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A MODEL FOR DETERMINING CONDITION-BASED MAINTENANCE
POLICIES FOR DETERIORATING MULTI-COMPONENT SYSTEMS

Jan A.M. Hontelez and Diederik J.D. Wijnmalen'

Abstract

We discuss a method to determine strategies for preventive maintenance
of systems consisting of gradually deteriorating components. A model has
been developed to compute not only the range of conditions inducing a
repair action, but also inspection moments based on the last known
condition value so as to minimize expected costs per time unit. In our
cost optimization, we include costs of inspection, repair, failure and
operation, while accounting for savings that can be obtained by
combining inspection or repair of two or more components. Deterioration
is modelled as a stochastic process; an independence assumption allows
us to model the decision problem as a (semi-]Markov decision process.
The solution procedure for the system as a whole is a heuristic one as we
use only aggregate information about the other components while
determining a maintenance strategy for a particular component. This
strategy is of the opportunistic control-limit type: upper limits induce
mandatory actions, lower limits allow anticipatory action if a combination
with a mandatory action on at least one other component is possible. In
this paper we describe the principles of this heuristic. We show how
other performance indicators can be calculated besides costs and give a
numerical example of a system of components made of concrete.

1. Introduction to the problem
We focus on the maintenance of structures or equipment which perform
specific functions on a permanent basis and which consist of one or more
components. One might think of a bridge with components made of steel,
concrete, etc. and mechanical components. We investigate each
component individually, and thus do not take any technical dependencies
between components into account. We do wish, however, to model

economic dependencies explicitly. The cost of maintenance actions
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consists of set-up costs and component-specific costs. If actions
involving different components are combined, the set-up costs can be
charged only once. This would be possible in the case of inspection and
repair. An inspection has the character of a technical inspection and
reveals the exact condition of the inspected component. Depending on
the degree of deterioration, it may be followed by a repair. Repair returns
the component to the new condition and may be considered, therefore,
as equivalent to replacement. Component failure involves damage costs
dependent on the duration of failure, and additional costs charged only
once per failure. Operating costs for properly functioning components
{perhaps including regular visual inspection) may depend on the actual
{but possibly unknown) condition. The process of deterioration is
modelled as a stochastic process. Research results from the field of civil
engineering show that some well-known deterioration processes can be
described by explicit mathematical functions with parameter values that
should be provided by the expert but can be updated using information

obtained by successive inspections.

The problem is to determine inspection and repair strategies for each
component of the system so as to minimize total expected maintenance
costs of the system per time unit, taking into account discounts on
inspection and repair costs should maintenance actions for a number of
components be combined. An inspection strategy involves deciding when
to inspect, depending on the component’s last known condition and on
opportunities for combining this inspection with that of other
components. A repair strategy involves deciding whether or not to repair,
depending on the condition found by inspection and on opportunities for

combining this repair with that of other components.

The original model and solution algorithm for a one-component system

were developed by Tijms & Van der Duyn Schouten (1984), and
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subsequently improved by Wijnmalen & Hontelez (1992). In Burger &
Hontelez & Wijnmalen (1994) more general deterioration processes than
the initial one-step Markov chain assumption are introduced into the
model. Wijnmalen & Hontelez (1994) presents the theoretical model
extension to multi-component systems with discounts on maintenance

costs.

2. The model and its solution
For modelling purposes, we divide the components of the system into one
or more groups of identical components, called ‘component types’. Each
type consists of one or more identical components. A specific
component, however, can only belong to a single type. We focus on an
arbitrarily chosen component of each type; input data, maintenance
strategy and all results pertaining to this component are equal to those of
any other component of the same type. Maintenance actions on any two
or more components may be combined. One might introduce the notion
of ‘clusters’ of types in order to allow for the case that components in
different clusters, and, therefore, of specific types, cannot be combined.
This does not change the essence of the model, however, and for this

reason we shall not consider clusters in this paper.

We divide the {infinite} planning horizon into planning intervals of equal
length; one time unit coincides with one planning interval. Opportunities
for inspection and repair occur at discrete points in time. In order to avoid
scheduling problems, we assume for the multi-component model, unlike
the one-component model, that maintenance actions do not take time. As
a consequence, the following events can take place without time delay:
the decision to inspect, the inspection, the decision to repair based on the

inspection result, and the repair action itself.

Furthermore, we divide the range of potential conditions of a component
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into intervals. The number of condition levels may be chosen arbitrarily
and need not be of equal length. By making the assumption that the
increment of deterioration over a given period of time is independent of
deterioration in previous periods, we transform continuous mathematical
deterioration functions into discrete processes with r;{t) as the probability
of deterioration from condition level 7 to j during ¢ time units, see also

Burger & Hontelez & Wijnmalen {1994).

The state of a component in the decision model is defined by:

- the last known condition level /, with i=1 {new};2,....NV {failure),

- and the number m of time units passed since we obtained this
knowledge, with m=0,...,M,,

- the opportunity k& of a discount Vik] on maintenance costs
presenting itself, with k=1,...,K; or K, {K, pertains to repair and K
to inspection)

The quantity M may depend on / and has been introduced to keep the

number of states finite. We assume for the sake of simplicity that repair

and inspection costs consist of a set-up part (which can be saved in
combined actions} and an action part. When focussing on a particular

component, we then have three cases: no combination {no savings), a

combination -with components of a different type (saving of system set-

up costs), and a combination with at least one component of the same
type (saving of both system and type set-up costs). This gives us

Kg=K,=3. Possible decisions on maintenance actions in relation to a

given component are the following:

- leave the component as it is, allowed in states
{tiymk) | i=1,...,N-1; m=0,...M-1}

- inspect the component, allowed in states
{iimk) | i=1,..,N-1; m=1,.. .M}

- repair the component, allowed in states {{;0,k) | i=2,...,N}
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We can now formulate the decision problem concerning a single
component as a (semi-)Markov decision process. The process is called
Markov because the transitions between the states of the decision
process depend only on the current state where the decision is taken and
on the decision itself. It is a semi-Markov process because the time
intervals between decisions are not of equal length (namely, zero or one).
We are, in fact, dealing with a finite, irreducible, homogenous Markov
chain. Probabilities, costs, and durations of state transitions can be
calculated in a straightforward way, see Wijnmalen & Hontelez (1994).
The optimal strategy is calculated by applying the policy iteration method
using a special search algorithm. Essentially, the method optimizes the
expected costs divided by the expected length of a complete "life cycle”
(from new condition to new condition through one repair). We have
chosen this modelling approach because it offers great flexibility in
handling different cost categories, in computing simple but powerful and
differentiated maintenance rules for practical application, and in modelling
varying levels of detail and types of deterioration processes

(notwithstanding the independence assumption mentioned above).

From the above definitions it will be clear that a model encompassing all
relevant components of the system at the same time would be far too
large to solve within acceptable (or even feasible) memory and/or
execution time limits. The number of states would grow exponentially
with the number of components encompassed. For this reason, we have
developed a heuristic approach based on aggregation and decomposition.
We consistently consider each component type (i.e. an arbitrary
component of each type) separately, whilst taking into account aggregate
information about inspection and repair of the other components. Except
when computing total system costs, we regard the system not as a
totality but in a decomposed way. The third state parameter k denotes an

opportunity for a combination with one or more other components
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yielding a discount VIk] on costs. For each k we compute a probability of
that opportunity (and thus of the discount VIk}} presenting itself, based
on the aggregate probability of inspection and repair of other components
at a decision moment. The aggregate probabilities are computed per

component.

Before describing the solution procedure, we introduce the class of
maintenance strategies on which we are focussing. The maintenance
strategies that we are considering belong to the class of opportunistic
control-limit rules, written as R=(p°;p',,...,pp0_1), where:

Do is the repair rule {(po[11,00[2],....00[Kq1); pol1] denotes the upper limit
value which is the condition level (and worse) where repair is mandatory,
Polk] denotes the k-th lower limit value where repair is allowed when a
combination opportunity with discount Vlk] on costs presents itself; thus
the range of condition values 1,...,0,[Kg]-1 does not induce repair, the.
range polKgl,....pol1]1-1 may induce repair if a combination is possible, and
the range pyl1],....N induces a mandatory vrepair. Note that
Pl11> =pg[2]> =...> =p,IK,]. p; is the inspection rule

p111.p,121.....0;[K}); as with repair, the first element of this vector is the
upper limit inducing mandatory inspection if it is p[1] time units since we
knew that the condition level was /; the other elements are the lower limit

values, expressed in time units, with p{11> =pl2]> =_..> =pJK ).

Figure 1 shows the flow chart of the solution procedure which we are
about to describe. We refer to Wijnmalen & Hontelez (1994) for a formal
mathematical presentation of the procedure and its computational

models.

As we do not have any information on repair or inspection of components
when starting the procedure, the first step is to look at each component

separately while ignoring the others. As each component type consists of
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Figure 1: Flow chart of the iterative solution procedure

a number of identical components, we take an arbitrary component of
each type in turn and solve the repair and inspection model without
discounts for that type. For this, we apply the model described in
Wijnmalen & Hontelez (1992), which uses the policy iteration method.
The result is an optimal strategy with one repair limit p, and Po-1
inspection limits. Under this strategy, the steady-state probabilities of
taking the decision to repair a component and of the decision to inspect a
component are computed.

In the second step, fixing the attention on an arbitrary component of each

component type, the probability of repair of at least one other component
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of the same type and then of any other type is computed. This is done
using the steady-state repair and inspection probabilities of each
component, computed in the first step (or fourth step when iterating).
The amounts of discount on repair are equated to the appropriate set-up
costs of the component considered: these set-up costs will not be
charged when the component considered is repaired, because they are
already covered due to the simultaneous repair of other components. The
same is done with regard to inspection. The result is four vectors defining
the discount configuration per component type: two discount probability
vectors (for repair and for inspection) and two discount value vectors (for
repair and for inspection).

In the third step, each component type is considered again, separately
and successively. We start with lower control-limit values equal to the
control-limit values (‘upper values’) in the first step. But this time the
discount possibilities are taken into account, and optimal lower-imit vales
are computed, again using the policy iteration method.

In the fourth step, total system costs are computed. This is essentially a
summation of the costs {per unit of time) of the upper and lower-limit
strategy for each individual component. One correction is, however,
necessary. It follows from the description of step two that set-up costs
are discounted once too often, and this needs to be corrected.

Steps two, three and four are repeated up to the point that the stopping
criterion of step five is satisfied:

In step five, several stopping criteria can be considered: whether the
current upper and lower-limit strategy is equal to the previous one (for
each component type); whether the relative change in the discount
probability vectors is less than some threshold value; whether the relative
change in total system costs is less than some threshold value. Which
particular criterion is to be used may be left to the user. Changes in the
discount probability vectors produce changes in upper and lower-limit

values of the strategy for each component, and changes in total system
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costs. This should, therefore, be the primary criterion. A maintenance
planner is, however, primarily interested in strategies and costs and will,

therefore, focus on the first and third criterion.

3. Performance indicators

The solution produced by the procedure of section 2 also includes
calculation of some additional performance indicators. This is a welcome
by-product of our steady-state semi-Markov decision model. We use the
value determination step of the palicy iteration procedure while observing
that the new condition is the renewal state of the process. Given the final
inspection and repair strategy of a particular component, we can assign a
carefully chosen cost value to each state and thus to the decision taken
in that state and interpret this value as a time duration or as an indication
of an event which does or does not occur. The value of the average
‘costs’ per time unit, which is part of the solution of the set of equations
in the value determination step, should then be interpreted as the
expected time fraction of a repair cycle or as the expected number of
events per unit of repair cycle time. We shall give the appropriate cost
values per performance indicator. Except for the cost quantities
mentioned below, all cost quantities are zero.
Expected length of a repair cycle:

make all repair costs equal to one; the average ‘costs’ per time

unit from the solution of the set of equations represents the

number of repairs per time unit; as there is by definition only one

repair per cycle, the reciprocal value is the expected cycle length.
Expected life time:

make the failure cost per time unit equal to one; the average

‘costs’ per time unit from the solution of the set of equations

represents the duration of failure as a fraction of the length of the

repair cycle; one minus this fraction multiplied by the expected

repair cycle length yields the expected life time; should repair from
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the failure condition take time, then the repair costs should in
addition be made equal to the duration of repair.

Expected number of inspections during a complete repair cycle:
make all inspection costs equal to one; the average ’‘costs’ per
time unit from the solution of the set of equations represents the
number of inspections per time unit of a repair cycle; multiplication
by the expected length of the repair cycle yields the expected
number of inspections.

Probability of failure during a complete repair cycle (reliability):
make the repair/replacement costs from the failure condition equal
to one; the average ‘costs’ per time unit from the solution of the
set of equations represents the number of failures per time unit,
which can be interpreted as the steady-state failure probability.

Availability:
as time durations of all maintenance actions are assumed to be
negligible, availability is equal to expected life time divided by the
length of the repair cycle; otherwise, if the component is not
‘available’ during inspection and repair, make inspection and repair
costs equal to their respective time durations, and then divide the
average ‘costs’ per time unit from the solution of the set of

equations by the length of the repair cycle.

4. A numerical example
In our example, we focus on a simple bridge for pedestrians. It mainly
consists of concrete components. We assume that they can be devided
into two groups of more or less identical components. The first
component type consists of three and the second component type of four
components. Deterioration is due to carbonation. The propagation of this
{stochastic) process can be described by the following formula:
carbonation depth = A * sqrt(t) + b * U * sqgrt(t)

where A and b are the parameters of the process, U is the standard
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Normal distribution, and t is the time parameter (in years). We give a

summary of the input data for both types in table 1; operating costs are

Zero.
Table 1: Input data for each of two component types
Component-type 1 2
Number of comp. 3 4
Parameter values A=322b=06 A=322b=10
Costs per event:
Inspection
total Dfl. 1200 DAf1. 800
system set-up Dfl. 150 Dfl. 150
type set-up Dfl. 100 Dfl. 100
Repair
total per cond. level 0- 4 mm DIfl. 7200 0- 5mm Dfl. 2500
4- 8 mm Dfl. 13000 5-10mm Dfl. 8000
8-12mm Dfl. 16000 10 - 15 mm Dfl. 10000
12 - 16 mm Dfl. 19000 15-20 mm Dfl. 12000
16 - 20 mm Dfl. 45000 20 - 25 mm DA. 27500
>20mm Dfl 57000 >25mm  Dfl. 40000
system set-up Dfl. 1000 DAl. 1000
type set-up Df1. 3000 Dfl. 1000
Failure Dfl. 350000 DfL 100000

Firstly, we have computed an optimal inspection and repair strategy for
each component type separately, without taking into account

combinations of repairs or inspections. The results are shown in table 2.

We conclude from table 3 that the discount on repair costs is not so high
as to make anticipatory repair profitable. The expected discounts do not
offset the otherwise higher costs of an anticipatory repair strategy. By
combining inspection of two or more components, however, savings can
apparently be obtained. The scale is now turned in favour of an
opportunistic strategy. If, for example, a component of type 1 appears to
be in condition 2 (4-8 mm) then one should wait 8 years, unless a

combination with one or more components of type 2 would present itself
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after 7 years (first lower limit).

Table 2: Optimal strategy, costs and performance indicators for each

component type, without anticipatory actions

Component type

1

2

Repair limit
Inspection intervals

Component costs
Performance indicators:
Repair cycle
Life time
Numb. of inspections
Probab. of failure
Availability

Cond. level 4 (>12 mm)
0- 4mm 11 years

4- 8mm 8 years
8-12mm 2 years

Dfl. 1173 per year

23.5 years
23.5 years
7.0
232106
100%

Cond. level 4 (>15 mm)
0- 5mm 15 years
5-10 mm 12 years

10-15Smm 7 years

Dfl. 567 per year

27.0 years
27.0 years
2.5
101103
100%

Total system costs without savings
Total system costs with savings

Dfl. 5787 per year
Dfl. 5653 per year

Table 3: Steady-state opportunistic strategy, costs and performance

indicators for each component type

Component type

Repair limits
All limits equal to
Inspection intervals
Upper limits.

First lower limits

Second lower limits

Component costs
Performance indicators

Cond. level 4 (>12 mm)

0- 4mm 11 years
4- 8mm 8years
8-12mm 2 years
0- 4mm 10 years
4- 8mm 7years
8-12mm 1 vears
0- 4mm 9 years
4- 8mm 6 years
8-12mm 1years
Dfl. 1072 per year

Cond. level 4 (>15 mm)

0- 5mm 15 years
5-10 mm 12 years
10-15mm 7 years
0- 5mm 14 years
5-10 mm 11 years
10-15mm 6 vears
0- 5mm 13 vears
5-10 mm 10 vears
10-15mm 5years
Dfl. 539 per vear

Repair cycle 38.0 years 26.7 years

Life time 38.0 years 26.6 years

Numb. of inspections 22.6 2.7

Probab. of failure ~ 2.9310°7 6.75 10

Availability 100% 99.6%
Total system costs with savings Dfl. 5584 per year
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If a combination with one or more components of the same type 1 would
be possible after as early as 6 years (second lower limit} then inspection
is already profitable after 6 years. It took three iteration rounds of the
solution procedure before the repair and inspection strategies did not
change anymore and the first stopping criterion {see section 2} was
satisfied. We continued iterating until total system costs per time unit did
not change significantly (i.e. change < 0.02%) anymore: the third
stopping criterion was satisfied. This took another four iteration rounds.
The steady-state probabilities also converge to limiting values, but more

slowly (results not shown here).

5. Final remarks
The final solution obtained by this procedure is an approximation of the
optima! solution. While the strategy the model produces for a specific
component (type} is optimal, given the current values of the discount
probabilities {which are updated in each iteration round of the solution
procedure) and given the fixed upper limits, the strategy will not
necessarily be optimal at system level. This is mainly due to the use of
the approximate steady-state probability values. On the other hand, we
now have a repair-and- inspection model that suggests strategies for
individual components in the context of the whole system. We are now
investigating the quality of those strategies. We have found a way out of
the dimensionality problem. The size of the model is determined by the
number of condition levels, the maximum number of time units until the
next inspection, and the number of discount opportunities. The latter can
be reduced by adopting a cost structure like the one in this paper (set-up
costs to be discounted and action costs). It does not depend, therefore,
on the number of components. All in all, we conclude that the model
presents a nice application of the policy iteration method, embedded in a
heuristic iteration procedure at a higher level. The model results appear to

be usable, although one might wish to have a closer link with reality.
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Further research will, therefore, deal with {(partial) repair as well as
replacement, modelling more complex deterioration processes, and with

time-dependent planning and scheduling of maintenance.
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