW setting. The second system we used for the land mine location with was a
ThermaCAMTM SC3000. This JR-camera has a spectral range of 8-9 tm with thermal sensitivity of 0.03 °C at +30 °C and
uses a quantum well infrared photon detector.

Experiment
At each of this two sites we choose a 2 meter by 2 meter study area. Inside the study areas we constructed a wooden frame
with dimensions of 1 meter by 2 meter. The frame was used to house the target mines and provide a reference frame for the
thermal camera and the ground penetrating radar system (Figure 2, A). The frame has removable wooden crossbeams that
were used to guide the movement of the GPR. There was a centimeter scale on one of the beams that provided accuracy for
the GPR step size. Two target mines were buried inside the frame area and there location was recorded. We placed an
antitank mine 60 cm from the end and 50 cm from the side and an antipersonnel mine 40 cm from the end and 50 cm from
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the side (Figure 2, B). The antitank mine was buried at a depth of 1 1 cm and the antipersonnel mine was buried at adepth
of 5 cm from the land surface. We also placed a third mine outside of the wooden frame, which was used to observe soil
water content around the target mines. The soil water content was recorded using TDR probes that were placed around this
third mine. There were 4 TDR probes placed at 3, 8, 23, and 28 cm below the surface.

Figure 2: Field area with the ground penetration radar system at a frequency of 900 MHz and IR camera (A)
and geometry of antitank landmine installation (B).

For verification of the radar response model the site was irrigated with 33 cm amount of water. Before and after the water
application we measured volumetric water contents with time domain reflectometry, the radar signal with the GPR, and
thermal infrared images with IR-camera. The raw radar signals and IR images were analyzed using the software by Sensors
& Software Ltd, Canada and ThermCAMTM Researcher 2000 by FUR Systems, respectively.

4. RESULTS AND DISCUSSION

Modeling of Radar Response
We used the Eqs. (1) - (10) to evaluate the effect of soil texture and soil water content on the radar reflection from non-
metallic antitank land mine buried at a depth of 1 1 cm. Figure 3 shows the attenuation and reflection losses in a sand and
siltloam as a function of soil water content. Soil texture has a large impact on the losses which are smallest in the sand and
larger in the siltloam soil. Zero water content conditions yield acceptable radar results in both soils. Unfortunately, even a
small increase of water content to 3 or 1 0 volume percent will immediately result in a loss of signal strength to its lowest
level. The losses will decrease if the soil is wetted to a water content exceeding 1 5to 30 volume percent. In the sand and the
silt loam soil the losses remain quite constant at water contents exceeding 30 volume percent. It appears that watering of
mine fields or waiting for the rainy season is the best strategy for mine detection in sand and silt loam soils.

Figure 3 : Attenuation and reflection losses for sand and silt loam soils for an antitank mine buried at depth of 0. 1 1 m.

Losses as a Function of Water Content Losses as a Function of Water Content

Water Content
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Experimental Verification of Radar Response Model
The results ofthe watering experiment in the Sevilleta National Wildlife Refuge are presented in Figure 4. Unfortunately, a
large amount of precipitation wetted the normally dry sand soil to a volumetric water content of 7 volume percent.
Nevertheless, there is a clear trend which demonstrates that the radar response improves with increasing water content from 7
to 10 to 30 volume percent in sand site and 7 to 25 to 40 in silt loam site.

Thermal Infrared Images
The JR images with 7 volume percent water content (Figure 5) in the sand and silt loam sites were taken only 5 hours after
mine installation. In these images, soil above the mine is whiter which indicates a cooler temperature than the surrounding
area. This temperature effect is caused by the surface disturbance and is not representative for real mine fields.

The second two images were taken shortly after two days with precipitation and two weeks after mine installation. This time
the mine location is darker (warmer) than the surrounding area.

The last two images were obtained after saturating the sites with water, so that the area inside the frame is quite
homogeneous in terms ofthermal regime. Therefore, no mines are detected.

5. CONCLUSIONS

In this study we have explored the impact of soil water content on radar and thermal signatures in a sand and silt loam soil.
Our theoretical radar model predicted severe losses in the radar image at water contents between 2- 1 0 and 5-1 5 volume
percent in, respectively, a sand and silt loam soil. On the other hand at water contents exceeding 20 volume percent in the
sand soil and 30 volume percent in the silt loam soil the losses become minimal and a good radar signature is expected
(Figure 3). A qualitative assessment of the radar images obtained under field conditions (Figure 4) validates our theoretical
model. In the sand soil, radar images at water contents 7-11 volume percent were marginal while at 30 volume percent a clear
mine reflection was detected. In the silt loam soil, poor images were obtained at water contents 8-25 volume percent while a
clear mine reflection was detected at a water content around 40 volume percent. Therefore, our theoretical model appears to
work quite well for sand and silt loam soils. Since the theoretical model and our field observations have shown a clear
improvement of the radar signature of a land mine at higher soil water contents, we conclude that soil watering holds promise
for the enhancement of radar signatures in sand and silt loam soils.

The effect of soil water content on thermal images could not be evaluated properly due to inclement weather conditions.
However, it was observed that recently placed mines may be detected by the thermal response of the disturbed surface soil.
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