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Abstract we present a Reactive Data Structure, that is, a spatial data structure with detail levels. The two
properties, spatial organization and detail levels, are the basis for a Geographic Information System
with a multi-scale database. A reactive data structure is a novel type of data structure catering to
multiple detail levels with rapid responses to spatial queries. It is presented here as a modification of
the binary space partitioning tree that includes detail levels. This tree is one of the few spatial data
structures that does not organize space in a rectangular manner. An application of the reactive data
structure in thematic mapping is given. A prototype system is being implemented. An important
result of this implementation is that it shows that binary space partitioning trees of real maps have
O(n) storage space complexity in contrast to the theoretical worst case O(n?), with n the number of

line segments in the map.

1 Introduction

In the past few years there has been a growing interest in
Geographic Information Systems (GISs). There are many
applications that use GIS technology, among them: Auto-
mated Mapping / Facility Management (AM/FM); Com-
mand, Control and Communication Systems (C3S); War
Gaming; and Car or Ship Navigation Systems. A major
advantage of a GIS over the paper map is that the opera-
tor (end-user) can interact with the system. To make this
interaction both possible and efficient, the GIS must be
based on an appropriate data structure. However, most
existing systems lack these data structures. A Reactive
Data Structure is a data structure with the following two
properties:

o Spalial organization: This is necessary for efficient
implementation of operations such as: selection of all
objects within a rectangle, picking an object from the
display, map overlay computations, and so on [19, 3].
Several spatial data structures are described in the
literature and are implemented in existing GISs.

o Detail levels: Too much details on the display will
hamper the operator’s perception of the important
information. Also, unnecessary details will slow
down the drawing process. When the operator wants
to take a closer look at a part of the map, the sys-
tem enlarges objects, and shows more details (new
objects). Conversely, when zooming out, it removes
fine details from the display. We call this operation
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logical zoom as opposed to the ordinary zoom which
only changes the size of objects. There is some litera-
ture on data structures with detail levels, for instance
strip trees [1] and multi-scale line-trees [12].

Reactive data structures are the basic building blocks for
seamless, scaleless geographic databases{11]. The data
structure presented in this paper is a modification of the
binary space partitioning (BSP) tree. A short description
of the original BSP-tree is given in section 2, together with
some minor modifications for the GIS environment. The
next section shows how the basic spatial operations can
be implemented efficiently by using a BSP-tree. Section 4
describes the most important difference with the origi-
nal BSP-tree, the incorporation of detail levels. Section 5
gives an typical application of the reactive data structure.
The balancing of the BSP-tree is discussed in section 6 for
both the static and the dynamic case. Section 7 contains
the first practical results from our implementation. Fi-
nally, the pros and cons are discussed in section 8.

2 The BSP-tree and some varia-
tions on it

2.1 The original BSP-tree

The original use of the Binary Space Partitioning (BSP)
tree was in 3D Computer Graphics [8, 7]. The BSP-tree
reflects a recursive division of space. Each time a (sub-)
space is divided into two sub-spaces by a splitting prim-
itive, a corresponding node is added to the tree. The
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Figure 1: The building of a BSP-tree

BSP-tree itself represents a organization of space by a set
convez sub-spaces in a binary tree. This tree is useful dur-
ing spatial search and other spatial operations. Figure la
shows a 2D scene with some directed line segments. A
2D scene is used here, because it is easier to draw than a
3D scene. However, the principle remains the same. The
“left” side of the line segment is marked with an arrow.
From this scene, line segment A is selected and the 2D
space is split into two parts by the supporting line of A,
indicated by a dashed line in Figure 1b. This process is
repeated for each of the two sub-spaces with other line
segments. The splitting of space continues until there are
no line segments left. Note that sometimes the splitting
of a space implies that a line segment (that itself has not
yet been used for splitting), is split into two parts. Line D
for example, is split into d1 and d2. Figure 1b shows the
resulting organization of the space, as a set of (possibly
open) convex sub-spaces. The corresponding BSP-tree is
drawn in Figure lc. In the 3D case supporting planes of
flat polygons are used to split the space instead of lines.

The choice which line segment to use for dividing the
space, very much influences the building of the tree. It is
preferred to have a balanced BSP-tree with as few nodes as
possible. This is a very difficult requirement, because bal-
ancing the tree requires that line segments from the mid-
dle of the data set are used to split the space. These line
segments will probably split other line segments. Each
split of a line segment introduces an extra node in the
BSP-tree. It is not clear how we can optimize the BSP-
tree, so further research is needed here.

Figure 2 contains Pascal-like code of a program that
builds a BSP-tree. The program BuildTree is a variation
of the traditional method (non-incremental) for building
a BSP-tree [8]. The procedure SplitLine and the func-
tions LinePosition, CreateNode and GetLine are not in-
cluded, because their meaning will be clear. A node in the
BSP-tree is represented by the record type node, which
contains a line segment and pointers to the left and right
child. Initially, the tree is empty. As long as GetLine can
fetch a new line segment, it is added to the BSP-tree with
a call to the function AddLine. AddLine checks whether
the correct position in the BSP-tree is found. This is true
if the current pointer tree in the BSP-tree is nil. In that
case a new node is created and added to the tree. Other-
wise, LinePosition determines in which sub-tree the line
segment has to be stored. The storage of the line seg-
ment is implemented by a recursive call to AddLine. It is

Program BuildTree;
type BSP="node;
node=record
segm: Line;
l,r: BSP
end;
var root: BSP;
newsegm: Line;
root:= nil;
while GetLine (newsegm) do
root :=AddLine (root,newsegm) ;
i function AddLine (tree:BSP;segm:Line) :BSP;
var Lsegm, Rsegm:Llne;
begin
if tree=nil then
tree:=CreateNode (tree, segm)
else
case LinePositlion({tree,segm) of
LEFT: tree~.l:=AddLine(tree”.l, segm);
RIGHT:tree~.r:=AddLine(tree”.r, segm);
SPLIT:
SplitLine (tree, segm,Lsegm, Rsegm);
tree”,l:=AddLine(tree”.l, Lsegm);
tree”.r:=AddLine(tree”.r,Rsegm);
AddLine:=tree;

Figure 2: Incremental BSP-tree building algorithm

possible that the line segment has to be split first.

The splitting of line segments has a serious drawback. If
we have n line segments in a scene, then it is possible
that we end up with O(n?) [8) nodes in the tree. It will
be clear that this is unacceptable in GIS applications, in
which we typically deal with 10,000 or more line segments.
However, this is a worst case situation and the actual
number of nodes will not be that large, see section 7.

2.2 The object BSP-tree

The BSP-tree, as discussed so far, is only suited for stor-
ing a collection of (unrelated) line segments. In a model-
ing system it must be possible to represent a closed object.
For example (the interior of) a polygon in the 2D case or
a polyhedron in the 3D case. The object BSP-tree is an
extension to the ESP-tree to cater for object representa-
tion. It stores the :ine segments that together make up
the boundary of t}+ polygon. The object BSP-tree has
explicit leaf nodes hich do not contain a splitting line
segment. These lear iodes only correspond with the con-
vex sub-spaces creaizd by the BSP-tree. A boolean in a
leaf node indicates whether the convex sub-space is inside
or outside the object.

At the University of Leiden we used the object BSP-tree
in the 3D graphics modeling system ([IRASP [15]. Be-
cause of the spatial organization, the hidden surfaces can
be “removed” in O(n) time with n the number of polygons
in the tree [16]. The object BSP-tree 1s also well suited to
perform the set operations [17]: union, difference and in-
tersection, as used in Constructive Solid Geometry (CSG)
systems. The map overlay operation in a GIS (described
in [19]) has strong relationships with these set operations.
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Figure 3: The building of a multi-object BSP-tree

2.3 The multi-object BSP-tree

We want to exploit the spatial organization properties of
the BSP-tree in a Geographic Information System. In a
GIS we usually deal with 2D maps. The line segments
of the original data base are used to split the space in a
recursive manner. By using data inherent to the problem
to organize the space, we expect a good spatial organiza-
tion. Maps always contain multiple objects; for example
countries on the map of Europe. Because we deal with
multiple objects, we have to modify the concept of the
already discussed object BSP-tree. Instead of a boolean,
the leaf nodes now contain an identification (name). This
identification tells to which object the convex sub-space,
represented by the leaf node, belongs. We call this type
of BSP-tree the mulli-object BSP-tree.

Figure 3a presents a 2D scene with two objects, triangle
T with sides ABC, and rectangle R with sides DEFG.
The method divides the space in the convex sub-spaces
of Figure 3b. The BSP-tree of Figure 3c is extended with
explicit leal nodes, each representing a convex part of
the space. If a convex sub-space corresponds with the
“outside” region, then no label is drawn in Figure 3c. A
disadvantage of this BSP-tree is that the representation of
oneobject is scattered over several leaves. See for example
rectangle Rin Figure 3. The following list summarizes the
properties of the multi-object BSP-tree:

¢ Each node in the tree corresponds with a convex sub-
space.

e Each internal node splits the convex sub-space into
two convex parts: left and right. Further down the
tree, the convex sub-spaces become smaller. Each
internal node contains one line segment.

e Each leaf node corresponds with a convex sub-space
which will not be split. A leal node does not con-
tain a line segment, but it does contain an object
identification.

3 The basic spatial operations

In this section we will explain how the (multi-object)
BSP-tree is used in implementing two spatial operations:
the pick and the rectangle search.

3.1 The pick operation

Consider a system that displays a map on the screen. The
user generates a point P = (z,y) with an input device
such as a mouse or tablet. He wants to know which object
he pointed at. To solve this problem we locate point P by
descending the tree until a leaf node is reached. This leaf
node contains the identification of an object. Descending
the tree is quite simple: if at an internal node point P lies
on the left side of the line segment, then the left branch is
followed, else the right branch is followed. This strategy
results in one straight path from the root to a leaf node.
So, in case of a balanced tree with n internal nodes, the
search takes O(log n).

3.2 The rectangle search

In many applications the user wants to select all objects
within a certain rectangle R. The rectangle search is also
necessary during the display of (a part of) a map on a
rectangular screen Basically, the traversal of the tree is
the same as in the pick operation. At an internal node,
the left branch is followed if there is an overlap between
rectangle R and the left sub-space. And, of course, the
right branch is followed if there is an overlap between
the right sub-space and the rectangle R. If there is over-
lap with both sub-spaces, then both branches must be
followed. A simple recursive function accomplishes this
traversal.

The operations are efficient because parts of the tree are
skipped. In an unstructured collection of data we would
have to visit every item and test if we “accept” this item
based on its geometric properties. Using the BSP-tree
we don’t have to examine the data that are outside our
region of interest.

4 The detail levels

We need detail levels, as argued in the introduction, if we
want to build an usable interactive GIS. The detail levels
must not introduce redundant data storage and must be
combined with the spatial data structure. Not only the
geometric data must be organized with detail levels, but
the same applies to the related application data. How-
ever, we will focus our attention on the geometric data.

We first make an observation of the BSP-tree created
with the function AddLine. An early inserted line seg-
ment ends up in one of the top levels of the BSP-tree. A
line segment, inserted later on, must first “travel down”
the tree (and if necessary be split a few times), before it
reaches the correct position on a lower level of the BSP-
tree. We use this property to create a reactive BSP-tree.
If the global data are inserted first in the BSP-tree, they
will end up in the higher levels of the BSP-tree. The local
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Figure 4: The place of global and detailed data

data (details) are added later, so they end up in the lower
levels of the BSP-tree. Figure 4 depicts this situation for
a map of The Netherlands. The rectangle in the global
map shows the position of the detailed map. The “moun-
tain” represents the entire BSP-tree and the gray region
stands for the part of the BSP-tree that contains the data
of the corresponding map.

We will use a case to illustrate the way the reactive BSP-
tree functions. The case deals with the boundaries of
administrative units. In The Netherlands there are six
hierarchical levels of administrative units, ranging from
the municipalities (the lowest level) to the whole coun-
try (the highest level). We store the boundaries of these
administrative units in the BSP-tree, starting with the
highest level, then the next to highest level, and so on.
When we display this map, the number of detail levels de-
pends on the map scale. That is, if we assume the size of
the screen fixed, the size of the region we want to display.
The larger the region we want to display, the less detail
levels will be shown. A heuristic rule: the total amount
of ceometric data to be displayed is constant.

" BSP-tree is traversed with an adapted “rectangle
s..~=h”-algorithm, to display all objects in a certain re-
gion up to a certain detail level. The algorithm has to
know where one detail level stops and where the other
begins. This can be achieved by extending the BSP-tree
in one of the following manners:

e Add to each node a label with the corresponding de-
tail level. If during the traversal of the BSP-tree a
detail level is reached that is lower than the one we
are interested in, then we can skip this branch, be-
cause it contains only data of a lower level.

o After inserting the global data (highest level) into
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(1

Figure 5: The reactive BSP-tree

the BSP-tree, add special nodes, called level STOP
nodes, to the BSP-tree. The level STOP nodes con-
tain no splitting line segment and can be compared
with the leaf nodes of the multi-object BSP-tree (see
section 2.3). Then the next highest level is added to
the BSP-tree, again followed by level STOP nodes.
This process is repeated for each detail level. Figure 5
shows a reactive BSP-tree with two detail levels.

A drawback of the reactive BSP-tree is that it only sup-
ports a part of the map generalization process[14]. It
removes unimportant lines, but it draws important lines
with the same number of points on every scale. As far
as we know, there is no elegant solution to this problem.
It is possible to store a generalized version of a line at
multiple detail levels in the same BSP-tree. However, the
storage of the same line at multiple levels introduces un-
wanted redundancy. The generalized version of a line can
be computed specially for every level with a line general-
ization algorithm, for instance with the Douglas-Peucker

algorithm [5].

5 An application

In this section we describe some additional uses of the
reactive data structure in thematic mapping. We will
expand the case of the previous section, to make it pos-
sible to visualize census data of administrative units. We
show how a choropleth map and a prism map can be pro-
duced, Figure 6 gives an example of these map types. We
use the reactive BSP-tree with the level STOP nodes. A
level STOP node corresponds with a convex part of an
administrative unit at that level. The identification of
the administrative unit is stored in the level STOP node.
The census data is not stored in the BSP-tree, because
the BSP-tree scatters objects (administrative units) over
several leaves, see section 2. The census data is available
at each detail level.

5.1 Choropleth

After the user has decided which region and which census
ariable has to be displayed, the GIS determines the de-
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Figure 6: Two map types for thematic mapping

tail level. A choropleth map colors administrative units
depending on their value of the wanted census variable.
All we have to do to produce a choropleth map, is traverse
the BSP-tree for the selected region and level. When we
reach a level STOP node of the desired level, we know to
which administrative unit the corresponding convex sub-
space belongs. The required census variable is retrieved
and the convex sub-space is filled with the right color.

The BSP-tree does not offer an explicit representation of
the convex sub-spaces. This Is solved by maintaining a
temporary data siructure during the traversal of the BSP-
tree. This temporary data structure represents the (open)
convex sub-space that corresponds with the current node.
Each time we take a step down in the BSP-tree the tem-
porary data structure is updated. At depth k the tem-
porary data structure represents a convex polygon with
no more than k edges. So, a step downwards from level
k to level k + 1 takes O(k) time, the insertion of a new
edge in a convex polygon with k edges. The steps up-
wards take no processing time, because the intermediate
results are stored along the current path in the BSP-tree.
In the case of a balanced BSP-tree, the height of the tree
is O(logn) with n the number of line segments (nodes)
in the BSP-tree. Summing ali steps for the whole BSP-
tree results in G(nlogn) processing time. So, displaying
the whole BSP-tree while coloring the convex sub-spaces
takes O(nlogn) time. It is possible to store the explicit
representation of the convex sub-space in the level STOP
node. This reduces the time to generate Lhe choropleth
to O(n), but increases the storage requirements.

5.2 Prism map

The prism map [6] is an attractive map to look at and it
offers the possibility to display an extra variable through
the height of the prisms. A prism map is a set of 3D-
objects. Before the prism map is generated, the user has
to indicate from which direction he wants to look at the
prisms.

Basically, we produce the prism map in the same manner
as the choropleth map. Instead of coloring the convex
sub-space, we lift it up to the desired height. If the convex
sub-space has k sides, then each side will result in a 3D
rectangular polygon. Together with the top of the prism,
this results in k+1 3D polygons, which must be displayed.
Before a polygon is displayed it is projected from 3D to
2D, in order to calculate the actual coordinates on the
screen. A number of convex prisms form one prism on
the map, as the same convex sub-spaces form together
the administrative unit. This means that the “internal”
sides of the prism need not be drawn. We can recognize
the internal sides if we label those sides of the convex
sub-spaces that are part of line segments.

The “hidden surface” problem is usually quite difficult
and time consuming to solve. However, if we slightly
change the way in which the BSP-tree is traversed, the
hidden surface problem is solved easily (in combination
with the Painters-algorithm). The different traversal
does not cost any extra processing time and ensures that
prisms farther away from the viewing point are drawn
first. This results in the “removal” of the hidden surfaces
of the prism map. For more details on this topic see [16].

Normally, the entire BSP-tree is traversed in O(n), but
we have to maintain the temporary data structure that
contains the explicit representation of the current con-
vex sub-space. So, we can produce a prism map of the
whole scene in O(nlogn). If explicit representations of
the convex sub-spaces are stored, then a prism map can
be produced in O(n), which is quite fast. This fast re-
sponse stimulates the end-user to take other views of the
data.

6 Balancing the BSP-tree

The arguments in the previous sections assume a balanced
BSP-tree. The algorithm in Figure 2 will not necessarily
generate a balanced BSP-tree. In fact, in some situations
it is impossible to generate a balanced BSP-tree, see for
example the “convex scene” of Figure 7. We can solve this
only by inserting first some invisible auxiliary splitting
line segments. For example a line with line segments a
and b to the left and ¢ and d to the right (not drawn in
Figure 7).

A balanced BSP-tree might result in a tree with more
nodes because of the splitting process. Sometimes, a
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Figure 7: Unbalanced BSP-tree

slightly less balanced BSP-tree with fewer split line seg-
ments is to be preferred. This raises the question: “What
is the best BSP-tree for GISs?” There is no easy answer to
this question, but as long as both the measure in which
the tree is out of balance and the number of split line
segments remain within “reasonable” bounds, the BSP-
tree is well suited for several GIS applications. The next
two subsections describe several strategies for balancing
BSP-trees in the static and the dynamic case respectively.
Dynamic balancing is not as important as in many other
applications that use balanced trees, because the maps in
most GIS applications are static.

First, some general remarks on balancing. There are two
main criteria for balancing binary trees. Height balanc-
ing: the height of the left sub-tree may not differ more
than a fixed number h from the height of the right sub-
tree. Weight balancing: the number of nodes in the left
sub-tree may not differ more than a fixed number w from
the number of nodes in the right sub-tree. As height
balancing and weight balancing are strongly correlated,
both will suit the needs of GISs in practice. Most the-
oretic proofs assume O(logn) the height of the tree. As
weight balancing implies a form of height balancing, both
are sufficient.

6.1 Static Balancing

In our implementation the line segments are, per detail
level, inserted in the same order as they are .iored ‘n the
original map file. In case of the map of The Netherlands,
this results in a region by region insertion of the map data
into the BSP-tree. For example: if the northern most
region is inserted first, then the paths that correspond
with the area above the nos most region will not
grow when inserting the othe:  .:ons. In this manner
the BSP-tree gets out of bala: \ simple solution is to
insert the line segments, per ¢ tevel, in truly random
order.

A different approach is to insert first a few auxiliary split
lines, which try to divide the space in a fair manner. The
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Figure 8: KD-tree with large bucket size

map data line segments are inserted after the auxiliary
lines and end up in the proper region. We mark the aux-
iliary lines as invisible. A disadvantage of the auxiliary
lines is that they themselves may cause the split of line
segments. However, this number of splits are probably
relatively small. The auxiliary split lines could be taken
from a coarse raster. Note that, in principle, these lines
are unbounded and that the order in which they are in-
serted is important. Assume that the map data space is
{(z,1)]0 € 2 < 1A0 < y < 1}, then we first insert the
lines z = % and y = %, then z = %,:n = %—,y: % and
y = %, and so on. The disadvantage of these auxiliary
split lines is that they still result in unbalanced trees if
the distribution of the map data is not uniform.

A more radical approach is first building a X dimensional
(KD) tree with large bucket size (e.g. 100 - 1,000). KD-
trees are balanced trees for storing points, Bentley [2]
gives a clear description of them. Because the KD-tree is
only suited to store points, it is built from the points that
define the line segments. Figure 8 shows the KD-tree of
a map that contains about 30,000 points. The split lines
in the KD-tree are the auxiliary lines for the balanced
BSP-tree and the KD-tree is thrown away.

We could also use a generalized version of the KD-tree
(see Figure 9), which does not always splits along one of
the main axes. The BSP-tree is already suited to store
split lines that have an arbitrary orientation. So, it might
be better to split along a line orthogonal to the “best” fit
line. The set of points consists of p; = (zi,yi) for i from
1 to n. The general form of a line { that makes an angle
a with the positive x-axis is: zsina — ycosa = ¢. The
distance from point p; to line [ is: |z; sina — y; cosa —c|.
We should minimize the function:

n
f(a,e) = Z(:c.- sina — y; cos a — ¢)?
i=1

With means p; = L 5°0 2, p, = L5°0 i, variances
2 _ 1xm (o 2”9 1 2
0 = 5 iz (i — pz) Oy = 5 > iz (¥i — py)? and co-
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Figure 9: Generalized KD-tree

variance Cov(z,y) = 1 31, (zi — pz)(3i — #y) defined in
the usual manner[13] we get:

2C
Larct (—ov(-:ir’Ty)),cz;z,cosa+pysina

azgarca.n o2 _
T y

for 02 > ¢2. In case that 62 < o, 37 must be added to a.
If both variances are equal, then a = :t;}w depending on
the sign of the covariance. The points are sorted accord-
ing to the position of their projections on line /. All points
up to the median are put in the left sub-space and the oth-
ers are in the right sub-space. This process repeats itself
for all sub-spaces until they contain less points than the
bucket-size. This results in a perfectly balanced tree for
storing points in O(n(logn)?). The sorting causes some
extra pre-processing time. If the set is split into two parts
by using a split line through (pz, puy) and orthogonal to
line I, then the building of the generalized KD-tree takes
O(nlogn). However, this does not necessarily result in
perfectly balanced tree.

Another solution for balancing the BSP-tree is taken from
Fuchs et al.[7]. A few potential roots for the tree are tried
and the one that gives a balanced division is selected.
Fuchs uses this solution in combination with the original
(non-incremental) version for building a BSP-tree. Bal-
ancing the BSP-tree and minimizing the number of splits
are two objectives that do not always agree. Thibault et
al.[17] describe some heuristics for evaluating the candi-
dates.

6.2 Dynamic Balancing

The emphasis in this subsection is on inserting line seg-
ments in a BSP-tree, while keeping it balanced. Delet-
ing and changing line segments is less important, because
they occur less frequent in GIS applications. Even with-
out considering the balance of the BSP-tree, really delet-
ing a line segment can be very difficult. The line segment
is the root of a (sub) BSP-tree and the replacement of
this root by an other line segment affects the whole sub-
tree in a drastic manner. This is not a problem in case of
an empty or a very small sub-tree, but otherwise it could
require the complete rebuild of the sub-tree. A deletion
can be simulated by marking the line segment invisible,

just like an auxiliary line. It will be clear that this is
not a practical solution when the number of deletes and
changes is relatively large compared to the actual number
of line segments.

For dynamic balancing, the nodes in the BSP-tree have
to be extended with information about their balancing
status. This is a single integer that contains for example
the value of the expression #NodesLeft — #NodesRight.
The dynamic insertion of a line segment starts in the
same manner as in the normal situation, that is, with
the function AddLine, see Figure 2. During the insertion
the balance status of the visited nodes have to be up-
dated. However, because of this insertion it is possible
that nodes, on the path from the root to the new leaf, get
out of balance. Note that in case of a split line segment,
there are several leaves that correspond with the new line
segment. So, there may be multiple paths from the root
that have to be considered during the restoration of the
balance and as a consequence the weight associated with
sub-trees may increase with more than one.

In order to restore the balance the sub-tree that corre-
sponds with the deepest unbalanced node has to be re-
organized. (This continues until the root is reached.) A
solution might be to perform a complete rebuild of a sub-
tree based on (exhaustive) search for a good root in the
sub-tree. This could be done in a way comparable with
the method Fuchs describes to balance the BSP-tree. This
is not only very time consuming, but in case of “convex
scenes” it is even impossible as explained in the previous
subsection.

The root of the new sub-tree is an auxiliary line and it is
made in the similar way as a line in the generalized KD-
tree is created. If, during the calculation of this auxiliary
line, a point that is an end-point of more than one line
segments is also counted more than once, then the number
of line segments to the left and to the right are equal. In
order to preserve as much as possible of the (balanced)
structure of the old sub-tree, we should try to move parts
as large as possible from the old to the new sub-tree. In
order to simplify the test whether a part fits in the new
sub-tree a circle is stored in each internal node of the
BSP-tree. The center lies halfway the line segment and
the radius is the smallest value such that all line segments
of the sub-tree lie within the circle. In order to further
increase the computational efficiency the square of the
radius is stored instead of the radius itself. This circle
together with the BSP-tree structure of the new sub-tree
makes it easier to move parts of the old sub-tree.

7 Practical Results

In this section we present the first results of our implemen-
tation. Note that this is just a prototype GIS and not all
functions are present yet. The prototype is a “main mem-



ory implementation”, that is, the complete map is stored
in a data structure of a running program. Especially for
large data sets it would be useful to perform a redesign
of the prototype, in order to minimize the number of disk
accesses during a tree search. Probably, the structure will

resemble the Cell Tree described by Giinther [9, 10).

Fuchs et al.[8] show that if n line segments may result
in O(n?) line segments in the BSP-tree, because of the
splitting process. This happens when the line segments
are, relative to each other, long and have unfortunate
orientations and positions. The insertion of a new (long)
line segment results in a lot of leaves of the BSP-tree.
In a balanced tree this is no problem for the query time:
Q(n) = O(logn?) = O(2logn) = O(logn). However, it
results in enormous storage requirements: S(n) = O(n?).
This is unacceptable in the case of GISs in which n is
typically very large, e.g. 10,000 - 100,000.

How will the BSP-tree }:  ave when we insert very large
amounts of irregular ge¢  -tric data? In contrast with
the worst case, we exp-  :hat the number of splits in
the practical GIS situatic: to be far less, because the line
segments are relatively short. In order to gain experience
we are now working on a prototype GIS that is based on
a BSP-tree. We are interested in the size and the perfor-
mance of BSP-trees built with real map data. Map 1 is
the map of The Netherlands as drawn in Figure 4. Map 2
contains the data from World Data Bank I. The area and
line features from DLMS DFAD(4] are used in Map 3. The
latitude ranges from 52°12’ to 52°24’ and the longitude
from 5°30" and 6°00’, this is the region near Harderwijk in
The Netherlands. These three maps are from completely
different sources, but they produce very similar results.
The table below shows some of the key figures when no
measures for balancing are taken.

Map 1 | Map 2 | Map 3
inserted lines (1) 13,350 | 108,966 [ 5,456
degenerated lines (D) 3 50 4
split lines (S) 6,313 | 48,173 | 2,586
leaves (L) 19,661 | 157,090 | 8,039
expansion (f) 1.47 1.44 1.47
max depth (dmax) 80 234 60
average depth (davg) 27.7 63.2 30.5
theoretic depth (d,y,) 15 18 13

The expansion factor is defined by f = L/I and the the-
oretic minimum depth by d;, = [*log L]. The maximum
depth dmax and the average depth davg are measured
values. There is a simple relationship between the num-
ber of leaves in the BSP-tree and the number of inserted,
¢- generated, and split lines: L=I—-D+ S+ 1. Thisis
due to the property of binary trees that “the number of
external nodes is one more than the number of internal
nodes” and is corrected for split line segments and degen-
erated line segments. Degenerated line segments are line
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Figure 10: Split lines as function of inserted lines

segments in the original data set with the end point equal
to the begin point or at least within a distance smaller
than a relative accuracy eps, as used by our program.

Figure 10 shows the number of split line segments as a
function of inserted line segments for the data from World
Data Bank I. One might expect that the more line seg-
ments are already inserted in the BSP-tree, the bigger the
change that a new line segment has to be split. However,
this is not true. The straight line in Figure 10 means that
the chance that a new line segment has to be split is inde-
pendent of the number of already inserted line segments.
This is a remarkable result, because it implies that BSP-
trees of real maps have O(n) storage space complexity in
contrast to the worst case O(n?) with n the number of
line segments in the map. The constant associated with
this O(n) storage space complexity is modest and stable,
somewhere between 1.4 and 1.5. An intuitive explanation
for this is that the line segments have some “point-like”
characteristics, because they are small compared to the
whole map. When the line segments reach their final po-
sition the gradually get back the line characteristics. We
must verify this with more maps from different indepen-
dent sources. Another approach to proving this O(n) stor-
age space complexity is the development of a statistical
model.

8 Conclusion

The data structure presented is one of the few that com-
bines the two difficult requirements: spatial organization
and detail levels. Because of its generality it enables in-
corporation of other spatial organization techniques in the
BSP-tree. For example: the raster structure, the quadtree
or the KD-tree. A surprising result of our implementa-
tion is that BSP-trees of real maps seem to have no more
than about 1.5 * n nodes instead of the worst case O(n?)
nodes with n the number of line segments in the map.
We know that the reactive BSP-tree is far from perfect,
but we hope that it serves as a source of inspiration to



generate more ideas. A reactive data structure [20] need
not be based on a BSP-tree, other solutions are possible.
We are also working on development of a reactive data
structure based on an Object-Oriented approach to GIS
(18, 21].
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