The RTSS Image Generation System

K. Alvermann and S. Graeber
Deutsche Forschungsanstalt fir Luft- und Raumfahrt
Institute of Flight Mechanics
Lilienthalplatz 7
38108 Braunschweig
Germany
E-Mail: alvermann, graeber@fm.bs.dlr.de

J.W.L.J. Mager and M.H. Smit
TNO Physics and Electronics Laboratory
Oude Waalsdorperweg 63
2509 JG The Hague
The Netherlands
E-Mail: Mager, Smit@fel.tno.nl

1. SUMMARY

Main market demands for the visual system of a simula-
tor are photorealism and low latency time. RTSS, a gen-
eral purpose image generation module developed within
the European ESPRIT project HAMLET, can meet these
demands through the use of High Performance Com-
puting technology. This technology provides the needed
communication and computing power. Moreover, by us-
ing parallel processing, the whole system is scalable, 1.e.,
the same software and hardware design can be used for
small, cheap systems, as well as for high-end view sim-
ulations. This allows an easy adaptation to the user’s
needs.

RTSS also includes an object and scenario editor imple-
mented on a work station, as well as filters to other object
data standards.

This paper will give an introduction to the soft- and hard-
ware design of RTSS. It will then present the features of
the system as well as the interfaces: the filters to import
external model data and the interfaces to the simulation
system itself.

2. RTSS

2.1 Overview

Within the context of the European ESPRIT Project
6290 HAMLET, TNO Physics and Electronics Labora-
tory (TNO-FEL, NL), Deutsche Forschungsanstalt fur
Luft- und Raumfahrt (DLR, D), and Constructiones
Aeronauticas (CASA, E) developed the Real-Time Sim-
ulation System (RTSS).

The work in the HAMLET project is done within the
framework of the ESPRIT program and partly funded
by the Commission of the European Communities. The
following companies form the HAMLET consortium:
AEG (D), CAP Gemini (F), CASA (E), DLR (D),
HITEC (GR), INESC (P), INMOS (GB), Parsytec (D),
Gabriel (GR), TNO (NL), and TU Munich (D).

The RTSS is a general purpose image generation mod-
ule. RTSS can be used by simulators, e.g., flight simula-
tors (see Fig. 1), and other man-in-the-loop applications
which require visual feedback.

a

Figure 1: The RTSS Concept

{ Helicopter Simulator

2
fe—

RTSS has to generate photo-realistic images in real-time.
To realize this, the underlying hardware has to provide a
high computation power. Moreover, the data bandwidth
needed to communicate the large data flows processed by
the RTSS places severe demands on the communication
power of the underlying hardware.

RTSS is designed to be scalable. If the demands of an ap-
plication are rather low, a small (and, therefore, cheaper)
system can be used. If the demands get higher, the RTSS
can be expanded to fulfil the growing requirements. Re-
quirements are the image rate and the latency time, as
well as features like shadow generation, anti-aliasing, and
the size of the database.

RTSS is divided into an off-line and an on-line part. The
off-line part consists of an interactive object and scenario
editor and filters to input data from known geometric
formats such as the MultiGen Flight format. The objects
and scenarios are stored in a database in a file system.

The on-line part inputs this database, i.e., data describ-
ing the geometry and appearance of objects, light pa-
rameters, image parameters, etc. RT'SS then outputs the
corresponding image. As a second task, RTSS contains
a collision detection module. This module checks the
moving objects for collisions and reports them back to
the application. During run-time, the application can
change almost all parameters, e.g., the position and ori-
entation of all objects and of the camera, light positions
and parameters, etc.

The interface to the application is a bi-directional chan-
nel. The application sends commands (parameters,
movement data, object changes, etc.) to the RTSS and
receives in turn the results of the collision detection.

Paper presented at the AGARD FVP Symposium on “Flight Simulation — Where are the Challenges?”,
held in Braunschweig, Germany, from 22-25 May 1995, and published in CP-577.

8-2

2.2 Requirements and Architecture

Using RTSS in man-in-the-loop applications leads to the
following main requirements

e real-time generation of images,

e an ergonomic image rate,

e a low latency time, and

e high resolution, photo-realistic images.

Since no restrictions in the movement of objects are ac-
ceptable, the images cannot be pre-calculated but must
be calculated in real-time. To guarantee a smooth move-
ment of objects in the image, the image rate must be
about 20-30 images per second (depending on the dy-
namics of the application). A low latency time is dictated
when RTSS is used in man-in-the-loop applications. The
time between the command of a user in the application
and the display of the corresponding image, i.e., the la-
tency time, should be below 100 milliseconds to prevent
motion sickness or severe timing differences between the
simulator and the real thing. The image must be realistic
enough to serve as a visual orientation. It should contain
shadows as a visual clue for the position of objects, a high
resolution, and anti-aliasing techniques should be used to
suppress edged lines and edged object boundaries.

The above requirements led to the following specifications
of the RTSS. For the off-line definition and construction
of objects, RTSS provides:

e an interactive, three dimensional scenario and object
editor;

e import of external model data (MultiGen, AutoCAD,
etc.);

e static and dynamic objects with several levels of de-
tail;

o hierarchic grouping of objects;

e objects are built up from points, lines, and planar
polygons;

e polygons can be textured,;

e multiple dynamic directional light sources.

During run time RTSS reports:
e collisions between objects on polygon level.

The following features are used for the resulting image:

o light reflection and emission using multiple light sour-
ces and several lighting models;

e shadow generation;

e anti-aliasing and depth cueing (fog simulation).

The performance specifications are:

o true colour (i.e., 24bit) images at high resolutions;
e 25 images per second,;
e a latency time of 80 milliseconds.

2.3 Architecture

RTSS is decomposed into three subsystems, correspond-
ing roughly to the three companies involved in its devel-
opment: the Scenario Creation (CASA), the Simulation
Execution (DLR), and the Image Generation (TNO) sub-
system (see Fig. 2.)

The Scenario Creation subsystem (see chapter 3) is the
off-line part of the RT'SS and includes the scenario editor,
the object editor, and the external model data import
module. The resulting scenarios are stored in files to be
loaded by the on-line part of the RTSS.

The Simulation Execution subsystem (see chapter 4)
loads the scenario, handles the communication with the

application and the database. It converts the object data
into primitives (points, lines, faces, and shadow faces)
which are sent to the Image Generation subsystem.

The Image Generation subsystem (see chapter 5) pro-
duces the image from the primitives supplied by Simula-
tion Execution. Textures are mapped onto the appropri-
ate polygons, the polygons are scanned line by line, and
the lines are rendered into an image buffer. Shadows are
added and anti-aliasing techniques are used for the final
image.

The on-line part of the RTSS is designed to be scalable.
Computational intensive processes (e.g., database han-
dling, scan conversion, texture mapping, shadow gener-
ation) are dome in parallel. The number of parallel pro-
cesses 1s variable and determines the power of the system.

Simulation
Execution

Scenario
Creation

Image
Generation

\
Display
Device

v
User Application

Figure 2: RTSS Architecture

3. SCENARIO CREATION

Before a simulation can be executed, the scenario of this
simulation has to be defined using the scenario creation
tools. These tools provide means to import object models
from external modellers, to edit the characteristics of the
objects contained therein, and to edit the scenario itself.
Scenario creation is done off-line on a host computer.

3.1 Import Filters

The import filters provided in RTSS enable a user to
import geometric object models created by existing com-
mercial modellers. The imported model data is converted
into the internal format used by RTSS keeping as much of
the semantics of the model as possible. Currently, RTSS
supports models made using MultiGen in the Flight for-
mat as well as AutoCAD.

3.2 Object Editor

The user can interactively modify the visunal character-
istics of an object using a built-in object editor. This
editor consists of two parts: a material editor and a tex-
ture editor. The material editor can be used to combine -
several characteristics of materials. A material defines
transparency, lighting type (emitter or reflector), shad-
ing type (Flat, Gouraud, or Phong), and reflection coef-
ficients for ambient, diffuse, and specular lighting. In the
texture editor, the user can change the material of each
surface of an object and apply textures to these surfaces.

3.3 Scenario Editor

Using the scenario editor, the user finally specifies the
scenario contents. It contains the initial position of the
elements (assemblies, cameras, and light sources) in the
scene. An assembly is a hierarchically organized set of ob-
jects with fixed relative positions. For an assembly, the
user can specify whether it is shadow casting and visible
or not and its collision detection list. During simulation,

the assembly is tested for collision with all assemblies
identified in this list. The user can define the type of a
light source (ambient or directional) and the values cor-
responding to this type. For a camera, a user can define
its aperture angle, view direction, and clipping planes.
Most of the properties of the elements can be changed
during run time. Therefore, the scenario editor enables
a user to specify whether during simulation changing the
properties is allowed (element type is dynamic) or disal-
lowed (element type is static). Apart from the properties
of the elements, the scenario also contains global informa-
tion, so-called session parameters. These include param-
eters for the lighting model, screen resolution, depth cue-
ing, background colour, initial camera, and settings for
switching on/off edge anti-aliasing, texture anti-aliasing
and shadow generation. The depth cueing parameters as
well as the background colour can be changed during run
time. While defining the scenario, the user can inspect
the scene using a 3-D viewer. This shows the scene from
a global view point or from the view point of the initial
camera. In this scene icons indicate the position of light
points and cameras.

4. SIMULATION EXECUTION

The Simulation Execution subsystem is responsible for
the interface to the application and the handling of the
database. The individual modules of the subsystem are
shown in Fig. 3.

O

Communication Matrix Visibility
Handler Calculation Check

Collision Geometry Geometry
Detection Handler Handler

Figure 3: Structure of Simulation Ezecution

4.1 Interface to Application

The interface to the application is a bi-directional chan-

nel. At the begin of a run, the application sends the name

of the scenario to be used, which is then loaded from files

(thus, not through the application). During run time,

the application sends commands. Commands are:

¢ parameter changes: lights, background colour, depth
cueing;

e camera changes: position, orientation, parameters;

e movement data: position, orientation, and scale of ob-
jects;

e object data: colour and material of objects;

e collision detection: which object pairs are checked for
collisions.

Commands have to be issued in a specific protocol. There

1s no restriction on the timing of the commands, since

the reception is decoupled from the rest of the system.

Therefore, they may be sent at any time.

RTSS in turn sends back the result of the collision detec-

tion. Collision detection, and thus the feedback, can be

switched off it it is not needed.

8-3

4.2 Collision Detection

The Collision Detection module is an optional part of
the RTSS. It detects overlapping geometries of objects on
polygon level, i.e., the module reports polygons of differ-
ent objects that intersect each other. For each assembly
it can be specified with which other assemblies collisions
are checked. This can be used to reduce computation to
the interesting objects (one space ship making contact
with another) and to avoid unnecessary collision reports
which will occur in any case (a car moving on the street).
Collision Detection is decoupled from the rest of the sys-
tem (for input as well as output), i.e., the reports to the
application are not coupled to the frame rate.

4.3 Database

The whole database is distributed over a number of pro-
cessors, the Geometry Handlers. During a frame the Vis-
ibility Check issues object identifiers of visible objects
and shadow casting objects to the respective Geometry
Handler. Objects not visible in the image or not cast-
ing a visible shadow are discarded as early as possible.
The Geometry Handler converts the object into primi-
tives (points, lines, faces, and shadow faces), transforms
these primitives to the correct coordinate system, and
clips them against the view volume. The lighting model
is evaluated for vertices and faces. For shadow casting
objects shadow volumes are calculated and decomposed
into shadow faces. All primitives are collected in a buffer
and broadcasted over a bus to the Image Generation sub-
system upon a system synchronization signal. For details
of the algorithms see [1].

The number of the Geometry Handlers is a parameter of
the system design. Systems using small databases need
only one or two Geometry Handlers, while systems using
big databases can use many. The number is not limited
by software or hardware restrictions.

Pixel Pixel e
Processor Processor

Pixel
Processor

Figure 4: Structure of Image Generation

5. IMAGE GENERATION

5.1 Operating Principle

The output image of RTSS is divided into a number of
horizontal scan lines, each of which is divided into a num-
ber of pizels, thus forming a rectangular raster. The Im-
age Generation process is responsible for the determina-
tion of the colour of every individual pixel. This is based
upon the render primitives, which are the output of the
Simulation Execution subsystem (see chapter 4). First,
all the render primitives are rendered in the frame buffer.
Then all the shadow face descriptions are processed into
a separate shadow buffer. Finally, the frame and shadow
buffer are merged into the final image buffer. If there are
no shadows present in the scenario, the last two stages
are skipped and the frame buffer is considered to be the
image buffer.

8-4

5.2 Parallel Processing

The computations involved in Image Generation are the
most time consuming of RTSS. Therefore, an efficient
way of decomposing this process into parallel tasks is re-
quired. The decomposition of Image Generation is shown
in Fig. 4

The output image is divided across the processors execut-
ing Image Generation (these processors are called Pizel
Processors) in a scan line interleaved fashion. Suppose
the number of pixel processors to be N. Pixel processor
i (with i < N) ‘owns’ scan line i and then i+ N and so
on. This way, every pixel processor has roughly the same
number of scan lines (and therefore pixels) to compute,
thus guaranteeing a uniform workload.

The primitives are received via a bus to which all Pixel
Processors, as well as the Geometry Handlers, are con-
nected. After every Pixel Processor has finished, the
partial images are gathered in the video memory of the
Colour Graphics Display for display. This gathering is
done across the same bus. The number of Pixel Proces-
sors can be adapted to the required performance of the
system. It is not limited by software or hardware restric-
tions.

5.3 Algorithms

Visible priority of occluding primitives (also called Hid-
den Surface Elimination, HSE) is treated using the z-
buffer algorithm. Almost all major visual systems use
this (or adaptations of it) for HSE. The algorithm has
the advantages that it is

o Independent of the order in which the primitives are
treated. This is of particular importance in the RTSS
case, because a global priority ordering of the prim-
itives (which would be needed otherwise) can not be
performed by the Geometry Handlers (when imple-
mented on more than one processor). Therefore, this
ordering would have to be executed by the Pixel Pro-
cessors, which is are already heavily loaded with work.

e Capable of handling all sorts of render primitives.

To prevent disturbing noise in the image, two forms of
anti-aliasing have been applied:

e Lines and the edges of polygons are smoothened using
the a-buffer algorithm, described in [2]. This tech-
nique filters the well known ‘staircase jaggies’. We
have chosen this method from a number of alterna-
tives, because it is suited for a z-buffer set-up, only
uses extra computing power for filtering of the edges,
is independent of the sub-pixel resolution unsed, and
does not require a major amount of extra memory.

o A technique called mipmapping is used to filter the in-
side of teztures. Almost all commercial visual systems
which incorporate texture anti-aliasing use mipmap-
ping. Refer to [3] for details on this technique.

6. HARDWARE

The demands for the on-line part in terms of calculation
power, communication bandwidth, and scalability, are
satisfied by using parallel processing. To guarantee a long
life cycle and easy expandibility the hardware developed
inside the HAMLET project was used. The processor is

a PowerPC connected to a T425 transputer for communi-
cation. However, the bandwidth needed to transport the
primitives and the image cannot be met by transputer
links. Therefore, a special bus system called Transputer
Image Processing (TIP) bus is used.

6.1 Processors

The processor board TPM-MPC is equipped with a Pow-
erPC 601 processor running at 80 MHz. An INMOS T425
transputer running at 30 MHz is used for communication
along the 4 transputer links operating at 20 Mbit/s. The
transputer is equipped with 4 Mb of local memory and
shares 16 Mb of memory with the PowerPC. Using the
transputer links, these boards can be connected in any
kind of network. The PowerPC and the transputer are
programmed in C using the PowerTools which are an ex-
tension of the INMOS C toolset.

6.2 Communication

The high communication demands required by the com-
munication of the primitives (see section 4.3) and the
image (see section 5.2) cannot be met by using the trans-
puter links (about 2 Mb/s): a 512 x 512 true colour im-
age with 25 images/s needs a bandwidth of 25 Mb/s; the
respective 1024 x 1024 images needs 100 Mb/s. Addi-
tionally, the primitives are broadcasted over the bus.

The demands are satisfied using the TIP-Bus. This bus
provides the hardware to transfer data from the local
memory of one processor to that of another. The bus is
32 bit wide and has a peak bandwidth of 120 Mb/s. The
bus architecture allows point-to-point communication as
well as data broadcasting and gathering (which.is needed
to distribute the primitives to all Pixel Processors and to
gather the partial images on the Display Processor). If
necessary, the bus can be divided into several segments
working in parallel.

The TIP-MPC boards are equipped with a PowerPC 601
operating at 80 MHz, an INMOS T425 transputer run-
ning at 25 MHz as the bus controller, 16 Mb of shared
memory, and 2 Mb of video memory, which is the in-
terface to the bus. Any number of these boards can be
connected to one bus.

Special interface boards are available to connect the TIP-
Bus to display systems or cameras. RTSS uses the Colour
Graphics Display. The CGD is equipped with an INMOS
T805 transputer and a video chip to drive a display de-
vice.

The CGD is also programmed in C using the PowerTools.
The TTP-Bus can either be programmed directly or using.
a special language called TIP-Set.

7. REFERENCES

1. Toley, J.D.; van Dam, A.; Feiner, S.K.; Hughes, J.F,
“Computer Graphics”, Addison-Wesley Publishing
Company, Second Edition, 1990.

2. Carpenter, L., “The A-buffer, An Antialiased Hid-
den Surface Method”, Computer Graphics Vol. 18,
No. 3, July 1984 (SIGGRAPH 84).

3. Williams, L., “Pyramidal Parametrics”, Computer
Graphics Vol. 17, No. 3, July 1983 (SIGGRAPH 83).

