T

Persistent Graphical Objects in Procol

Peter van Oosterom and Chris Laffra

Department of Computer Science, University of Leiden

P.O. Box 9512, 2500 RA Leiden, The Netherlands
Email: {oosterom,laffra}@hlerul5i.bitnet

Persistent objects are objects whose contents may outlive the ezecution time of the program.
This paper describes the process of introducing persistent objects in the object-oriented pro-

gramming language Procol.

The sirength of persistent objects in an object-oriented pro-

gramming language is the integration of a database system with a programming language.
Persistent objecls make the program development easier, because the programmer does not
have to implement the ezplicit loading and saving of data. Besides the general functional
aspecls, special attention is paid lo graphical applications in order to deal with their specific
geomelric requirements. For ezample, st must be possible to find, in an efficient manner, all
graphical objects that fall within a given region. These issues, persisteni objects and their
geometric requirements, have not yet got the altention they deserve in the literature covering

~ 1 Introduction

The fact that the object-oriented approach is so suc-
cessful in computer graphics, is mainly due to the
system modeling capabilities that the object-oriented
paradigm offers. The specialization relationships
which exist between the graphical objects in a sys-
fem, can be modeled with inheritance or delegation
which are present in many object-oriented develop-
ent environments. Geometric data types, such as
. Points, vectors and matrices may be implemented by
. abstract data types using object classes [Blake and
. Cook 87, Cox 86, Dietrich et al. 89, Meyer 88]. How-
g.:ever, in practice this modeling power is not enough
" when implementing CAD systems or Geographical
* Information Systems (GISs) which deal with large
 data sets, Integrated database facilities are required
- to support the graphical application in an efficient
-, anner.

Ly T,

L et o Rl

PR

Wi

271

object-oriented graphical systems where modeling and functional aspects dominate.

In this paper we describe a solution that is based on
the introduction of persistent objects in the object-
oriented programming language called Procol. A de-
tailed functional description of the C~based language
Procol can be found in [van den Bos 89] and some
implementation aspects in [van den Bos and Laffra
89]. The resulting system is also extendable with new
(persistent) types and operators. In itself this ap-
proach is not new and has been described by several
other authors [Atkinson and Buneman 87, Richard-
son and Carey 89, Straw, Mellender and Riegel 89},
but we also tried to make the system suitable for
highly interactive and graphical applications. This
goal is achieved by putting emphasis on both time-
efficiency (offering techniques such as: navigation,
index structures, and parallelism) and the recogni-
tion of multi-dimensional data. As an example, not
only one dimensional, but also multi-dimensional in-
dex structures are provided in Procol. The empha-
sis in this document is on the inclusion of persistent
graphical objects in the syntax and semantics of Pro-
col and on its implications for the technical realiza-
tion; e.g., how Procol deals with problems such as
referential integrity and associative searching.

We will state the problem area in section 2 and de-
fine our general requirements for persistence in an
object-oriented language in section 3. We describe

30000000"

-
e
O
£

(

Hake choles by clicking an itas,

Figure 1: A Geographic Information System

some straightforward attempts to provide a mecha-
nism for persistent objects in section 4. Building on
this the following topics are discussed in more de-
tail: referential integrity, (multi-dimensional) search
problems, Procol extension alternatives and object
instances of different sizes in sections 5 through 8,
respectively. In section 9 we present the solution as
chosen in Procol. In nearly all the sections the re-
quirements of graphics play an important role. The
discussions are illustrated with examples based on
graphical systems. Finally, section 10 indicates some
topics where further research is required.

2 The Need For Persistence

The computer science research in the area of pro-
gramming languages emphasizes programming con-
structs and data structures. One of the most popular
paradigms is that of Abstract Data Types (ADTs).
Object-Oriented Programming Languages (OOPLs)
encapsulate this paradigm in an elegant manner us-
ing object types to describe the ADTs. Access from
outside to the data inside an object instance! is only
possible through the methods or procedures defined
for that object type.

The data stored in data structures (or objects) of a
running program are in general volatile, that is, as
soon as the program stops, the data are lost. How-

In this document we will use the term object type to in-
dicate a class of objects and the term object to indicate one
instance. In case more emphasis is needed we use the term
object instance explicitly.

272

ever, in many applications the data itself are yepy
important. An obvious solution is to save the data iy

a file by explicit write statements. The next time the
program is started it first reads the data from file intg
the volatile data structures. Persistent objects make
the program development more efficient, becauge thy
programmer does not have to worry about the read.
ing and writing of data from and to disk. Also, the'
structure of the data file may become quite Com.{,
plex, resulting in possibly intricate parsing. Mogs,
over, for large quantities of data this “file” solutjoq
becomes cumbersome during the execution of the
program. Consider as an example an informatiop
system that registers bank accounts. A character:
istic of this and many other information systems i
that the objects are well structured, quite passive
and occur in large quantities. Passive objects are ©
objects that hardly ever send messages to other ob. :
Jects (except for replies); they only react to messages

from outside. In the bank account example, an ac. _'
count object replies its current amount when asked

for, and updates it when told so by a message from
an authorized object. :

Database Management Systems (DBMS) have been
developed to deal with the large amounts of data
mentioned above. DBMSs concentrate on the infor-
mation representation and tackle related problems
such as, integrity, security, redundancy, consistency,
efficient searching, query formulation and concur- 1'%
rency control. A major drawback is that the DBMSs b :
of the current generation are not extendable with!

new data types and operators. This makes the use
of these DBMSs inconvenient in non-standard appli-'
cations that need support for other data types. (i

The database research community has recogni?egf
this deficiency and is now trying to design syste
that are more open [Egenhofer and Frank 89, Stone- &
braker and Rowe, Wolf 89]. At the other side the &
OOPL research community has recognized the n}aefl
for persistent objects. Now, these two worlds meetn.
In some cases these encounters result in conflicts be-
cause of very different and incompatible principlg- .
For example, explicit (navigation) links amongst - -
stances are considered harmful by the database com-.
munity, because they are hard to maintain. However, i
these same links form the backbone in represent-
ing complex objects in OOPLs. On the other hﬂ-ﬂdq ;
sometimes the combination of the two research com-
munities result in a nice symbiosis. An example o1 =
this is that the concurrency control problem in the -
database is solved by the model of an object that
accepts messages one by one (as in Procol).

We are interested in interactive graphica.l_aPPli“" A
tions, such as: CAD systems, VLSI Design, 3¢,

GISs, see Figure 1. Co
tems are: interactivity, |
of data. In [van Ooster:
showed that the object
good data modeling and
applications. In the sa
sistent objects in our ol
language Procol, was ide

3 Our Wish 1

This section shortly di
ments for persistent obj
elaborated in one of the
the section referred to w
that these requirements
nor independent of each

" r1 Upward compatible.
be introduced with .
This implies that e
not have to be chan
by the new version .

r2 Transparent persist
Jjects are treated in !
objects by the appl
incompatible datab
associative searchin
based on the conts
Atkinson et al.[Atk
by recognizing the i
sistent data (they a
; . sistence):

1. Persistence ind
of an object is i
gram manipula
be possible to ¢
actual paramet.
objects and otk

_ 2. Persistence dat.
Jjects are allow
tence. This n
complicated th:
still become pe:

r8 Complez objects. Th
sufficient modeling |
chies. In Procol cor
fined by means of lit
object types that tc
object. The complex
of the object type st
sense of the object it

T

5 the data itself are very = *°
ution is to save the dataip
ements. The next time the
eads the data from file it
5. Persistent objects make
more efficient, because the
e to worry about the read.
om and to disk. Also, the
. may become quite com.;:
y intricate parsing. More-
of data this “file” solution
ring the execution of the
n example an information
1k accounts. A character-
her information systems is
| structured, quite passive °
tities. Passive objects are

send messages to other ob-

they only react to messages

k account example, an ac-

urrent amount when asked

told so by a message from

ystems (DBMS) have been
the large amounts of data
s concentrate on the infor-
d tackle related problems
y, redundancy, consistency,
y formulation and concur-
rawback is that the DBMSs
n are not extendable with
rators. This makes the use
iient in non-standard appli-
t for other data types. v

community has recognized -
w trying to design systems -
yhofer and Frank 89, Stone- "
89]. At the other side the ¥
ity has recognized the need
ow, these two worlds meet.
anters result in conflicts be-
nd incompatible principlfq.
wigation) links amongst iB- ©
wmful by the database com- = &
hard to maintain. However

the backbone in represent-

)OPLs. On the other hand:
on of the two research com =
 symbiosis. An exam_Ple o
ncy control problem 1n the g
he model of an object that
one (as in Procol).

teractive graphica.l_appli“'
ystems, VLSI Design and

GISs, see Figure 1. Common aspects in these sys-
tems are: interactivity, graphics, and large amounts
of data. In [van Oosterom and van den Bos 88] we
showed that the object-oriented approach offers a
good data modeling and design environment for GIS
applications. In the same paper the need for per-
sistent objects in our object-oriented programming
language Procol, was identified.

3 Owur Wish List

This section shortly discusses the major require-
ments for persistent objects in Procol. Some will be
elaborated in one of the later sections, in which case
the section referred to will be mentioned here. Note
that these requirements may neither be orthogonal
nor independent of each other.

rl Upward compatible. Persistent objects have to
be introduced with a minimal change to Procol.
This implies that existing Procol programs do
not have to be changed in order to be compiled
by the new version of the Procol compiler.

r2 Transparent persisient objects. Persistent ob-
Jects are treated in the same manner as volatile
objects by the application. Perhaps except for
incompatible database facilities; for example,
asgociative searching, that is object searching
based on the contents or value of instances.
Atkinson et al.[Atkinson et al. 87] refine this
by recognizing the following principles for per-
sistent data (they assume several levels of per-
sistence):

1. Persistence independence: the persistence
of an object is independent of how the pro-
gram manipulates that object. So, it has to
be possible to call a procedure of which the
actual parameters are sometimes persistent
objects and other times volatile objects.

2. Persistence data type orthogonality: all ob-
Jects are allowed the full range of persis-
tence. This means that no matter how
complicated the type is, its instances can
still become persistent.

8 Complez objects. This provides the system with
sufficient modeling power; e.g. part-of hierar-
chies. In Procol complex object types are de-
fined by means of links (or references) to other
object types that together define the complex
object. The complex objects are static in terms
of the object type structure and dynamic in the
sense of the object instances.

r{ Eztendability with new ADTs. This wish might

be a trivial one in the context of OOPLs or
object-oriented databases, but certainly not in
the context of the traditional DBMSs. The def-
initions of the new persistent ADTs also have
to be stored somewhere, if we want to be able
to manipulate its object instances in a sensible
manner.

r5 Efficient handling of large amounts of objects.

Long-lived systems allow time for data to accu-
mulate. This, combined with the fact that we
aim at developing interactive systems, justifies
this efficiency requirement to be even more im-
portant than in other systems. Not only efficient
retrieval by object id (which is very important in
OOPL and object- oriented databases, as used
in navigation links) is required, but also efficient
asgociative searching has to be poesible. This is
realized, as usual, by indexing techniques such
as B-trees [Bayer and McCreight 83, Comer 79]
or hashing.

r6 Object instances of different sizes. A polyline

or polygon has to be stored with a minimum
of overhead, because of the required time (and
space) efficiency in interactive systems. This im-
plies that different instances of the same object
type may have different sizes. To treat an object
instance as a unify means that it is stored in a
contiguous part of memory. This may seem to
be an implementation issue, but it is very im-
portant and by putting it in our wish list we
emphasize this. This topic is further discussed
in section 8.

r7 Highly interactive and graphical applications.

The previous two wishes actually are part of
this more general wish to make Procol suitable
for this kind of applications. It has to be kept
in mind that multi-dimensional data sometimes
require other approaches than the data types en-
countered in traditional DBMSs. Also, the fact
that Procol is designed as a parallel program-
ming language should be exploited.

ré Ezchangeable objects. It should be possible to

exchange object instances between different sys-
tems. Object instances created by one system
must be directly applicable by other systems.

r9 Deal with referential integrity in a sotisfac-

tory manner. This is well-known problem in
database and programming language research.
The topic will be discussed in depth in section 5.

4 Straightforward “Solutions”

In this section we describe some straightforward at-
tempts to provide a mechanism for persistent ob-
Jjects.

Normally, object instances are only present when the
program is executing. Data will have to be loaded
from a file or a database system into the (new)
objects when the program is initialized. Just be-
fore the program stops, the data have to be saved
again. This is, as argued in section 2, an inconvenient
method, especially in the case of applications with
huge amounts of data that are not entirely needed
in each session. An object-oriented step in the right
direction is to store the state of objects themselves.
This can be compared with making a core dump of
a single object. When an object is saved, a “snap-
shot” of the object instance is made. Changes made
after the save operation are not propagated to this
snapshot.

The suggestion to store the objects themselves is not
as simple as one might expect. This is because ob-
Jects usually contain references (in attributes or local
variables) to other objects. A reference to an object
is an id (identification of the proper type), assigned
to that object by the operating system when it was
created with the Procol primitive new. In some sit-
uations it is useless to save an object without also
saving the related objects.

The “snapshot” method is used in several other
OOPLs. In systems offering multiple inheritance the
object type that also has to be persistent, inherits
this property from a general object type with meth-
ods to save and load the object. Egenhofer and Frank
[Egenhofer and Frank 89, Frank 88) suggest the ob-
Ject type db_persistent with methods store, delete,
retrieve and modify. ET++ [Weinand, Gamma, and
Marty 89) has an object hierarchy with the object
type object in the top of this hierarchy. The object
type object has methods called PrintOn and Read-
From which enable transfer to and from disk. These
solutions work fine as long as the object types con-
tain no references to other objects but only simple
attributes, such as for example an array of coordi-
nates describing a polygon.

The persistent data in PS-algol [Atkinson et al. 87,
Morrison et al. 86] are organized into one or more
databases. Each database has its own root and
may contain values of different (complex) data types.
The data are “imported” into & program with the
open.database procedure which returns a pointer to
the root. The root has the form of a name-value ta-
ble in which the value is usually a pointer to another

data structure. The actual data are accessed by fo).
lowing these pointers and it is assumed that the pro. .
grammer has to know the structure of the databage
(though this is nowhere stated in the PS-algol pa -
pers). Once imported, the data can be manipulated
in the same manner as volatile data. The procedure
commit propagates the changes made 8o far to the
database, if it was open for writing. Everything that -
i8 accessible from the root is stored. This means that
values may change and data (structures) be added or
removed.

In the OOPL Eiffel [Meyer 88] an object type that
inherits from the object type STORABLE gets this
kind of behavior by means of the methods store and -,
retrieve. If the method siore is invoked in object
instance z, the whole object structure starting at
z is dumped (in a special format) to a file, even if .,
the referenced object types in £ do not inherit from ..,
STORABLE. Depending on r and the object struc- -,
ture of the application, it is possible to store the .
whole object structure, or just a part of it. Basically,
this solution has two drawbacks. First, the applica-
tion programmer has to indicate when to save or load
the objects explicitly. So, if the program is stopped {
before the save, the latest data are lost. Second, up-' /& 1%
dating one object in an object structure can become *
very expensive if all related objects have to be saved
also, even if they did not change.

5 Referential Integrity

What happens if an object is deleted by its creator

while other objects are still referring to this deleted .
object? A dangling reference is not a problem spe- .
cific to persistent objects, it is a problem in the case

of volatile objects too, but it manifests itself in a se-
vere manner in combination with persistent objects. .
Assume, a persistent object contains a reference to ..
a volatile object and the program is stopped. The
next time the program is started, the reference to
the volatile object is not valid any more (though it
has not been deleted). By the way, dangling ref-
erences can also occur in non-OOPL. For example,
in C it is possible to have pointers to deleted dats
structures, which may be the cause of some sever¢
errors in a program. Some systems guarantee refer- o
ential integrity. An associated problem is that of 82

“unreachable” object, that is an object to which 'th
last reference is lost. There are a number of possible ./
approaches towards these problems:

o If we want to guarantee referential integrity, ¥¢
at least have to be able to detect whether the1d-

R

tegrity is damaged
This can be achiew
count with each obj
count has a value g
will not be deleted
this fact. The refer:
duces overhead, bec
updated in each as
able. Problems ar
structures.

o A dlightly different
a reference count, i
et al. 88]. The ot
but postponed unti
count is zero. Th
worry about trying
time.

o Dangling references
the deletion of obje
in for example Gel
87]. In order to avoi
garbage collection h
well known methods

* ., L Using a referer
becomes zero,
stance is autorr

b tem.

~ 2. Performing a
space (a direct

., tect which obje

advantage is th
) periodically anc
o system can not |
This can be avo
tal version of th

. The maintenance of
* duces overhead; both
tion time increase. (
to omit a reference ca
object at request. Ho
tem is not allowed t
objects for new ob ject
. 8ent to a deleted obj
. this, and the sender v
{.. €8y implies that the
: 1.not be used as its id,
. 18 deleted we want to
_of the memory space
a0
Mmay be clear by now thai
ter approach, In the cc

Telerences are probably pr

| data are accessed by fol-

t is assumed that the pro- .
structure of the database "
tated in the PS-algol pa-
, data can be manipulated -.
latile data. The procedure =
yanges made 6o far to the :?
r writing. Everything that
is stored. This means that -
ta (structures) be added or %

; 'r

,ype STORABLE gets this .
s of the methods storeand ;. -
store is invoked in object

bject structure starting at
al format) to a file, even if :
es in z do not inherit from . o -
‘on z and the object struc- ,¢
it is possible to store the .-

er 88] an object type that .. . ?
W
&

tegrity is damaged by the deletion of an object.
This can be achieved by associating a reference
count with each object instance. If the reference
count has a value greater than zero, the object
will not be deleted and the creator is notified of
this fact. The reference count mechanism intro-
duces overhead, because the counters have to be
updated in each assignment to an object vari-
able. Problems are introduced by cyclic data
structures.

A slightly different approach, but also based on
a reference count, is followed in O, [Bancilhorn
et al. 88]. The object deletion is not refused
but postponed until the value of the reference
count is zero. The creator does not have to
worry about trying to delete the object another
time.

Dangling references can not occur if we prohibit
the deletion of objects. This approach is taken

r just a part of it. Basically, 4 i in for example Gel.nSt.one [I?enney and Stein
whacks. First, the applica- o 87]. In order to avoid congestion of the system,
ndicate when to save or load .':‘ . garbage collection has to l:>e performed. Two
5, if the program is stopped /i - well known methods for this are:
’ (.hta are lost. Second, up-? ﬁ't-' b I 1. Using a reference count: when the count
object structure can become PR b b iated obi .
‘ biects have to be paved W | ecome‘s zero, t 1€ asgociated object in-
ted obj st ’* i stance is automatically deleted by the sys-
t change. ‘ tem.
: 2. Performing a sweep through the object
. e . space (a directed graph) in order to de-
Integrity . e tect which objects are unreachable. A dis-
L @ advantage is that the sweep is performed
ject is deleted by its creator ' periodically and during this operation the
still referring to this deleted ﬁ o sys.tem can not l?e used by .the ap?lications.
erence is not a problem 8P uf = i, This can be avoided by using an incremen-
ts, it is problem in the case ¢ tal version of the sweep algorithm.
b“_" it nllamfeets‘ 1:::[:'f;‘l;j:cu. Lt‘:r g ~ 'e The maintenance of the reference count intro-
“’_‘on with ;zerma reference to LA !, duces overhead; both memory usage and execu-
bject contains e.w 2 ‘ " tion time increase. Clearly, it is more efficient
he progr m:li mhs p;; rence 10 & to omit a reference count and directly delete the
1 is started, i :{thﬂush it object at request. However, in this case the sys-
ot valid any m:jm ling ref- o tem is not allowed to reuse the id’s of deleted
) By the w;{, For ggx&lﬂlﬂel o % objects for new objects. So, if a message is being
n non:OO bo deleted dstd .8ent to a deleted object, the system can detect
ave pointers of some gevere . , thig, and the sender will be notified. This strat-
; be the cause arantee refer o 5 .. gy implies that the address of an object can
porr!e 8y atem;lsu is that of an 1t] 1P°t be used as its id, because when the object
gocxaf:ed prob‘:::‘l to which the ;B"' .18 deleted we want to be able to reuse that part
[?llll:el:.r:naondmber of PO“ib%“}f'ﬁ ..of the memory space for new objects.
ese problems: i a Ij X .t
A may be clear by now that we are biased towards the
rantee referential integrith v it "f & lefter approach. In the context of Procol, dangling

» able to detect whether the w

~'¢tences are probably programming errors and the

& ' 275

detection of the illegal use of dangling references dur-
ing run-time is an adequate solution. Finally, it is
interesting to note that PCTE+ [IEPG 88, IEPG
88] offers links both with and without referential in-
tegrity. This is probably done for efficiency reasons.
It is not stated in the PCTE+ documents how the
referential integrity is maintained.

6 Object Management

In order to solve the administrative problems associ-
ated with the use of object id’s, there is a need of an
Object Management System (OMS) that takes care
of the (persistent) objects. One of the responsibili-
ties of the OMS to keep the references in the object
system consistent. To be more precise, an object
system is consistent if [Khosafian and Copeland 86):

e No two distinct objects have the same identifier
(unique identifier assumption). In other words,
the identifier functionally determines the type
and the value of the object.

e For each identifier present in the system there is
an object with this identifier (no dangling iden-
tifier assumption).

6.1 Object Identity

A uniform object identification mechanism has to be
developed, capable of dealing with objects shared by
multiple programs, multiple users or even multiple
computers (in a network). There should be a mech-
anism to indicate in which persistent objects one is
interested, so one is not bothered by non-interesting
objects of others. One possible method could be to
organize the object instances in “datasets” which are
put in the normal hierarchical file system. This lim-
its the scope and makes the task of finding the right
communication partner easier for the OMS.

In relational databases [Codd 70] an identifier key
is formed by one or more user-supplied attributes.
Value based matching is a transparent technique for
expressing relationships. However, it provides no
support for referential integrity at all. By contrast,
OOPLs support the notion of object identity which
is independent of the attribute values [Paton and
Gray 88)]. Khoshafian and Copeland [Khosafian and
Copeland 86] describe several techniques for imple-
menting object identity and they conclude that us-
ing so called surrogates is the best technique. Sur-
rogates are system-generated, globally unique identi-

fiers, completely independent of the physical location
and data contents of an object.

6.2 Searching

The objects as presented so far are not suited for as-
sociative search operations. That is, searching based
on the contents of an object instead of using the ob-
Ject id to find an object. This is especially useful for
a program that want to use objects created by other
programs, because the id’s are unknown and have no
semantic meaning. All that a program(mer) knows
is about: object types (the kind of data he wants to
use) and attribute values (restriction of instances).

Another use of associative searching is to solve the
query: “How many inhabitants has the municipality
with the name attribute ‘Leiden’?”. We have to look
at all the instances of the municipality object type
until we have found the proper one. This is an O(n)-
algorithm. However, this problem can be solved with
an O(log(n))-algorithm, if a binary search is used. In
a relational database, efficient search is implemented
by a B-tree [Bayer and McCreight 83, Comer 79] for
attributes on which an indez is put. The B-tree has
many useful properties, such as: it stays balanced
under updates, it is adapted to paging (multiway
branching instead of binary) and has a high occu-
pancy rate,

The B-tree solution in an object-oriented environ-
ment is established by a set of auxiliary (system) ob-
jects. These objects do not contain the application
data, but contain tree structures with references to
the objects with the actual data. This B-tree has to
be part of the OMS and, if possible, transparent to
the “application” objects. Note that the OMS itsell
can be implemented in Procol as a set of objects.

There is some friction between the concepts behind
the ADTs and the idea of associative searching, be-
cause associative searching requires knowledge of the
internals of other objects. An object has to specify
his query in terms of data-part that are inside other
objects. To limit the damage, only so called visible
attributes may be used in the query. These visible
attributes become part of the specification of an ob-
ject type (together with the actions of course), in
contrast to the non-visible data-part which belong
to the implementation. Note that an index may be
put only on a visible attribute of an object type.

Branching factor M = 4

Figure 2: The R-tree

6.3 Multi-dimensional Data

The searching problem also applies to the graphic o =

geometric data. If no spatial structure is used, they
queries such as “Give all municipalities within rect
angle X” are hard to answer. A spatial data struc
ture which is especially suited for the object-orientec
environment is the R-tree {Guttman 84). This is be
cause the R-tree already deals with objects; it only
adds a minimal bounding rectangle (MBR) and the:
it tries to group the MBRs which lie close to eacl
other; see Figure 2. This grouping process is reflectec
in a tree structure, which in turn may be used fo:
searching. Several test results [Faloutsos, Sellis anc

Roussopoulos 87, Greene 89] indicate that the R-tre:

is a very efficient spatial data structure.

Not all known spatial data structures [van Ooste

rom 88) are suited for this purpose. For exampk
kd-trees [Bentley 75), quadtrees [Samet 84], R*-tree
bsp-trees [van Qosterom 89}, cell-tree [Giinther 88
and gridfiles, are more difficult to integrate in the

object-oriented environment because they cut the ge,
ographic objects into pieces. This is against the spirl, |
of the object-oriented approach, which tries to maks

complete “units,” with meaning to the user. Th

Field-tree [Frank and Barrera 89], KD2B-tree an(’

the Sphere-tree [van Oosterom and Claassen 90] an
good candidates for integration in an object-oriente!

system, because they do not split the objects. Eacl

of the spatial search structures has its own strength
and weaknesses, so if several alternatives are offeret

by the system, an application can use the structun :

that fulfills its needs the best.

In Procol, trees can be implemented in two dif‘ferenf
ways. The first method stores the entire tree in o'

single search object. The second method stores €
node of the tree in a separate instance of the searc

object. The latter introduces overhead by creatinl
a lot of search objects (nodes). However, it h*_” “_" ¢
advantage of being suited for parallel processing ! 3
Procol because the search objects can run on parali®

processors. This is useful for range queries: “Give

municipalities with more than 10.000 and less thas

20.000 inhabitants.” App
~ of the Procol implementatj
implementation each node
case of the R-tree thisis ar
. there is a fair amount of wor
would be valid for B-trees,
In any case, for practical

a separate search tree (ind
which efficient searches are
made clear to the OMS befc

1t is possible that the value
after the search tree has b
tribute. In that case, the t;
‘correct or inconsistent. Thi
. ing an (implicit) message to
in the OMS, just after the
Upon receipt of this messag
itself.

7 The Procol E

This section presents some is
tax and semantics of the co
added to Procol for the supp
. Thie is done here without w
~ achieved in our implementat
. users point of view, this exte

and simple as possible. First
b indicate that an object is

- native possibilities are:

Bnir,

10 Qn the fly: Make a vola

o sllstent by applying a ne

;. dstent. Assume the va

i 80 object instance; the
persistent by: persistent
difference with the save
because the yalues (state
are always guaranteed

i _Per Object Instance: At

“i! 18 created, it i decided w

;{ f }ent or not. A conventio

e Jects created with the ne

. 8nd the ones created wi
tive are persistent,

. * Per Objecy Type: Atthe;
18 dEi:'ined it is specified
21' -t!its type are persist
!&d keyword OBJ could
TE‘NT_OBJ.

190.000 inhabitants.” Appendix A contains a part

the Procol implementation of the R-tree. In this
2 m‘,p]emcntation each node is a separate object. In
Nk case of the R-tree this is a reasonable choice, because
"\ {here s a fair amount of work in each node. The same

uld be valid for B-trees, but not for binary trees.
In any case, for practical reasons, there has to be
separate search tree (index) for each attribute for
hich efficient searches are required. This has to be
ade clear to the OMS before the queries are posed.

hing factor M =4

‘he R-tree P
is possible that the value of an attribute changes,
after the search tree has been created for that at-
| tribute. In that case, the tree may have become in-
" orrect or inconsistent. This can be solved by send-
" ing an (implicit) message to the search tree object(s)
"in the OMS, just after the attribute has changed.
Upon receipt of this message the search tree adjusts

onal Data aikatd

a0 applies to the graphic o1
tial structure is used, ther
municipalities within rect
gwer. A spatial data strue
sited for the object—ori?nte(
- {Guttmm 84]. Th'ls‘ mbe ’
, deals with objects; it only .
g rectangle (MBR) and the:
BRs which lie close to ea.clr
ouping process 18 refiecte
:cgl: inptum may be used fo.
results [Faloutsos, Sellis an¢ o
e 89] indicate that the R::
1 data structure. S

'section presents sorne issues concerning the syn-
x and semantics of the constructs which might be
*added to Procol for the support of persistent objects.
\This is done here without worrying how this can be
hieved in our implementation of Procol. From the
ers point of view, this extension should be as small
8 and simple as possible. First, we have to decide how
%o indicate that an object is persistent. Some alter-
‘native possibilities are:

j Ooste
data structures {van
- this purpose. Yor exfrr}:
uadtrees [Samet 84]", Rh-]
ym 89, cell-tree [Giinther 85

i te in the 8 34
e difficult to integra : e
:ment because they cut the g:;’:. C b .
ieces. This is against the spirh (et (2L, On the fly: Make a volatile object instance per-
) 1 icice to mak "¢ sistent by applying a new Procol primitive per-

oach, whicii 1382 T8 0 = .
g:m:x:ean'llis to the user.‘,'}‘_l’] . dislenl. Assume the variable z holds the id of

| Barrera 89], KD2B-“;%]9:;\. an t{bject instance;. then this instance is mfade
Oosterom an Clufssen ks’ Persistent b¥: persisient z. Not_e that thelze isa
ategration in an oblef"’?“ ey Lo flﬂ'erence with the save operation of section 4,
. do not split the ObJecu'en N g ecause the values (states) of a persistent object
gtructures has it—:_ 0":“&::'0“0 Rag -1 are always guaranteed to be up-to-date.
veral alternative = :

:;:ication can use the suucfﬂ' .pcl' Object Instance: At the moment an object
, the best. 8 s 18 created, it is decided whether it will be persis-

dii_fe,

red in WO i tent or not. A convention can be made that ob-
be imPlem‘:‘:‘:mme tree ult_!l' Jects created with the new primitive are volatile
hod siores tne hod stores © and the ones created with the persistent primi-
e Rct:q::::nce of th‘.".’fd | tive are persistent.
a separa 1 cﬂM i<
. erh .
introduces ov vet, it h?‘ » P er Object Type: At the moment the object type

edcs) Howe is g P : .

1(‘.1.3'(“ : aralle‘ pro ef_ined it is specified whether all instances
- suited for P an T of this type are persistent or not. A modi-

W no
gearch objects © :

exies”

gfg keyword OBJ could indicate this: PERSIS-

useful for range 9¢ NT.OBJ,

. more than 10 s

A combination of these approaches is also possible.
In the language E [Richardson and Carey 89] the
programmer has to indicate per type (class) that in-
stances are optionally persistent. The programmer
has to decide per instance if it is really a persistent
object instance.

The advantage of persistence per object type is that
only once, during the object type definition, there
is a difference for the application programmer be-
tween persistent and volatile objects. In the other
solutions it is required to indicate that the object is
persistent for each object instance. The major draw-
back of the latter choice is that two different types
have to be defined if we want to use both the volatile
and the persistent variants of basically one object
type. In the case of strong type checking this means
that we can not freely interchange the use of volatile
and persistent objects as arguments in messages and
procedure calls,

In order to get hold of persistent objects with un-
known id, Procol will be extended with the retrieve
primitive. Perhaps it is better to take the following
approach towards the primitives new, delete, and re-
trieve: consider them as messages to the object types
themselves (“class methods™). These are system ob-
jects (partly) responsible for the OMS tasks. These
system objects have to maintain index structures if
requested by sending them an create_indez message.

The retrieve primitive has some resemblance to the
new primitive, because it also assigns the id of an ob-
Ject to a variable of the proper type. Unlike new, re-
trieve will not execute the Init section, because that
already happened when this object was created for
the first time. The protocol (expression) of the ob-
Ject regulating access to the object is matched start-
ing at the current (saved) state.

A discrimination condition can be used, because the
object type information may not be specific enough.
Of course only visible attributes can be specified in
the condition. A retrieve returns the id of the ob-
ject of the proper type for which the discrimination
condition evaluates True. If there is more than one
object satisfying these criteria, only one is returned.
If there is no object satisfying these criteria, a NULL
object is returned.

It is a small step from the retrieve primitive to the
associative search operation. In fact, it could be con-
sidered as an iteration over the retrieve operation. If
fast replies are required, then in case of large set of
objects, an index has to be used. This index could be
a spatial index structure; e.g., needed for efficiently
solving a “rectangle” query. There are several op-
tions for returning the answer of a search:

o Return one big set that contains the id’s of all
objects that satisfy the query. In case of large
answers, a Jot of temporary memory is required
and it may take quite a while to generate the
complete answer.

o Another strategy is first to state the query and
then retrieve the answer one by one (or perhaps
in buffers of a fixed size). The first part of the
answer will probably be ready sooner than the
complete answer would be. This promotes par-
allelism and is also quite important in an in-
teractive application, because the end-user can
already see something on his screen then.

The problem with the second solution for returning
a search result is that other objects might interfere
with the set of objects that belongs to the queried ob-
ject type. “Third-party” objects could change values
and add new instances or delete existing ones. We
still have to investigate whether this can be solved
by applying the right protocols in the system (OMS)
objects. This has to be solved before we decide on
the syntax of a search query.

8 Object Instances of Differ-
ent Sizes

In section 3 we saw that the wish to store a polyline
or polygon with a minimum of overhead, implies that
different instances of the same object type may have
different sizes. So for example, the pure relational
solution, presented by van Roessel [van Roessel 87]
is not acceptable, because a polyline is scattered over
several tuples in a table and first has to be aggregated
before it can be used again. In [van Oosterom, Hek-
ken and Woestenburg 89] a solution in the context
of the relational data model is presented.

Different sizes have an (enormous) impact on the im-
plementation of persistent objects. In COg, the C
implementation of O, [Bancilhorn et al. 88), it was
decided to prohibit object instances of different sizes.
In contrast we would even like to have persistent ob-
jects whose sizes change dynamically. For example,
to make it possible to remove points from or add
points to a polyline. However, this would even fur-
ther complicate the implementation. A decrease of
the size of an object is not too hard, but an increase
of object size means that an object does not fit in his
(contiguous) part of memory and the memory after
this object is probably occupied by another instance.
The object will have to be moved to another larger
place, because we want to treat an object as a unity

and do not want to split it. This would have beey
impossible if the objects id is its address, However,
this was already disapproved of because of reasopg
discussed eatlier. In any case, growing persistent ob.
Jjects could introduce a lot of overhead; e.g. moving
of objects. -

A more feasible situation is that after the Init section,
the size of an object may not vary any more. It is stil]
possible to deal with dynamic problems. For exam-
ple, use a pointer (id) to an object of type linked list,
This object type has an “application” data-part angd
a pointer to the next list element. Each instance rep-
resents one list element and they all have the same
fixed size. We can extend this approach and sim-
plify our implementation of Procol, if we only allow
the following data types as attributes: Basic types
(int, char, float, ...), References (or links) to other
objects, and Arrays with fixed size after the Init.

9 Persistent Objects in Procol

The question how to implement persistent objects in
Procol can be divided into two sub-questions. The
first is how to adapt the languages features (the ex-
ternal implementation). The second is how to imple-.
ment this on the underlying platform (the internal'
implementation).

9.1 External Implementation

Our decisions according the external implementation
of persistence in Procol included the introduction of
the following new keywords:

1. persistent <object-id>
in <dataset-key>
With this statement a volatile object instance
identified by <object-id> can be made persis-
tent by coupling it to a dataset identified by
<dataset-key>.

2. volatile <object-id> .
With this statement an object instance (identi-
fied by <object-id>), that has been made per-

sistent before, can be made volatile. The reglllt
of this statement is that the persistent object !

instance is removed from its dataset.

3. retrieve <object-id>
from <dataset-key>
where <discrimination-string>
and
next <object-id>

With this statement
stance of the same t
the dataset with iden’
satisfies the <discric
dataset in question c«
stance of the require
returned in <object-i
cution of the next st
nert instance of the 1
quired instances have
dataset.

In general, <dataset-key:>
string can then be used 1
of the necessary dataset {
the provided persistence in
object type using the obje:

Declare

“" objact DRAVING drami

allocate_drawing(chz
{ new drawing;
persistent drawi
iead_old_draving(cha
‘ retrieve drawing

}

9.2 Internal Imple:

We will now motivate our
internal implementation. P
and implemented on a net
running under SunOS Relez
mentations of the extension
objects were considered, |
2i8 and Nierstrasz 88]): ba
the Unix OS-interface call;
write), shared mapped mem
[Sun Microsystems 87] (or
Postgres [Stonebraker and
able DBMS), PCTE+ [IEP
Powerful OMS derived fron
Model of Chen [Chen 76}).

A file is mapped directly .
address space of a process
!-hat there is no difference 1
Ject instances and their “r
least not at the level of th
e_\fel there is a difference ar
ifference between virtual n

278 i

< With this statement we can retrieve an in-
K gtance of the same type of <object-id> from
' the dataset with identifier <dataset-key>, that
satisfies the <discrimination-string>. If the
dataset in question contains more than one in-
| gtance of the required type, only one will be
returned in <object-id>. Any successive exe-
cution of the mext statement, will retrieve the
nesi instance of the required type until all re-
" quired instances have been retrieved from the

it. This would havé'gée'i;' o
d is its address. Howevyep v
ved of because of Teasons
ase, ErOWing persistent g, 4/

. of overhead; e.g. mayi
e

e
 that after the Init seétio:f'
ot vary alz:ly moreF.‘ Itisstil = 5‘?
umic problems. For exap = ; 2 J
1 object of type linked ;::: :?,""‘.}L &5 : dataset.
pplication” data-part anq’
ement. Each instancerep. 115
1d they all have the same’

lf:'general, <dataset-key> will be a string. This
string can then be used to compose the filenames
i thi h g " 'of the necessary dataset files. An example use of
i P::czrpirfojvce o:?yda;;:‘: ; the provided persistence in the Declare section of an

s attributes: Basic fypes _é:zbjegt_.ltype using the object DRAVING:

erences (or links) to other . |
ixed size after the Init.

%

bjects in Procol

nev drawing;

ment persistent objects in persistent drawing in name;

> two sub-questions. The
nguages features (the ex:
he second is how to imple-. .
ng platform (the intern:\.\l_'

sl

>mentation =
.+ We will now motivate our design decisions for the
[i{nf'ernal implementation. Procol has been developed
' 2ud implemented on a network of Sun workstations
. Tunning under SunOS Release 4. Five possible imple-
mentations of the extension of Procol with persistent
‘Objects were considered, (compare with [Tsichrit-
18 and Nierstrasz 88]): dare implementation (using
. the Unix OS-interface calls: open, close, read and
write), shared mapped memory (virtual files), Ingres
¥ [Sun Microsystems 87] (or other relational DBMS),
! Poslgres [Stonebraker and Rowe] (or other extend-
sble DBMS), PCTE+ [IEPG 88, IEPG 88] (offers a
Powerful OMS derived from the Entity-Relationship
odel of Chen [Chen 76)).

> external implementation
luded the introduction of
8 :

>

s volatile object instan'cc %
id> can be made persi& .
> a dataset identified by B

n object instance (identi-
that has been made per-
made volatile. The regu]‘
hat the persistent object
m its dataset.

Afile is mapped directly by the Unix OS on the

ectly hy the Unix 08 on

dress space of a process. A major advantage is
that there is no difference between the “stored” ob-
Ject instances and their “running” counterpart, at
1°3% not at the level of the Procol kernel. At OS
*vel there is a difference and this is the same as the

€rence between virtual memory pages that are in

n-string>

L3, £
“\ memory /
Tl T [TS

if volatile

~€— surrogate

1f persistent

Pl I TTTE
R

data-set
K > 2

Figure 3: Object Reference with Surrogates

main-memory and the ones that are swapped on disk.
We expect this implementation to be very efficient.
In order to gain some experience we are currently
converting a local application that uses explicit read
and write statements, into a mapped memory imple-
mentation. First test results indicate that the elapse
times decrease with about 30% in applications with
a lot of read and write statements. A disadvantage of
the mapped memory approach is that we still have to
do the memory management ourselves, In [van Oos-
terom and Laffra 90] it is explained in more detail,
why we decided to use the mapped memory approach
for the prototype implementation of persistent ob-
jects in Procol.

An object instance is identified by a surrogate [Kho-
safian and Copeland 86]. That is, the object id is not
the actual address in memory but we need an indi-
rection [Straw, Mellender and Riegel 89] to locate the
object. See figure 3 for a graphical demonstration of
the process. Each surrogate contains an indication
whether the object instance is volatile, persistent or
deleted. When, during the execution of a Procol pro-
gram, an object is referenced, we have to check the
first part of the surrogate. If the the object instance
is volatile, the surrogate contains a key than can be
used to retrieve the memory address of the instance
variables. If the object instance is persistent, the sur-
rogate contains a dataset identifier, and a key. With
this dataset identifier and the key, the OMS is able
to retrieve the actual memory address of the the in-
stance variables of the persistent object in question.

The disadvantage of surrogates is that there is an
extra indirection. However, surrogates have several
important advantages. They enable objects to be
switched between volatile and persistent state, by
modifying a part of the surrogate. We decided, based
on the advantages and disadvantages mentioned in

section 5, that the control of referential integrity is
not required in Procol. However, the use of illegal
references is signalled at run-time. This is done by
inspecting the surrogate and taking the appropriate
measures.

If a persistent object contains a reference to a volatile
object, this volatile object is not saved automatically.
The proper way to program this case is to make the
other object also persistent, if the referenced object
is still needed in the future. The state of each ob-
ject instance is stored as unity, that is in contiguous
memory. Instances of different sizes are no problem.
The state also contains some additional data, for ex-
ample the creator. The application programmer de-
cides whether instances of the same object type are
“gtored together” without instances of other types in
one dataset or if a dataset contains instances of differ-
ent types. The later is advantageous for representing
complex objects in an efficient manner, because the
instances of the different types that define a complex
object are stored close together. Note that complex
objects are important in CAD systems, because this
is one of the main modeling tools.

10 Further Research

Besides an object-oriented programming language,
Procol is also a parallel programming language. It is
possible that the objects run in parallel on multiple
processors. We have only used this in a few examples.
Clearly, this topic deserves more attention and more
research is needed in the context of highly interactive
and graphical systems.

1t is a small step from one single user Procol pro-
gram with persistent objects to a system with multi-
ple users. At least conceptually, because each object
has its own protocol which regulates the communi-
cation. It should not matter from which program a
message originates, However, we will have to recon-
sider some of the concepts.

The provided query facilities are very limited; with
retrieve it is only possible to get hold of one “start-
ing” object id of a specified type or to perform the
selection of instances from one set (object type) at a
time. More complex queries have to be programmed
into the objects (the Procol program). Attention has
to be paid to avoid object types becoming to spe-
cific. That is in contradiction with one of the basic
principles of databases of data being independent of
applications. More research in this area is necessary.

B R e

u

_ohofer and Frank 89] M
* drew Frank. Panda: An:

ing object-oriented sd
Database Systems in Off
Scientific Environment, M

Springer- Verlag.

References
[Atkinson and Buneman 87] Malcolm P, Apints
and O. Peter Buneman. Types and pers} \
in database programming languages. ACMH’
puting Surveys, 19(2):105-190, June 1987.54¢

[Atkinson et al. 87] M.P. Atkinson, P.J., Baﬁ:;'
Chisholm, P.W. Cockshott, and R. Morriser
approach to persistent programming, ,
puler Journal, 26(4):360-365, 1983. - .3

[Bancilhon et al. 88] F. Bancilhon, G. Barbedelil
V. e
zaken, C. Delobel, S. Gamerman, C¥ Ll
P. Pfeffer, P. Richard, and F. Velez. Th
and implementation of Oz, an Object-Q
database system. In Advances in Objecf:'
Database Systems, £ad International Wo
Object-Oriented Database Systems, Bad M
am Stein-Ebernbury, FRG, pages 1-22, Sep
1988. R

[Bayer and McCreight 83] R. Bayer and' B, Mg
Creight. Organization and maintenance of -
ordered indexes. Acta Informatica, 1:l
1973. i

[Bentley 75] Jon Louis Bentley. Multidir
binary search trees used for associative
ing. Communications of the ACM, 18(9):50
September 1975. i

[Blake and Cook 87) E.H. Blake and 5. (
including part hierarchies in object-oriente

; Aoty
guages, with an implementation in small '_?" i '

ECOOP 87, pages 41-50, 1987.

[Chen 76] Peter Pin-Shan Chen. ~ Th
relationship model — toward a unified vi "
ACM Transactions on Database Sg;ic'
36, March 1976. i

{Codd 70] E.F. Codd. A relational mosiel
large shared data banks. Commaunics
ACM, 13(6):377-387, June 1970. =

[Comer 79] Douglas Comer. The ubiquitous
ACM Computing Surveys, 11(2‘):_12
1979. (

[Cox 86] Brad J. Cox. Object-Oriente
- An Evolutionary Approsch. : -
Reading, Mass., 1986. o

[Dietrich et al. 89] Walter C. Dietrich
Nackman, Christine J. Sund.a-\‘esan.
Gracer. TGMS: Anob ject-orient
gramming geometry. Software ~ 108
perience, 19(10):979—1013, Octobef :

‘Andrew U. Frank. Object
' " GIS: Inheritance and Propg

outsos, Sellis and Roussop
Bu}wa, Timos Sellis, anc
‘Analysis of object oriented &

o 88] Andrew U. Frank.
J_ lgeneticity for the intey
nagement system in an
yach. In Advances in Obj
fems, 2nd International |

ented Database System;
ein- Ebernburg, FRG, page:

and Barrera 89] Andrex
1o Barrera. The fieldtree:,
jeographic information syste
Design and Implementai
ic:qgla, Santa Barbara, Gi

_ 39] Diane Greene. Ani
fiormance analysis of spatj
In {EEE Data Engineery
l 1989,

','G‘Mmetric Data Manages
acture Notes in Compute
_| BPr]in, 1988

i Il he! B.Bl Oliver Giinther. ,

1 84) Antonin Guttmaz
o'}) ea‘r“ntiucture for spa
b ;2;?:4-(_57' 1984.
% A
]‘H Independeng Eurg
o P = Technica) Area |
. s, Functiona Specifig
o !
a' ¥

lndePendent Eurg

echnical Areq 13 (IR

E+, 1989,

A ::t;’ Copelang 86] Sey
A ff:peland. Objee,

8 206416, Septerd

Prdc'

man 87] Malcolm P. Atkinson 7
neman. Types and persistence
amming languages. ACM Com-
(2):105-190, June 198‘7'. i

M.P. Atkinson, P.J. Bailey, K.J.
Sockshott, and R. Morrison. An
stent programming. The Com.
(4):360-365, 1983.

| F. Bancilhon, G. Barbedette,
""‘Ben- v Rl

el, S. Gamerman, C. Lécluse, © =
hard, and F. Velez. The design = 3
ion of 02, an Object-Oriented E
In Advances in Objeci-Oriented
s, $nd International Workshop on
Il)atabasc Systems, Bad Minster
urg, FRG, pages 1-22, §ep€embe{

. Scientific Environment, New York, March 1989.
© Springer-Verlag.

g

5, [Egenhofer and Frank 89] Max J. Egenhofer and
. Andrew U. Frank. Object-oriented modeling in

I GIS: Inheritance and Propagation. In Autoe-Carto

& |9, Baltimore, pages 588-598, April 1989.

L [Faloutsos, Sellis and Roussopoulos 87] Christos Fa-
'c loutsos, Timos Sellis, and Nick Roussopoulos.
B« Analysis of object oriented spatial access methods.
§ ACM SIGMOD, 16(3):426-439, December 1987,

[’ﬁ-ank 88] Andrew U. Frank. Multiple inheritance
& ‘and genericity for the integration of a database
" 'management system in an Object-Oriented ap-
proach. In Advances in Object-Oriented Database
Systems, 2nd International Workshop on Object-
" Oriented Database Systems, Bad Minster am
: Stein-Ebernburg, FRG, pages 268-273, September

B and E. Mec- |
ght 83] R. Bayer 198,

zation and maintenance of large
Acta Informatica, 1:173—189 &
- [Frank and Barrera 89] Andrew U. Frank and Re-

& ntato Barrera. The fieldtree: A data structure for
& geographic information system. In Symposium on
¢ the Design and Implementation of Large Spatial
'Daiabasea, Santa Barbara, California, July 1989,

,ouis Bentley. Multid_imensioﬁ;l 3
rees used for associative search- -
tions of the ACM, 18(9):509—5‘1.1

Wlbreene 89] Diane Greene. An implementation and

'-_, performance analysis of spatial data access meth-

\ 0ds. In IEEE Data Engineering Conference, pages
5 606-615, 1989.

7] E.H. Blake and . pook.]Ol'l
rierarchies in object-onentedk a.;:
“implementation in smalltal - I g
ges 41-50, 1987. P 1

The entl.t); inther 88] Oliver Giinther. Efficient Structures

Pin-Shan Chen-. 4 view ofdats. 8 fﬂl‘ Geometric Data Management. Number 337
del — toward a unified V1 s, 1(1)% Y b in Lecture Notes in Computer Science. Springer-
ons on Database Systems, . o

(8 Verlag, Berlin, 1988.
. % "-.’IQ S d
. del of data g¥tman 84] Antonin Guttman. R -trees: A dy-
odd. A relatéona,lnr::,'cﬂ“o"‘ 0, ¢ "Amic index structure for spatial searching. ACM
;ta3§';m§3- . 1";’7'0 sehfg = 5IGMOD, 13:47-57, 1984.
7-387, Jun ' :

us B-Tree- G 8g] Independent European Programme
137, June 00U Technical Area 13 (IEPG TA-13).
i ey

88E+ C Functional Specification Issue 2, July

las Comer. The ubiquito
ng Surveys, 11(2):121- I

ey

Cox. Objcct-Orteﬂ‘;ﬂ ffison-“’, a

nary 6z‘h’llraat:h. i
., 1986. .
)] Walter C. Dietrich, b Xis

87 8] Independent European Programme
20°%Up ~ Technical Area 13 (IEPG TA-13). Intro-
8'"g PCTE+, 1989.

e’
istine J. S““d_aresa:’ ::em for pro- flan anq Copeland 86] Setrag N. Khoshafian
. An object-oriente syctice an E:' 3 eorge P. Copeland. Object identity. In QOP-
metry. Software - Pr41989- & 4°86, Pages 406-416, Septemnber 1986.

et . :

):979-1013, Octob

[Egenhofer and Frank 89] Max Egenhofer and An-
' drew Frank. Panda: An extensible DBMS sup-
porting object-oriented software techniques. In
Database Systems in Office, Engineering, and

[Meyer 88] Bertrand Meyer. Object-oriented Soft-
ware Construction. Prentice Hall, London, 1988.

[Morrison et al. 86] R. Morrison, A.L. Florianis,
A. Dearle, and M.P. Atkinson. An integrated
graphics programming environment, Computer
Graphics Forum, 5:147-157, 1986.

[Paton and Gray 88] Norman W. Paton and Pe-
ter M.D. Gray. Identification of database ob jects
by key. In Advances in Object-Oriented Database
Systems, 2nd International Workshop on Object.
Oriented Database Systems, Bad Minster am
Stein-Ebernburg, FRG, pages 280-285, September
1988.

[Penney and Stein 87] D. Jason Penney and Jacob
Stein. Class modification in the GemStone Object-
Oriented DBMS. In OOPSLA ‘87, pages 111-117,
September 1987,

[Richardson and Carey 89] Joel E. Richardson and
Michael J. Carey. Persistence in the E language:
Issues and implementation. Software - Prac-

tice and Ezperience, 19(12):1115-1 150, December
1989.

[Samet 84) Hanan Samet. The quadtree and related
hierarchical data structures. Computing Surveys,
16(2):187-260, June 1984.

[Stonebraker and Rowe] Michael Stonebraker and

Lawrence A. Rowe. The design of POSTGRES.
ACM SIGMOD, 15(2):340-355, 1986.

[Straw, Mellender and Riegel 89] Andrew Straw,
Fred Mellender, and Steve Riegel. Object man-
agement in a persistent smalltalk system. Soflware

- Practice and Ezperience, 19(8):719-737, August
1989.

[Sun Microsystems 87) Sun Microsystems, Inc. Sun-
INGRES Manual Set, January 1987.

[Tsichritzis and Nierstrasz 88) D.C. Tsichritzis and
O.M. Nierstrasz. Fitting round objects into square

databases. In ECOOP '88, pages 283-299, August
1988.

[van den Bos 89] Jan van den Bos, PROCOL:
A protocol-constrained concurrent, ob Jject-oriented
language. Information Processing Letters, 32:221—
227, September 1989.

{van den Bos and Laffra 89] Jan van den Bos and
Chris Laffra. PROCOL - A parallel object lan-
guage with protocols. In OOPSLA ‘89, New Or-
leans, pages 95-102, October 1989,

[van Oosterom 88] Peter van Qosterom. Spatial
data structures in Geographic Information Sys-
tems. In NCGA's Mapping and Geographic Infor-
mation Systems, Orlando, Florida, pages 104-118,
September 1988.

[van Oosterom 89] Peter van Oosterom. A Reactive
Data Structure for Geographic Information Sys-
tems. In Auto-Carto 9, Baltimore, pages 665674,
April 1989.

[van Ocsterom and Claassen 90] Peter van Ooste-
rom and Eric Claassen. Orientation insensitive
indexing methods for geometric objects. In 4th In-
ternational Symposium on Spatial Data Handling,
Zirich, Switzerland, July 1990.

[van Oosterom and Laffra 90] Peter van Oosterom
and Chris Laffra. Persistent graphical objects.
In Eurographics Workshop on Object Oriented
Graphics, June 1990.

[van Oosterom and van den Bos 88] Peter van Oos-
terom and Jan van den Bos. An object-oriented
approach to the design of Geographic Information
Systems. Compulers & Graphics, 13(4):409-418,

i 1989.

[van Ocsterom, Hekken and Woestenburg 89] Peter
| van QOosterom, Marcel van Hekken, and Marco
| Woestenburg. A geographic extension to the re-

lational data model. In Geo '89 Symposium, The
Hague, October 1989.

[van Roessel 87] J.W. van Roessel. Design of a spa-
tial data structure using the relational normal
forms. International Journal of Geographical In-
formation Systems, 1(1):33-50, 1987,

[Weinand, Gamma, and Marty 89] André Weinand,
Erich Gamma, and Rudolf Marty. Design and im-
plementation of ET++, a seamless object-oriented
application framework. Struciured Programming,
10(2):63-87, 1989.

[Wolf 89] Andreas Wolf. The DASDBS GEO-Ker-
nel, concepts, experiences, and the second step.
In Symposium on the Design and Implementation
of Large Spatial Databases, Santa Barbars, Cali-
fornia, July 1989.

Appendix — The R-tree in Prg .
#

This appendix contains the Procol cod‘e'of '
jects R-TREE and R-NODE, which together i
a persistent multi-dimensional index sty
section 6. In case of a GIS with attributes
points, lines and regions in the plane the d
of the R-tree is 2. A CAD system with solid
for example a polyhedron, will need 2 3 digiehats
R-tree. Higher dimensional R-trees are .

ble, because the in some applications it is }
to interpret a combination k scalar attributes
k—dimensional point attribute on with rang

may be formulated. ¥

e e o

A-TREE (it 2, int M, char

- spﬂon

‘1a R-tree liter)
! and maximum number of entri
-‘:N tree is guited for DIM
& {4 that just after the crea
© it made persistent by its ¢

ature m and

root, node;
by box[DINI [2], ¢
Not all the code is given here. This is indi
three dots (...). Especially, some tricky parts
insert and delete algorithms are omitted,
be found in [Guttman 84]. The code is non-ii
because the tree has to be kept in balance unde
insert and delete operations. The purpose of N
appendix is to show how the R-tree is implemeg

in an object-oriented manner. We only sho!
query type: the box select (in 2D that is, a
select), which returns the id of every object in
tree that overlaps the search box sbox. The result
sent back to the original object sid by invol
action InRegion with the id of the found (g
data) object. This happens once for each object
is found. W ;ap‘

-l‘ u:wtion: The Add and Del
"Jo invoked by the (graphical ¢
thenselves and they send tl
pinizal bounding box in bo:
Fretocol
LU ANY (box) -> Add +
. (box) -> Delete +
“UANY (ebox) -> Select

: ?' if (root==NULL) {

241 new root(m, M, true)
persistent root in d
root.EntryAdd(eender
) else {

Note that we implemented a parallel or dis
version of the tree by using the object R-¥
ing the search operation several nodes"oan-
parallel on different processors. There is qui
of work in each node, because a typica;.‘l2 o
M (maximum number of entries) is 100..1.'“
lution would probably not be very efficien!
nary tree, because the overhead introduced PY__,
ing messages to other processors may req

time than the time that is gained by the parall
cution. Besides the search operation, the delet&,
insert operations might also benefit from pars
ecution in case of node overflow and node un
respectively. This is not shown in the cO'Ele

nev node(m, M, true)
. persistent node in d

/% The deletion of a P¢
/* implies removal fros

#detine DIN 2 /# or any omoi‘vﬂ: _

#define LENGTH 256 o=

typedef struct{ Oy
ANY id; /« R-MODE or graPhiFf‘I;,‘f?
float box [DINI [2]; -

} EntryType;

-tree in Procol

he Procol code of the (;b_ 7

which together implement —
sional index structure; geq
IS with attributes such ad
n the plane the dimensiop
) gystem with solid objects,
, will need a 3 dimensiona]
nal R-trees are also possi. '
applications it is beneficjal
n k scalar attributes as ope *
ibute on with range queries

pescription
 In R-tree literature m and M are the minimum
and maximum number of entries per node.

Declare

* R-NODE root, node;
k float box [DIMI [2], sbox[DIMI[2];

here. This is indicated b};‘

ly, some tricky parts of the

hms are omitted, but can /e invoked by the (graphical data) objects */
{]. The code is non-trivial '\ :/e themselves and they send their correct - @/
e kept in balance under the) 3 ‘-',\{. zininal bounding box in box. */
ons. The purpose of thig ‘I\rnf.ocol

the R-tree is implemented T, AT (box) -> Add +

nner. We only showed one -
t (in 2D that is, a rectangle
id of every object in the R-'
rch box sbox. The result is

ANY (box) =-> Delete +
ANY (sbox) =-> Selaect

object 81d by invoking the ' 75 root = NULL;
> id of the found (graphical ;_._*_-;: .
ns once for each object that ‘Ct:‘l::s]

if (root==NULL) {
new root(m, M, true);
persistent root in dataset;
root.EntryAdd(sender, box);
} else {

ed a parallel or distributed
ng the object R-NODE. Dur-
several nodes can work in
essors. There is quite a bit
ecause a typical value for
“entries) is 100. This so- "
ot be very efficient for bi-

nev node(m, M, true);
persistent node in datasaet;

erhead introduced by send- }
ocessors may require more; }
s gained by the parallel exe- Delote = {

h operation, the delete and
lso benefit from parallel ex-
verflow and node underflow
shown in the code below. <"

/% The deletion of a persistent node /
/% implies removal from the dataset »/

}

L A Select = { root.Search(sender, box); }
4

- or any other value > 1'!] . End0BJ R-TREE.

oBJ R-TREE (int m, int M, char dataset[LENGTH]);

The tree is suited for DIM dimensions. Assumed
§s that just after the creation of the R-TREE,
it made persistent by ite creator in dataset.

‘ssu.ption: The Add and Delete actions are o/

DBJ) R-EODE (int m, int M, boolean leaf);

Description
m and M have same meaning as in R-TREE.
If leaf has value true, then this node is a
leaf, else this is an internmal node.

Declare
float box[DIM] [2], sbox[DIM][2];
ARY id, sid;
EntryType entry[M];
int NrOfEntries, i;
R-RODE next;
Protocol

(NrOfEntries<M): R-TREE(id,box)->Entryidd +
(NrOfEntries>m): R-TREE(id,box)->EntryDelete +

R-TREE(8id, sbox) =>Search +
R-NODE(sid,sbox) ~>Search +
R-TREE () =->Full

Init
Nr0fEntries = 0;

Actions

EntryAdd = {
/* Assumption: R-NODE is not full s/
entry(NrOfEntries] .box = box;
entry[Kr0fEntries++].id = id;

}

EntryDelete = { ... }

Full = { sender.(NrOfEntries==M); }

Search = {
for (i = 0; i < Nr(OfEntries; i++)

it (overlap(sbox, entry[i].box)

if (leaf)
/* Return found object ./
sid.InRegion(entry[il.id);

else {
/* Propagate search to lower ./
/* lavel. This part of the code #/
/® causes the parallelisa ./

next = entry[i].id;
next.Search(sid, sbox);

}

End0BJ R-NODE.

)

aly |
s/

ODE or graphical obje‘ff:
1; - B4

TECHNOLOGY OF
OBJECT-ORIENTED
LANGUAGES AND SYSTEMS

Proceedings of the Second International Conference
TOOLS. PARIS 1990.

Editors: Jean Bézivin, Bertrand Meyer, Jean-Marc Nerson

angkor

