
I
4,
ti

f
i;'4
I.

la

Persistent Graphical Objects in Procol

Peter van Oosterom and Chris Laffra

Department of Computer Science, University of Leiden
P.O. Box 9512,2500 RA læiden, The Netherlands

Email: {oosterom,laffra} @hlerulSi.bitnet

P¿rsistenl objects orz objcctt whoac co¡lcnte mag outlire lhc etccrlio¡ limc oJ lÁc program.
This popcr describcs thc procese of inhtducing pcrsislenl objccls in lhe oöjecl-oricnled pm-
gramming løngaagc Procol. Thc alnnglh ol pcrsislenl objecls in on objccl-orienled pro-
grumming langrogc h lhe inlegmlion of t døtabaæ tyslcm wilh d programming langrage.
Pcraisl¿nl objcck mølcc lhc pmgnm dcvclopmenl catie4 becatse lhc progmmmcr doca nol
høae lo implcmcnl lhe ctplicil loadiag ønd uaing ol dø!a. Bceidæ lhc geacral faaclional
aapecls, cpeciol ollealioa ic paid lo graphicdl applicdlions in orler lo dcal wili lhcir epccifc
geomctric rtçtiremcale. For ctdmplc, il mu¿t bc potdblc lo fnd, in aa cficieal mo'nacr, dll
grdphical objccls lhø! lall wilhia a gfuen rcgion. Theec hutct, pcnillea! objccls ønd lhcir
gcomclric rtqrirtmenh, hav¿ nol gel gol lhc all¿nlio¡ lhcy dcænte i¡ lhc lilc'ulun couríng
objcct-oricnlal gmphical eydcmt uhcn modeling and funclioaal atpeck domíaalc.

fntroduction

; ,tem, can be modeled with inheritence or delegation

.which a¡e preeent in many object-oriented develop-
ment environments. Geomet¡ic data typee, such aE

In this paper we describe ¡ ¡olution that i¡ ba¡ed on
the int¡oductioo of pcrûldcnl objecta in the object-
o¡iented programming language called Procol. ¡{, de-
tailed functional description of the C-ba¡cd language
P¡ocol can be found in [van den Bos 89] and eome
implementation aspecte in þan den Boe atrd Laffr¡
E9l. The reeulting eyetem is Elso extend¿ble with new
(penietent) typee and operators. In itself this ap
proach ir not new a¡d ha¡ been desc¡ibed by eeveral
other authore [^A,tkinson aud Buneman 8?, Richard-
eon and Carey 89, Straw, Mellender and Riegel 891,

but we also t¡ied to ma.l¡e the ayetem suitable for
highly inlerøctiae and grcphical applications. Thie
goal ie achieved by putting emphasie on both time-
efficiency (offering techniques ¡uch as: navigation,
index st¡uctu¡eE, and parallelism) and the recogni
tion of multi-dimen¡ional data. As an example, not
only one dimensional, but also multi-dirnen¡ional in-
dex structu¡es are provided i¡ Procol. The empha-
¡is in thie document i¡ on the i¡clueion of pereistent
graphical objects in the syntax and semsrticg of Pre
col and on ite implicationa fo¡ the technical realiza
tion; e.g., how P¡ocol deab with problerna euch as

¡efereutial integrity cnd sssociative searching.

lfle will etate the problem a¡ea in eection 2 and de-
fine ou¡ general requiremente for persistence in an
objectoriented language in eection 3. lVe desc¡ibe

pointe, vectors and mat¡icee may be implemented by
ib¡tract data types using object clasees [Blate and
ftok 87, Cox 86, Dietrich et al. 89, Meyer 881. How-

to aupport the graphical application in an efficient

271

R¿rââ

I

ø

.lÈ

>.<
t¡-
>-<
lût
>--<

>--<

ifl >-<
dù9
><
slt

b 5. åld þ.ll¿lÉ r lr-

Figure l: A Geographic Information Syetem

eome straightforward attempte to provide a mecha-
niem for pereistent objecte in eection 4. Building on
this the following topics are diecuss€d in more de-
tail: ¡eferential integrity, (mul ti-dimensional) eearch
problemo, Procol exten¡ion alternatives and object
ineüances of diffe¡ent eizea in eectione 5 through 8,
reepectively. In eection I we preeent the solution ås
chæen in Procol. In nearly all the e€ction¡ the re
quirements of graphics play an important ¡ole. The
diecuseione are illuet,rated with examplee bas€d on
graphical ayeteme. Finally, e€ction l0 indicates ¡ome
topice where further reaea¡ch ie required.

2 The Need For Persistence

The computer science resea¡ch in the area of pro
gramming languagea emphasizee programming con-
structe and data structu¡es. One of the moet popular
paradigms is that of Abstract Data Types (ADTe).
Object-Oriented Programming Languages (OOPLs)
encapsulate thie paradigm in an elegant manner uB-
ing object typer to desc¡ibe the ÄDTe. Äccess f¡om
outeide to the data inside an object instancer ie only
poesible through the methode or proceduree defined
for that object type.

The data stored in data etructuree (or objecte) of a
running ptogram are in general volatile, that ie, as
Boon as the program etops, the d¿ta are lost. How-

lln thh domcnt wc rill u thc tem objccl l¡pc Lo in-
diotc ¡ du of objectr md thc ¿m oöjccl to indicrtc onc
imtmcc. In ue morc cmphæia i¡ needed wc u¡c the t¿m
o b j ccl ittltt c c explicitly,

plex, resulting ir poosibly int¡icate parsing. IllotÈ
over, for large quantitiee of data thi¡ "fi1e" ¡olutiq
becomes cumbe¡¡ome during the execution of thG
progrsm. Consider aa an exemple an info¡matio¡
syetem that regietere bank accounte. A cha¡æhrj
ietic of this and many other information eystemr i'
that the obþcte are well etructured, quite passivc

cnd occu¡ in large quantitiee. Paseive objects ¡¡
objects that hardly ever eend meesagea to other ob
jecte (except for replies); they only react to meseag€!

from outeide. In the bank eccount example, an aa
count object repliea ita curÌent amount when asted
for, and updatee it when told eo by e meesage from
an authorized object.

Databa¡e Management Systems (DBMS) have bec¡
developed to deal wilh the large amounte of dsts
mentioned above. DBMSg concentrate on the i
rnation repreaentation and tackle rel¿ted problen
euch as, integrity, eecurity, redundsncy, consistenci
efficient eearching, query formulation a¡rd

rency control. À major drawbscl is that the DBMS.
of the current generation ere not extendable
new data types and operstors. Thie maked the
of theee DBMSg inconvenient in non-standard
catione that need eupport for other deta typee.

The databa¡e ¡e¡¿¿rch community has recognized

thie deñciency a¡rd i¡ now trying to deaign systenr
that are more open þgenhofer and Frank 89,

ever, in many applications the data itself ate ve'
important. An obvioue eolution. is to,eave the dataú
a file by explicit write statements. The next ti¡ne
program ie etarted it firat reade the data from file ina
the volatile dat¿ structures. Persistent objects m"li
the program development ¡¡ore efficient, becaur¿
prog¡arnmet does not have to worry about the

munities result in a nice eymbiooie, .A,n exampleor
thi¡ ie that the concu¡¡ency control problem in thc

database ie eolved by the model of an object tbat

accepte messagea one by one (as in Procol),

ing and writing of data from and to diek. Aleo, thc-
structu¡e of the dat¿ file may become quite cq¡_{

braker a¡¡d Rowe, Wolf 891. /q,t the other eide tùe

OOPL regearch community haa recognized the need

for pereistent objecte. Now, theae tJo worlds mèei.

In eome cases these encountere ¡eeult in conflicüg bÈ

."u.. of very different and incompatible principlæ.
For example, explicit (navigation) links amongst ¡E-

ota¡¡ce¡ a¡e coneidered ha¡mful by ùhe database cor
munity, becaus€ they are ha¡d to maintain.
theee eam€ links form the backbone in
ing complex objecta in OOPLe. On the other hand,

eometiries the combination of the two research coÉ

GISg, Bee Figure l. C,ol

terns a¡e: interactivitY, ¡

of data, In [van Ooetert

ehowed tbat tbe object,
good data modeling and

applicationa' In the gaì

sistent objecte in ou¡ ol

laoguage Procol, was idt

3 Our Wish I

Thi¡ eection ehortly di
mente fo¡ pereietent objr
elabo¡ated in one of the
the eection referred ùo w

ühat thes€ requiremente
nor independent of each

' il Upuaril compaliblc.
be introduced with ,

Thie impliee that e

not have to be chan

r2 Thnsponnl pcrtid
. jecte are t¡eated in r

obþcts by the appl
incompatible datab
a¡sociative ¡earchin
based on the contr
Àt,kinson et al.[Atk
by recognizing the I

.. sistent data (they a
i sistence):

L Pereietence ind
of an object ie i
gram manipula
be pæsible to c
actual paramet.
objecte and otl

. 2, Perei.stence dat.
jects are allowr
tence. Thie n
complicated th,
etill becorne pe;

¡3 Complet objeck. Th
eufficient modeling ¡'. chies. In Procol cor
fined by means of lir
object typee that tc
obþct. The complex
of the object type etr

i, sense of the obþct ir

We are interested in interactive graphical aPPliq
tiona, such as: CAD systems, VLSI Design, ano'

272

re the data itself are vety
,ution i¡ to eave the dat¿ i¡
ements. The next time the
'eade the data from file into
¡. Pe¡sietent objecte r¡¡[s
more efficient, becau¡e the
e to worry about the read-
'om and to di¡k. Aleo, the
: may become quite c6¡¡ :.'i;: :,

y intiicate paÌsing. trto,o .:iif
of data this ufile' solution 1,,,.

ring the execution of the

n example an information
lk accounte. À character-
her information eyeteme ¡s
I structured, quite passive

t,ities. Passive objecte are

rend meseagea to other oL
[hey only react, to messages :

.k a¡count example, an ac-

urrent amount wben asked

told eo by a meesage from

yeteme (DBMS) have been

the large amounts of data

i¡ concentrate on the infor-

rd tackle related problemr '
y, redundsr¡cy, coneistencY,

y formulation aud concut-

rawback ia that the DBMSg

n a¡e not extendable with
¡ators. Thie makee the u¡e

rient in non-standard aPPli-

t, for other data typee. ,ttt ,1,';lii,

. 1 -:: .."

community hae recognized

w trying to deoign sYeterns

rhofer and Frank 89, Stone-'i

GISs, eee Figure l. Common aspecte in theee sye-
teriE are: interactivity, graphics, and large amounts
of data. In þan Oooterom a¡d van den Boe 88] we
showed that übe object-oriented approach offere a
good data modeling and design envi¡onment for GIS
applicatione. In the eame paper the need for per-
eistent objecüs in our object-oriented programming
language Procol, was identified.

3 Our \il'ish List

This section shortly discueses the maþr require-
ments for pereietent objecte in Procol. Some will be
elabo¡ated in one of the later eectione, in which case
the eection referred to will be mentioned here. Note
ùhat these requirements may neither be orthogonal
nor independent of each other.

rl Upuard compaliblc. Pereietent objecte have to
be introduced with a minimal change to procol.
Thie impliee that exieting procol programo do
not have to be changed in orde¡ to be compiled
by the new version of the Procol compiler.

12 Tfunepannl penielcnl oòjecb. peraistent oL
jecte are treated in the ¡ame manner a¡ volatile
objecte by the application. Perhape except for
incompatible databa¡e facilitiee; for example,
associative eearching, thaü ie object oearching
based on the contents or value of instanceo.
Âtkinson et al.[Atkinson et al. 8Z] ¡efine thi¡
by recognizing the following principlee for per-
eistent dat¿ (they aseume eeveral tevele of per-
sistence):

l. Perebtence independence: the pereistence
of an object ie independent of how the pro
gram manipulates that object, So, it has to
be pæsible to call a procedure of which the
actual parameters are sometimes persistent
objects and other times volatile objecte.

2. Persistence daüa type orthogonality: all ob.
jects are allowed the full range of persi.e-
tence. This means thaù no matter how
complicated the type is, ite instancea can
atill becorne persistent.

rJ Complez oòjectc. This provides the syetem with
suÍficient modeling power; e.g. porl-of hierør-
chies. e are de_
fined b to other
object complex
object. in terms
ofthe object type structure and dynamic in the
eense of the object, instances.

rl Exleadabílitg ruilh neu ADTr. This wbh might
be a t¡ivial one in the context of OOpLs or
object-oriented databaeea, 5¡¿ çs¡t¡inly not in
the context of the t¡aditional DBMS¡. Tbe def-
initions of the new persistent ADIa dso have
to be stored somewhere, if we want to be able
tornanì.pulate ite object instances in a sensible

r5 Eficient handling of large'amo¿r- of objec:..
LongJived eysteme allow time fo¡ data to a¡cu-
mulate. This, combined with the fact that we
aim at developing interactive Byrt€rrs, juetifiea
thie efficiency requirement to be even more im-
portant than in othe¡ eyeteme. Not onlye6cient
retrieval by object id (which ie very important in
OOPL and object- oriented databasea, a¡ u¡ed
in navigation linke) ie required, but al¡o efficie¡t
a¡eoci¡tive eearching ha¡ to be pæible. Thie ie
realized, as uaual, by indexing tecùniquea euch
a¡ B-trees [Bayer and McCreight E3, Coær ?g]
or hashing.

ú Object inslottcct ol difrcrent úzes. A polyline
or polygon ha¡ to be stored with a minimum
of overhead, because of the requircd timc (and
epace) efficiency in interactive Bysterr. Thi¡ inr
pliea that difrerent instances of the sarrr object
type may have different ¡izeg. To trea! an object
instance as a uniúy mecne that it i¡ storcd in a
contiguoue part of memory. Thil may æem to
be an implementation iaeue, but it i¡ very im-
portant and by putting it in our wish lirt we
emphasize thi¡. Thie topic ie further di¡cusc€d
in eection 8.

r7 llighly inlcraclivc and graphicøl opplicalions.
The previous two wi¡hes sctually are pa^rt of
thie more general wieh to make procol suitable
fo¡ this kind of applicatione. It haa to bc Lept
in mind that multi-dimeneional dat¡ eomtiriee
require other approacher than the dat¿ t)¡pes en-
countered in traditional DBMSa. Àlso, tbe facù
that P¡ocol ie designed as a parallel program-
ming language should be exploited.

16 Exchangeable objecls. It ehould be poesible to
exchange object instancea between differeut eye-
tema. Object inetances created by one ryatem
muet be directly applicable by other Ey6te¡nE.

r9 Deøl with refenntial inlegritg ia a, løtú!øc-
lory manner. Thie is rvell-known problem in
database and programming languaç ¡eseatch.
The topic will be discussed in depth i¡ section 5.

Egl. At the other side the .:

ity has recognized the need '

ow, these two worlds meeü'

untere reault in conflicts be'u¡rÜçro rçoq¡!

"å
ir."-p"ti¡le princiPlgg' i 'i

rvigation) links amongst' tn- '

umful bY the databa¡e conr '
ha¡d to maintain. Eowever'

the backbone in rePresent-

)OPLe. On the other hand'

ion of the ;
.

r symbios
rncy cont
he model i:i:j

¡,i.,1.
one (as in rrocurr. ':, j

teractive graphical sPPliI :'Ì
rystems, VLSI Design' anq -:

273

4 Straightforward rúsolutions"

In thi¡ eection we deecribe some straigbtforwa¡d at-
tempts to provide a mechanism for pereietent oL
jecte.

Normally, obþct instancea are only preaent when the
proglam is executing. Data will have to be loaded
f¡om a file o¡ ¿ database syetem into the (new)
obþcts when the program is initialized. Just be-
fore the program etops, the data have to be eaved
again. This is, as argued in eection 2, an inconvenient
method, eepecially in the ca¡e of applicatione with
huge amounte of data that are not entirely needed
in each session. Än obþct-oriented etep in the right
direction i¡ to etore the etate of obþcts thernselves.
Thi¡ can be compared with making a cort ìlump of
a eingle obþt. When an object is eaved, a 'sna¡>
shot" of the object instance i¡ mede. Changes made
after the save operation are not propagated to thi¡
snapahot.

The suggeotion to Bto¡e the objecte themeelves iE not
a^e eimple as one m.ight expect. Thie ie becauEe ob.
jecte ueually contain references (in attributea or local
variablea) to other objecte. A reference to an object
is En id (identification of the proper type), assigned
to that obict by the operating eyetem when it wa¡
*eated with the Procol primitive n¿ur. In some Bit-
ustions it i¡ ueeless to raye an object witbout aleo
eaving the related objects,

The senapabot" rr¡ethod is uo€d in ¡everal other
OOPLs. In eyetems offering multiple inheritance the
obict type that al¡o has to be pereietent, inheriüs
thie property from a general object type with meth-
ods to eave a¡d load theobject. Egenhofer and Flank
[Egenhofer and Franl 89, Frank 88] auggeet the ob
ject typc db-pertislcal with meühode alort, delele,
wlricoc nd modify. B1'i+ [Weinand, Gamma, and
Marty 891 has an object hierarchy with the obict
type objecl in the top ofthie hiera¡chy. The object
type objecl ha¡ methode called PrintOn and .Re¿d-

Flom which enable tranefer to and f¡om diek. Thes€
eolutions worl¡ fine as long as the object typ€f con-
tai. no refe¡ences to other objecta bu! only eimple
attributee, ¡uch as for example an artay of coo¡di-
nates describing a polygon.

The pereirLent data in P$algol [Á.tkinson et al. 87,
Morri¡on et al. 861 are organized into one or ¡nole
databases. Each databa.se ha¡ its own toot ¿rd
may contain valueo of different (complex) data typea.
The data are 5mported" into e program with the
open.daloôatc procedure which ¡eturns a pointer to
the root. The root has the form of a name-value ta.
ble in which the value ir urually a pointer to another

In the OOPL Eifrel [Meyer E8] an obþct type that ..
inherite from the object type STORABLE gete thia
kind of behavior by meane of the method¡ stort and , :"
relricac. If the method slorc ie invoked in object -.
inetance a, the wbole object etructure starting at ;
ø in dumped (in a epecial format) to a ñle, even if ;.
the refe¡enced object typee in ¡ do not inherit ftom - e
STORABLE. Depending on t a¡rd the object etruø ¡"

data etructure. The actual data a¡e Bccessed by fol-
lowing there pointers and iü is assumed that the pro .,,
gtarrìmet has to know the etructure of the database ,

(though thie ie nowhere stated in the P$algol pu - ,
pere). Once imported, the dat¿ can be manipulated
in the same ma¡ìnet as volatile data. The plocedure

commil propagates the changea made eo far to the
database, if it wa.s open for writing. Everything that
ie accessible from the root ie ¡tored. This m€ans that
valuee may change and data (etructuree) be added or
¡emoved.

ture of the application, it ie pæeible to store the
whole obþct Btructure, orjust a part ofit. Basically, r
this solution has two drawbacks. Firet, the applica. .

tion prograrnmer ha¡ to indicate when to save or load j
the objecte explicitly. So, if the program is etopped
before the aave, the l¡test data a¡e loat. Second, up'
dating one object in an object rtructure ca¡ become '

very expen8ive if all related objecte have to be eaved

also, even if they did not chauç.

5 Referentiallntegrity

What happene if an object ie deleted by ite creator
wbile other objects are etill referring to tbi¡ delet¿d

obþct? A dangling reference i¡ not a problem epe

cific to pereietent objecte, it ir a problem in the c¿¡e

of volatile objecte too, but it ma¡ifeaüa iteelf in a ¡e-

vere mannet in combinetion with pereietent objecta'--

Aeeume, a pereiatent object containo a ¡efetence t'o '

a volatile object and the progran ia etopped. The

gram ir etarted, the ¡efe¡ence to

i¡ not valid any more (though it
ted). BY the waY, dangling ref-

ccur in non-OOPL. For exsmPlel

in C it i¡ pooeible to have pointers to deleted data

etructurea, which may be the cau¡¿ of some æve¡e

errom in a program. Some eyeterna guarantee rc/cr'

enliøl inlcarily. A.n a¡sociated problem i¡ that of a¡ '
"un¡eachablen object, that ia an object to which the i
last reference i¡ loet. There a¡e ¿ n;mber ofpoosible
approachee towarde theoe problerna:

¡ If we want to guarantee referenüial integrityr we

at lea¡t have to be able to detect whether tbe in-

tegrity is damaged
This can be achiev
co¿¡l with each ob,i
count ha¡ a value ¡
will not be deleted
thi¡ fact. The refe¡,
ducee overbead, ber
updated i¡ each a¡
able. P¡obleme a¡,

et¡uctu¡ef.

o A elightly difrerent
a reference count, i
et al. 881. The ot
but postponed untì
count ie zero. Thr
worry about trying
úime.

o Dangling references
, the deletion of objo

in for example Ger

, 871. In orde¡ to avoj
garbogc collcclio¡ h
well hnown method¡

',, l.Usingareferer
;' becomea zero,

etance ia ¡uton.ì.,): tem.

*,,... 2. Performing a r

', ¡ epace (a direct
r , tect which obje

advantage is th
periodically an<

¡f,. syetem can not I

, Thie can be avo
tal ve¡sion of tb

o The maintænancc of
, d¡ces overhead; botb' tlon time inc¡ea¡e. ('' to omit a reference co' obþct at request. Ho

tem i¡ not allowed tr
obþcte for new objecl
ænt to a deleted obi

,. thir, and the ¡ender
-r

l,.,egr impliee that the
, . not be ueed s¡ itE id.

is deleted we want to

,,
o1!0" memory Epac€

],,t"t bu clear by now thai¡qtet approach. In the cc¡sr€r€[ceo
are probably prr

274

)€s in r do not inherit from t=*iÌi-i
on ¡ and the object etruc- ¡ç';'i

!L r- ¡^ -.^-^ ¡L^ i ìti:it is poeaible to store the u¡-Y::

rjustapartof it. BasicallY, ,q.r
,*¡o.lt. Firet, the aPPlica' . :

I data are acceesed bY fol-

it ia assurr¡ed that the Pro- ,'r

structure of the databas€ '

rtated in the P$algol Pa. '
: dsta can be maniPulated '

latile data. The Procedure :
)anges made eo fat to the 'ì .

rr writing. EverYthing that '.t . :

is etored. Thi¡ mea¡re that 'r . :

o iri."J"*O be Bdded olq, ' .:.'

!1

'er 881 an obþct tYPe that ,,'. -;
type STORABI'.8 gets this

rs of ihe method¡ rlore and ;r
slorc ia invoked in object .o

bject etructure etarting 8j- r+,.
rl format) to a file, even if .u3..,

tegrity is damaged by the deletion of an object.
Thie can be achieved by associating ø æfertnce
cou¡l with each object instance. If the ¡eference

count has a value greater than zero, the object
will not be deleted and the c¡eator i¡ notiñed of
thie fact. The reference count mechanism int¡o
ducee ove¡bead, because the countere have to be

updated in each assignment to an obþct vari-
able. Problerns are introduced by cyclic date
structu¡es.

o A, slightly different approach, but al¡o ba¡ed on
a reference count, ie followed in 02 [Bancilhorn
et al. 88]. The object deletion is not refueed

but postponed until the value of the ¡eference

count is ze¡o. The creato¡ doee not have to
worry about trying to delete the object another
time.

o Dangling reference¡ can not occur ifwe prohibit
the deletion of objecte. This approach i¡ taÌen
in for example GemStone [Penney and Stein

, 871. In order to avoid congestion of the sys¿em,

gatbage collcclio¡ ha¡ to be performed. Two
., well known methode for this sre:

1. Ueing a reference count: when the count
becomes zero, the a¡sociated object in-
sta¡ce ie automatically deleted by ühe eye-

, tem.

2. Performing s Eweep through the obþct

. space (a directed graph) in o¡der to de-
tect which objecte are unreachable. Ä diç
advant,age i¡ that the eweep is performed
periodically and during this operation the
eyetem can not be used by the applicatione.
Thie can be avoided by using an increm€n-

" tal ve¡eion of the aweep algorithm.

i The maintenance of the ¡eference count intro
, duces overhead; both mernory ueage and execu-
' tion time increa¡e. Clearly, it i¡ more efficient

to omit a refe¡ence count and directly delete the
obþct at requeet. Eowever, in thi¡ case the oyr
tem i¡ not allowed to reuee the ddb of deleted
obþcte for new objects. So, if a meeeage is being

,
ænt to a deleted object, the syetem can detect

,. this, and the eender will be notified. Thi¡ et¡at-
t . egr implies th¿t the add¡ees of an object can
..rnot be u¡ed as its id, because when the object

'¡¡ deleted we want to be able to reu¡e that part
. - of the memory epace for new obþcta.
¡,

|eay be clear by now that we a¡e bia¡ed towa¡ds the$er app¡oach. In the context of Procol, danglingrtfu,uo;;
";;;;.'u"fi, ör"rr"*s e¡rors and rhe

detection of the illegal uee of dangling references du¡-
ing run-time ie an adequate eolution. Finally, it is

interesting to note that PCTE+ IEPG 88, IEPG
88] offers linlg both with and without ¡eferential in-
tegrity. This is probably done fo¡ efficiency reasons.
It ie not ¡tated in the PCTE+ documents bow the
refe¡ential integrity ie maintained.

6 Object Management

In order to solve the administrative problerrn associ-
ated with the uee of object id'e, there i¡ a need of an
Oòjcc! Mdaagcmcal Syelem (OMS) that takee ca¡e
of the (pereietent) objects. One of the rerponsibili-
tiea of the OMS to keep the reference¡ in the object
eyetem coneietent. To be more precire, an object
eyetern ie consistent if [Khæafian and Copeland 86]:

o No two disüinct obþcts have the sar¡e identifie¡
(unique identiñe¡ aseumption). In other worda,
the identifier functionally determines the type
a¡d the value of the object.

o For each identifier preænt in the eyrtem there ir
an obict with this identiñer (no dangling iden-
tifier assumption).

6.1 Object Identity

Ä uniform objecü identification mecha¡ism ha¡ to be
developed, capable of dealing with objectc ehared by
multiple p¡ogla¡ns, multiple userr or even multiple
computero (in a network). There should be a mech-
ani¡m to indicate in which pereietent obþcts one ie

interested, eo one is not bothered by non-intereeting
obþcte of othere. One poeeible rnethod could be to
organize the object inetances in "data¡ets" which a¡e
put in the normal hie¡BÌchical flle syat€m. Thi¡ linr-
ite the ecope and males the task offinding the right
communication partner easier for the OMS.

In ¡elational dat¡baser lCodd 70] an identifier Ley
ie formed by one or morc us€r-rupplied attributea.
Value ba¡ed matching ir a transparent technique for
expreaeing relationehipr. Eowever, it providea no
support fo¡ ¡eferential integrity at all. By contrast,
OOPts eupport the notion of object identity which
ie independent of the attribute valuer [Paton and
Gray 881. Khoshafian and Copeland fKhæafian and
Copelaud 861 deacribe eeveral tcchniquce for imple-
menting object identity and they concìude that us-
ing ao called tutogolcc is the beEt tecbnique. Sur-
rogeter are eyetem-çncrated, globally unique identi-

ndicate when to saveor load ,

êrence ie not a Problem aP+

r, if the Program-ie ato¡Ped,;

¡t data ue loot. Second, uP''
obiect ¡ttucture can become:?i

;ä;Ëil;;-"i.u"o""a !i
t cbange.

:'

, IntegritY

iect is deleted bY ite creaùor ''iu

etill referring to thia deletæd 'fr-:

tE. it is 8 Problem in the ca¡c

but it manifeats itaelf in ¡ ¡a

;h";;õ;"ï ø *ni'¡tr'
ihä;;;;;;orpoæibrc
reae probleme:

¡a¡¡tee referential inægritY'
r'

;ffiïääî¡J¡er t¡ei¡'

2',75

fiers, completely independent ofthe physical location
and data contents of an object.

6.2 Searching

The objects as presented so fa.r a¡e not euited fo¡ as-
sociative search operations. That ir, eearching based
on the contcnts of an object instead of using the ob.
ject id to fud an object. Thie is especially useful for
a proSrarn that want to uee objects created by other
prograrns, becaue€ the id'e are unknown and have no
e€mantic meaning. All tbat a program(mer) knows
i¡ about: obþt typeo (¿he kind of data he wante to
uee) and attribute values (reetriction of inetancee).

A.nother use of associative eearching i¡ to ¡olve the
query: uEow many inhabitante h8s ühe municipality
with the name at,tribute 'læiden'?". We hsve to look
at all the in¡tance¿ of the municipality object type
until we have found the proper one. ThiE io ur O(n)-
algorithm. llowever, this problem can be solved with
an O(lo9(n)falgorithm, if a binary s€arch is us€d. In
a relalional database , efficient e¿arch is implemenüed
by a Btree [Bayer and McCreight 83, Comer 79] for
¿ttributea on which en ;ndæ is put. The B-tree ha¡
many ueeful properties, such 8s: it staya bala¡rced
under updatte, it ia adapted to paging (multiway
branching in¡üead of binary) and has a high occu-
pancy rate.

The Btree ¡olulion in an objecü-oriented envi¡on-
ment is ertablished by a eet of auxiliary (eyetem) ob-
jecte. Theae obþcta do not contain the application
data, but contain tree structures with references to
the objects with the actual data. This Btree has to
be part of the OMS and, if poesible, traneparent to
the "application' obþcte. Note that the OMS iteelf
can be implemented in P¡ocol a¡ a aet of objects.

There i¡ aorn€ friction between the concepte behind
the ADTa and t,he idea of a¡sociative eearching, be-
cause associative searching requiree knowledge of the
internale of other objecùs. Än obþct hae to epecify
hie query in te¡m¡ of data-part that are inside other
objecta. To limit the damage, only eo called ui¡iül¿
attributec may be used in the query. These vieible
att¡ibutes become part of the epecification of an oh.
ject type (together with the actione of course), in
contrss¿ to the non-visible data.part which belong
to the implementation. Note that an index may be
put only on a visible attribute of an object type.

BranchlngfacÈor M-4

Figure 2: The R-tree

6.3 Multi-dimensional Data

The searching problem also applies to the graphic or

geometric data. If no epatial etructure ia used, ther
queriee euch as "Give all municipalities within rect,

angle X' a¡e hard to answer. A epatid data etruo
ture which ie especially suited for the obþct-oriente<
environment ie the R't¡ee [Guttman 84]. This is bc
cauee the R.tree already deals with objecte; it onl¡
adds a minimal bounding rectangle (MBR) and ther
it triee to group the MBR¡ which lie clooe to eacl

other; see Figure 2. This grouping proce¡e is ¡eflecte(

in a tree etructure, which in turn may be used fa
eearching. Several test ¡esults lFaloutsos, Sellir ant

Rouesopoulos 87, Greene 891 indicate that the R.ha'
ia a very efficient epatial data structure.

Not all known spatial dBtB structuree [van Oæte
rom 88] a¡e Euited for thi¡ purpo€e. For exarnpÌ

kd-trees [Bentley ?5], quadtreea [Sarnet 84], R+-tree
bsptreee [van Oæterom E9], cell-tree [Günther 88

ond gridfitee, are ¡no¡e difñcult to integrate in thr

obþct-oriented environment bec¿ue€ they cut the 50.
ographic objecte into pieces. ThiE ie against the epiri i
of the object-oriented approach, wbich t¡ies to mah

complete uunits,n with meaning to the u¡er' Th',

Field-tree [Frank and Ba¡rera 89], KD2Btree ant

the Sphere-tree [van Oæterom and Claassen 90] an

good candidates for integrati
eyatem, because they do not
of the apatial eearch structu¡
and weaknesE€l, ao if eeveral alternatives are offeret

by the eyetern, an application can uae the etructur¡

that fulñll¡ it¡ needs the beet.

20.000 inhabitanùs." ÀPP

óf the Procol imPlementati

iirplementation each node

case of the R.tree thie iE a ¡
.: there ie a fair amount of wo¡

iould be v¿lid fo¡ B-treee,

In any case, for practical
a eeparate eearch tree (indr
rhich eficient sea¡cbee are

made clear to the OMS bef<

It ir pooeible that the value

¡fte¡ the search t¡ee has b

.t¡ibute. In that case, the tr
correct o¡ inconsistent. Thi
ing an (implicit) messa,ge to
in the OMS, juet after the
Upon receipt of thie messag

itself.

Procol becaue€ the search objects can run on p¿raue Í

p¡ocessors. Thi¡ is u8€ful for range queriea: "Givg1;

7' The Procol E

Tii¡ eection presente eome ie
tax and ¡emantic¡ of the cor
edded to Procol fo¡ the eupp
Thie is done he¡e withoui w
¿chièved in our implementat
urere point of view, this exte
end eimple as pasible. First
to

_indicate that, an object ie
natrve possibilitiee are:

l":i',
1. O¡ the /y.. Make a vola
.. ¡ietent by applying a ne
. ¡¡stcnf. Assume the va

iì

tl,

äï:ä'r' oBr coutd

In Procol, trees can be implemented in two difreren.'

276

municipalitieo with more ttran I-O.OôO and less tbå¡

bE . ¡¡y case, for practical leaaons, there ha¡ to be

æpa¡ate search t¡eÊ (index) for each attribute for

inhabitante." Appendix A containe a part

tbe P¡ocol implementation of the R.t¡ee. In this
each node ie a eeparate object. In

ofúhe R.tree thie it a reasonable choice, becaue€

is afai¡ amount of work in each node. The earn€

ld be valid for B'treee, buü not for binary treee.

efficient eeûches ate required. This has to be

clea¡ to the OMS before the queriee are poeed.

i¡ possible that the value of an att¡ibute cbangea,

the e€arch tree ha¡ beeu created for that at-
In that case, the tree may have become in-

iíeðü o¡ inconsietent. Thie can be solved by eend-

an (implicit) meEsage to the e€arch tree obict(e)
the OMS, juet afler the att¡ibute hac changed.

receipt of thie message the eea¡ch tree adjuete

The Procol Extensron

i¡ ¡ection preaenLe some issues concerning the eyn-
and eemantics of the conetructs which might be

to P¡ocol for the eupport of persictent objecte.
ò i¡ done here without, worrying how thi¡ can be
iãved in our implementation of Procol. From the

point of view, thie extension should be a¡ small
eimple as poesible. Firet, we have to decide how

indicate that an object ia peraistent. Some alter-
possibilities are:

0n lie fly: Make a volatile obþct inetance per-
rietent by applying a new P¡ocol primitive pcr-
¡i¡te¡l. Àseume the va¡iable ¡ holde the id of

obþct instance; then thie instance i¡ made

the values (statee) ofa pereistent obþct
always guaranteed to be upto-date.

Oùjec! Insloncc: At the moment an object
Qeated, it is decided whethe¡ it will be persis-

o¡ not. Â, convention can be made that oL

À, combination of these approaches ir aleo poesible.
In the language E [Richardaon and Carey 89] the
prograrnmer ba¡ to indicate per type (clase) that in-
etances are optionally pereietent, The programmer
ha¡ to decide per inetance if it is really a pereistent
obþct inatance.

The advantage of pereiatence per object typc io that
only once, during the object type definition, there
ie a difference for the application programmer be-
tween persieüent and volatile objects. In the other
eolutione it ia required to indicate that the obþct is
pereietent for each object iuatance. The maþr draw-
back of the latte¡ choice i¡ that two differenl typce
have to be defined if we want to use both the volatile
and the pereiatent va¡iant¡ of baaically one object
type. In the cas€ ofetrong type checking thig meane
that we can not freely interchange the uec of volatile
and persietent obþcte aa argumente in rneaeagee and
procedure calle.

In order to get hold of pereietent obþcta with un-
known id, Procol will be extended with the ntricoc
primitive. Perhape it ia better to take the following
approach towatd¡ the primitivec ncw, rlclcle, tnd, rc-
t¡d¿uc: coneider them a¡ messages to the obþcù typea
themeelvee (uclaro methoda"). Thece are ryatcm ob-
jecte (partly) reeponeible for the OMS t¡¡L¡. Thece
eyatem obþcta have to maintain index ¡tructurea if
requeoted by sending them a¡r cnolcindct message.

The rclri¿uc primitive ha¡ sorie ¡eremblancc to tbe
acur primitive, because it also assigna the id of an oL
ject to a v¿¡iable of the proper type. Unlile Ìeut, tl.-
lricuc will not execute the Init eection, bec¡us€ thet
already happened when this object was cre¡ted for
the fir¡t time. The protocol (expreæion) of the oL
ject regulating access to the object i¡ matched eta¡t-
ing at the current (eaved) etate.

A discrimi¡alio¡ co¡dilion can be ueed, bcculge the
obþct type ìnformation may not be epecific enough.
Of cou¡se only vieible attributes can be epecified in
the condition. Â ¡et¡ieve returng the id of the ob.
jecü of the proper typc for which the discrimination
condition evaluates Ttue. If there ie more than one
obþct eatiefying theee criteria, only one is ¡etu¡ned.
If there ie no obict aatisfying these criteriq ¿ NULL
obþct is retu¡ned.

It ie a small etep from the ælrieue primitive to the
a¡eociative s€Àtch operation. In fact, it couìd be con-
gideted as an ite¡ation ove¡ the ¡etrieve operation. If
fast replier are required, then in case of large eet of
objecte, an index has to be ueed. This index could be
a spatial index structure; e.9., needed for efrciently
solving a urectangle" query. There are several op-
tions fo¡ returning the answe¡ of a s€a¡ch:

¡o ¿pplies to the graPhic o
rtial et¡ucture ie used, thu

muuiciPalities within rect

swer. A ePatial data etruo

oit d fot the obþct-orienta

- fcuttman 84l. Thiß is bô

r crouPing Process u¡ letreclc(

i.î io- tuto maY be-q.e<l Io

,'"tìtr*::r;,i1."Ë

h!.ng fÀctor M '

lbe R'tree

ional Data

¡l d¡ta structute'

iii.ltin '"n "*
tt''

i i¡" u.ot. ' ì

data structu¡es [van Oolc

r this PurPoae' T"-t 3y1nÏ

Hllfr'\"ffi:lil'tirry'G q¡ruç'"

nment beca

¡iece¡' This

,l",l"llii;r-ä_igy::"'i

li'JJ"liLi';:"j":j
ilfmriä¡öij:id penistent by: penislcn! ¡. Note that there i¡ a

difference with the raue operation of eection 4,

;:î::'j"l'"ï"li'#Ë;"i'1

t" j.^o-r-"T:ï:'3.irli.$:l created with the aeru primitive a¡e volatile
the onee c¡eated with the pcrrirtent primi-
are pereistent.

P+-Oöjccl Typc; Aù the moment the object type
18. defined it ie speciñed whether all in¡tances

thir type are Þersistent or not. A modi-
lkeyword OBJìould indicate this: PEItSIS-

Ii:ï:ïr'i:J,;'iíä; -*
TENT-OBi,

277

o R¡turn one big set that containe the id'e of all
objects that satiefy the query. In case of large
ans\pers, a lot of tempora¡y rnemoly ir required
and it may take quite a while to generate the
complete answel.

o .A.nothe¡ strategr ie first to etate the query and
then ¡et¡ieve the answer one by one (or perhape
in bu-ffere of a fixed eize). The first part of the
answe¡ will probably be ready eooner tha¡ the
complete answe¡ would be. Thi¡ prorrrctee par-
allelism and ie also quite important in an in-
te¡active application, becaue€ tbe end-user can
already see eomething on his scre€n then.

The problem with the e€cond ælution for returning
a s¿a¡ch ¡esult b that othe¡ objecte might i¡te¡fe¡e
with the eet ofobþcte that belonga to the queried ob.
ject type. -Third-party, objects could cbange valuea
and add new in¡tancee o¡ delete existing onee. \ile
etill harc fo inveatigate whethe¡ thi¡ can be ¡olved
by applyirg the right protocob in the syetem (OMS)
objects. Tbi¡ ba¡ to be solved before we decide o¡
the ayntax of a eearch query.

I Object fnstances of Differ-
ent Sizes

In ¡ection 3 wc aaw th¡t the wi¡h to otorc a polyline
or polygon rith a minimum of overhead, implice tbat
different i¡¡ta¡cee of the samc object type r¡Èy have
different sirer. So for exarnple, the pure relational
eolution, preeented by van Roeaecl [van Roeaoel 8fl
ie not acceptable, becauee a polyline i¡ ¡cattered ove¡
eeveral tuplea in a table and fi¡et has to be aggregated
before it can be ueed again. In [van Oocterom, EeL-
Len a¡d Woeetenburg 891 a eolution in the context
ofthe relational dsta riodel ie preeented.

Different sircr have an (enornrous) impact on the im-
plementation of percietent obþcte. In CO2, the C
implementation of 02 [Bancilhorn et al. 88], it was
decided to prohibit object inetancea of different giz€s.

In cont¡ast we would eve¡ lile to bave pcrristent ob
jecta whæe rizer cbange dynamically. For example,
to male it poesible to remove pointe from or add
pointe to a polyline. flowever, thi¡ would evcn fur-
ther complicate the implementation. Ä dec¡ca¡e of
the eize of an object i¡ not too hard, but an i¡c¡ea¡e
ofobject si¡c r¡eans that an obþct doce not fit in hi¡
(contiguour) pa¡t of ûr€mory and the memory after
thfu object is probably occupied by anothcr in¡tance.
The obþt will have to be moved to anothcr larger
place, becar:ee we war¡t to t¡eat an obþt æ a unity

and do not want to eplit it. This would have bæ¡
impoesible if the objecte id is its add¡ese. Ho¡veve¡.
thie was already disapproved of bec¿uee of ¡"æon"
diecussed earlier. In any case, growing persistent oL
jecte could int¡oduce a lot of overhead; e.g. moving
of objecte.

.4. more feasible situation ie th¡t sfte¡ the Init æctio¡,
the eize of an obþct may not vary 8ny more. It is eti¡
possible to deal with dynarnic probleme. Fo¡ exanr.
ple, uee I pointer (id) to an object of type linked li¡t.
Thie obþct type has an "application" data-pa¡t and
s pointer to the next list element. Each inetance rep
¡ee€nta one list element and they all bave the sa¡e
fixed ¡ire. We can extend tbis approsch and sip
plify our implementation of Procol, if we only allow
the following data typca a¡ ¿ttribute¡: Brcic lypci
(int, char, float, .. .), Retennccs (or linÌe) to other
obþcte, and ,{rruyr with fixed eize after the Init.

I Persistent Objects in Procol

The queetion how to implernent pereistent obþcte in
P¡ocol can be divided into two aub-queations, Thc
first is how to adapt the languagea features (the ex-

ternal implementation), Thc ¡ccond ia how to imple-,
metrt this on the underlying platform (the internal
implementation,

.;

9.1 External Implementation "
,;

Our deci¡ion¡ according the extcrnal implementation
of pcraistence in Procol included the introduction of
thc following new Le]'word¡:

l. pereirtent <obþt-id>
in <dataeeLley>
With thb ¡tatcment ¡ volatile obþct inrtance
identified by <objecLid> can be made penie
tent by coupling it to ¡ data¡et identified by

<dataeeLkey>.

2. volatile <obþt-id>
With this stat ment aa obþct instance (identi'
fied by <objcct-id>), thet ha¡ been made per-

eirtcnt before, can bc mrde volatite. The ræul3

of this stst€m.nt i¡ th¡t the peruietent obþt :.

instauce i¡ ren¡oved from it¡ dataset.

3. retrþve <obþt-id>
ñon <datasct-ley>
where <di¡crimination-rtring)
and
next <obþt-id>

With this etatement
stance of the earne t
the dataset with iden
eatiEfiee the <discir
dataset in question c<

etance of the require
returned in <object-i

' cution of the next et
¡¿¡l ineta¡ce of the ¡

quired ineüances have
dataset.

In general, <dataset-key:
etring can then be ueed I
of the necesealy dataset I
the provided pereistence in

,object type ueing the obje,

Declue
(

object DRlfIfG drarj

!lIocate_dràsing (ch¡
.{

n€r draling¡
perliatcnt drari

)
read-oId_draring (chl
{

., retrleva drarln¡
)

9.2 Internal fmple:

We will now motivate our
internal implementation. p
and implemented on e netr
running under SunOS Rcle¿
mentatione of the exteneion
objects were conaidered, I
zu and Nie¡at¡asz ggl): ô¿
the Unix O$interfa¡e call,

A file ie msÞÞed directlv
addreæ epace'of

" ;;.;;lhat there is no diffårence I

278

it.. Thie would have [qe¡¡
d ts ¡tE €ddteEe. Howsy.r_i
,ved of because of rea"o¡ii
aaeJ growlng petsistent oñ

rpplication" data-part and'
eme¡t. Eacù inetance rep.
rd they all have the ¡ar¡æ,l
d thia approach a¡¡d ¡i¡¡i.
rf Procol, if we only allo#.,
re attributea: Bøsic lgpci :
;reaccs (or linls) to othel
ixed eize after the Init.

bjects in Procol

nrent pereietent objecte il
r two eub'queation¡. Thó
uguages featu¡ea (the exl
he c.cond ie how to imple-.

ng platform (the interni

,, , Itrii
:mentation "i;;
: external implement¿tion
:luded the int¡oduction of

r:

l>

¡ volatile obþct inetancc

id> can be made Pení+
> ¡ data¡et identified bY

u object inetance (identi'

th¡t ha¡ been made Pcr'

m¡de volatile. The rcsult

hat the pereietent obþt
rm it¡ dataset.

.r

n-ctring>

:,.With this etatement we can ¡etrieve an in-
, , s¿ance of the ea¡ne type of <object-id> from

i_tbe dataset with identifier <dataset-key>, that
Ìi^|a¿isfies the <discrimination-string). If the
fil; d"t"""t in queetion 6e¡f,rins mo¡e than one in-

¡tance of the required type, only one will be

¡eturned in <objecLid>. Any eucceesive exe-

cution of the uext etatement, will ¡etrieve the

. ¡¿¡l instance of the required type until all re-
',quired instaucee have been ret¡ieved f¡om the
dataset.

In general, <dataset-key> will be a etring. This
rtring can then be ue€d to compo€€ the ñlenamee

ih" oe"o.*y dataset fileg. An example uee of
à provided pereistence in the Decla¡e ¡ection of an

type using the object DRIVI|G:

'i, object DR 9IIG d¡arlng;

- allocate-d¡aclng(char nare)
t,{
tJ. ner draring;
,, , p€rlist.nt drariag In nare¡

1. f.
l

. ; read_old_draring(cbar marc)
t,r'{

odel ofChen [Chen Z6]).
'file ir mapped di¡cctlw hw rh¡ il.i* rìc ^- the

{dr.*.p"."'of!ù"tth..J;*;ì :J
h8tênc€s ¡nd thei¡ nrunning" counterpart, at
.not st the level of the proðol kernel. ¡{,t OS

lcvel there ¡r
"

aif.."n.u *à tu, is the eame aE theqtelence
between virtual memory pagea that are in

I,it ,
retrleve draring fror narc;

31' ,
t,"""al rmPlementation

.llte rpill now motivate our deaign decieions for the
lþ\.1d implementation. p¡ocofha¡ been developed
!¡d mplemented on a network of Sun work¡tatione

; of overhead; e.g.

r rhar arre¡ tr'" r"it *il"i
ot valy auy mo¡e. It i¡ ¡tiìi
rmic probleme. For exan-
r object of type linked li¡t.

;[Sun Microsystgtti'õi¡ i* "rler
¡etarional DBMS),rr¡tllrw

[S_tonebreker-and Rowe] (or other extenã_:'u'.bilì-sj, ;ä;i r#ö,ü: ùidäi (:ä:';
,: f:f.,frrt-gMS derived from rhe Entiry-Rciaiionehip

Figure 3: Object Reference with Surrogatee

main-memory and the one¡ that are ewapped on di¡k.
We expect thir implementation to be very efhcient.
In order to gain are currently
converting a local explicit read
and write stateme enrcry imple-
mentation. Firet test resulte indicste that the elapae
timee decrea¡€ with about 30% in applications with
¡ lot of read ¡nd write atatements. A disadvantage of
tbe mapped rnernory approach ia that we ¡till have to
do the memory m
t¿rom and Laffra
why we decided to
for the prototype
jects in Procol.

Än object instance is identified by a currogcta [Khe
safiBn end Copeland 86]. That ia, the object id i¡ not
the actual addre¡s in memory but we need a¡ indi-
rection þtraw, Mellender and Riegel 8g] to locate the
obþct. See figure 3 for a graphical demon¡tration of
the procese. Each eurrogate containe an indication
whethe¡ t,he object instatrce is volatile, persistent or
deleted. When, during the execution of a procol pro
grarn, an object is referenced, we have to check the
frrst part of the eurrogate. If the the object instance
i.e volatile, the autrogate çs¡lni¡¡ a key than can be
used to retrieve the memory address of the instance
variables. If the object inetance is pereistent, the eur_
rogate containr a data¡¿t identiñer, and a Ley. With
thie datsset identifier and the key, the OMS i¡ able
to retrieve the actual rn€nìoty add¡ess of the the in_
stsnce va.¡iables of the pereietent object in question.

The di¡advantage of eurrogatea i¡ that the¡e ie an
ext¡a i¡direction, However, eurrogatee have ¡ever¿l
important advantagee. They enable objecte to be
ewitched between volatile and persietent etate, by
modifying a part of the eurrogate. We decided, baseà
on the advantagee and dieadvantages menüioned in

lf volaÈtle

<- gUrrogate

279

section 5, that the control of refe¡ential integrity is

not required in Procol. Ilowever, the uee of illegal
refe¡ences is signalled at run-time. Thir is done by

i:tJ::'å:
the surrogate and taking the appropriate

If a persistent object containa a ¡efe¡ence to a volatile
obþct, this volatile obþct is not eaved automatically.
The proper way to program this case is to make the

other object also persistent, if the refe¡enced object
is etill needed in the future. The state of each ob'
ject instance is eto¡ed as unity, that i¡ in coutiguoue

memory. Instanceo of difre¡ent ¡izes a¡e no problem.

The etat€ also containe some additional data, for ex-

ample the c¡eator. The application programmer de-

cides whether instancea of the earrie obþct type are

"etored together" without inetanc€s of other typea in
one dataset or if a data¡et contains inatancee of differ-
ent typeo. The late¡ ir advantageou-a for repreeenting

complex obþcta in an efficient ma¡lnel, becau¡e the

instEnces of the difterent typet that defrne e complex

obþct are etored clo€€ together. Note that complex

obþcte are important in CAD syot€ms' becauee thiE

ie one of the main modeling tools.

10 Further Research

Beeidea a¡ object-oriented prograrnming language,

Procol is also a parallel programming language. It ie

poosible that the objecte run in patallel on multiple
processorE. We have only ueed thie in a few examples.

Clearly, thie t'opic de¡erves more attention ¡nd more

reaea¡ch i¡ needed in the context of highly interactive
and graphical eyeteme.

It ie ¿ emall etep from one single ueer Procol pre
grsm with pereietent objects to a eyetem with multi-
ple ueere. At lea¡t conceptually, becsuse each object
ha¡ ite own protocol which regulates the communi-

cation. It should not matte¡ from which program a

message originatee. However, we will have to ¡econ-

eide¡ sorrrc of the concepte'

The provided query facilities ale very limited; with
rtlrieoc it ie only possible to get hold of one "eta¡t-
ing" object id of a epecified type or to perform the

eelection of inetances from one eet (object type) at a

time. More complex queriee have to be programmed

into the objecte (the Procol program). Âttention has

to be paid to avoid object typee becoming to epe-

cific. That i¡ in contradiction with one of the basic

principlee of databases of data being independent of
applicationa. More reeea¡ch in this area is neceaeary.

lBlake and CooL 84 E.H. Blake and S'

including part, hierarchiea in object<
guagee, with an imPlementation in

ECOOP '87, Pagæ 4l-50' 1987'

[Chen 76J Peter Pin-Shan Chen' '

' relationship model - towa¡d a unifi-ed

ACM Tfunsaclions on Databacc S.gtl'

36, March 1976'

lCodd 70] E'F. Codd' A relational modcl.i

large ehared data banke. Commt

lõu, nþ¡tllz-3E?, June l97o''

[Comer 79] Douglas Comer' The ubtq
'-Àcu öo^piring StrueYs, 1l(2):l

1979. i

tCox E6l Brad J. Cox. Obiecl-Orinlcd,
'îii E;;t';i";;;-Approøch, ' Ad

References

[Àtkineon and Buneman 87] Malcolm P.
and O. Pete¡ Buneman. Types and
in d¿tabase programming languagea.

púing SwvcAs. 19(2):105-190, June

lÁ,tkinson et al. 87] M.P. Atkineon, P.l.
Chieholrn, P.Iff. Cockehott, and R.
approach to pereietent programming. r

pvlrr Joumø\26(4):360-365' 1983. - rì

[Bancilhon et al. 88] F. Bancilhon, G.
v.
zaken, C. Delobel, S. Gamerman, d*
P. Pfeffer, P. Richard, a¡d F. Velez.

and implementation of 02, an Objecï
database system. In Adva¡ces in

DøJnbosc Syclemt, 2¡d l'lJet¡alio¡al
Objecl-Oricnlcd Dolobdse Syslems, Bød

sm S lcin- Eù entb wg, F RG, Pzgæ l-22,
1988.

[Bayer and McCreight E3] R. Bayer an¡l':

Creight. Organization and maintenanæ

ordered indexee. Acla Int'ormalict,
nl

1973.

[Bentley ?5] Jon Louia BentleY.

binary eearch t¡ees used for aEs'

ing, Communicaliot t of thc ACM

September 1975.

and Frank 89] Mr

fl¿nk. Pa¡¡da: An ¡
object-oriented sd

z Systcms in Ofi
Enúmnmcnt, N

Verlag.

and Frank 89] Ma
U. Frank. Object

i lnheritance and Propa
pages 58&-59{

Sellie and Rouesop
Timæ Sellis, ani
ofobject oriented s

SIGMOD,l6(3):a2C{

'88J Àndrew U. Fra¡k.
lenericity for the inte¡

eystem in an
ln Adaances ia Oöjr
2nd Inlentationall
Dalab¿se Sgstems

lFrtG, pager

-¡id Barrera 8g] .A,ndrer
Bane¡a. The fieldt¡ee:,

information systo
ønd Implemcnlai
Sanla Baròaru, G

Diane G¡eene. Ani
tance analysis ofepati
IEEE Døtø Engineerit
i.le8e.

rr.r:{f_57, lgg4.

'.äii::iil"l, ,iïîfiæading, Ma¡s', 1986' ;ì

Grace¡. TGMS: Anob

fDietrich et al. 89.l lffatte¡ C' Dierrrc!
' Nt"km.n, Chrietine J' Sunda¡6Ú,'

1989.

;:"Jiîiåiiö:;;t'i'#:ffi;

280

'uo-416, SeÞte¡l

man 84 Malcolm P. Àtkinson';t.
neman. 'Iypee and peteisten4 i

I F. Bancilhon, G. Barbedette,
, .r:1f,4¡-

:,i

,el, S. Gamerman, C' Lécluaô, '
:hard, and F. Velez' The deeiþ '

lion of Oz, an Obþct-Orienhd
ln Ailvances in Objccl-Oricaleil

c, 2td Inlenalioaal Wor*shoP ot
Døldóase Syalens, Bad Mû¡slii
wg, FRG,pa'gæ l-22, SePtembet

sht 831 R. BaYer and E. Mc'

.zation and maintenauce of large

Aclo Informølicc, 1:173-

,ouie BentleY. Multidimensiond

rees u8ed for associative ¡ea¡ch'

[Meyer 88] Bertrand Meyer. Object_orieateil Sofl_
uare Co¡slrttclion. prentice Ball, London, lggg.

[Morrison e Florianis,A. Dearl
graPhice integrated

Grophics compuler

P 8fl D. Jason penney and Jacob
ification in the GemStone Obiect_
In OOpSLA,87, pagee ilt_ilZ,

[¡o"l
tence
ion.
2):ll

[Samet 8a] Hanan Samet. The quadtree and ¡elated
hie¡archical data st¡uctures .

-Co^putiog-Su_rli,

16(2):l82-260, June 1g84.

[Stonebr Stonebrake¡ and
Lawre
ACM n of pOSTGRES.

1986.

[Straw, Melle
Fred Melle
agement in
- Prøclice
1989.

tS::.Y]:fl"ems 8fl Sun Microoyetems, Inc. Sun-
INGR"ES Manual Set, January l9gZ.

[Tsichritzie and Nierstrasz gS] D.C. Tsichritzis and
O.M. Nie¡st¡as_2._!it_ting round objecte irt";;;;;
databas€s. ln ECOOp ,gg, pages 2g3_2gg, A,úguet
1988.

þ n den Bos. pROCOL:
concur¡ent object_oriented
p roce s sin g L ellen, 32:221_

[van den Jan van den Boo andChri¡ - A parallel ;i;; ;;:
8u88e OOPSIA 'g9, Neu Or-leans, ber 1ggg.

amming languagea. ACM Conv 1iÍ
)(2):105-190, June 198?. . ., ',,',1':

M.P. Ätlinaon, P.J. nailey, ¡ç¡.
)ockshott, and R. Morrison. {¡
ietent programming. The Com- ';.i.
(4):360-365,1983. '

"
iii

[Egenhofer 1n{Frank 89] Max J. Egenhofer and

4",9r:i U. F¡ank. Object-orienreJ modeling in
1 GIS: Inhe¡itance and propagation. In Auto-C"øt1o
',- 9, Ballimorc, pages SB&-5gg, d.pril lggg.

[Faloutsos, Sellis and Roussopoulæ g7] Christoo Fa-
¡. loutsos, Timoe Sellis, and Nick iloueeopouloo.

Analysin ofobject oriented spaüial accees må¿hod¡.
ACM SIGMOD, 16(3):426-489, December 1g87.

flank 88] And¡ew U. Frank. Multiple inheritancetand genericity for the integration of a databa¡e

ttions olthc áC,lf, l8(9):509-51?' I Dataô as et, S ailo B artr an, C alilo Åi o, ¡ilv-íS8ó.

rcene 89] Diane Greene. An implementation and
perfo_rmance analysis of apat,ial á"¿" u."o, -"ti-ods. In IEEE Dato Enginleriog Con¡rrrnrr,'l^go
p0Gols, rgas.

and Ba¡re¡a 8g] Andrew U, F¡ank and Re_
Ba¡rera. The fieldtree: .A, daüa at¡ucture for

tf8raphic information syetem. ln Sgmposirim on
lhc D.esiga and, Implcmenløtion of Largc Spafiol

ter 88] Oliver Günther. Eficieal Slntclurcs
Ueomch-ic Døta Managem¿nf. Number 332

l:,ï. I"r:r-ln Co-put"r Science. Springe._
:lag, Berlin, 1g8g.

t 841 Antonin Guttman. R.trees: A dy_
index^etructu¡e for spaüial aearching. AiM

,fl E.H. Blake and S' Cook' 0¡
rìär"..hio in object-oriented lar'

iiåpl.m"ntotion in emalltalk' Ir

,ges 4l-50, 1987. t ,4f,ges Al-bu' Ieõr. '] ftry
Pin-Shan Chen' The entitY'"

å"1-J.**¿ " "nified
view of d¡tr

'

ío¡s on Delabase Sgslems' L

7-387, June 1970' I'

odd. A ¡elational model of dat¡ lt-

;:H;;:"ä;;;; ni cøti ou ot ttc

I

I

I

1

las Comer. The ubiquitous&
ins SurueYs, ll(2):L2l-13'r'

C'ox. O h j e cl' O rienl c d,

nøry APProach'

., 1986. È:

, l3:47-57, 1984.

PCTE+, 1989.

681 Independent European programme
rÞ. -^ Technical Area 13 (IEPG lA_13).ti+ C Functional Specification Issue 2, Juþ

88]
_Independent European programme

lp_ -T:.Ili.l Area lJ (rEpc TA_lsi. rnrrG

'l#:'!îr:;r"j"ff:',["ff
;*;'¡:l;u':"^":"".i:i:;i

I.n -d Copeland 86] Setrag N. Khæhafian
ueorge P. Copeland. Object identity.In OOp-

,Ë;ð-ttiã; öctober rese'
?d, pug", 40'6-.416, S.pi"-ú", rsso.

281

[van Oosterom 88] Peter van Ooste¡om. Spatial
data structurea in Geographic Information Sy*
tems. ln NCGA's Mapping aad Geogmphic Infor-
molion Syslems, Orlanìlo, Florida, pages 104-118,
September 1988.

þn Oæterom 89] Peter van Oosterom. A R¡active
Data Structu¡e for Geographic Information Sy+
tems. In Aalo-Cstlo 9, Ballimoæ, paget 665-{74,
April 1989.

[van Oætærom and Claassen 90] Peter va¡ Oæte'
rom and Eric Claassen. O¡ientation i¡sensitive
indexing methods for geometric objects. ln lth In-
lentalionsl Sgmposium on Spalial Dola Eandliag,
Zúrich, Suilzcrland, July 1990.

[van Oæterom and Lafrra 90] Peter van Ooeterom
and Ch¡ie Laff¡a. Pereistent graphical obþcts.
ln Eurognphics Workshop on Objecl Orienled
Graphict, June 1990.

[van Oæterom and van den Bos 88] Peter van Oos-
terom and Jan van den Boo. r{,n object-oriented
approach to the deaign of Geographic Information
Systems. Compalcra U Graphics, l3(4):409-418,
1989.

[van Oæterom, Eekken and Woestenburg 89] Peter
van Ooeterom, Marcel van Hekken, and Ma¡co
Woeetenburg. A geographic extenEion to the ¡e-

lational data model. ln Gco '89 Symposirm, Thc

.Ecauc, October 1989.

[van Roeeael 87] J.W. van Roe¡eel. Design of a apa.
tial data structure using the relational no¡mal
forrns. .fntcrn¿lionol Jour¡al ol Geognphical Ir
lormølion Syslcms, 1(l):33-50, 1987.

[Weinand, Gamma, and Marty 89] Á,ndré Weinand,
Erich Gamma, and Rudolf Marty. Deeign and inr
plementation of,ETî*, a searnless object-oriented
application f¡amework. Sln ctural Prognmming,
10(2):63-87,1989.

[Wolf 89] .Andrea¡ Wolf. The DÄSDBS GEO-Ke¡-
nel, concepte, experiencee, and the eecond step,
ln Sgmposium on lhc Dcsign and Implemcntalion
of Large Spaliol Dolobascs, Scnla Bdrban, Cali-

/ornio, July 1989.

Appendix - The R-tree in
,e

This appendix contains the Procol codt
jects R-IÎEE and R-IoDE, which togethei
a persistent multi-dimensioual index
s€ction 6. In case of a GIS with
poi.ute, liner and regions in the plane thd
of the R.tree is 2. À CÂD eystem with eolid
for example a polyhedron, will need a I diriii
R.tree. Higher dimeneional R.trees a¡!
ble, because the in some applications it ir
to interpret a combination I ecalar

l-dimensional point attribute on with ¡a¡i
may be formulated.

Not aU the code iB given here. Thi¡ i¡
!_'

three dote (...). Eepecially, eonre tricky
ineert and delete algorithms are omitted,
be found in [Guttman 84]. The code ir
becauee the tree ha¡ to be kept in balancc i
inee¡t and delete operations. The

appendix i¡ to ehow how the R-tree ie imi
in an object-oriented manne¡. We only
query type: the box eelect (in 2D that ir, a'

eelect), which returne the id ofevery object

tree that overlape the eearch box ¡bo¡. T
s€nt back to the original object sid by

action InRcgio¡.with the id ofthe found-

data) obþct. Thir happene once for each

is found. ìr I

Note that we implemented a parallel ot'i
version of the tree by ueing the object B'

l-It"" tit"ttt*" t Td.
ra¡i¡ur nuber of ent-rr

(l¡t r, ínt ll' chu

lrec ig auited for DIll

t¡¡t jult âft€r th€ cr€a

rndr Peraistent bY its c

root, node;
bo¡[Drl0 [2] ' I

ion: Tho Àdd ud Dsl

by the (graPhical <

rnd thet !€Dd tl
bomdilg bo¡ in bo:

Oot) -> ldd
(bor) -) Delete
(¡bo¡) -> Select

+
+

¡ TULL¡

r'{
il (root-nnr) {

¡e¡ root(¡, Ë, tru€)
p€lsistent root ijr d

root. EntryÄdd(sendor
) el¡e (

o"" ooa"<., ll, trus)
:. p€nistent node i¡ d

ù,\r "

ing the eearch operation eeveral nodes'c

paiallel on different P¡oceEsort. Tbe¡e i¡
äf *ork in each nie, because a tYPicq!,;

ll (maximum numbr of entriee) is 100:,.'r,

lution would probably not be vely elliclet

nary ttee, b".*use the overhead int¡oduc¡d

ing meaeagea to other ploces¡tora may I

ti¡ie thanihe time that ie gained by the

cution. Besidee the s€E¡ch operation' the

insert operations might also benefit ftom

ecutionìn case ofnode overflow snd node!

reepectively. This is not shown in the codc

ldefine DIll 2 /' or a¡Y otbetì

ldetlnc LEICTII 256

typodof atn¡ct(
lrÏ id¡ /¡ R-foDE or graPbtcall

r{

/r Tìe deletion of a pr
/r irylior re¡oyal fror

li
!i
il
;l

i

I

. (root.Seatch(¡o

tloat bor[DIIO [2];
) htryTypo;

282

-tree in Procol

,he P¡ocol code of the oL=
which together implemeni

¡ional index etructure; æn.
IS with att¡ibutes ru.h.lt
in the plane the dimen¡ion
) syetem with eolid objeç¡s.

, will need a 3 dimensionj
nal R.t¡ees are also poesi
applications it is ben;ficiail'
n I ecalar attributes * oou 1

ibute on with range queties
,iù,*

here. Thi¡ is indicated Sì
ly, eome tricky parte of the
hms a¡e omitted, but can

l]. The code is non-trivial
e kept in balance under the

ions. The purpooe of thir
the R.t¡ee ia implemented

nner, We only showed one t

t (in 2D that is, a rectangle

id ofevery object in the R.'
¡ch box ¡box. The reault i¡
object rld by invoking the

: id of the found (graphical

ns once for each object that

ed a parallel or distributðd
ug the object R-!ODE. Dur- .i
s€veral nod€ can wo¡k in

ehown in the code below' I -o¡

,ri ..', í
' or any other value) 1 '/

;_ì

.¡hì,

ll?t
* o"ntcal, obj€-c:.;Í

oEJ R-TREE (i¡t r, int ll, chu dâtæ€tllF{Grt0)'

De¡ciPtio¡
I! B-tr€e literatue r md ll 116 the ri¡i¡u
a¡d ra¡iru ¡Eber of entriss Per ¡od€.
tle tree is guited lor DIË diræions. l¡sued
Ir that jut after the creatio¡ ol the R-1REE,

it tade peraiatent by it6 creetor ir datæ6t.

Declare

OBJ R-¡ODE (i¡t ¡, int ll, boolean leaf);

Deacription
r md X have ¡a¡e reuirg æ i¡ B-TÏEE,
If leaf bæ value true, th€r t}ri¡ node i¡ a
leaf, else this i¡ ù i¡t6rna1 Dodo.

Ileclue
float boxlDll0 [2], abor[Dlr0 [2];
lfY id, ¡id;
EntrtÎype otryDll;
ht lrofEntrior, i¡
R-IODE Àert;

Protocol
(lr(XEntrle¡<Í)r R-lREE(id,bor)->htlfldd +
(frOf Entrf e¡>¡) : R-IREE (Id, bor) ->ErtrtDel.t c +

R-TREE(aid,rbor) -)Ser¡cà +
R-l0DE(eid,rbor) -)So¡¡cà +
[-ÎÎEEO ->FutI

Intt
fr{¡fE¡trl.. . 0t

lctloú
Entrtldd . {

/r l¡¡u+tion: R-IODE I¡ ¡ot fufl ¡/
c¡trt[lflfE¡trioa].box - bor;
.¡trytfr0fE¡trl..++1, Id . ldi

)
EntrtDelet€. (.,.)
PulI . { ¡cnder. (fr0fEntri€r-Ë); }
Seuch . {

for (1 - 0; i < ff)fEntrie¡; i++)
If (overlap(rbor, o¡trt[i],bor)

if (1¡¡t)
/t Return fou¡d objoct :/
aid. InRagion(entry [iJ . id) ;

cl¡e {
/¡ Propagate úoa¡ch to loror t/
/. IeYoI. Thir part of thc codo ./
/r cau¡ec the paralleli¡r t/
nert - e¡tryli].id;
¡a¡t.Search(sid, abo¡) I

)
)

FryloBJ R-¡oDE.

R-¡ODE
fl.oat

root, node;
bo¡[DItO [2] , aborÞIt0 [2] ;

i/r laaurytion: Tho ldd md Deloto ¡ctiou are
/r lavoted by the (graphical data) objoct!
r/. thorselver ud th€y ¡end thoir coroct

ri¡iul bouding bor in bor.

eEsors. There is quite a biü,

lecause a typical value for'jti
'entries) is 100. This 8o-

,ot be vety efficient for bi-

'erhead introduced bY send-

:oceEsors may require morg;

s gained bY the Parallel exe

.h operation, the delete and

,lso benefit from Parallel ex- '1'

verflow and node underflor :'

¡ lrl (bor) -> ldd +

ll ry Íb:'). -) Delote +

IIY (¡bor) -) Sclect

¡æt ¡ IIJLL;

R'
lctioruI'r¿a.{
í if (root-IULL) (
!i ner root(r, tl, true);

püristent ræt ln dåtuot¡
root.Entryldd(tender, bor) ;

) el¡e (

ne: node(r, ll, tme);
pellistent ¡ode f¡ dàtuet;

)
l
Dolete - {

t¡ fs lte delotion ot a p€rÉirto¡.t node r/
/r irplie¡ reroval fror th6 dataret r/

l
soloct - { root.seuch(¡oder, bo¡)¡ }

E¡dO8J R-ÎnEE.

283

,L,O

TECHNOLOGY OF
OBJECT.ORIENTED
LANGUAGES AND SYSTEMS

Proceedings of the Second lnternational Conference
TOOLS. PARTS 1990.

Editors: Jean Bézivin, Bertrand Meyer, Jean-Marc Nerson

