
8-

The R.[SS Image Generation SYstem

K. Alvermann and S. Graeber
Deutsche Forschungsanstalt für Luft- und Raumfahrt

Institute of Flight Mechanics
LilienthalPlatz 7

38l08lraunschweig

E-Mail: alvermann, graeber@fm.bs'dlr'de

J.W.L.J. Mager and M.H' Smit
TNO Physics and Electronics Laboratory

Oude WaalsdorPerweg 63

2509 JG The llague
The Netherlands

E-MaiI: Mager, Smit@fel'tno'nl

1. SUMMARY
Main market demands for the visual system of a simula-

tor are photorealism and low latency time. RTSS, a' gen-

eral purpose image generation module developed within

the European ESPRIT project IIAMLET, can meet these

demands through the use of High Performance Com-

puting technology. This technology provides the needed

communication and computing power. Moreover, by us-

ing parallel processing, the whole system is scalable, i'e',

the same so{twa¡e and hardwa¡e design can be used for

small, cheap systems, as well as for high-end view sim-

ulations. This allows an easy adaptation to the user's

needs.

RTSS a.lso includes an object and scena¡io editor imple-

mented on a work station, as well as filters to other object

data standards.

This paper will give an introduction to the soft- and hard-

wa.re design of RTSS. It will then present the features of

the system as well as the interfaces: the filters to import
external model data and the interfaces to the simulation

system itself.

2. RTSS

2.1 Overview
Within the context of the European ESPRIT Project

6290 HAMLET, TNO Physics and Electronics Labora-

tory (TNO-FEL, NL), Deutsche Forschungsanstalt für

Luft- und Raumfahrt (DLR, D), and Constructiones

Aeronauticas (CASA, E) developed the Real-Time Sim-

ulation System (RTSS).

The work in the HAMLET project is done within the

framework of the ESPRIT program and partly funded

by the Commission of the European Communities' The

following comPanies form itrm:

AEG (D), CAP Gemini (D)'

HrTEC (cR), INESC (P), (D),

Gabriel (GR), TNO (NL),

The RTSS is a general purpose image generation mod-

ule. RTSS can be used by simulators, e.g', flight simula'-

tors (see Fig. 1), and other man-in-the-loop applications

which require visual feedback.

Figure 7: The RTSS ConcePt

RTSS has to generate photo-realistic images in ¡eal-time'

To realize this, the underlying hardware has to provide a

high computation power. Moreover, the data bandwidth

n""d"d to communicate the la.rge data flows processed by

the RTSS places severe demands on the communication

power of the underlYing hardware.

RTSS is designed to be scalable.

plication are rather low, a small

system can be used. If the dema

ca.n be expanded to fulfil the gr

quirements are the image rate and the latency time, as

well as features like shadow generation, anti-aliasing, and

the size of the database.

RTSS is divided into an off-line and an on-line part' The

ofi-line part consists of a'n interactive object and scenario

editor and filters to input data from known geometric

formats such as the MultiGen Ftight format' The objects

and scenarios are stored in a database in a file system'

The on-line part inputs this database, i'e', data describ-

ing the geometry and appearance of objects, Iight pa-

rameters, image parameters, etc' RTSS then outputs the

corresponding image' As a second task, RTSS contains

a collision detection module. This module checks the

moving objects for collisions and reports them back to

the applica.tion. During run-time, the application cân

.ho.g" almost all parameters, e.8., the position and ori-

entation of all objects and of the camera, light positions

and parametets, etc.

The interface to the a.pplication is a bi-directional chan-

nel. The application sends commands (pa'rameters,

movement data, object changes, etc.) to the RTSS and

receives in turn the results of the collision detection'

\-

paper presented at the AGARD FVP Symposium on "Flight simulation.- .where 
are the challenges?"

held in Braunsiä"¡}, G"r^oiy, from 22-25 Mav 1995, and published in CP-577.



8-2

2.2 Requirements and Architecture
Using RTSS in man-in-the-loop applications leads to the
following main requirements

¡ real-time generation of images,
. an ergonomic image rate,
o a low latency time, and
r high resolution, photo-realistic images.

Since no ¡estrictions in the movement of objects are ac-

ceptable, the images cannot be pre-calculated but must
be calculated in real-time. To guarantee a smooth move-
ment of objects in the image, the image ¡ate must be

about 20-30 images per second (depending on the dy-
namics of the application). A low latency time is dictated
when RTSS is used in man-in-the-loop applications. The
time between the command of a user in the application
and the display of the corresponding image, i.e., the la-
tency time, should be below 100 milliseconds to prevent
motion sickness or severe timing diffe¡ences between the
simulato¡ and the real thing. The image must be realistic
enough to serve as a visual orientation. It should contain
shadows as a visual clue fo¡ the position of objects, a high
resolution, and anti-aliasing techniques should be used to
suppress edged lines and edged object boundaries.

The above requirements led to the following specif.cations
of the RTSS. For the of-line definition and construction
of objects, RTSS provides:

¡ an interactive, three dimensional scena¡io and object
editor;

o import of exte¡nal model data (MultiGen, AutoCAD,
etc.);

o static and dynamic objects with several levels of de-
tail;

o hiera¡chic grouping of objects;
o objects are built up from points, lines, and planar

polygons;
r polygons can be textured;
o multiple dynamic directional light sources.

During run time HISS reports:

¡ collisions between objects on polygon level.

The following features are used for the resulting image:

r light reflection and emission using multiple light sour-
ces and several lighting models;

o shadow generation;
o anti-aliasing and depth cueing (fog simulation).

The performance specifications are;

o true colour (i.e., 24bit) images at high resolutions;
r 25 images per second;
r a latency time of 80 milliseconds.

2.3 Architecture
RTSS is decomposed into three subsystems, correspond-
ing roughly to the three companies involved in its devel-
opment: the Scenario Creation (CASA), the Simulation
Execution (DLR), and the Image Generation (TNO) sub-
system (see Fig. 2.)

The Scenario Creation subsystem (see chapter 3) is the
ofi-line part of the RTSS and includes the scena¡io editor,
the object editor, and the external model data import
module. The resulting scenarios are stored in files to be
Ioaded by the on-line part of the RTSS.

The Simulation Execution subsystem (see chapter 4)

loa.ds the scenario, handles the communication with the

application and the database. It converts the object data
into primitives (points, lines, faces, and shadow faces)

which are sent to the Image Generation subsystem.

The Image Generation subsystem (see chapter 5) pro-
duces the image from the primitives supplied by Simula-
tion Execution. Textu¡es are mapped onto the appropri-
ate polygons, the polygons are scanned line by line, and

the lines are rendered into an image buffer. Shadows are

added and anti-aliasing techniques a¡e used fo¡ the final
image.

The on-line part of the RTSS is designed to be scalable.

Computational intensive processes (e.g., database han-
dling, scan conversion, texture mapping, shadow gener-

ation) are done in parallel. The number of parallel pro-

cesses is variable and determines the power of the system.

Fig,ure 2: RTSS Architecture

3. SCENARIO CREATION
Befo¡e a simulation can be executed, the scenario of this
simulation has to be defined using the scenario creation
tools. These tools provide means to import object models

from external modellers, to edit the cha¡acteristics of the

objects contained therein, and to edit the scenario itself.
Scenario creation is done off-line on a host computer.

3.1 Import Filters
The import flúers provided in RTSS enable a user to
import geometric object models created by existing com-

me¡cial modellers. The imported model data is converted
into the internal format used by RTSS keeping as much of
the semantics of the model as possible. Currently, RTSS

supports models made using MultiGen in the Fìight for-
mat as well as AutoCAD.

3.2 Object Editor
The use¡ can interactively modify the visual character-

istics of an object using a built-in object editor. This
editor consists of two parts: a material editor and a tex-

ture editor. The material editor can be used to combine

seve¡al characteristics of ma.terials. A mate¡ial defines

transparency, lighting type (emitter o¡ reflecto¡), shad-

ing type (Flat, Gouraud, or Phong)' and reflection coef-

ficients for ambient, diffuse, and specular lighting. In the

textu¡e editor, the user can change the material of each

su¡face of an object and apply textures to these sutfaces'

3.3 Scenario Editor
Using tàe scenario editor, lhe user finally specifies the

scenario contents. It contains the initial position of the

elements (assemblies, caÍneras, and light sources) in the

scene. An assembly is a. hierarchically organized set of ob-

jects rvith frxed relative positions. For an assembly, the

user can specify rvhether it is shadow casting and visible

or not and its collision detection list. During simulation,



the assembly is tested for collision with all assemblies
identified in this list. The user can define the type of a
light source (ambient or directional) and the vaìues cor-
responding to this type. For a camera, a user can define
its aperture angle, view direction, and clipping planes.
Most of the properties of the elements can be changed
during run time. Therefore, the scenario editor enables
a user to specify whethe¡ during simulation changing the
properties is allowed (element type is dEnarnic) or disal-
lowed (element type is súaúic). Apart from the properties
of the elements, the scenario aìso contains global informa-
tion, so-called session pararneters. These include param-
eters for the lighting model, screen resolution, depth cue-
ing, background colour, initial came¡a, and settings for
switching on/off edge anti-aìiasing, texture anti-aliasing
and shadow generation. The depth cueing parameters as
well as the background colour can be changed during run
time. While defining the scenario, the user can inspect
the scene using a 3-D viewer. This shows the scene from
a global view point or from the view point of the initial
camera. In this scene icons indicate the position of light
points and camer:Ls.

4. SIMULATION EXECUTION
The Simulation Execution subsystem is responsible for
the interface to the application and the handling of the
database. The individual modules of the subsystem are
shown in Fig. 3.

Communication

Handler

Figure 3: Structure of Simulation Execution

4.1 Interface to Application
The interface to the application is a bi-di¡ectional chan-
nel. At the begin of a run, the application sends the name
of the scenario to be used, which is then loaded from files
(thus, not through the application). During run time,
the application sends commands. Commands are:
o parameter changes: lights, background colour, depth

cuerng;
. camera changes: position, orientation, parameters;
r movement data: position, orientation, and scale of ob-

jects;
r object data: colou¡ and material of objects;
o collision detection: which object pairs are checked for

collisions.

Commands have to be issued in a specific protocol. There
is no restriction on the timing of the commands, since
the reception is decoupled from the rest of the system.
Therefore, they may be sent at any time.
RTSS in turn sends back the result of the collision detec-
tion. Collision detection, and thus the feedback, can be
switched off it it is not needed.

8-3

4.2 Collision Detection
The Collision Detection module is an optional part of
the RTSS. It detects overlapping geometries of objects on
polygon level, i.e., the module reports polygons of differ-
ent objects that intersect each other. Fo¡ each assembly
it can be specified with which other assemblies collisions
a¡e checked. This can be used to reduce computation to
the interesting objects (one space ship making contact
with another) and to avoid unnecessary collision reports
which wiÌì occur in any case (a car moving on the street).
Collision Detection is decoupled from the rest of the sys-
tem (for input as well as output), i.e., the reports to the
application are not coupled to the frame rate.

4.3 Database
The whole database is distributed ove¡ a number of pro-
cessors, the Geometry Handlers. During a frame the l/is-
ibility Check issues object identifie¡s of visible objects
and shadow casting objects to the respective Geometry
Handler. Objects not visible in the image or not cast-
ing a visible shadow are discarded as early as possible.
The Geometry Handler converts the object into primi-
tives (points, lines, faces, and shadow faces), transforms
these primitives to the correct coo¡dinate system, and
clips them against the view volume. The lighting model
is evaluated for vertices and faces. For shadow casting
objects shadow volumes are calculated and decomposed
into shadow faces. AII primitives are collected in a bufrer
and broadcasted over a bus to the Image Generation sub-
system upon a system synchronization signal. For details
of the algorithms see [1].
The numbe¡ of the Geometry Handlers is a parameter of
the system design. Systems using small databases need
only one or two Geometry Handlers, while systems using
big databases can use many. The numbe¡ is not limited
by software or ha¡dwa¡e restrictions.

Figure 4: Structure of Image Generation

5. IMAGE GENERATION
5.1 Operating Principle
The output image of RTSS is divided into a number of
horizontal scan lines, each of which is divided into a num-
ber of pixels, thus forming a rectangular ¡aste¡. The Im-
age Generation plocess is responsible for the determina-
tion of the colou¡ of every individual pixel. This is based
upon the render prámitiaes, which are the output of the
Simulation Execution subsystem (see chapter 4). First,
all the render primitives are rende¡ed in the Jrame buffer.
Then all the shadow face descriptions are processed into
a separate shadow buffer. FinaIly, the frame and shadow
bufer are merged into the fr.naI image buffer. Iî. there a¡e
no shadows present in the scenario, the last two stages
are skipped and the frame buffer is considered to be the
image buffer.



8-4

5.2 Parallel Processing
The computations involved in Image Generation are the

most time consuming o{ RTSS. Therefore, an efficient

way of decomposing this process into parallel tasks is re-

quired. The decomposition of Image Generation is shown

in Fig. 4

The output image is divided ac¡oss the processors execut-

ing Image Generation (these processors are called Piøel

Processors) in a scan line interleaued fashion. Suppose

the number of pixel ptocessors to be -lú' Pixel processor

i (with i < N) 'owns' scan line r and then i * N and so

on. This way, evety pixel processor has roughly the same

number of scan lines (and therefore pixels) to compute,

thus guaranteeing a uniform workload.

The primitives are received via a bus to which all Pixel

Processors, as well as the Geometry Handlers' are con-

nected. After every Pixel Processor has finished, the

partial images are gathered in the video memory of the

Colour Graphics Display for display. This gathering is

done across the same bus. The number of Pixel Proces-

sors can be adapted to the required performance of the

system. It is not limited by software or hardware ¡estric-
tions.

5.3 Algorithms
Visible priority o{ occluding primitives (also called Hid-
den Surface Elimination, HSE) is t¡eated using the z-

bu'¡fer algorithm. Almost all major visual systems use

this (or adaptations of it) for HSE. The algorithm has

the advantages that it is

r Independent of the order in which the primitives are

t¡eated. This is of particular importance in the RTSS

case, because a global priority ordering of the prim-

itives (which would be needed otherwise) can not be

performed by the Geometry Handlers (when imple-

mented on more than one processor). Therefore, this

ordering would have to be executed by the Pixel Pro-

cessors, which is are already heavily loaded with work.

r Capable of handling all sorts of render primitives'

To prevent disturbing noise in the image, two forms of
anti-aliasing have been applied:

¡ Lines and the edges of polygons are smoothened using

the a-buffer algorithm, described in [2]' This tech-

nique filters the well known 'staircase jaggies'' We

have chosen this method from a number of alte¡na-

tives, because it is suited for a z-buffer set-up, only

uses extra computing power for filtering of the edges,

is independent of the sub-pixel resolution used, and

does not require a major amount of extra memory'

r A technique called mipmapping is used to filter the in-

side of testures. Almost all commercial visual systems

which incorporate texture anti-aliasing use mipmap-
ping. Refer to [3] for details on this technique.

6. HARDWARE
The demands for the on-line part in terms of calculation
power, communication bandwidth, and scalability, are

satisfied by using parallel processing' To guarantee a long

Iife cycle and easy expa.ndibility the hardware developed

inside the HAMLET project was used. The processor is

a PowerPC connected Io a'1425 transputer for communr-

cation. However, the bandwidth needed to transport the

primitives and the image cannot be met by transputer

links. Therefore, a special bus system called Transputer

Image Processing (TIP) bus is used.

6.1 Processors
The processor board TPM-MPC is equipped with a Pow-

erPC 601 processor running at 80 MHz. An INMOS T425

transputer running at 30 MHz is used for communication

along the 4 transpirter links operating at 20 Mbit/s' The

transputer is equipped with 4 Mb of local memory and

sha¡es 16 Mb of memory with the PowerPC. Using the

transputer links, these boards can be connected in any

kind of network. The PowerPC and the transputer are

programmed in C using the PowerTools which ale an ex-

tension of the INMOS C toolset.

6.2 Communication
The high communication demands required by the com-

munication of the primitives (see section 4.3) and the
met by using the trans-
2 x 5t2 true colour im-
dwidth of 25 Mb/s; the

eeds 100 Mb/s. Addi-

tionally, the primitives a¡e broadcasted ove¡ the bus'

The demands are satisfied using the TIP-Bus' This bus

provides the hardware to transfe¡ data from the local

memory of one processor to that of anothe¡' The bus is

32 bit wide and has a peak bandwidth of 120 Mb/s' The

bus architecture allows point-to-point communication a's

well as data broadcasting and gathering (which,is needed

to dist¡ibute the primitives to all Pixel Processors and to

gather the partial images on the Display Processor)' If
necessary, the bus can be divided into several segments

working in parallel.

The TIP-MPC boards are equipped with a PowerPC 601

operating at 80 MHz, an INMOS T425 transputer run-

ning at 25 MHz as the bus controller, 16 Mb of shared

memory, and 2 Mb of video memoly' which is the in-

terface to the bus. Any number of these boards can be

connected to one bus.

Special interface boa¡ds are available to connect the TIP-
Bus to display systems ol cameras. RTSS uses the Colour

Graphics Disptay' The CGD is equipped with an INMOS

T805 transputer and a video chip to drive a display de-

vice.

The CGD is also programmed in C using the PowerTools'

The TIP-Bus can either be programmed directly or using'

a special language called TIP-Set.

7. REFERENCDS

1. Foley, J.D.;van Dam, A.; Feiner, S.K.; Hughes, J'F',

"Computer Graphics", Addison-Wesley Publishing

Company, Second Edition, 1990.

Carpenter, L., "The A-bufrer, An Antiatiased Hid-

den Surface Method", Computer Graphics Vol' 18'

No. 3, July 1984 (SIGGRAPH 84).

Williams, L., "Pyramidal Parametrics", Computer

Graphics Vol. 17, No. 3, July 1983 (SIGGRAPH 83)'

)


