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General introduction

Biomarkers

Biomedical research is continuously challenged to discover and elucidate
relationships between health and disease on the one hand, and environmental
factors such as nutrition and the use of pharmaceuticals on the other hand.
Biomarkers can facilitate this quest [1-3]. A biomarker is defined as a parameter
that is objectively measured and evaluated as an indicator of normal biological or
pathological processes, or pharmacological responses to a therapeutic intervention
[4].

A biological system must keep internal conditions within tolerable limits to continue
a healthy functioning (see Figure 1). When a change occurs in a biological system,
the system usually responds to reverse the change to maintain equilibrium. This
control phenomenon is known as homeostasis.

For instance, the body requires glucose to meet the demand for energy. The
amount of glucose that is needed will depend on physical exertion. Glucose is
mainly obtained from the diet and when the body is provided with a surplus of
glucose, this is converted to glycogen which is the principal storage form of glucose
in the body. Under certain conditions, between meals for instance, glycogen can be
converted to glucose if needed. The pancreas monitors the level of glucose in the
blood and it controls the glucose concentration by releasing the hormone insulin or
glucagon. Insulin is released as a result of an increase in the blood glucose level
and stimulates the uptake of glucose into cells where it is stored as glycogen.
Glucagon is released when the blood glucose level decreases, and thus promotes
the conversion of glycogen into glucose. In this way, the glucose level in blood is
maintained within tolerable limits. In case of diabetes type 1, the body is not able to
produce sufficient insulin to stimulate the uptake of glucose into cells. Without this
corrective feedback process the blood glucose level can raise above the tolerable
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limits, which will result in biological derailment and finally in symptoms of disease.
When the body is out of balance, drugs are in many cases the only remedy to
reduce the unbalance but often the situation has reached an irreversible state.
Nutrition, however, is often suitable for interventions between, but close to, the
tolerable limits of equilibrium.

Surrogate biomarkers
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Early biomarkers
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_ Onset of Diseases
disease/effect l : .
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Figure 1. A biological system must maintain internal conditions within tolerable limits to continue a healthy functioning.
This phenomenon is known as homeostasis. Biomarkers are indicators for a biological process that is, or is likely to be,
out of equilibrium and may reflect prognosis, diagnosis or progression of such a process.

Biomarkers may reflect different stages of a biological process that is, or is likely to
get, out of equilibrium. There are three types of biomarkers: predisposition,
prognostic and diagnostic biomarkers [5]. A predisposition biomarker reflects the
sensitivity of a subject to a disease, like breast cancer predisposition genes for
example. A prognostic biomarker has the ability to predict whether a subject will be
susceptible to a disorder. For instance, a well-known prognostic biomarker is
cholesterol, which is used to identify the risk of a heart disease. A diagnostic
biomarker measures the incidence and progression of a disease process.
Haemoglobin A;¢c is an example of such a biomarker. When blood glucose levels
increase in subjects with diabetes, the levels of haemoglobin A;c in the blood
increase accordingly, providing a diagnostic marker of the progression of the
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disease. Diagnostic biomarkers can be classified as early, late and surrogate
biomarkers and have in common that they are indicators for a disorder that has
already developed. Early biomarkers measure the appearance of a disease in an
early stage, when curing may still be possible. Late and surrogate biomarkers
reflect a state of disease in which relieving symptoms is often the most optimal
remedy. A surrogate biomarker is intended to substitute for a clinical endpoint of a
disease, a characteristic or variable that reflects how a patient feels, functions or
survives.

Research on the identification of biomarkers can greatly benefit from a systems
biology approach [6]. Systems biology looks at all the elements of a biological
system and reveals their interconnection and interdependence when the system
functions in response to biological or environmental perturbations. This will lead to
the discovery of new biomarkers, which can be represented by genes, proteins,
metabolites, or a combination of these.

Metabolites are intermediate or end products of biological processes [7]. As a
result, metabolites play an important role as biomarkers. Metabolites can be
endogenous or exogenous, primary or secondary. Endogenous metabolites are
produced within a biological system. Exogenous metabolites are obtained from
external factors, such as food or drugs that are converted in the system. Primary
metabolites have a direct relation to an exogenous or endogenous biological
process. Secondary metabolites have an indirect relation to a biological process.
Biomedical research targets mainly endogenous primary and secondary
metabolites [8]. In intervention studies and toxicological research, endogenous and
exogenous as well as primary and secondary metabolites are subject of
investigations [9].

Analytical techniques and MVDA for biomarker profile selection

Metabolites provide valuable information on the activity of a biological system, and
thus about its state. Biological fluids, such as urine and blood, contain thousands of
metabolites that are potential biomarkers. Analytical techniques like proton nuclear
magnetic resonance spectroscopy (NMR), gas chromatography-mass spectrometry
(GC-MS) and liquid chromatography-mass spectrometry (LC-MS), enable
guantification and identification of metabolites in biological fluid samples [10].
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However, data obtained with these techniques is very intricate, due to the mixture
of numerous metabolites present in body fluids. Biological fluid samples from, for
instance, a group of healthy versus a group of diseased subjects that are analysed
with NMR, often show variations in metabolite levels between the groups that are
too small and too complex to be recognized by visual inspection [11]. To find these
differences, multivariate data analysis (MVDA) is needed to explore recurrent
patterns in the data, as depicted in Figure 2. It is a powerful tool for the analysis of
data sets with a large number of variables. In MVDA, samples are classified
according to fine distinctions in the original data, such as NMR spectra, which are
caused by small differences between metabolite levels of samples. Metabolites that
discriminate between groups of samples and that can be correlated to clinical
endpoints, are potential biomarkers.

Healthy group
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Figure 2. NMR spectra of biological fluid samples from a group of healthy versus a group of diseased subjects. The

F
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data often shows variations in metabolite levels between the groups that are too small and complex to be recognized
by eye. To find these differences, multivariate data analysis (MVDA) is needed to explore recurrent patterns in the
data.

The combination of NMR and/or GC-MS, LC-MS with subsequent MVDA is also
referred to as metabolic fingerprinting, biomarker profiling, metabolomics,
metabonomics or metanomics [7]. The technology has emerged from the biological
fluid profiling approaches that were developed many decades ago for the study of
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inborn errors of metabolism and effects of nutrition. The early work in this area was
mainly driven by GC-MS, which allows low- concentration components to be
measured in single profiles. In the eighties, mass spectrometric profiling has
become a powerful fingerprinting methodology, especially when combined with
MVDA [6].

Both GC-MS and LC-MS are highly suitable for identification of all metabolites in a
sample, thus covering the complete metabolome. However, for global biomarker
profiing, NMR is an attractive approach, as a wide range of metabolites can be
guantified simultaneously without extensive sample preparation. More in-depth
studies, using techniques like LC-MS-MS or 2-dimensional NMR, may be used
subsequently to identify unknown metabolites and thus to elucidate metabolic
pathways involved, especially when metabolite information is integrated with
genome, gene expression (transcriptome) and proteome data in systems biology
strategies [6].

In this thesis, the term metabolic fingerprinting or biomarker profiling will be used,
because the focus will be on the recognition of global profiles, especially from NMR
data, and less on the coverage of the complete metabolome.

Challenges in biomarker profiling

Biomarker profiling has already proven to be a valuable tool in several areas of life
science research, such as toxicology and biomedicine. However, there are still
frontiers of knowledge. For instance, differences in disease severity or in diet
complicate the identification of a biomarker profile. Therefore often well-defined
animal studies are used as a starting point. Once a biomarker profile is identified in
an animal study, it is supposed that this profile, or part thereof, may also be
applicable to the human situation. This issue of translational science is a major
challenge for biomarker research.

Other intriguing topics are early and prognostic biomarkers. Diseases as well as
environmental factors disturb biorhythms. Such perturbations affect the biological
system’s metabolism and are supposed to show up in time-course biological data.
The metabolites that represent the first perturbation in time are early biomarkers.
Early biomarkers may bring prevention of diseases nearer [5].
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Most biomarker profiling research is based on in vivo studies. Such studies are
usually labour-intensive and expensive. In vitro studies are not hampered by these
disadvantages and form therefore an interesting alternative. In vitro experiments
could help in generating hypotheses about effects to be expected in vivo. Besides,
in vitro research can help in the differentiation between primary and secondary
metabolites. This may especially be helpful in the study of complex mixtures, like
nutraceuticals and traditional Chinese medicine (TCM) and early biomarkers.
Finally, systems biology should be employed for a better understanding of
biomarker profiles and of the underlying biological processes, from genes through
proteins to the observed metabolites.

Aim of this thesis

This thesis describes the exploration of metabolic fingerprinting in life sciences and
the identification of several novel biomarker profiles, using NMR with subsequent
MVDA. In a systems biology approach, metabolic profiling is also used to further
understand biological processes.

Outline of this thesis

The individual chapters of this thesis each address a different aspect. In Chapters
2 and 3, the theory behind the analytical techniqgues NMR and LC-MS and
multivariate data analysis is described. In Chapter 4, an application of NMR and
MVDA is illustrated with a study in which a diagnostic biomarker profile is searched
for osteoarthritis in guinea pigs. Osteoarthritis is further elaborated on in Chapter 5
with the presentation of results of a study in human patients. The combination of
NMR and MVDA as a method to find an early biomarker profile is depicted in
Chapter 6, with acute rejection after kidney transplantation as an example. In
Chapter 7, an in vitro study is presented to show that in vitro research is a useful
approach to generate hypotheses about affected metabolic pathways. In Chapter
8, a step is made towards systems biology, by combining metabolite profiles with
transcriptomics in a hepatotoxic study with bromobenzene. In Chapter 9,
conclusions are drawn and perspectives discussed.

10
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Analytical techniques

Proton NMR spectroscopy

Nuclear magnetic resonance spectroscopy is a method for structure research of
compounds which have magnetic nuclei [1]. An example of such a nucleus is the
proton, *H. A proton has a magnetic dipole moment, which tends to align itself with
respect to the direction of a sufficiently strong external magnetic field. If a proton is
placed in such a field, its axis of rotation (spin) can take only two spatial
orientations: aligned with the field or against it. Each of these orientations
corresponds to a discrete energy level of the proton. Alignment with the field is the
more stable one, and energy must be absorbed to flip the spin from this state to the
less stable alignment against the field. Transitions between the two energy levels
take place through absorption or emission of electromagnetic radiation:

AE =hvy (1)

with AE the energy difference between the two states, h the Planck constant and u
the frequency of the absorbed or emitted radiation.

The energy needed to flip the proton spin depends on the strength of the external
magnetic field. The stronger the magnetic field, the greater the tendency of the
proton to remain aligned with the field. As a consequence, the required frequency
of the radiation will be higher and is given by the relation:

7,B
2

(2)

In this formula is B the strength of the magnetic field and y, the gyromagnetic ratio
of the proton.

13
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The frequency at which a proton absorbs energy depends on the total magnetic
field strength, which is felt by the proton. This so-called effective field strength is
not exactly the same as the applied field strength but also includes magnetic
contributions from electrons and nuclei around the proton. As a consequence, the
absorption frequency of a proton depends on the surroundings in which it is
situated, such as the electron density at its location and the presence of
neighboring protons. Each set of equivalent protons will have a different
environment from other sets, and will thus require a different applied field strength
to produce the same effective field strength. At a given frequency, all protons
absorb at the same effective field but at a different applied field. This applied field
strength is varied and the absorption of radiation, with a maximum for each set of
protons, is plotted. The result is an NMR spectrum, an example of which is shown
in Figure 1. The distance (&) of an absorption peak to a reference position is called
its chemical shift. Chemical shifts, measured in frequency units, are expressed in
relation to a reference compound, which is often sodium 3-trimethylsilyl-propionate-
2,2, 3, 3-°H, (TMSP). The shift is expressed in parts per million (ppm):

5 = (V - V )X106 /Vreference (3)

reference

The peak area is proportional to the amount of equal protons, that is protons with
the same chemical shift. Spin-spin interactions between protons in the same
molecule cause splitting of signals. An NMR spectrum provides valuable
information about (i) how many different kinds of nuclei there are in a molecule, (i)
the environment of each kind of nucleus, (iii) how many nuclei of each kind there
are, and (iv) the environment of a nucleus with respect of other nearby nuclei.
Mixtures like biological fluids show very complex NMR spectra. Due to the
enormous amount of metabolites that each have many different kinds of nuclei,
such mixtures show many NMR signals. Consequently, the identification of
compounds in such NMR spectra is hampered.

14
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pPpMe—

Figure 1. An example of an NMR spectrum.

Chromatography and Mass Spectrometry

Liquid chromatography (LC) is a separation method in which the sample
components to be separated are distributed between two phases, a stationary
phase and a mobile phase which is a liquid [2]. The chromatographic process
occurs as a result of repeated sorption and desorption steps during the movement
of sample components along the stationary phase. Separation of components
takes place due to differences in interaction of the individual sample components
with the stationary phase. Gas chromatography (GC) is based on the same
principle, with the difference that in this case the mobile phase is a gas. It has the
capability to separate very well, and in a short time, and is therefore preferable to
LC. However, LC is very useful when compounds are not volatile, or not stable
enough at the higher temperatures used in GC.

Both GC and LC can be combined with mass spectrometry (MS), which is a
powerful tool for analysing components of thermal lability and low volatility [3]. It is
a quantitative method of analysis, in which molecules of a component are ionised
and (partly) broken up into fragments. The fragments are selected according to
their masses and their intensities are measured. In a mass spectrum, intensities

15
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are plotted as function of the mass fragments upon which the chemical structure of
a component can be determined.

Many ionisation methods are available, such as chemical ionisation and
electrospray ionisation (ESI). The latter is used in combination with LC for many
biochemical analyses. It generates ions directly from the solution by creating a
spray of highly charged droplets in the presence of a strong electric field. When a
droplet decreases in size, the electric charge density on its surface will increase.
lons then leave the droplet when the mutual repulsion between like charges on the
surface becomes large enough, upon which the escaping ions are directed into the
mass analyzer.

Comparison of the techniques

Both GC-MS and LC-MS are highly suitable for identification of a broad range of
metabolites in a sample, thus covering the complete metabolome. Both techniques
are sensitive but require extensive sample preparation. The main advantage of
NMR, compared to GC-MS and LC-MS, is the fact that a wide range of compounds
in a sample can be quantified simultaneously without extensive sample
preparation. The disadvantage is that NMR is less sensitive and that the
identification of metabolites is more complicated. However, for global metabolic
profiing NMR is an attractive approach, producing a good general impression of
the contents of a sample. When interesting results show up, techniques like GC-
MS, LC-MS or 2-dimensional NMR, may still be used afterwards for a more
detailed study of the sample and to identify metabolites of interest.
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Multivariate data analysis

General introduction

In biomedical studies, enormous amounts of data are produced. Besides, data
obtained from biological fluids with GC-MS, LC-MS as well as NMR is highly
complex. The large number of metabolites present in biological fluids produces an
overwhelming amount of signals. To find differences and similarities in such data,
MVDA is indispensable. It visualizes the correlation between variables in complex
or large data sets (e.g. hundreds of signals in NMR or LC-MS spectra) in relation to
a target variable such as disease status.

In MVDA, unsupervised and supervised techniques can be used. Unsupervised
methods such as principal component analysis (PCA) determine patterns within
data sets, without prior knowledge, and visualize the data in such a way as to
emphasize similarities and differences. With such methods, a direct comparison of
for instance NMR spectra is made and samples are clustered, solely on the basis
of NMR spectral similarities. Supervised methods, such as principal component
discriminant analysis (PCDA) and partial least-squares (PLS), are more powerful
tools. They use additional information in the analysis of the data set, such as
biochemical, histopathological or clinical data, to identify differences between pre-
defined groups.

In metabolic profiling, techniques like PCA, PCDA and PLS are often applied.
However, new methods are being developed continuously, such as PLS batch
processing and multilevel simultaneous component analysis (MSCA). These
routines are extremely suitable to handle time-course data with a multilevel
structure.

17
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Component methods

In component models such as PCA, a large set of related variables is transformed
to a smaller set of non-correlated variables that express the variation in the original
variables to a maximum. This principle is shown in Figure 1. Two groups of
samples are measured at two variables, vl and v2. Most of the variation in the
measurements is explained in the direction of the line PC1, and secondly in the
direction of the line PC2, which is orthogonal to PC1. The new variables PC1 and
PC2 are called components and each of them depicts an axis in multidimensional
space. PC1 and PC2 are independent linear combinations of the original variables
vl and v2.

v2 PC2 PC1

Figure 1. Representation of principal component analysis (PCA). Six samples are measured on the original variables,
vl and v2. New non-correlated variables, so-called principal components (PC1 and PC2), describe most of the
variation in the measurements.

More in general, PCA compares objects (e.g. NMR spectra) and forms subsets of
these objects on the basis of variable similarities. For this, a data matrix X,
containing | samples and J variables, is transformed from a large set of related
variables into a smaller set of non-correlated variables, called principal components
(PC), which are chosen to express the maximum variation in the original variables
[1; 2]. A mathematical description of the PCA model is given in equation (1)

18
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X =TP'+E (1)

where X is the original IxJ set of data, P’ is a transpose matrix (FxJ) of variable
coefficients (loadings), T is an IXF matrix of object scores and E is an IxJ matrix
containing the residuals not explained by the model using F principal components.
Equation (1) can also be written as

R
Xij = z tirpir + € (2)

r=1

with X;, t, Py, €; the typical elements of X, T, P and E and R the number of
components.

The score on a PC is the distance of the projection of an original object on the PC
to the zero point. Scores are plotted in a score plot, with the PCs as axes. For
example, NMR spectra are recorded from biological fluid samples. Scores are
situated close to each other in a score plot when the NMR spectra of the samples

original objects

original variable cluster of scores

Figure 2. A combined score and loading plot. A graphical representation of the projection of objects (e.g. NMR
spectra) A, B, C, P, Q and R and the original variables (e.g. NMR signals) X;, X, and X3 onto a plane through the first
and second principal component (PC1 and PC2). The lower case characters denote the scores and loads. The
distance between the clusters of scores is largest in the direction of PC1.

19
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are similar (see Figure 2). When the clustering of scores (NMR spectra) matches
the controls, treated or diseased subjects in the original study set-up, a connection
can be linked up between affected NMR signals, and treatment or disease.

The contribution of a variable to a principal component is named a loading. The
loading on a PC is the distance of the projection of an original variable on the PC to
the zero point. A high loading indicates a strong contribution of the original variable
to the investigated PC (see Figure 2). In a so-called factor spectrum, henceforth
named metabolic fingerprint or biomarker profile, loadings are presented as lines
(see Figure 3). Biomarker profiles are usually constructed in the direction in which
the distance between clusters of scores is largest. The position of a line in a
biomarker profile corresponds to the position of a variable in the original data, e.g.
the position of a signal in an NMR spectrum in the mentioned example. The length
of a line denotes the contribution of this variable, such as an NMR signal, to the
clustering of scores in the investigated direction.

X3

Figure 3. An example of a factor spectrum, obtained from Figure 2 in the direction of PC1. Loadings are presented as
lines. The location of the lines corresponds to the location of the variables in the original data, for instance NMR
signals. The length of a line denotes the contribution of a variable to a principal component. X; is highly increasing for
P, Q and R, whereas Xj is highly increasing for A, B and C.

Discriminant analysis

Discriminant analysis is often applied when the interest is centered on differences
between groups, whereas component methods such as PCA are essentially
dimension-reduction techniques. Discriminant analysis is based on the assumption
that samples from a given group are more similar to each other than to samples
from other groups. The technique aims at finding and identifying structures in the
original data that show large differences in their group means. A priori knowledge

20
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as to which samples are similar is needed; hence discriminant analysis is a
supervised technique, in contrast to PCA.

Discriminant analysis combines variables in such a way that differences between
predefined groups are maximized. This is illustrated in Figure 4, where two groups
of samples are measured on two variables.

X2
P
X X
X « x
X
X X o
X
o
X
o
o 900
o o)
% o
o
D
B
% %

)

)

Figure 4. Principle of discriminant analysis. D is the discriminant axis, P is a projection line, X1 and X2 are two original
variables and x and o represent samples from two different groups. Projection of samples on X1 and X2 shows no
separation between the two clusters, whereas projection on line D shows a complete separation.

According to the principal component maximum variance criterion, these samples
should be projected on line P. For discriminating between groups of samples,
however, this is not the optimal solution. Projection of samples on line D shows a
complete separation between the two clusters and is therefore a better solution [3].
Analogous to the PC’s in PCA, the new calculated variable in discriminant analysis
is named D, discriminant axis. Discriminant axes are expressed as:

J
D:Z;Wij (3)
i=
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with D the discriminant score, while w; and x; are weighting coefficient and score,
respectively, for the jth out of J variables. The new variables D describe differences
between means of groups. Because these new variables must provide the most
efficient representation of the differences between the means of the groups, the
optimization criterion is the ratio of the between-group variation over the within-
group variation. In a technique like PCDA, the scores from PCA are used as a
starting point for linear discriminant analysis, as depicted in Figure 5.

A
PC2 :
v2 PC2 PC1 :
" o PCA t ;
1 o —_— XXl e
. 0 x o
X :
X~ X :
— — PC1
DA
YA V25 SRERNN— : W c W5 W

Figure 5. Principal component discriminant analysis. The scores from PCA are used as a starting point for linear
discriminant analysis (DA).

Regression analysis

A partial least-squares model has a predictive nature, in contrast to a PCA model
that describes data. In PLS, pairs of scores and loadings, so-called latent variables,
are not only calculated to maximize the explained variance in the predicting data
set, X, but also to maximize the correlation with Y, the data to be predicted [4]. This
can be written in the equations:

X =TPT +E 4)
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and

Y =TQ" +F (5)

where X represents an | x J matrix of independent variables and Y an | x K matrix
containing the dependent variables. The matrices P and Q" are transpose S x J
and S x K matrices, containing the dependent and the independent variable
loadings, respectively. The matrix T is an | x S matrix of S latent scores, whereas E
and F are | x J and | x K matrices containing the residuals of the independent and
the dependent variables, respectively.

Data preprocessing

Normalisation is a procedure that is often applied to analytical data, for instance
when spectra contain no reference peaks. The assumption behind this is that each
sample has the same amount of information present in the spectra. Normalising the
spectra makes their absolute amount of information mutually comparable.

To avoid that variables with relatively small values are hard to detect amidst
variables with relatively large values, it is often necessary to center or to scale the
data. In case no centering or scaling techniques are used, it may occur that after
application of MVDA only one or a few variables describe the full variance present
in the dataset. If variables with different units are present in the dataset it may also
be necessary to center or to scale the data before the application of MVDA.
Orthogonal signal correction (OSC) is a preprocessing method that may be applied
to spectral data prior to developing a PLS model [7]. In situations where a PLS
model captures a very large amount of predictor block (X) variance in the first
factor but gets very little of the predicted variable (Y), it can be useful to remove
extraneous variance from X that is unrelated to Y. OSC does this by finding
directions in X that describe large amounts of variance while being orthogonal to Y.

Reliability of MVDA models

Data for MVDA is often randomly divided into a training data set and a test data
set. Models are built upon the training data set. Subsequently the test data set is
used to test the reliability of the training model. This is done by passing the test
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data through the training model. In this way the model’s prediction of classification
of the test data is obtained. Predictions should be in agreement with the actual
known results.

To obtain an objective assessment of the prediction error of a model obtained by
MVDA, cross validation can also be carried out. For this, the measurements of one
or more samples are left out of a data set. MVDA is applied then on the remaining
data. The obtained model is used to predict the scores of the left out sample(s).
Repeating this procedure until each of the samples is left out once and then
comparing the predicted scores with the actual known scores gives an estimate of
the reliability of the MVDA model. Leaving out one sample at a time is generally
referred to as leave-one-out cross validation [8].
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Identification of disease-related
metabolic fingerprints in
osteoarthritic guinea pigs

Abstract

Osteoarthritis, one of the most common diseases among the elderly, is characterized by the progressive
destruction of joint tissues. The etiology of osteoarthritis (OA) is largely unclear and no effective
disease-modifying treatment is currently available. Metabolic fingerprinting provides a novel tool for the
identification of biomarkers. A metabolic fingerprint consists of a typical combination of metabolites in a
biological fluid and in this study is identified by a combination of *H Nuclear Magnetic Resonance
spectroscopy (NMR) and multivariate data analysis (MVDA). The current feasibility study was aimed at
identifying a metabolic fingerprint for OA. Urine samples were collected from osteoarthritic male Hartley
guinea pigs (n=15) at 10 and 12 months of age, treated with a medium vitamin C dose (30 mg/d) and
from healthy male Strain 13 guinea pigs (n=8) at 12 months of age, treated with 30 mg/d vitamin C.
NMR measurements were performed on all urine samples. Subsequently, MVDA was carried out on the
obtained NMR data. An NMR fingerprint was identified that reflected the osteoarthritic changes in
guinea pigs. The metabolites that comprised the fingerprint indicate that energy metabolism is of major
importance in OA. This study demonstrates the feasibility of metabolic fingerprinting to identify disease-
specific profiles of urinary metabolites. NMR fingerprinting is a promising means of identifying new
disease markers and of gaining fresh insights into the pathophysiology of disease.

Based on: Lamers, R.A.N., DeGroot, J., Spies-Faber, E.J., Jellema, R.H., Kraus, V.B., Verzij,N.,TeKoppele, J.M.,
Spijksma, G., Vogels, J.T.W.E., van der Greef, J., van Nesselrooij, J.H.J. (2003) Identification of disease and nutrient
related metabolic fingerprints in osteoarthritic guinea pigs. J. Nutr., 133, 1776-1780.
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Introduction

Biomedical research is continuously facing the challenge of elucidating the
relationship between health, disease and metabolism on one hand and effects of
nutrition or pharmaceuticals on the other hand. Genomics will contribute to
clarifying the etiology of most common genetic diseases and provide approaches
for therapeutic intervention. However, knowledge of genomics is not the single
universal tool for predictive medicine and nutritional strategies [1-2]. A person’s
phenotype results from the interaction of the genotype with the environment, in
which nutrition plays a major role. Metabolites are the quantifiable molecules that
best reflect phenotype [3] and are attractive candidates for biomarker fingerprints in
nutritional intervention studies.

Biological fluids, such as urine and blood, contain a large number of metabolites
which may provide valuable information on the metabolism of an organism, and
thus about its health status. Metabolic fingerprinting, also referred to as
metabolomics, metabonomics [4], metanomics [1], or related terms, is a method
that enables quantification and identification of metabolites in biological fluids. The
methodology has emerged from the profiling of body fluid approaches that were
developed many decades ago for the study of inborn errors of metabolism and
effects of nutrition. The early work in this area was mainly driven by mass
spectrometric techniques (GC-MS), which allow low concentration components to
be measured in single profiles. In the eighties, especially with the combination of
multivariate data analysis (MVDA), mass spectrometric profiling had become a
powerful fingerprinting methodology [5].

For a full coverage of a complex mixture of metabolites, a combination of analytical
techniques is desirable. However, for global screening, ‘H Nuclear Magnetic
Resonance spectroscopy (NMR) is an attractive approach, as a wide range of
metabolites can be quantified at the same time without extensive sample
preparation. More in-depth studies can subsequently elucidate the metabolic
pathways involved, especially when metabolite information is integrated with gene
expression and proteomic data in systems biology strategies [6].

NMR spectra of biological fluids are very complex due to the mixture of numerous
metabolites present in these fluids. Therefore, variations between samples are
often too small to be recognized by eye. In order to increase the comparability of
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NMR spectra and thereby maximize the power of the subsequent data analysis, we
have developed a Partial Linear Fit algorithm [7] in the past. This algorithm adjusts
minor shifts in the spectra while maintaining the resolution. To find significant
differences, multivariate data analysis (MVDA) is needed to explore recurrent
patterns in a number of NMR spectra [4-5]. MVDA is a powerful tool for the
analysis of data sets with a large number of variables. It visualizes the correlation
between variables in complex or large data sets (e.g. thousands of signals in NMR
spectra) in relation to a target variable such as disease status. MVDA falls into two
general classes: unsupervised and supervised techniques. Unsupervised methods
such as principal component analysis (PCA) determine patterns within data sets,
without prior knowledge, and visualize the data in such a way as to emphasize their
similarities and differences. With such methods, a direct comparison of NMR
spectra is made and subsets of data are formed, solely on the basis of NMR
spectral similarities.

In PCA, data is transformed from a large set of related variables (e.g. NMR signals)
to a smaller set of uncorrelated variables. The new created variables are called
principal components (PCs) and aim at expression of maximum variation in the
original variables. Each PC forms an axis in multidimensional space and the
calculated distance of an object (e.g. a complete NMR spectrum of a guinea pig
urine sample) to this axis is a so-called score. The contribution of each variable
(e.g. a single NMR signal) to a PC can also be calculated, giving a so-called
loading. A high loading indicates a strong contribution of the original NMR signal to
the investigated PC. Loadings can be displayed in a so-called factor spectrum.
Loading vectors are described as lines then, with a position equal to the position of
the variables in the original spectra. The height of the lines indicates the
contribution of the variables to the investigated direction.

Supervised methods such as partial least squares (PLS) and principal component
discriminants analysis (PCDA) are more powerful tools, which use additional
information on the data set such as biochemical, histopathological or clinical data
to identify differences between pre-defined groups (8). In PCDA, the scores from
PCA are used as a starting point for linear discriminant analysis. Discriminant
analysis works by combining the PCs in such a way that differences between pre-
defined groups are maximised.
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Osteoarthritis (OA), the most common form of arthritis, is a multi-factorial, chronic
joint disease that is characterized by the progressive destruction of articular
cartilage, resulting in impaired movement, pain and ultimately disability [9]. A
variety of systemic and local risk factors have been identified that predispose to the
development of OA, including -but not limited to- age, gender, bone density,
obesity, joint injury and nutritional factors [10]. Despite the growing body of
information on the pathogenesis of OA, its etiology is far from clear and effective
disease-modifying treatment is lacking. Diagnosis of OA is currently based on
clinical symptoms in combination with imaging techniques such as radiology or
MR, to visualize the degenerative changes in the joint. These changes can only be
observed in an advanced stage of the disease, in which joint tissue damage is
considered irreversible. Alternative methods are therefore needed in order to detect
osteoarthritic changes in the joints in an early stage of the disease in a quantitative,
reliable, and sensitive manner [11]. By measuring a combination of relevant
metabolites in biological fluids, metabolic fingerprinting potentially meets these
criteria.

The Hartley outbred strain guinea-pig develops spontaneous progressive knee OA,
with features similar to the human disease [12-13] and was chosen to investigate
the potential of metabolic fingerprinting as a tool for diagnosis.

Materials and Methods

Animal handling procedure

Fifteen male Hartley guinea pigs that develop OA during aging were purchased at
two months of age from Charles River Laboratories (Wilmington, MA, USA) and
maintained on standard guinea pig feed. The guinea pigs were maintained at a
medium dose of vitamin C (30 mg) provided with feed daily (supplemented with
standard Purina Lab Diet 5025 (Purina Mills, LLC, St. Louis, MO, USA) without
vitamin C ad libitum). Furthermore, eight Strain 13 guinea pigs (obtained from
Crest Caviary, Prundale, CA, USA) which develop OA to a much lesser extent than
the Hartley strain [14] were housed individually in solid bottom cages and fed 30
mg/d of vitamin C. Metabolic cages (PLAS-LABS, Lansing MI) suitable for guinea
pigs were used to collect 24-hour urine samples at 10 and 12 months of age for the
Hartley guinea pigs and at 12 months of age for the Strain 13 guinea pigs. The
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collected urines were centrifuged at 3000 rpm for 10 minutes to remove debris, and
stored at —80°C until analyses. For all experiments “Principles of laboratory animal
care” were followed and American guidelines and laws were applicable.

NMR analysis of urine samples

Prior to NMR spectroscopic analysis, 200 pL urine samples were lyophilized and
reconstituted in 1 mL sodium phosphate buffer (0.1 mmol/L, pH 6.0, made up with
D,0), to minimize spectral variance arising from differences in urinary pH. Sodium

trimethyIsinI—[2,2,3,3,—2H4]—1-propionate (TMSP; 0.025 mmol/L) was added as an
internal standard. NMR spectra were recorded in random order and in triplicate in a
fully automated manner on a Varian UNITY 400 MHz spectrometer using a 'H
NMR set-up operating at a temperature of 293 K.

Free induction decays (FIDs) were collected as 64K data points with a spectral
width of 8.000 Hz; 45 degree pulses were used with an acquisition time of 4.10 s
and a relaxation delay of 2 s. The spectra were acquired by accumulation of 128
FIDs. The signal of the residual water was removed by a pre-saturation technique
in which the water peak was irradiated with a constant frequency during 2 s prior to
the acquisition pulse. The spectra were processed using the standard Varian
software. An exponential window function with a line broadening of 0.5 Hz and a
manual baseline correction was applied to all spectra. After referring to the internal
NMR reference (TMSP &= 0.0), line listings were prepared using the standard
Varian NMR software. To obtain these listings all lines in the spectra above a
threshold corresponding to about three times the signal-to-noise ratio were
collected and converted to a data file suitable for multivariate data analysis
applications.

NMR data processing and multivariate data analysis

The NMR data reduction file was imported into Winlin (V1.10, TNO, The
Netherlands). Minor variations from comparable signals in different NMR spectra
were adjusted and lines were fitted without loss of resolution. To correct for urinary
dilution, the data were auto-scaled so that small and large peaks contribute
similarly to the final study result. Where needed endogenous and exogenous
metabolites of vitamin C were eliminated from the NMR spectra leading to more
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universal OA related changes and principal component discriminant analysis
(PCDA) was performed [15].

Age, strain or dose was used as a priori information respectively. The NMR data
set was randomly divided into a training data set and a test data set. PCDA models
were built upon the training data set. Subsequently the test data set was used to
test the reliability of the training model. Predictions were in agreement with the
actual groupings.

The resulting discriminants were quantified for each of the urinary NMR spectra
and the scores were plotted to visualize clustering. Factor spectra were used then
to correlate the scores to the original NMR features in the spectra. These metabolic
fingerprints provided insight into the type of metabolites responsible for differences
between categories.

Results

Metabolic fingerprinting in disease diagnosis

The Hartley outbred stock albino guinea pig spontaneously develops an
osteoarthritic condition that closely resembles its human counterpart. The earliest
histological signs of the disease appear at 3 months of age in the medial tibial
plateau which gradually progress to extensive cartilage degeneration in guinea
pigs aged 12 months or older [16].

The underlying hypothesis of the present study is that OA will disturb metabolism,
which will be reflected in an aberrant urinary metabolic composition. Using
metabolic fingerprinting such OA-induced abnormal urinary composition may be
guantified. However, also aging may cause disturbances in metabolism that are
independent of a pathological change [17]. Therefore, a suitable control group was
essential for the construction of a representative metabolic fingerprint for OA. To
exclude the possibility that metabolic differences caused by aging interfered with
those caused by OA, NMR analysis was performed on urine samples of Hartley
guinea pigs that were followed longitudinally. Samples were collected of the same
guinea pigs at 10 and 12 months of age, treated with 30 mg/d vitamin C. This
approach minimized age effects on the metabolite profile: at 10 months of age
guinea pigs are fully grown, while the OA severity is expected to increase in the
guinea pigs from 10 months onward [14]. Comparison of two urinary spectra of a

30



Metabolic fingerprint for osteoarthritis in guinea pigs — Chapter 4

single guinea pig at 10 and 12 months of age (Figure 1) showed that, on first sight,
the differences between the respective NMR spectra were small.

2 1 0 9 8 7 6 5 4 3 2 1 0

ppm ppm

I
9 8 7 6 5 4 3

Figure 1. NMR spectra of urine taken at 10 months (left) and 12 months (right) from one Hartley guinea
pig. On first sight, no differences exist between the two spectra.

Since the NMR spectra contain a range of different signals, combinations of which
represent the different metabolites, principal component discriminant analysis
(PCDA) was used to visualize disease related differences in these spectra [15],
using age (10 or 12 months) as additional input information. The resulting plot
(Figure 2) clearly showed that scores of samples were different per age group (and
thus per OA severity). The scores of the 10 months samples are below zero,
whereas the scores of the 12 months samples are above zero (P<0.001). The
distinction between scores is based on the concentrations of metabolites which are
characteristic for each group. A metabolic fingerprint was derived from the plot of
the scores, which is likely to reflect OA (Figure 3). In this fingerprint, NMR signals
of urinary guinea pig metabolites are visualized which increased or decreased in
association with age and thus OA.
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Figure 2. PCDA score plot of urinary NMR spectra of Hartley guinea pigs at 10 versus 12 months of age (the points
represent the complete urinary NMR spectra of the guinea pigs). At 10 months of age guinea pigs are fully grown,
while at 12 months of age their OA severity has substantially increased (14). This increase in OA severity is reflected
by the urinary composition, as there is a clear difference between the positions of the two groups (P<0.001).

Using the approach described above, in principle the small age difference (2
months) rather than a different severity of OA could be responsible for the
clustering of the data and thus the metabolic fingerprint. Therefore, to ascertain
that the obtained metabolic fingerprint reflected OA differences and not age
differences, a complementary approach was used. NMR spectra were obtained
from urine samples of 12-months old Strain 13 guinea pigs, treated with 30 mg/d
vitamin C, that show only very limited OA changes [14]. These NMR spectra were
subjected to PCDA together with the data obtained from 12-months old Hartley
guinea pigs, treated with 30 mg/d vitamin C. Using this design, only age-matched
samples were compared, thereby completely eliminating age-related changes as
confounders of the differences in the metabolite profile. For PCDA an ideal
situation was assumed in which, at 12 months of age, Hartley guinea pigs have
OA, whereas Strain 13 guinea pigs did not have
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Figure 3. Factor spectrum, or metabolic fingerprint, of urinary NMR spectra of 10 versus 12 month old Hartley guinea
pigs that is typical for OA. Peaks (representing NMR signals) in the positive direction indicate metabolites that are more
abundant in urine of guinea pigs with severe OA (at 12 months) than in urine of guinea pigs with milder disease (at 10
months). Consequently, metabolites that are more abundant in urine of these healthier guinea pigs are presented as

peaks in the negative direction.

OA [14]. The score plot resulting from this analysis, in which “strain” (i.e. Hartley
versus Strain 13) was used as additional input data for PCDA, again showed a
clear difference between scores of the two groups (Figure 4; P<0.001). The scores
of Hartley guinea pigs are above zero, whereas the scores of the Strain 13 guinea
pigs are below zero.

A metabolic fingerprint was used to assign the NMR signals that explain
differences between the two groups, and thus health status (Figure 5). In this
analysis, both OA as well as strain differences could in principle be responsible for
the separation in groups.

Combining the results from both analyses allowed elimination of the confounding
factor from each of the approaches, namely age and strain respectively. The
metabolic fingerprint obtained from the comparison of urinary NMR spectra of 10
and 12 months old Hartley guinea pigs was almost similar to the metabolic
fingerprint obtained from the age-matched strain comparison (compare Figure 2B
and 3B). Thus, metabolites that were present in both fingerprints are likely to be
OA specific. Using this approach, NMR regions in the metabolic fingerprint that
emerged as strongly associated with OA are 2.0-2.9, 3.0-4.7 and 6.3-7.5 ppm.
Signals at 1.35, 2.42, 2.45, 2.88, 4.03 and 4.33 ppm in a positive direction and
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Figure 4. PCDA score plot of urinary NMR spectra of 12 months old Hartley versus Strain 13 guinea pigs. Strain 13
guinea pigs are healthy, while Hartley guinea pigs suffer from OA (14). The difference in urinary composition is
reflected by the clear separation into two groups in the graph (P<0.001).
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Figure 5. OA specific metabolic fingerprint of urinary NMR spectra of 12 months old Hartley versus Strain 13 guinea
pigs. Peaks in the positive direction indicate metabolites that are more abundant in urine of Hartley guinea pigs than in
urine of Strain 13 guinea pigs. Consequently, metabolites that are more abundant in urine of Strain 13 guinea pigs are
presented as peaks in the negative direction.
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1.45, 1.48 and 4.13 in a negative direction were especially abundant in the OA
state. Signals in these regions represent, amongst others, hydroxybutyrate,
creatine/creatinine, pyruvate, and lactic acid. These metabolites are consistent with
the hypothesis suggesting altered energy utilization with OA [18].

Discussion

In the present study, a novel method was employed to identify a metabolic
fingerprint for OA, using NMR in combination with MVDA on urine samples of
outbred male Hartley guinea pigs that spontaneously develop knee OA. An NMR
fingerprint for OA was identified that was independent of age or strain effects and
therefore can be used as a diagnostic tool for OA in guinea pigs.

In this study it was essential to use samples from a well-defined animal study,
rather than using human material, since differences in OA severity, medication,
diet, and habits etc create additional variability which would greatly hinder de novo
identification of an OA specific urinary fingerprint. However, once identified amidst
the thousands of other metabolites, the urinary fingerprint for OA may also be
qguantified in humans. A feasibility study to this purpose will be initiated shortly.

This study demonstrates the feasibility of metabolic fingerprinting to identify
metabolite profiles in (pre)clinical research. As shown here, this technique has the
ability to distinguish a disease from a non-disease state. In addition to their
contribution to the fingerprint, the individual metabolites may provide additional
insight into the pathogenesis of OA. Lactic acid, malic acid, hypoxanthine and
alanine contributed heavily to the fingerprint, suggesting their involvement in the
osteoarthritic process. Altered energy demand may thus play an important role in
OA. Further identification of the metabolites involved and combining the current
metabolic data with proteomics and genomics approaches in order to form a
holistic, integrated picture of the metabolic pathways implicated in OA, may provide
new insights into OA pathogenesis and thereby identify new disease targets. This
approach also has the potential to catalyze development of new biomarkers for OA.
Metabolic fingerprinting has the ability to distinguish disease specific metabolites.
Metabolic fingerprints, as demonstrated in this study of OA, can also provide a
sensitive outcome measurement tool that can be used to evaluate the effects of a
nutrient or drug intervention on the incidence and progression of disease.
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Therefore, this powerful technique has broad applicability in the field of clinical

nutritional and pharmaceutical research.
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Identification of a urinary
metabolite profile associated
with osteoarthritis

Abstract

Objective: Osteoarthritis (OA) is one of the most common diseases among the elderly. The main
characteristic is the progressive destruction of articular cartilage. We lack quantitative and sensitive
biomarkers for OA to detect changes in the joints in an early stage of the disease. In this study, we
investigated whether a urinary metabolite profile could be found that could serve as a diagnostic
biomarker for osteoarthritis in humans. We also compared the profile we obtained previously in the
guinea pig spontaneous OA model.

Methods: Urine samples of 92 participants (47 non-OA controls and 45 individuals with radiographic OA
of the knees or hips) were selected from the Johnston County Osteoarthritis Project (North Carolina,
USA). Participants ranged in age from 60 to 84 years. Samples were measured by 'H Nuclear
Magnetic Resonance spectroscopy (NMR) with subsequent principal component discriminant analysis
(PCDA).

Results: Differences were observed between urine NMR spectra of OA cases and controls (P<0.001 for
both male and female subjects). A metabolite profile could be determined which was strongly
associated with osteoarthritis. This profile largely resembled the profile previously identified for guinea
pigs with OA. A correlation was found between the metabolite profile and radiographic OA severity (R*=
0.82 (male); R*= 0.93 (female)).

Conclusion: This study showed that a urine metabolite profile may serve as a novel discriminating
biomarker of osteoarthritis.

Submitted for publication.
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Introduction

Osteoarthritis (OA), or cartilage degeneration, is the most common form of arthritis
[1]. An important feature of the disease is the progressive destruction of articular
tissues, resulting in impaired movement, pain and ultimately disability. A variety of
systemic and local risk factors have been identified that predispose to the
development of OA, including age, gender, bone density, obesity, joint injury and
nutritional factors [2]. Despite the growing knowledge on the pathogenesis of OA,
its etiology is still not clear and effective disease-modifying treatment is lacking.
Diagnosis of OA is currently based on clinical symptoms [3-5] in combination with
radiology. Radiological evaluation of joints mainly images bone and is relatively
insensitive: a follow-up period of two years is often needed to assess disease
progression [6]. Magnetic Resonance Imaging (MRI) has the ability to
simultaneously visualize all joint tissues. The technique is currently being optimized
but has not yet reached its full potential.

Alternative methods are therefore needed in order to detect osteoarthritic changes
in the joints in an early stage of the disease in a quantitative, reliable, and sensitive
manner. Biomarkers that monitor molecular events taking place during disease are
well suited for this purpose. A good biomarker is disease-specific, reflects actual
disease progression, is sensitive to changes due to therapeutic intervention and
can predict disease outcome. Currently no single biomarker exists that meets these
requirements [6]. Combining several biomarkers has been shown to improve the
discriminatory capability considerably [7]. Recent developments in the field of
metabolomics now provide the tools to go one step further: identify profiles of
metabolites that together serve as a biomarker [8-9]. Biological fluids, such as urine
and blood, contain a large number of metabolites that may provide valuable
information on the metabolism of an organism, and thus about its health status.
Metabolic profiling, also referred to as metabolomics, metabonomics [8], or related
terms, is a technique that enables quantification and identification of metabolites in
biological fluids. The technology has emerged from approaches to the profiling of
body fluid that were developed many decades ago for the study of inborn errors of
metabolism and the effects of nutrition. Our previous research has shown that such
a metabolomics approach is also feasible for identifying a biomarker profile for OA.
We discovered differences between urine samples of 10- and 12-month old Hartley
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guinea pigs that spontaneously develop OA using nuclear magnetic resonance
spectroscopy (NMR) and multivariate data analysis (MVDA). A metabolite profile
was detected which was strongly associated with OA [10]. For initial metabolic
profiling it was essential to use samples from a well-defined animal study, rather
than using human material, since differences in OA severity, medication, diet and
habits create additional variability that would greatly hinder the identification of an
OA specific urinary metabolic profile in humans. However, once identified amidst
the numerous other metabolites, the urinary metabolic profile for OA in the guinea
pig model may also be quantified in humans. The present study was initiated from
this assumption and designed to identify a biomarker profile that could distinguish
unaffected from OA affected individuals.

Materials and Methods

Study population and sample selection

Urine samples of 92 subjects were obtained from participants in the ongoing
Johnston County Osteoarthritis Project (North Carolina, USA), that is described in
detail elsewhere [11]. Participants were selected who were not using any medicine
for joint complaints (NSAIDS and COX-2 inhibitors), varied in age between 60 and
84 years, and had a body mass index (BMI) between 21 and 34. Radiographic
knee osteoarthritis was defined from weight bearing bilateral anteroposterior
radiographs of the knee, according to the Kellgren-Lawrence (K-L) grading scheme
[12]. An OA case was defined as K-L grade >2 of at least two joints out of the four
joints considered (knees and hips); controls were defined as K-L grade 0 in both
knees and 0 or 1 in both hips. The selected group of participants consisted of 47
controls (20 male and 27 female) and 45 patients with radiographic knee and/or hip
OA (21 male and 24 females).

Second morning voided urines were collected and centrifuged at 3000 rpm for 10
minutes to remove debris, and stored at —80°C until analyses. The study was
approved by the Institutional Review Board of the University of North Carolina
School of Medicine and the Centers for Disease Control and Prevention. Written
informed consent was obtained from all participants.

41



Metabolic fingerprint associated with osteoarthritis — Chapter 5

NMR analysis of urine samples

Prior to NMR spectroscopic analysis, 1 mL urine samples were lyophilized and
reconstituted in 1 mL sodium phosphate buffer (0.1 mmol/L, pH 7.4, made up with
D,0), to minimize spectral variance arising from differences in urinary pH. Sodium

trimethylsiIyI-[2,2,3,3,-2H4]-1-pr0pionate (TMSP; 0.1 mmol/L) was added as an
internal standard. NMR measurements were carried out in random order and in
triplicate in a fully automated manner on a 600 MHz spectrometer (Avance, Bruker
BioSpin GmbH, Rheinstetten, Germany), using a proton NMR set-up operating at a
temperature of 300K. For each sample, 128 free induction decays (FID) were
collected. Each FID was induced using a 45-degree pulse, an acquisition time of
2.73 s and a relaxation delay of 2 s. The FIDs were collected as 64K data points
with a spectral width of 12.000 Hz. The spectra were processed using the standard
Bruker software. An exponential window function with a line broadening of 0.3 Hz
and a manual baseline correction were applied to all spectra. After referring to the
internal NMR reference (TMSP &= 0.0), line listings were prepared with the
standard Bruker NMR software. To obtain these listings all lines in the spectra
above a threshold corresponding to about three times the signal-to-noise ratio were
collected and converted to a data file suitable for multivariate data analysis
applications. The NMR data file was imported into Winlin (V2.1, TNO, The
Netherlands). Minor variations from comparable signals in different NMR spectra
were adjusted and lines were fitted without loss of resolution, after which MVDA
was carried out.

Multivariate data analysis

To correct for urinary dilution NMR data were centered and scaled to unit variance
so that small and large peaks contributed similarly to the final study result.
Subsequently Winlin was used to perform principal component discriminant
analysis (PCDA) on the data. Principal component discriminant analysis is a
powerful tool to identify and maximize differences between pre-defined groups in
data sets with a large number of variables [13]. In this study, health status (controls
versus OA cases) was used as a priori knowledge for PCDA discrimination. The
NMR data set was randomly divided into a training data set and a test data set.
The PCDA models were built upon the training data set. Subsequently the test data
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set was used to test the reliability of the training model. Predictions were in
agreement with the actual groupings (controls versus cases).

To visualize differences between NMR spectra of controls and OA cases, the
PCDA scores were plotted and the unpaired T-test was performed to evaluate the
statistical significance of the difference between the PCDA scores of the two
groups (Excel Office 2003, Microsoft Corporation, USA). Subsequently, the original
NMR spectra were used to calculate which metabolites contributed to the PCDA
scores that distinguished controls from OA cases (for male and female case
separately). The combination of these metabolites (visualized via the position in
ppm within the NMR-spectrum) formed (gender-specific) metabolic profiles for OA.
These metabolic profiles provided insight into the type of metabolites responsible
for the difference in PCDA scores of the two groups.

Partial least square (PLS) regression analysis was carried out in Matlab (Version
6.5, The MathWorks Inc., Natick, MA, USA) using the PLS toolbox (Version 3.0,
Eigenvector Research Inc., Manson, WA, USA) to correlate urine NMR spectra
with the sum of knee and hip K-L grades, a measure for OA status. Leave-one-out
was used as a method for cross-validation to obtain a goodness of fit (R?) for the
PLS model in its prediction of K-L grades from the urine NMR spectra. The PLS
regression vectors, showing NMR signals that were correlated to the K-L grade,
were plotted using Excel.

Results

Description of sample

The characteristics of the OA and control participants are given in Table 1. To
minimize variation in urinary metabolites (and thus increase the chance of finding
an OA-specific metabolic fingerprint) male and female subjects were analysed
separately and for both genders, cases and controls were matched for age, height
and weight. No consistent statistically significant differences were observed except
for the presence of OA. The OA patients had a summed K-L grade (knee and hips)
ranging from 4 and 10 while the control subjects had a summed K-L grade ranging
from 0 — 2.
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Female
Control Case

mean ( sd ) range p value mean ( sd ) range
Number 27 24
Age [years] 695 (6.0) [60-84] 0.253 677 (48 ) [61-77]
Height [inches] 632 (20) [575-66.5] 0.183 624 (23 ) [583-655]
Weight [Ibs] 161 ( 26 ) [109-198] 0.411 156 ( 25 ) [106-204]
Body mass index 284 (43) [20.9-34.0] 0.715 280 (35) [21.9-339]
BMD left hip 09 (01) [055-1.16] 0.049 09 (01) [065-1.18]
BMD spine 632 (02) [049-1.31] 0.112 11 (02) [073-1.46]
Affected joint [#] 00 (00) [0-0] <0.001 24 (07) [2-4]
K/L grade right knee 00 (00) [0-0] <0.001 13 (11) [0-3]
K/L grade left knee 00 (00) [0-0] <0.001 15(12) [0-4]
K/L grade right hip 09 (03) [0-1] <0.001 18 (07) [0-3]
K/L grade left hip 10(02) [0-1] <0.001 1.7 (07) [0-3]
Summed K/L grade 19 (05) [0-2] <0.001 62 (16) [4-9]
Current NSAID use none none
Current Cox-2 inhibitor use none none

Male
Control Case

mean ( sd ) range p value mean ( sd ) range
Number 20 21
Age [years] 66.9 (4.0 ) [61-75] 0.512 678 (48 ) [61-76]
Height [inches] 684 (3.0) [61.0-735] 0.774 681 (29 ) [633-735]
Weight [Ibs] 177 ( 17 ) [144-212] 0.090 188 ( 23 ) [139-237]
Body mass index 266 (22 ) [240-314] 0.032 284 (3.0) [236-34.0]
BMD left hip 10 (01) [074-1.31] 0.453 10 (02) [076-152]
BMD spine 12 (02) [089-159] 0.566 12 (01) [096-1.54]
Affected joint [#] 00 (00) [0-0] <0.001 22(06) [2-4]
K/L grade right knee 00 (00) [0-0] <0.001 15(10) [0-3]
K/L grade left knee 00 (00) [0-0] <0.001 13 (10) [0-3]
K/L grade right hip 08 (04) [0-1] <0.001 1.7 (07 ) [0-3]
K/L grade left hip 09 (03) [0-1] <0.001 16 (05) [1-2]
Summed K/L grade 1.7 (06 ) [0-2] <0.001 61 (14) [4-10]
Current NSAID use none none
Current Cox-2 inhibitor use none none

Table 1. The characteristics of the OA and control participants.

Human urinary metabolite profile

The underlying hypothesis of the present study is that OA leads to, or is
accompanied by, metabolic disturbances that are reflected in an aberrant urinary
metabolite composition. NMR with subsequent multivariate data analysis revealed
such OA-related alterations in the urinary metabolite composition, resulting in a
metabolic biomarker fingerprint that distinguished healthy individuals without OA
from individuals with OA.
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When applying PCDA on the male and female NMR data sets, clear differences for
both genders were observed between the NMR spectra of OA cases and controls
(P<0.001 for both male and female subjects). Plots of the PCDA scores clearly
showed this (Figure 1A and 1C). Thus, PCDA resulted in a distinct separation
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Figure 1. Plot of the scores of urinary NMR spectra of male (1A) and female (1C) participants without OA versus
participants with OA (the points represent the complete urinary NMR spectra of the subjects). The prevalence of OA is
reflected by the urinary composition, as there is a clear difference between the scores of the two groups (P<0.001 for
both male and female subjects). In addition, metabolite profiles of male (1B) or female (1D) participants without OA
versus participants with OA. Peaks (representing NMR signals, expressed in ppm) in the positive direction indicate
metabolites that are more abundant in urine of participants with OA than in urine of participants without OA.
Consequently, metabolites that are less abundant in urine of OA subjects as compared to the controls are presented
as peaks in the negative direction. Signals that were also found in the guinea pig OA study are indicated.
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between groups based on the metabolite composition and metabolite concentration
of urine which is characteristic for each group. In other words, a specific
combination of metabolites can distinguish OA cases from controls.

The profiles of these metabolites for male and female subjects are shown in Figure
1B and 1D. In these ‘fingerprints’, NMR signals of urinary metabolites were
depicted according to their relative abundance in OA versus non-OA subjects.
NMR signals of the metabolic profile that displayed an association with OA for both
males as well as females and that showed up in the same direction were & 1.18,
2.02,2.22,2.38, 2.58, 2.74, 3.02, 3.14, 3.18, 3.22, 3.26, 3.70, 3.74, 3.78, 3.94 ppm
in the positive direction and & 1.38, 3.58, 3.98, 7.02, 7.06, 7.10, 7.54, 7.58, 7.62,
7.66, 7.78, 7.82 and 7.86 ppm in the negative direction. Signals at & 3.06 ppm in a
positive direction and & 2.14, 2.18, 3.30, 3.62, 7.14, 7.38 ppm in the negative
direction varied strongly between males and females.

Metabolite profile in relation to summed KL-grade

Partial least squares regression was performed to correlate urine NMR spectra with
the summed knee and hip K-L grades of subjects. A model was obtained that could
predict the K-L grade from the urine NMR spectra for male participants (R2:0.82)
and female participants (RZ:O.93) (Figure 2 left and right panel respectively), thus
showing the sensitivity of the metabolite profile for OA. The NMR patterns (thus
metabolite profiles) that were shown by PLS regression to be correlated to the K-L
grade, were largely similar to the metabolite profiles obtained by PCDA on controls
versus OA cases, respectively (Figure 3). NMR signals that correlated to OA and
that showed similar patterns in men and women were & 1.18, 2.38, 2.58, 2.74,
3.10, 3.14, 3.18, 3.70, 3.74, 3.78, 3.94 ppm in a positive direction and & 1.38, 3.58,
3.98, 7.02, 7.10, 7.54, 7.58, 7.62, 7.66, 7.82 and 7.86 ppm in a negative direction.

Identities of NMR signals

Although the NMR signals that make up the fingerprints are not yet characterized
(which would require extensive mass spectroscopy), rough identification of the
metabolites can be done based on the comparison of their NMR pattern with
databases containing NMR signatures of known molecules. According to these
databases, the NMR signals at 6 1.18, 2.38, 2.58, 2.74, 3.10, 3.14, 3.18, 3.70,
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Figure 2. Plot of measured summed K-L grades versus predicted summed K-L grades from urine NMR profiles for
male (2A) and female (2B) participants, obtained with a PLS model. The goodness of fit (R?) of the model is 0.93 and
0.82 for male and female subjects respectively, showing that the correlation between K-L grades and the urine
metabolite profile is high.

3.74, 3.78, 3.94 ppm in the positive direction (levels increased with OA) represent,
among others, metabolites like hydroxybutyrate, pyruvate, creatine/creatinine and
glycerol. Signals at 6 1.38, 3.58, 3.98, 7.02, 7.06, 7.10, 7.54, 7.58, 7.62, 7.66, 7.78,
7.82 and 7.86 ppm in a negative direction (levels decreased with OA) represent,
among others, compounds like histidine and methylhistidine.

Discussion

A biomarker for OA that is useful for early disease detection, that reflects the
course of joint destruction, and that predicts long-term outcome is currently lacking
[14]. Such a biomarker could be used to assess disease progression and the
effects of therapy and thereby serve as an outcome measure in clinical trials.
Ultimately, an ideal OA biomarker would potentially facilitate the development of
effective individualized treatment plans and approaches.

Classical biomarker development, based on the detection of known tissue
synthesis and resorption markers, has thus far not yielded biomarkers sufficiently
specific and/or sensitive enough for the above mentioned applications [6]. The
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Figure 3. Plot showing the NMR signals that correlate to the K-L grades according to PLS for both male and female
participants. Peaks (representing NMR signals) in the positive direction indicate metabolites that are more abundant in
urine of patients with OA than in urine of participants without OA. Consequently, metabolites that are less abundant in
urine of participants with OA are presented as peaks in the negative direction. There is a large similarity with the
metabolite profiles obtained with PCDA.

recent and rapid progression in the field of NMR with subsequent MVDA has
heralded the advent of a new approach to OA biomarker development. From the
overall mixture of metabolites in a biological fluid like urine, a combination of
molecules can be identified that together best reflect a disease process [8].

In the present study, we were able to discriminate between subjects who did not
have OA and subjects with radiological OA, based on small differences in urinary
metabolite composition and metabolite levels as detected by NMR and subsequent
MVDA. We identified a urine metabolite profile that was strongly associated with
OA and which appeared in male as well as in female subjects. A regression model
showed that this metabolite profile correlated with the summed Kellgren Lawrence
scale of radiological OA, for male as well as female subjects. Hence, from the
metabolite profile it was possible to discriminate between OA cases and controls
and, moreover, to predict the OA state and severity in a sensitive manner. The
metabolite profile that we identified in human samples strongly resembled the one

48



Metabolic fingerprint associated with osteoarthritis — Chapter 5

we identified previously in samples from the guinea pig model for OA [10]. This
further supports the supposition that the metabolite profile could serve as a
biomarker for OA.

In addition to its use as a biomarker for osteoarthritis, the OA-specific metabolic
fingerprint also provides information on the cellular processes that occur during the
disease and as such, the metabolic profile contributes to our understanding of the
pathophysiology of the disease. The presence of hydroxybutyrate, pyruvate,
creatine/creatinine and glycerol in the metabolite profile could point at an enhanced
use of fat, and hence an altered energy utilization. This is consistent with studies
described in the literature in which the involvement of altered energy metabolism in
OA has been proposed [15]. It is possible that some of the metabolites associated
with OA are intermediaries in these metabolic pathways.

The metabolite profile for human OA also indicated an alteration in histidine
metabolism. Our results demonstrated lower levels of histidine and methylhistidine
in association with OA. This finding is consistent with the hypothesis that histidine
is consumed by metabolism to histamine, itself responsible for stimulating the
proliferation of articular chondrocytes into clusters, a characteristic of OA cartilage
[16-17]. The synthesis of histamine from histidine is catalysed by histidine
decarboxylase [18-19] and both histamine and histidine decarboxylase have been
demonstrated in chondrocytes of OA cartilage [16-17]. These results would
suggest that lowered levels of histidine may be caused by over-expression of
histidine decarboxylase. However, more studies are needed to confirm this
hypothesis.

In conclusion, our study provides evidence of a diagnostic metabolite profile
associated with OA that correlates with K-L grades. Our findings are consistent
with other studies reporting effects on altered energy and histidine metabolism in
association with OA. The metabolite profile may provide a sensitive outcome
measurement tool that can be used to evaluate the effects of nutrients and drugs
on the incidence and progression of the disease. Results are promising but further
research will be necessary to validate this hypothesis. Moreover, this metabolite
profile may provide a tool to allow physicians to better quantify the extent of
disease. Mass-spectroscopy-based identification of the unknown metabolites will
be an important next step in promoting an understanding of the disease
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Urinary metabolite profile as
early biomarker for acute
rejection after kidney
transplantation

Abstract

Objective: Renal transplantation is the preferred treatment option for patients with (or approaching)
end-stage renal failure. A frequent problem after such an operation is acute rejection of the transplanted
organ due to an attack of the immune system against the allograft. This may lead to functional
deterioration of the kidney and to a negative effect on long-term graft survival. Early diagnosis of acute
rejection may prevent structural damage to the kidney and is supposed to be beneficial for long-term
allograft survival. This study was set up to investigate whether a urinary metabolite profile can be
identified that is associated with an acute rejection episode. Such a profile could also serve as an early
biomarker for acute allograft rejection.

Methods: Urine samples of nineteen male participants who underwent a kidney transplantation were
selected from a prospectively collected consecutive cohort transplanted at the Leiden University Medical
Center. Nine patients with biopsy-confirmed acute rejection in the early posttransplantation period were
identified, as well as ten control subjects who maintained proper function of their kidney transplant.
Samples were measured by 'H Nuclear Magnetic Resonance spectroscopy (NMR) with subsequent
multivariate data analysis (MVDA).

Results: Urine composition was different for patients showing acute rejection as compared to control
subjects at time of biopsy (P<0.001) and also five days prior to the biopsy (P<0.001). A urinary
metabolite profile was determined which was associated with the occurrence of an acute rejection
episode. Five days prior to acute rejection, patients already showed an aberrant metabolite profile.
Conclusion: This study shows that a urinary metabolite profile may serve as a novel early biomarker
that is able to predict the occurrence of an acute rejection episode in renal transplant recipients.

In preparation for publication.

53



Metabolic profile for acute rejection after kidney transplantation — Chapter 6

Introduction

The kidneys allow the excretion of waste products from the body, regulate the
volume of extracellular fluid and the balance of electrolytes [1]. Acute renal failure
is characterized by a sudden decrease in renal function due to injury, disease or
toxins. When remedies are used in time, kidney functions may restore. In case of
chronic renal failure, the functions of the kidney are slowly getting worse. With
good medication however, it is possible to control the process of deterioration [1-2].
In end-stage renal disease, chronic renal failure progresses to a point at which the
kidneys work less than 10% of their capacity [3]. At this point the kidneys are no
longer fulfilling their role of removing waste and excess fluids from the body. Toxins
start to build up in the blood causing progressive complaints and potentially life-
threatening complications such as hyperkalaemia. Currently there is no cure for
end-stage renal disease. This condition is fatal to the patient unless dialysis on a
regular basis or a kidney transplant is performed [2].

Renal transplantation is the preferred treatment of patients with, or those
approaching end-stage rnal failure [4-5]. Allograft rejection remains an important
problem after renal transplantation. In case of an acute rejection episode, a
transplant recipient's immune system attacks the transplanted organ or tissue.
Therefore, kidney transplant patients require life-long treatment with
immunosuppressive drugs that suppress the alloimmune response [4]. With the
current regimen, the overall incidence of early acute rejection still about 20-30% of
kidney transplant recipients [5]. Acute rejection occurs most often within three
months after transplantation but it can occur at any time after transplantation. Acute
rejection is predominantly mediated by T-cells that infiltrate the graft and cause
tissue destruction [5]. Treatment with high-dose steroids, T cell antibodies or a
change in immunosuppressant drug can in the large majority of cases effectively
control the rejection process. The functional response of an acute rejection episode
to therapy has shown to be a strong impact factor for long-term graft survival after
kidney transplantation [6-7]. Rejection episodes that do not affect renal function
had no impact on graft survival whereas acute rejections in which baseline function
was not restored were shown to have a profound impact on renal survival [7].
Currently, serum creatinine is used to monitor allograft function. Creatinine is a
compound that is completely filtered from the blood by the glomerulus and also
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secreted by the renal tubular epithelial cells. Hence its clearance is a good
estimate of the glomerular filtration rate [1-2]. Although this is an easy and
relatively inexpensive assay, it is not very sensitive and the blood creatinine level
does not rise until significant injury to the kidney has occurred. Currently no
biomarkers exist that can detect an acute rejection episode in a reliable and
sensitive manner before the creatinine levels rise. Episodes of acute rejection are
usually diagnosed by a kidney biopsy, which is performed at the time of graft
dysfunction according to sequential serum creatinine levels. Since biopsy cannot
be done frequently, it is not a very satisfactory method for early detection of acute
rejection, i.e. before loss of function occurs. A prognostic biomarker for acute
rejection will facilitate the appropriate and timely treatment of patients in order to
prevent irreversible loss of renal allograft function. This is likely to have a beneficial
effect on long-term graft survival. Next to that, the discovery and development of
new therapies would greatly benefit from an early biomarker for acute rejection.
Metabolomics is the untargeted profiling of metabolites in biological samples [8-10].
This technology, together with approaches such as transcriptomics and proteomics
[11], provides more insight regarding the pathogenesis of diseases. Developments
in the field of metabolomics now provide the tools to investigate pathways and
molecules involved in allograft rejection and to identify metabolite profiles that
contain potential biomarkers. The present study was initiated from the assumption
that a biomarker profile, which reflects acute kidney rejection, may be detected in
urine. Using '"H  Nuclear Magnetic Resonance spectroscopy (NMR) and
subsequent multivariate data analysis (MVDA) we investigated whether acute
rejection after kidney transplantation is preceded by an aberrant urine metabolite
profile that can be used to predict this occurrence in time.

Materials and Methods

Study population and sample selection

Early morning urine samples of nineteen male participants who underwent a kidney
transplant operation were selected from a prospective study at the Leiden
University Medical Centre (Leiden, The Netherlands). Subjects received a
maintenance immunosuppressive regimen including prednisone, ciclosporin micro
emulsion and mycophenolate mofetil. Patients with delayed graft function after
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transplantation were excluded from the current study. Characteristics of patients
their donor and the transplanted kidney were known (degree of mismatches for
HLA antigens, ischemia time, sex, age). Daily serum creatinine values were
collected to monitor kidney function. When creatinine values on two subsequent
days were raised more than 10% over their baseline values, a biopsy was carried
out after exclusion of potential pre- and post renal causes for graft dysfunction.
Nine patients with a biopsy-confirmed acute rejection episode in the early
posttransplantation period, as well as ten subjects with stable renal allograft
function were selected. Urine samples collected at the time of rejection and at five
days prior to the event were identified and samples collected within at comparable
timeframe were chosen from the control subjects. The collected urine samples
were centrifuged at 3000 rpm for 10 minutes to remove debris, and stored at —80°C
until analyses.

NMR analysis of urine samples

Prior to NMR spectroscopic analysis, 1 mL urine samples were lyophilized and
reconstituted in 1 mL sodium phosphate buffer (0.1 mmol/L, pH 7.4, made up with
D,0), to minimize spectral variance arising from differences in urinary pH. Sodium

trimethyIsinI—[2,2,3,3,—2H4]—1-propionate (TMSP; 0.1 mmol/L) was added as an
internal standard. NMR measurements were carried out in random order and in
triplicate in a fully automated manner on a 600 MHz spectrometer (Avance, Bruker
BioSpin GmbH, Rheinstetten, Germany), using a proton NMR set-up operating at a
temperature of 300K. For each sample, 128 free induction decays (FID) were
collected. Each FID was induced using a 45-degree pulse, an acquisition time of
2.73 s and a relaxation delay of 2 s. The FIDs were collected as 64K data points
with a spectral width of 12.000 Hz. The spectra were processed using the standard
Bruker software. An exponential window function with a line broadening of 0.3 Hz
and a manual baseline correction were applied to all spectra. After referring to the
internal NMR reference (TMSP &= 0.0), line listings were prepared with the
standard Bruker NMR software. To obtain these listings all lines in the spectra
above a threshold corresponding to about three times the signal-to-noise ratio were
collected and converted to a data file suitable for multivariate data analysis
applications. The NMR data file was imported into Winlin (V2.1, TNO, The

56



Metabolic profile for acute rejection after kidney transplantation — Chapter 6

Netherlands). Minor variations from comparable signals in different NMR spectra
were adjusted and lines were fitted without loss of resolution, after which MVDA
was carried out.

Multivariate data analysis

Data was centered and scaled to unit variance, upon which principal component
discriminant analysis (PCDA) was performed using the Winlin software package.
Health status (controls versus patients) was used as a priori knowledge for
discrimination in PCDA. The NMR data set was randomly divided into a training
data set and a test data set. The PCDA models were built upon the training data
set. Subsequently the test data set was used to test the reliability of the training
model. Predictions were in agreement with the actual groupings (patients versus
controls).

Scores were plotted against the discriminant axis. The unpaired T-test was
performed to evaluate the statistical significance of the difference between the
PCDA scores of the two groups (Excel Office 2003, Microsoft Corporation, USA).
The difference between scores was correlated to the original NMR features in the
spectra. The resulting metabolite profiles provided insight into the type of
metabolites responsible for the disparity.

Results

Description of sample

The mean characteristics of the group with patients showing acute rejection and
the group with control participants are given in Table 1. No consistent statistically
significant differences were observed except for the cold ischemia time (P<0.05)
and creatinine clearance at three months (P<0.05).

Urinary metabolite profile of patients versus controls at time of rejection

The underlying hypothesis of the present study is that a metabolite profile could be
hidden in urine of patients who show acute kidney rejection after transplantation.
This profile should be specific for this process. Using NMR with subsequent MVDA,
such abnormal urinary composition may be quantified.

When PCDA was applied on the NMR spectra of urine samples taken at the time of
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biopsy, a difference showed up between scores of controls and patients (Figure

1A; P<0.001). Roughly, the scores of the controls are above zero, whereas the
scores of the patients are below zero. The scores of two patients show overlap with
the scores of the controls.

patients with patients without
rejection rejection P value

Female acceptor (%) 25 56 0.35
Age years (median) 53 39 0.15
First transplant (%) 62.5 77.8 0.60
Mismatches

HLA-A 125 55.6 0.15

zero

HLA-B 125 44.4 0.30

zero

HLA-DR 375 55.6 0.65

zero
CMV status recipient 25 33.3 1.00
negative (%)
CMV status donor 50 55.6 1.00
negative (%)
Female donor (%) 375 33.3 1.00
Panel Reactive Abs 17.86 34.67 0.35
(highest %)
Warm ischemia time 325 30 0.75
(min)
Cold ischemia time (h) 27.22 17.38 0.05
creatinin clearance at 3 47.1 79,6 0.02
month
(median; mL/min)
creatinin clearance at 6 60.2 82,1 0.2
month
(median; mL/min)

Table 1. Mean characteristics of the group with patients showing acute rejection and the group with control
participants. No consistent statistically significant differences were observed except for the cold ischemia time (P<0.05)
and creatinine clearance at three months (P<0.05).
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A metabolite profile could be constructed that marks the difference between the
groups, and which is likely to reflect acute kidney rejection (Figure 1B). In this
fingerprint, NMR signals of urinary metabolites are visualized which increased or
decreased in association with acute graft rejection at time of biopsy. NMR signals
that were strongly associated with the event, were & 2.18, 3.22, 7.46 ppm in
positive direction. These signals represent trimethylamine N-oxide (TMAO),
amongst other not identified signals. Signals at & 3.18, 3.46, 3.58, 3.66, 3.78, 3.82,
3.90 and 4.06 ppm in negative direction represent, amongst others, metabolites
like glucose and creatinine.

Metabolite profile five days before rejection

The question is now whether the observed differences in the metabolite profile at
the time of acute rejection already can be detected at a time point when creatinine
levels have not raised yet. When PCDA was carried out on the NMR data of urine
samples taken five days prior to biopsy, a difference between scores of controls
and patients showing acute rejection later on showed up (Figure 2A; P<0.001).
Scores of the controls are above zero, whereas scores of the patients are below
zero.

Thus, five days before acute rejection is assessed with biopsy, MVDA showed a
visible separation between patients and controls. This difference is based on the
concentrations of metabolites which were characteristic for each group. The
metabolite profile for kidney rejection at five days prior to biospy showed similarities
but was in part different from the one obtained at the day of rejection (Figure 2B).
NMR signals that were strongly associated with rejection, were & 2.26, 2.78, 3.10,
3.22 and 3.66 ppm in positive direction. Signals in these regions represent,
amongst other not identified signals, metabolites like TMAO and dimethylglycine.
Signals at 6 3.02, 3.26, 3.42, 3.50, 3.78, 3.82, 3.9 and 4.66 ppm in negative
direction represent, amongst others, glucose that lowers in patients that showed
rejection according to biopsy five days later on.
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Figure 1. (A) A PCDA score plot of urinary NMR spectra of patients showing acute rejection upon kidney
transplantation versus control subjects that presented no rejection (the points represent the complete urinary NMR
spectra of the subjects). Urine was taken at time of biopsy. The prevalence of rejection is reflected in the urinary
composition, as there is a clear difference between the scores of the two groups on the discriminant axis (P<0.001).
(B) Metabolite profile showing differences between urinary NMR spectra of controls versus patients showing acute
rejection. Peaks (representing NMR signals) in the positive direction indicate metabolites that are more abundant in
urine of patients showing acute rejection than in urine of the controls. Consequently, metabolites that are more
abundant in urine of these controls are presented as peaks in the negative direction.
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Discussion

A biomarker that can early diagnose acute kidney rejection is important as it will
clear the way for preventive therapy. This will allow for less functional damage to
the kidney and may eventually result in prolonged long-term renal allograft survival.
Currently no biomarkers exist that can detect an acute rejection episode in a
reliable and sensitive manner and in an early stage. Using a metabolomics
approach, we investigated whether a metabolite profile could be identified that is
predictive for an acute rejection episode in renal allograft recipients. With NMR and
subsequent MVDA we analyzed urine samples of nineteen male participants who
underwent a kidney transplant operation. Nine of these patients were faced with
acute rejection in the early posttransplantation months according to biopsy,
whereas ten subjects showed no complications and served as controls.

We were able to discriminate patients who showed acute graft rejection from
control subjects. The distinction between these groups was based on small
differences between urinary metabolite levels of the respective groups as
measured by NMR. We found a urinary metabolite profile that was strongly
associated with acute rejection. We also showed that, already five days before
rejection was assessed according to biopsy, discrimination between urine contents
of patients and controls was feasible. A metabolite profile was presented that may
predict the subsequent acute rejection episode at least five days prior to the event.
According to our results, the creatinine level in urine at biopsy was decreased in
patients showing acute rejection. This finding was in line with clinical chemistry, in
which patients with acute rejection showed a significant lower creatinine clearance
as compared to the control subjects. An elevated blood creatinine level and
reduced urinary creatinine excretion is a well-known characteristic in patients
showing acute rejection [1-2].

However, the metabolite profile was not dominated by creatinine solely. TMAO was
identified as a metabolite highly associated with acute graft rejection at biopsy as
well as five days prior to the event. The metabolite TMAO has been associated
with the occurrence of delayed graft function, and in particular to the cold ischemia
time, the time a kidney is preserved on ice before transplantation [12-15]. Damage
to the renal medulla due to cold preservation may cause the release in urine of
TMAO and dimethylglycine [16-17]. In our study, the cold ischemia time was
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Figure 2. (A) A PCDA score plot of urinary NMR spectra of patients developing acute rejection versus controls that
presented no rejection (the points represent the complete urinary NMR spectra of the subjects). Urine was taken five
days before the actual rejection found place according to biopsy. The prevalence of acute rejection is already reflected
in the urinary composition five days before biopsy, as there is a clear difference between the scores of the two groups
on the discriminant axis at this time point (P<0.001). (B) Metabolic profile showing differences between urinary NMR
spectra of controls versus patients showing acute rejection. Peaks (representing NMR signals) in the positive direction
indicate metabolites that are more abundant in urine of patients showing acute rejection than in urine of the controls.
Consequently, metabolites that are more abundant in urine of these controls are presented as peaks in the negative
direction. This biomarker profile predicts acute rejection five days prior to biopsy.
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significantly higher for the patients showing acute rejection, which is in agreement
with an elevated amount of TMAO in urine of these patients, but none of the patient
had delayed graft function.

The metabolite profile also pointed at lowered amounts of glucose in urine, which
may be explained by the fact that renal perfusion is hampered by an acute
rejection episode and consequently the glomeruli function less properly.

This study shows that use of NMR with subsequent MVDA enables to measure
biological fluids without pretreatment in a quick manner. It provides an unbiased
and broad overview of many important metabolites present in biological samples
and can thus be beneficial in the search for new biomarkers. However, many of the
NMR signals in the metabolic profiles that were measured in our study could not be
assigned to metabolites. Nominating compounds in NMR spectra of biological
fluids is a common problem [10]. The choice for assigning an NMR signal to a
metabolite may be influenced by existing knowledge about metabolic pathways
that is already known. However, there are still many metabolites and pathways in
the body we do not know. The interpretation of signals in an NMR spectrum of a
biological fluid is hampered by an incomplete knowledge of metabolism [18]. More
efforts should therefore be made to identify and validate metabolites. Seen in this
light, for example liquid chromatography-mass spectrometry (LC-MS) and gas
chromatography-mass spectrometry (GC-MS) are valuable complementary
analytical tools.

In conclusion, the results of this study give evidence of a metabolite profile
associated with acute kidney rejection at time of biopsy. We also identified an
aberrant metabolite profile five days prior to the clinical assessment of an acute
rejection episode. The obtained metabolite profiles, especially the metabolites
upon which the identified profile is based, could play an important role as potential
early biomarker for acute graft rejection. Findings about involved metabolites are in
line with clinical chemistry and other studies that reported effects of metabolites
related to the ischemia/reperfusion injury. The metabolites in the metabolic
fingerprints could not all be nominated, but our results justify further research in this
area. The identified early metabolite profile may contain potential early biomarkers
that will provide a tool for physicians to diagnose acute rejection in time such that
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preventive and custom-made therapy can be applied. Eventually, this should lead

to less functional renal damage and an increase the longevity of renal allografts.
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A pilot study to investigate
effects of inulin on Caco-2 cells
through in vitro metabolic
fingerprinting

Abstract

Metabolic fingerprints are novel measurement tools to evaluate the biochemical status of a living
organism by using *H Nuclear Magnetic Resonance spectroscopy (NMR) and multivariate data analysis
(MVDA). In this way, a quick evaluation of changes in health or diseased state can be given, reflected in
alterations of metabolic patterns. Normally, metabolic fingerprinting is based on in vivo studies. These
studies are most times a labour-intensive and expensive manner of investigation. In vitro studies are not
hampered by these disadvantages and form therefore an interesting alternative. In this research, results
are presented of a pilot experiment in which metabolic fingerprinting was combined with an in vitro
model. For this purpose, differentiated Caco-2 cells were exposed to inulin respectively its fermentative
metabolites, both dissolved in culture medium. Cells were incubated for O or 48 hours. Cell fractions
were analyzed by NMR with subsequently MVDA. It was shown that differences in treatment provided
detectable variations in time of metabolic patterns of cell contents. Results indicated that glucose
metabolism linked to glutamate was of major importance in the effects of inulin and its metabolites on
Caco-2 cells under the conditions of our study. Metabolic fingerprinting in combination with an in vitro
model appears to be a feasible method to visualize metabolic patterns of cell contents and provides an
efficient procedure for generation of hypotheses about metabolic pathways involved. In vitro metabolic
fingerprinting may in future be of great benefit for a better understanding of relations between nutrition
and health.

Based on: Lamers, R.A.N., Wessels, E.C.H., van de Sandt, J.J.M., Venema, K., Schaafsma, G., van der Greef, J., van
Nesselrooij, J.H.J. (2003) A pilot study to investigate effects of inulin on Caco-2 cells through in vitro metabolic
fingerprinting. J. Nutr., 133, 3080-3084.
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Introduction

Fructans are polymers of fructose. Inulin and oligofructose belong to this class of
carbohydrates. Inulin is found in many plants and vegetables (e.g. chicory and
Jerusalem artichoke). Chicory is by far the most commonly used source for the
industry to obtain inulin as a commercial product. As an ingredient of foods, inulin
functions, amongst others, as a fat and sugar replacement, mouth feel and texture
improvement and dietary fibre. Inulin is counted as a prebiotic, since it is not
susceptible to digestion and hydrolyzes by endogenous enzymes. By reaching the
colon it will be fermented by the microbiota and selectively stimulate the growth of
bifidobacteria [1]. Predominance of bifidobacteria in the large intestine is supposed
to be beneficial for maintaining good health [1-2]. Fermentation products of inulin
are short-chain fatty acids (SCFA; acetate, propionate and butyrate), lactate and
gasses [2]. Functional effects of inulin on humans and experimental animals are
relieved constipation, lowering blood glucose levels, improvement of absorption of
calcium, reducing fasting triglycerides and LDL cholesterol, inhibition of growth of
various kinds of tumours [3].

The underlying metabolism, which causes the effects of inulin, remains indistinct
and not yet fully understood [3]. This is a more common problem in nutritional
research, where there is a shortage of knowledge of the relationships between
health and disease and effects of nutrition on the latter. Fortunately, in the field of
metabolite research great progress was made recently due to metabolic
fingerprinting [4-7]. This technique utilizes '"H Nuclear Magnetic Resonance
spectroscopy (NMR) in combination with multivariate data analysis (MVDA) to
analyze biological fluids.

NMR provides concurrent detection of all hydrogen containing molecules in a
sample without pre-treatment. NMR can thus reveal chemical structures of
metabolites in biological fluids and subsequently clarify metabolic pathways
involved in nutrition and health [8]. Nevertheless, interpretation of NMR spectra
obtained from biological fluids is very complicated due to the enormous amount of
spectral signals produced.

MVDA is known to be a powerful technique for the analysis of data sets with a
large number of variables. For this reason, MVDA is particularly opportune to find
significant spectral changes in NMR spectra: it enables to visualize spectral
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patterns in NMR data, and thus metabolites, which correlate with e.g. treatment or
disease [4-6].

In MVDA, unsupervised and supervised techniques can be used. Unsupervised
methods such as principal component analysis (PCA) search for similarities and
differences in data sets without foreknowledge. A large set of related variables (e.g.
NMR signals) is converted to a smaller set of uncorrelated variables, which express
maximum variation in the original variables. The new variables are called principal
components (PC) and each of them depicts an axis in multidimensional space. The
distance of an object (e.g. a complete NMR spectrum of a sample) to a PC is called
a score. Scores are plotted in a score plot, with the PCs as axes. When scores are
situated close to each other in a score plot, this implicates that the NMR spectra of
the samples are similar. When the clustering of scores matches the samples that
were controls, treated or diseased in the original study set-up, a connection can be
linked up between affected NMR signals, and thus metabolites, and treatment or
disease.

Calculation of the contribution of each original variable (e.g. a single NMR signal)
to a PC yields a loading. When a loading is high, the original NMR signal adds
greatly to the clustering of scores in the direction of the investigated PC. In a so-
called factor spectrum or metabolic fingerprint, loadings are presented as lines.
The location of the lines in a factor spectrum corresponds to the location of the
variables in the original NMR spectra. The length of a line denotes the contribution
of a variable to the grouping of scores in the investigated direction [4]. Thus, a high
line in positive direction indicates an NMR signal that is strongly ascending for a
particular group of scores.

Supervised methods such as partial least squares (PLS) and principal component
discriminant analysis (PCDA) exploit supplemental information on the data set (e.g.
biochemical, histopathological or clinical data) to identify and maximize similarities
and differences between pre-defined groups [4-6]. In PCDA, the scores from PCA
are used as a basis for linear discriminant analysis: discriminant analysis combines
the PCs in such a way that differences between pre-defined groups are optimized
[9].

Up to now, metabolic fingerprinting was mainly used in combination with in vivo
studies. These studies are time-consuming, labour-intensive and, because of these
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and other factors, expensive compared to in vitro studies. When metabolic
fingerprinting could successfully be applied to in vitro studies, this may be a useful
alternative for in vivo based metabolic fingerprinting. Nutritional society could take
great advantage of this in future. In vitro metabolic fingerprinting may be a relatively
inexpensive and quick way to fill the gap in the lack of evidence for effects of e.g.
functional foods on health.

In the underlying research, a pilot in vitro experiment with metabolic fingerprinting
was carried out. The suitability of in vitro metabolic fingerprinting was assessed by
investigation of direct and indirect effects (after fermenting with the colonic
microbiota) of inulin on Caco-2 cells [10].

Materials and methods

In vitro experiment

Caco-2 cells (designation HTB 37) were obtained from the American Type Culture
Collection (ATCC, Rockville, MD, USA). For 500 mL culture medium, 440 mL
Dulbecco’'s modified Eagle medium (DMEM; cat.no. 42430) was used
supplemented with 50 mL heat-inactivated foetal calf serum, 5 mL non-essential
amino acids (10 mmol/L), 5 mL L-glutamine (200 mmol/L) and 0.5 mL gentamicin
(50 mg/mL). Cell cultures were grown in this medium and maintained at 37°C in
95% air and 5% CO, (v/v; Sanyo incubator). Near confluent Caco-2 cell cultures
were harvested by trypsinisation with 3 mL trypsin solution (25 g/L) in 147 mL
phosphate buffered saline (PBS) and were resuspended in 10 mL culture medium
and 5 times diluted. All chemicals were obtained from Gibco (Breda, the
Netherlands).

For the experiment, cells were seeded in Transwell™ inserts in 12-well plates (1
mL of cell suspension with 1.5 mL DMEM per well). The medium was changed
every 2-3 days. Cells became confluent after about 4 days, at which time
differentiation could begin. After complete differentiation, samples (wells) were fed
with various media. Four samples were treated with 1.5 mL DMEM for 0 hours and
four samples for 48 hours. A 10 times dilution of a saturated solution of 1.5 g
Frutafit® EXL (Sensus, Roosendaal, The Netherlands) and 30 ml DMEM was used
to treat four samples with 1.5 mL for O hours whereas four samples were treated
with the same solution for 48 hours. Besides, four samples were treated with 1.5
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mL metabolized inulin (run in TIM-2 feeding, 10 times diluted with DMEM) for O
hours and four samples for 48 hours. Another four samples were treated with 1.5
mL TIM-2 feeding after passing the TIM-2 model (10 times diluted with DMEM) for
0 hours and four samples for 48 hours. The 0 hour samples were collected directly
after start exposure

The TNO in vitro model of the large intestine (nick-named TIM-2) simulates the
physiological parameters in the large intestine (or colon), such as pH, temperature
and an active microbiota similar in composition and activity to that in the human
colon [11, 12]. Fermentation in the proximal colon was mimicked in this in vitro
model. To the control TIM-2 medium, the test compound in question (i.e. inulin)
was added. This mixture was added to the TIM-2 system, giving rise of
metabolized inulin. The temperature was kept at 37 °C, while the pH was kept at
5.8. The model was flushed with gaseous nitrogen to allow growth of an active
anaerobic, complex microbiota of human origin. The model was inoculated with a
microbiota from human faecal material. Inulin was dosed at 10 gram per day in
doses of approximately 104 mg per 15 minutes. The contents were mized by
peristaltic movements. Microbial metabolites were removed from the model by a
dialysis system running through the model. This prevented inhibition of the activity
of the microbiota by accumulation of microbial metabolites. For more details on the
in vitro model, please refer to Minekus et al (11) and Venema et al. (12).

All dilutions were centrifuged at 2500 x g for 10 min (Megafuge 2.0 RS, Heraeus,
Germany). The dilutions with control TIM-2 medium and metabolized inulin were
passed through a 0.2 pm filter before exposing them to the cultured cells.

Solutions with the respective test compounds were removed at O or 48 hours,
depending on time of exposure. Cells were washed then with PBS of 37°C and
dissolved in 1 mL of a solution of methanol (Sigma-Aldrich, Zwijndrecht, The
Netherlands) in demineralized water (7.5 mol/L). Samples were sonicated for 10
seconds at 20 pm to lyse the cells, using a MSE Ultrasonic disintegrator sonifier
(Beun-de Ronde BV, Amsterdam, The Netherlands). After that they were
centrifuged (Eppendorf, Germany) at 13000 min™ for 5 minutes, yielding samples
of cell contents which were stored at -40°C until NMR analysis.
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NMR analysis of in vitro medium and cell samples

Prior to NMR spectroscopic analysis, the culture medium was removed from the
cell samples. Cells were evaporated to dryness under a stream of nitrogen gas.
The samples were dissolved in 1 mL of sodium phosphate buffer (0,1 mol/L, pH

6.0, made up with D,0). Sodium trimethylsiIyI-[2,2,3,3,4-2H4]-1-propi0nate (TMSP;
0.05 mmol/L) was added as internal standard.

NMR measurements were carried out in random order and in triplicate in a fully
automated manner on a 600 MHz spectrometer (Avance, Bruker BioSpin GmbH,
Rheinstetten, Germany), using a proton NMR set-up operating at a temperature of
300K. For each sample, 256 free induction decays (FID) were collected. Each FID
was induced using a 45-degree pulse, an acquisition time of 4.10 s and a
relaxation delay of 2 s. The FIDs were collected as 64K data points with a spectral
width of 12.000 Hz. The spectra were processed using the standard Bruker
software. An exponential window function with a line broadening of 0.5 Hz and a
manual baseline correction were applied to all spectra. After referring to the internal
NMR reference (TMSP &= 0.0), line listings were prepared with the standard Bruker
NMR software. To obtain these listings all lines in the spectra above a threshold
corresponding to about three times the signal-to-noise ratio were collected and
converted to a data file suitable for multivariate data analysis applications.

NMR data preprocessing and multivariate data analysis

The NMR data reduction file was imported into Winlin (V1.11, TNO, The
Netherlands). Minor variations from comparable signals in different NMR spectra
were adjusted and lines were fitted without loss of resolution [13]. To correct for
sample dilution, the data were auto-scaled so that small and large signals
contributed similarly to the final study result. Principal component discriminant
analysis (PCDA) was performed, with treatment and time as additional information
respectively. For PCDA, the NMR data set was randomly divided into a training
data set and a test data set. The PCDA models were built upon the training data
set. Subsequently the test data set was used to test the reliability of the training
model. Predictions were in agreement with the actual groupings.

The resulting discriminants were quantified for each of the NMR spectra and the
first discriminant (D1) was plotted versus the second discriminant (D2) to visualize
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clustering. Factor spectra were used to correlate the position of clusters in the
score plot to the original NMR signals in the spectra. The metabolic fingerprints
were prepared in directions of maximum separation of one cluster versus another
cluster, to provide insight into the type of metabolites responsible for the separation
between clusters [4]. Metabolites were assigned from the metabolic fingerprints
using an in-house database with NMR spectra.

Results

This research was initiated from the assumption that inulin and its metabolites will
affect Caco-2 cells. Consequently, due to a change in metabolite levels in these
cells an aberrant metabolite profile would normally arise. This alteration in cell
contents could then be visualized by using metabolic fingerprints.

The effect of inulin on cell contents

If there is an effect of inulin on cell contents, this information will be contained in
the NMR spectra of these cells. Principal component discriminant analysis (PCDA)
was used to visualize differences between NMR spectra obtained from contents of
cells exposed to DMEM solely versus contents of cells exposed to DMEM with
inulin, at two points of time (Figure 1A). The first (D1) and second (D2) discriminant
explained 36% respectively 33% of the variance. It is clear that the contents of
Caco-2 cells treated with inulin in DMEM are positioned in about the same location
in the score plot at 0 hours as the contents of cells treated with DMEM solely.
However, after 48 hours differences were clearly visible between contents of cells
exposed to DMEM with, respectively without, inulin. When looking at the metabolic
fingerprint (Figure 1B), it can be noticed that the differences were due to changes
in regions 1-4.5 ppm and 7-8.5 ppm. Metabolites that could be assigned to these
signals using the in-house database with NMR spectra, were leucine (5 0.96, 1.71),
isoleucine (6 0.94, 1.01), valine (5 0.99, 1.04), alanine (5 1.48, 3.79), a- and B-
glucose (6 3.47, 3.49, 3.53, 3.71, 3.72, 3.74, 3.84, 3.9, 4.64, 5.24), phenylalanine
(6 7.33, 7.38, 7.43), tyrosine (5 6.91, 7.2) and glutamate (5 2.1, 2.35, 3.77).
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Figure 1. Principal component discriminant analysis (PCDA) score plot and factor spectrum visualizing effects of inulin
on Caco-2 cell contents. (A) PCDA score plot of NMR spectra of cells treated with control medium and cells treated
with medium containing inulin at O versus 48 hours (the points represent the complete NMR spectra of Caco-2 cell
contents; each cluster contains four samples (wells) measured in triplicate). At 0 hours there is no difference between
NMR spectra, and thus cell contents, of the different treated cells, whereas a clear difference has developed between
the two groups at 48 hours. This indicates an effect of inulin on cells. (B) Factor spectrum, or metabolic fingerprint, of
NMR spectra of cells treated with inulin containing medium versus cells treated with control medium at 48 hours. Peaks
(representing NMR signals) in the positive direction indicate metabolites that are more abundant in cells treated with
inulin (at 48 hours) compared to cells treated with control medium (at 48 hours). Consequently, metabolites that are
more abundant in cells treated with control medium are presented as peaks in the negative direction.
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The effect of fermented inulin on cell contents

When PCDA was performed on the NMR spectra of contents of Caco-2 cells
treated with fermented inulin versus contents of cells treated with the
accompanying control medium, the first (D1) and second (D2) discriminant
explained 41% respectively 35% of the variance. The score plot reveals that both
groups have the same location at 0 hours (Figure 2A). However, after 48 hours of
exposure, a difference could be observed between contents of Caco-2 cells
exposed to control medium solely and contents of cells exposed to medium with
fermented inulin. This was also reflected in the metabolic fingerprint at 48 hours
(Figure 2B). From the fingerprint, it can be noticed that differences in regions
around 1.5, 2, 3, 4 and 8 ppm contributed heavily to this effect. According to the
NMR database, metabolites that, amongst others, belong to these signals are
lactate (8 1.33, 4.12), alanine (5 1.48, 3.78), proline (6 2.01, 2.07, 4.14), succinate,
2-oxoglutarate (6 2.44, 3), nicotinate and nicotinamide (6 7.97, 8.20, 8.28, 8.52).

Discussion

In the present study, a first step was taken in combining metabolic fingerprinting
with in vitro models. From a pilot experiment with Caco-2 cells exposed to inulin, it
became clear that the combination of in vitro models, NMR and MVDA may
develop into a promising way to evaluate the biochemical status of cells.
Differences could clearly be revealed between contents of cells exposed to DMEM
with, respectively without, inulin after 48 hours. At O hours this difference was not
visible. Hence, their NMR spectra, and thus metabolite levels in the cells, were
significantly different. This indicates that inulin had an effect on contents of Caco-2
cells in time. The score plot of NMR spectra from contents of Caco-2 cells treated
with fermented inulin versus contents of cells treated with the accompanying
control medium pointed out that a difference could be observed between the two
groups at 48 hours.

Metabolic fingerprints were identified that reflected effects of inulin as well as its
metabolites on Caco-2 cell contents. The height of a line in a metabolic fingerprint
reflects the importance of an NMR signal to investigated clusters in a score plot.
Metabolic fingerprints thus provided information about metabolites, which were
elevated or lowered in one cluster compared to another cluster.
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Effects of inulin itself on cell contents have not been investigated widely yet,
because it is presumed that it is fermented near to completion in the gut. However,
effects may occur in the small intestine, where inulin is not digested neither
fermented. According to the metabolic fingerprint derived from our study, inulin
itself seemed to influence metabolism in Caco-2 cells. The amount of glucose,
together with glutamate contents, ascended after 48 hours due to treatment with
inulin compared to the controls. This could point at activated gluconeogenesis in
the Caco-2 cells under the conditions of our experiments. It is known that glucose
metabolism is altered by glutamine via the citrate cycle [14]. However, the liver and
kidney are considered as the only organs capable of gluconeogenesis although
fresh concepts on glutamine and glucose metabolism have revealed that release of
glucose might also find place in the small intestine when in fasting state [15]. Since
Caco-2 cells develop some properties

of the small intestinal epithelium during differentiation, this hypothesis merits further
investigation using isotopes to measure rates of gluconeogenesis.

Another explanation for the rise in level of glucose due to inulin treatment could be
the fact that some inulin, or a breakdown product, was taken up by the cells.
However, it is unlikely that inulin passed through the membrane into the cell by
facilitar diffusion. For this, inulin is too large of a molecule unless pinocytosis had a
share in it. When the latter is the case, fructose would be converted to glucose in
the cell. Contents of glucose would grow then and thus also become available for
glycolysis to form phosphoenol pyruvate. This compound is the origin for
production of tyrosine via the shikimate pathway. A rised level of this compound in
the metabolic fingerprint supports that this biochemical route was affected.
Furthermore, phosphoenolpyruvate can be converted to pyruvate. Subsequently,
pyruvate is oxidized to acetyl-CoA that enters the citrate cycle. When oxidation of
pyruvate is not complete, alanine and lactate may be formed. These compounds
showed elevated levels in the metabolic fingerprint. Glutamate production
(ascending in the metabolic fingerprint) takes place from the citrate cycle by
transamination between 2-oxoglutarate and amino acids to be catabolized [16].
According to the metabolic fingerprint, levels of phenylalanine, valine, leucine and
isoleucine  were elevated due to inulin compared to the controls. These
compounds are essential amino acids. It therefore seems unlikely that Caco-2 cells
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Figure 2. Principal component discriminant analysis (PCDA) score plot and factor spectrum visualizing effects of
metabolized inulin on Caco-2 cell contents. (A) PCDA score plot of NMR spectra of cells treated with control medium
versus medium containing fermented inulin at 0 and 48 hours (the points represent the complete NMR spectra of
Caco-2 cell contents; each cluster contains four samples (wells) measured in triplicate). The difference between NMR
spectra of cell contents at 48 hours is reflected by the clear separation into two groups at this time point whereas at 0
hours no difference is visible. This points at an effect of metabolized inulin on cells. (B) Factor spectrum, or metabolic
fingerprint, of NMR spectra of Caco-2 cells treated with medium containing fermented inulin versus cells treated with
medium solely at 48 hours. Peaks in the positive direction indicate metabolites that are more abundant in Caco-2 cells
treated with fermented inulin than in Caco-2 cells treated with control medium. Consequently, metabolites that are
more abundant in cells treated with control medium are presented as peaks in the negative direction.
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are able to synthesize these compounds but it may be hypothesized that protein
synthesis and degradation was altered due to inulin.

After exposure to fermented inulin, metabolites related to the citrate cycle, like
alanine, lactate, succinate, 2-oxoglutarate were most prominent. Besides, the
amount of nicotinate and nicotinamide increased and glutamate production was
enhanced, reflected in an elevated level of proline. These metabolites support the
idea that glycolysis in Caco-2 cells seemed to be stimulated by fermented inulin
compared to the controls. In Figure 3, altered metabolites and the metabolic
pathways in which they are involved are depicted.

The metabolites mentioned in this article could quiet easily be nominated from the
metabolic fingerprints by experience and using an in-house database with NMR
spectra. Metabolic fingerprinting thus provides an efficient place to start
hypotheses about affected metabolic pathways. However, definitive evidence will
await confirmatory studies using techniques like liquid chromatography-mass
spectrometry (LC-MS) and 2-dimensional NMR. Besides, from the presented
metabolic fingerprints it becomes clear that not all signals could be identified using
an in-house database. For elucidating structures of metabolites that are more
difficult to identify from metabolic fingerprints (e.g. the heavily contributing signals
around & 3.25 in Figure 2B) other techniques are also indispensable in future.
Nevertheless, for global screening in vitro metabolic fingerprinting seems a
promising technology: in a realistic nutritional research study with Caco-2 cells,
biochemical changes in cells, resulting from exposure, could be detected well.
Metabolic fingerprinting might in principle even be able to measure excretion of
metabolites from cells into the culture medium, thus further helping the elucidation
of cell metabolism.

In vitro metabolic fingerprinting studies provide an inexpensive starting point for
formulation of hypotheses about affected metabolic pathways and could even
become a replacement of costly in vivo metabolic fingerprinting studies. It will be a
great challenge to develop more in vitro models to combine with metabolic
fingerprinting. The results of these studies should be compared with similar in vivo
studies, upon which in future in vitro based metabolic fingerprinting may function as
an alternative for in vivo based fingerprinting in specific occasions. This could
greatly enhance and facilitate evidence-based nutritional studies.
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Figure 3. Metabolic pathways in Caco-2 cells, which may be affected by treatment with inulin and its metabolites.
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Profiles of metabolites and
gene expression in rats with
chemically induced hepatic
Nnecrosis

Abstract

This study analysed changes in gene expression patterns and metabolite levels in plasma or urine in
parallel. The aim was to more sensitively detect hepatotoxicity and provide new insights in molecular
mechanisms of hepatic necrosis. Rats received the model hepatotoxicant bromobenzene at three dose
levels, the highest dose inducing acute centrilobular necrosis. The hepatic transcriptome and plasma
and urine metabolite profiles were analysed after 6, 24 and 48 hours, using multivariate statistics.
Principal component analysis showed that molecular profiles from rats with hepatic necrosis differed
largely from controls. Changes in levels of genes and metabolites were identified in correlation with the
degree of necrosis, providing putative novel markers of hepatotoxicity. Moreover, samples from treated
rats were distinguished from controls after exposure to bromobenzene below the concentration that
induced hepatotoxicity markers or histopathological changes. Genes with altered expression were
involved in oxidative stress, the acute phase response, cytoskeleton structure, apoptosis,
biotransformation, glycolysis, cholesterol and fatty acid metabolism. Levels of endogenous metabolites
like alanine, lactate, tyrosine and dimethylglycine distinguished plasma from treated and control rats.
Complementary, NMR metabolite profiling enabled to distinguish the urine samples based on the
exposure levels, primarily through presence of a multitude of bromobenzene-derived metabolites.
Concluding, this parallel analysis of the liver transcriptome and metabolite profiles in plasma enabled to
more sensitively detect changes related to hepatotoxicity and discover novel markers. Additional
insights in the role of various biological pathways in bromobenzene-induced hepatic necrosis were
obtained.

Submitted for publication.
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Introduction

Previous toxicogenomics studies have shown that both large-scale measurement
of gene expression (transcriptomics) and metabolite profiling complement the
current methods to identify and discriminate different types of toxicity. Moreover,
the new technologies enable to investigate the mechanisms that lead to toxicity. To
this date, most studies concentrated on hepatic toxicity. Transcriptomics using
DNA-microarrays enabled the discrimination of responses by different classes of
hepatotoxicants in vivo, as shown by [1-3]. Hamadeh and coworkers distinguished
samples treated with two classes of toxins, and provided more details on the
mechanisms of action [4].

In parallel, metabolomics, i.e. metabolite profiling by NMR combined with pattern
recognition techniques, has been used to classify urine samples of rats treated with
either a liver or a kidney toxicant [5-6]. Others analysed metabolites in liver, plasma
and urine of rats treated with the model hepatotoxicant alpha-
naphthylisothiocynanate (ANIT) [7-8]. Urine profiles were analysed in time upon
single dosage of ANIT, galactosamine and butylated hydroxytoluene [9]. Time-
related differences in metabolite contents were related to the stage of the lesions,
and specific changes in metabolite levels were identified for each compound.

While gene expression changes influence biochemical reactions, metabolite levels
are determined by those biochemcial reactions. Therefore, complementary
information is expected from so-called systems toxicology approaches, where
transcriptomics, proteomics and/or metabolomics are combined to analyse toxicity
in a systematic and holistic manner. Only few experiments integrating results from
transcriptomics and metabolite profiling have been described. Very recently, Coen
and colleagues reported transcriptomics and metabolomics analyses in mice
treated with acetaminophen (paracetamol) [10]. This study demonstrated that
analysis of gene expression and metabolite profiles provided complementary
insights in APAP-induced hepatic effects. In earlier studies in our laboratory, we
evaluated the combined use of transcriptomics and proteomics analyses of
hepatotoxicity induced by bromobenzene (BB). Bromobenzene is a well studied
model toxicant that causes necrosis in the liver (centrilobular) and kidney. Hepatic
biotransformation and toxicity of BB in rat have been reported in detail [11-15].
Because the liver is the target for toxicity induced by many compounds including
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bulk chemicals, drugs and food ingredients, the characteristics of the response
induced by BB could be helpful in understanding hepatotoxicity induced by a
variety of xenobiotics.

Transcriptomics and proteomics analyses of hepatotoxicity were evaluated 24
hours after a single i.p. dose of BB [16]. A new study was designed to determine
the acute hepatotoxic effects at the gene expression level in time, after oral dosage
of various concentrations of BB. Hepatic necrosis was observed only at the high
dose level after 24 h, though gene expression changes characteristic for BB
exposure were observed at 2.5 times lower dose level. A few genes changed at 10
times lower dose levels. expression of several genes was found to change 6 h after
dosage. Genes that were statistically significant differentially expressed upon BB
dosage were involved in processes like drug metabolism, oxidative stress, GSH
synthesis and the acute phase response [16].

Aim of the study

In the present study, the aim was to investigate whether integrated analysis of the
data from transcriptomics and metabolite profiling further increased the sensitivity
of detection of hepatotoxicity. Our second question was how the combined analysis
may expand current knowledge about the mechanism of chemically-induced
hepatotoxicity. Moreover, relationships between gene expression changes and
altered metabolite levels were assessed. Thus, NMR-based metabolite profiles of
plasma and urine samples, collected from the study described by Heijne and
colleagues [16] were combined with the transcriptomics data of this same study.
The metabolite profiling aimed at detecting changed concentrations of endogenous
metabolites as a result of hepatotoxicity (biomarkers of effect) and of BB-derived
metabolites in urine and plasma (biomarkers of exposure). Results from parallel
gene expression and metabolite analysis were combined with pre-existing
biochemical knowledge in an overall interpretation of the mechanisms of action and
effects of BB, a necrosis-inducing chemical, on liver physiology.

Materials and methods

Urine and plasma samples were collected from the study by Heijne and colleagues
[16] which was also the source of the transcriptomics and toxicity data. Briefly,
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three doses of bromobenzene (0.5, 2.0 and 5.0 mmol/kg body weight, dissolved in
corn oil, 40% v/v) were administered to male Wistar rats by oral gavage. Animals
were kept under controlled conditions, and the welfare of the animals was
maintained in accordance with the general principles governing the use of animals
in toxicity experiments of the European Communities (Directive 86/609/EEC) and
Dutch legislation (The Experiments on Animals Act, 1997). Nine rats per dose
group were treated BB or corn oil, while an additional group was not treated. Three
rats per group were sacrificed after 6, 24 and 48 h and blood and livers were
collected. Urine was collected for metabolomics between dosing and sacrification
for the 6 h group, and during the last 16 h before sacrifice for the 24 and 48 h
groups. During the time urine was collected, rats received water ad libitum, but no
food.

Transcriptomics

cDNA microarray preparation and hybridization was described previously [16]. A
reference RNA was used, and hybridizations were replicated with swapped
fluorophore incorporation (Cy3 and Cy5) in the sample and reference RNA. After
quality filtering, lowess normalization and log(base 2) transformation, a set of about
2700 cDNAs was obtained. In present study, we required a correlation higher than
0.6 between the duplicate sets of dye-swap measurements, keeping about 400
genes in the dataset.

NMR analysis

NMR spectra of urine of individual animals were recorded in triplicate, according to
[17]. Plasma samples were deproteinised by filtration. Filters with a cutoff of 10 kDa
(Microcon YM-10, Millipore) were spin-rinsed with 0.5 ml of 0.05 M NaOH followed
by 2 x 0.5 ml de-ionised water to avoid contamination of the ultrafiltrate with
glycerin. Centrifugation (1h at 10000 rpm) of 0.5 ml plasma over a filter was
followed by the centrifugation (1h at 10000 rpm) of 0.5 ml de-ionised water.
Filtrates were freeze-dried and reconstituted in 750 ul sodium phosphate buffer (pH
6.0, made up with D,O) containing 1mM sodium trimethylsilyl-[2,2,3,3,-2H4]-1-
propionate (TMSP) as an internal standard. NMR spectra were recorded in a fully
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automated manner on a Varian UNITY 400 MHz spectrometer (Palo Alto, CA,
USA) according to [17].

Data preprocessing and multivariate data analysis

The NMR data file was imported into Winlin (V1.12, TNO, Zeist, The Netherlands).
Minor variations from comparable signals in different NMR spectra were adjusted
and aligned without loss of resolution. The intensities of signals present in each
NMR spectrum were normalised, so that the sum of all intensities was equal to 1.
This data set was imported into Matlab (Version 6.5, The MathWorks Inc., Natick,
MA, USA) together with the transcriptomics data for preprocessing and multivariate
data analysis. The data matrix was centered across time and dose. The sum of
squares per variable over time and dose was scaled to 1, and PCA was performed.
PCA is a multivariate statistical analysis that reduces the many dimensions of a
dataset to few dimensions that describe the majority of the variance. PCA was
performed with the PLS toolbox (Version 3.0, Eigenvector Research Inc., Manson,
WA, USA), and a score plot visualised differences in gene expression and
metabolite profiles. The contribution of each variable to the trend observed in the
plot was determined. PCA was also performed on plasma and urine NMR data
separately. When score plots revealed differences between groups, the
contributions of the original NMR signals to these difference between treated and
control were displayed in a factor spectrum. Metabolites were identified using an in-
house reference database.

Results

Rats were exposed to the chemical compound bromobenzene and developed
hepatic necrosis 24 h after dosing with the high concentration. In parallel, hepatic
gene transcription and profiles of plasma and urine metabolites were analysed.

Toxicological examinations

No macroscopic aberrancies of the liver or other organs were observed in any of
the rats sacrificed 6 hours after dosage. Histopathology of liver tissue showed no
abnormalities in the controls and low dose rats. In some livers a slight presence of
mononuclear cell aggregates and/or necrotic hepatocytes was observed. Only in
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rats that received high concentration of BB, livers had a patchy appearance and
gross lesions after 24 hours and focal discoloration after 48 hours. Centrilobular
necrosis was found in livers of all those rats, with inter-individual variation in the
degree of response. Plasma levels of ASAT, ALAT and bilirubin were markedly
elevated, also with inter-individual varation. To correlate the conventional markers
of hepatotoxicity with the degree of necrosis in the individual rats, a semi-
guantitative score was defined for the hepatocellular necrosis ranging from 0 (no
effects) to 10 (very severe centrilobular necrosis) (Table 1). This score was also
used to correlate gene expression levels to necrosis. Figure 1 depicts the
correlation of ASAT, ALAT, bilirubin, and the relative liver weight with the observed
degree of hepatocellular damage.

Apart from the signs of hepatotoxicity, BB significantly decreased plasma levels of
glucose at the mid and high dose, after 24 and 48 hours. Cholesterol (n.s.) and
phospholipid levels increased by high BB treatment at all time points. Hepatic GSH
levels, which play a pivotal role in the hepatotoxicity induced by BB, were slightly
decreased six hours after administration of BB. The mid and high dose depleted
GSH levels to ~25% of control levels. After 24 hours, GSH levels were nearly

restored.
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Figure 1. Correlation of toxicity markers ALAT, ASAT, bilirubin and relative liver weight with the observed degree of
hepatic necrosis in individual rats.
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Table 1. Histopathological and clinical chemistry findings in rats, 24 and 48 hours after exposure to mid and high
dose of bromobenzene. The degree of hepatic necrosis was expressed with a score (S) between 0-10; M is mean.

Dose T Rat Rel. BW Gross Liver histopathology S
mmol h liver g pathology
/ % of of the liver
kg CcO
BW
2.0 24 M 109% 187 No gross (Very) Slight mononuclear cell
lesions aggregates/ necrotic
hepatocytes
62 108% 188 - Slight mononuclear cell 1
aggregates/ necrotic hepatocytes
64 108% 178 - Slight mononuclear cell 1
aggregates/ necrotic hepatocytes
66 110% 194 - Very slight mononuclear cell 0.5
aggregates/ necrotic hepatocytes
2.0 48 M 108% 184 No gross Very slight mononuclear cell
lesions aggregates/ necrotic
hepatocytes (1/3)
68 114% 191 - Very slight mononuclear cell 0.5

aggregates/ necrotic hepatocytes

70 105% 186 - No abnormalities 0
72 104% 175 - No abnormalities 0
5.0 24 M 131% 177 Patchy Centrilobular necrosis
appearance Nucleolar enlargement (2/3)
80 120% 183 Patchy Very slight centrilobular necrosis 3
appearance Nucleolar enlargement
82 125% 173 Patchy Severe centrilobular necrosis 8
appearance Nucleolar enlargement
84 149% 174 Patchy Very severe centrilobular necrosis 10
appearance
5.0 48 M 142% 181 Pale Centrilobular necrosis
appearance Slight centrilobular fatty change
others (2/3) (213)

Mitotic increase (2/3)
Nucleolar enlargement
86 129% 187 No gross Slight centrilobular necrosis 4
lesions Nucleolar enlargement
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88 136% 186 Pale Moderate centrilobular necrosis 6
appearance Slight centrilobular fatty change
Pronounced Slight mitotic increase
lobular Nucleolar enlargement
pattern
90 161% 170 Pale Severe centrilobular necrosis 8
appearance Slight centrilobular fatty change
Red areas Slight mitotic increase
Firm tissue Nucleolar enlargement

Transcriptomics analysis and parallel metabolite profiling

BB elicited specific changes in gene expression of many rat liver genes, as
reported before [16]. In this study, the profiles of the transcriptomics measurements
were combined with the profiles obtained by NMR, describing the metabolite
contents of plasma. Consensus PCA [18] was performed using both types of data
in one integrated analysis, and results are shown in Figure 2. This plot indicates
that the samples from the high and mid dose groups, collected after 24 and 48
hours were distant from the others, having lower PC1 scores. Most distinct from all
the other samples were the samples from rats #84, #82, and #90, that received a
high dose of BB. Microscopic examination revealed (very) severe hepatic
centrilobular necrosis in those rats. Profiles of rats #80, #86 and #88 were less
distant from the controls. Correspondingly, moderate centrilobular necrosis was
observed in rat #88, and (very) slight necrosis in rats #86 and #80. The profiles of
the rats treated with a mid dose of BB were distinct from the controls after 24
hours. Routine markers were not able to indicate hepatotoxicity in those rats. After
48 hours, rats treated with the mid dose were not distinct from controls. Samples
from rats treated with the low dose of BB were not readily separatable from the
controls, after 24 or 48 hours. All samples collected after 6 hours were distinct from
the other time points in the down right corner of the plot. Treatment with BB
resulted in patterns distinct from the controls.
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Figure 2. Score plot of consensus PCA. Consensus PCA was performed using both hepatic transcriptomics and
plasma metabolite profiling data in one integrated analysis. The percentage of the total variance explained by the
individual PCs is indicated in the plots. Time points: Boxes: 6 h samples, circles: 24 h samples; triangles: 48 h
samples. Dose levels: white: controls, light gray: low BB; dark grey: mid BB; black: high BB.

Genes and metabolites were sorted according to their contribution to the observed
trend, reflecting the degree of hepatic necrosis. Tables 2A and B list the genes and
metabolites with the highest and lowest scores, that therefore putatively correlate
with the degree of hepatotoxicity. The levels of gene expression and metabolites
listed in are present at either high or low levels in correlation with the necrosis.
Many genes with a significant contribution to pattern differences in the PCA were
identified to be up- or down regulated by BB with high significance in univariate
statistical tests, and the rationale of these changes in terms of toxicology was
discussed before [16].

Genes with high scores in the parallel analysis include structure and cytoskeleton-
related genes (beta actin, weakly similar to pervin, tubulin), many ribosomal
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subunits, and other factors involved in protein synthesis (eg. nucleophosmin). Also
oxidative stress induced genes (Ho-1, Timpl, peroxiredoxinl, ferritins), hepatic
acute phase response genes (orosomucoid 1, fibrinogen gamma) and enzymes
involved in glucose metabolism (Gapdh, phosphoglycerate mutase 1, aldolase A)
have high rankings. Drug metabolising enzymes like Ephx1, Afar, Gsta and aldo-
keto reductases, likely involved in the hepatic biotransformation of bromobenzene,
appeared in the upper part of the ranking. Several cell cycle and apoptosis related
genes (Bcl2-related protein Al, Pcna, p53, p21 (Waf), EST, highly similar to p53-
regulated PA29-T2, cyclin G1) were coordinately upregulated. High ranked genes
with others functions include casein kinase Il, VL30 element and RAN. Plasma
metabolites with a high score in the analysis include acetate, choline,
phenylalanine and some uncharacterised metabolites.

Genes with low scores include hepatic acute phase response genes like alpha-1-
inhibitor, serine protease inhibitor, fibrinogen beta, complement components, drug
metabolising enzymes like Cyps, aldehyde dehydrogenases, Fmo3, enzymes
involved in fatty acid and cholesterol metabolism (HMG-CoA synthase, Lcat, Star,
fatty acid CoA ligase, acyl CoA dehydrogenases) and glucose metabolism (G6pt1,
alanine-glyoxylate aminotransferase) Many genes with other functions, like
asialoglycoprotein receptor 2, Cathepsin S, and dimethylglycine dehydrogenase
had a low score, indicating that they were down regulated compared to the
controls. Plasma metabolites with a low score in the analysis include
dimethylglycine, tyrosine and glucose.
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Table 2A: Highest and lowest ranked genes from consensus principal component analysis. Rank, gene name
and Genbank accession number, category, and the correlation to the degree of hepatic necrosis are indicated.
Expression of high ranked genes is upregulated, while low ranked genes are downregulated in the samples
with a high degree of hepatic necrosis.

Rank Gb Acc. Category Gene name Correl
AA859846 Structure actin, beta 0.881
AA964725 Structure Weak sim to pervin 0.842
AA964496 Structure High sim to S11222 actin gamma, 0.853
cytoskeletal
AA957078 Structure alpha-tubulin 0.842
AA924111 glycolysis Glyceraldehyde-3-phosphate 0.811
dehydrogenase (GAPDH)
Al029162 APR Orosomucoid 1 0.885
AA997175 Signal transd.  casein kinase |l beta subunit 0.835
10 AA900726 Signal transd.  GTP-binding protein (ral A) 0.789
552 Al070895 Fatty acid Weakly sim. to acyl-CoA -0.735
dehydrog.,epoxide hydr.[Cel]
553 AAB66389 other lumican -0.865
554 AA964340 other syndecan 2 -0.747
555 AA955402 Cysteine S-adenosylhomocysteine hydrolase -0.776
556 AA925933 Proteolysis cathepsin S -0.801
557 AA819756 Drug metab arachidonic acid -0.888
epoxygenase;Cyp2C23
558 Al136048 Cholesterol 3-hydroxy-3-methylglutaryl- -0.821
Coenzyme A synthase 2
559 Al071033 acute phase Fibrinogen, B beta polypeptide -0.820
560 AA997322 Cholesterol Lecithin-cholesterol acyltransferase -0.745
(Lcat)
561 AA997920 Signal transd.  asialoglycoprotein receptor 2 -0.900
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Table 2B. Highest and lowest ranked metabolites from consensus principal component analysis. The rank and chemical

shift in the NMR analysis of the (putatively) identified metabolites is indicated. High ranked metabolites are more

abundant in treated compared to control plasma samples, and metabolites with a low rank are more abundant in

controls.

Rank
7

9
51
61
70
73
82
100
109
110
111
114
119
124

126

129

130

Shift
1.475
1.4925
8.4575
7.83
1.9275
3.2075
3.0075
7.4325
3.5975
5.3875
3.0275
7.8475
7.4125
7.3375

7.375

1.005

3.0525

High rank

Metabolite

alanine

alanine

formate

unidentified metabolite
acetate

choline?

unidentified metabolite
phenylalanine?
choline?

unsaturated lipid?
cysteine?

histidine?
phenylalanine?
phenylalanine?

phenylalanine?

isoleucine?

unidentified metabolite

Rank
430
391
390
389
383
379
378
376
375
374
373
372
369
368

367

366

365

Low rank
Shift Metabolite
2.935 dimethylglycine?
6.91 tyrosine
6.89 tyrosine
7.185  tyrosine
7.2075 tyrosine
3.4925 glucose
3.245  glucose
3.3775 glucose
3.7325 glucose
3.4225 glucose
4.64 glucose
3.715  glucose
5.23 glucose
3.09 unidentified
metabolite
3.7475 unidentified
metabolite
3.2225 unidentified
metabolite
3.4375 unidentified
metabolite

Gene expression markers

The correlation between the level of gene expression and the degree of necrosis in

the individual rats was calculated (Table 2). Figure 3 illustrates expression of ESTs

highly similar to actin and pervin, and orosomucoid 1 in relation to hepatic necrosis.
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Expression levels of asialoglycoprotein receptor 2 and lecithin-cholesterol
acyltransferase (Lcat) decreased in concordance with the degree of hepatic
damage. In total, 14 genes were found with a positive correlation between 0.80 and
0.89, the highest coefficient. The correlation of the average expression level of
these 14 genes with necrosis was 0.969. In parallel, 20 negatively correlated genes
were found with an individual correlation to necrosis varying from -0.80 to -0.90.
The correlation of the average gene expression of these 20 genes with necrosis
was -0.959. This suggests that valuable markers of hepatocellular necrosis consist
of combination of gene expressions.
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Figure 3. Levels of expression of genes that correlate with the observed degree of hepatic necrosis in individual rats.

91



Gene expression and metabolic profiles in hepatotoxicity — Chapter 8

A

Regression
T High Dose Gluc/ose<v —¥ Creatine/Creatinin
0.8 .
- Lipids
0.6
0.4
0.2 ’ h
0 ’|
0.2 ' ‘ l
0.4
] )
0.6 Lactate
Tyrosine
0.8 f Alani
. anine
Vehicle Choline
8 7 6 5 4 3 2 1 0
ppm <+—
Regression
19 High Dose Creatine/Creatinine (’ Alanine
4 9 —
<+— Lipids
0.5
° [
0.5
Tyrosine % f
. A
1+ Vehicle Glucose Choline
8 7 6 5 4 3 2 1 0
ppm <+—

Figure 4. (A) and (B) Factor Spectra of NMR measurements after principal component discriminant analysis. Panel A:
plasma after 6 hours, panel B: plasma after 24 hours.
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Time and dose-dependent changes in plasma metabolites

Besides the parallel analysis of transcriptomics and metabolite profiling, the plasma
NMR data were analysed separately by PCA, and time and dose specific changes
in metabolite levels between treated and control samples were visualised in factor
spectra. (Figure 4a and b). After both high and mid dose of BB, lipid levels were
higher than in controls. Clinical chemistry indicated an increase in plasma
phospholipid levels upon high but not mid dose treatement. The levels of glucose
were higher 6 hours after a high dose of BB, but lower after 24 and 48 hours.
These observations were identical to the clinical chemistry measurements. NMR of
plasma showed higher levels of creatine and/or creatinine in BB-treated rats,
though clinical chemistry did not reveal significant changes in creatinine. The levels
of tyrosine were lower 6 and 24 hours after BB, while higher after 48 hours.
Methionine, alanine and lactate levels in plasma of BB-treated rats were lower 6
hours after dosage but higher 24 and 48 hours after dosage. Dimethylglycine and
taurin levels were increased compared to controls 6 hours after the BB treatment,
and decreased after 24 hours. Choline levels were decreased after treatment to
mid or high dose of BB.

Profiles of urine metabolites

Also in urine, metabolite NMR profiles were discerned using PCA. Analysis per
time point showed that BB treatment changed urine profiles (data not shown). All
rat urines collected during the first 6 hours could be distinguished by levels of
exposure. By 48 hafter dosage, rats treated with the high concentration of BB could
still be recognised from controls by their urine profiles. In order to determine the
NMR signals that most significantly differed between the high dose and control
group, factor spectra were constructed. Figure 5 shows the factor spectrum for rat
urine collected during the 6 hours after dosage. Using reference databases, the
identity of several peaks was established. Factor spectra revealed the marked
presence of BB-derived metabolites like bromphenols, bromcatechols, and
quinones in urine. It was not possible to discriminate and identify these various
metabolites. Markedly elevated levels of mercapturic acids, derived from GSH-
conjugates, were observed after treatment. Methionine levels in urine were higher
in the treated rats compared to controls. Formate levels increased after 24 hours in
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the treated rats, and elevated levels were observed of urocanate and
(methyl)histidine, as well as decreased levels of nicotinate, hippurate,
phenylalanine/tyrosine and glucose/fructose.

Regression
T R - BB-metabolites ~ GSH (conjugates)/Cysteine
1 Histidine/Methylhistidine ;
> . High Dose
0.5
o .|| | I‘I I N |
0.5 ‘
1 Vehicle
T T T T T T T T T T
ppm  — 8 7 6 5 4 3 2 1 0

Figure 5. Factor spectrum after principal component discriminant analysis of NMR spectra of urine, 6 hours after
dosage with bromobenzene, compared to vehicle control.

Discussion

This study presents one of the first integrated toxicogenomics studies, where acute
hepatotoxicity was analysed at the transcriptome and metabolite level in a time-
and dose-dependent manner. An integration of the (raw) datasets of the
transcriptomics and metabolomics experiments could increase the sensitivity of
detection of hepatotoxicity. Moreover, this could enhance the assessment of
relationships between gene expression and metabolite level changes.

When rats were treated with BB, hepatic centrilobular necrosis was observed after
24 hat the high, but not at lower doses. The inter-individual response varied from
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very slight to very severe hepatic centrilobular necrosis. Individual plasma ALAT,
ASAT and bilirubin levels and the increase in relative liver weight correlated with
the severity of the necrosis. Complementary to these toxicological observations,
the molecular profiles of hepatic gene expression and plasma metabolites were
analysed in parallel. Differences beteween molecular profiles were dependent on
the dose and time after dosage. Profiles from the 6 htime point were
distinguishable from other time points. BB treatment at the high dose resulted in
highly distinct profiles, while the mid dose altered the profiles up to 24 hafter
dosage. At this dose level, conventional signs of hepatotoxicity were not observed.
Combining transcriptomics and metabolite profiling did not allow to discriminate
samples treated with the low dose from controls.

Markers of gene expression

Gene expression changes were identified in correlation with the degree of hepatic
necrosis, providing comprehensive means to diagnose the degree of necrosis.
Moreover, if these markers prove to be predictive at earlier time points or lower
dose levels, they will improve detection of hepatotoxicity. Changes in these marker
gene expression levels could be explained from a mechanistic point of view. The
upregulation of cytoskeleton constituents (actin and pervin ao.) with the degree of
necrosis indicates remodelling of the cytoskeleton. Presumably, necrosis and
repair occur simultaneously in different liver cells, but our experiments using whole
liver do not allow to localise the events. The negative correlation of genes like
alpha-1-inhibitor and serine protease inhibitor is probably related to the acute
phase response, involving altered hepatic synthesis of proteins. When expression
levels were averaged for sets of genes, the correlation with the degree of necrosis
increased. A further suggestion would be to construct a model of combined sets of
positively and negatively correlated genes and metabolites to further increase the
relation with hepatocellular necrosis.

Metabolite profiles

Xenobiotic compounds like BB are degraded into many metabolites, and ultimately
excreted in urine. BB-derived metabolites could be suitable to monitor exposure
and to elucidate routes of biotransformation. Levels of endogenous metabolites
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that changed after treatment form putative biomarkers of toxicity, and could help to
identify the mechanism of hepatotoxicity.

Urine collected from rats exposed to different doses of BB varied in metabolite
contents, in agreement with the levels of exposure. Especially shortly after dosage,
many water-soluble BB-metabolites were found, like bromphenols, -catechols and -
quinones, and mercapturic acids. The lack of reference spectra and insufficient
resolution of the separation frustrated the identification of all corresponding
metabolites. Peaks around 6 ppm in the spectra could result from bromphenols,
bromcatechols and/or BB-dihydrodiols. Therefore, the precise biotransformation of
BB could not be determined. Further efforts to elucidate this based on urine
metabolite profiles require techniques like liquid chromatography and mass
spectrometry (LC-MS) for identification of the compounds. Few endogenous
metabolites, putative markers of hepatotoxicity, were discovered in urine. Levels of
methionine were higher 24 hours after BB dosage. Urocanate, related to histidine
metabolism, and histidine itself displayed elevated levels. Notably, elevated
urocanate levels were also found with galactosamine-induced hepatotoxicity [9].

Contrary to urine, in plasma, distinct signals of BB-derived metabolites were not
found. On the other hand, endogenous metabolites in plasma, or combinations of
them, could be effective biomarkers of toxicity. Decreased glucose and increased
lipid levels measured by NMR were corroborated by clinical chemistry. The levels
of formate in plasma, and urine, were increased after 24 and 48 hours. Formate
could be produced from dimethylglycine through sarcosine and formaldehyde.
Formate is also a product of oxalate in the glyoxylate catabolism, and possibly
related to folate synthesis in the one-carbon metabolism.

Biochemical pathways

The most significant effects determined in the parallel analysis of transcriptomics
and plasma metabolite profiing were categorised according to biochemical
pathways. Changes in gene expression in several pathways were described
previously [16]. Other changes, eg. in apoptosis and cell cycle were not noted
before. Pathways like glycolysis, GSH and amino acid metabolism were disturbed
both at the gene expression and metabolite level, and are described below. Figure
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6 presents a proposed schematic overview of changes in GSH and amino acid
metabolism, associated to bromobenzene-induced hepatic necrosis.
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Figure 6. Simplified, schematic representation of gene expression and plasma metabolite changes in bromobenzene-
induced hepatic necrosis, related to GSH and amino acid metabolism. Ovals represent genes, boxes represent
metabolites in plasma. When measured, changes in geneexpression or plasma metabolite levels are indicated
schematically to the right of each object.

Glycolysis

Glucose levels in plasma decreased in time after BB treatment. This could be
ascribed to increased glycolysis, in order to increase the production of energy to
restore homeostasis after the toxic insult. Decreasing glucose levels are
corresponding with increasing plasma levels of alanine and lactate, products that
may be formed by breakdown of glucose when the oxidation of pyruvate is
incomplete. Expression of many genes involved in glycolysis, gluconeogenesis and
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glucose transport was altered. Expression of a glucose transport protein was
decreased by BB. From the changes, we conclude that glycolysis enzymes were
induced (GAPDH, aldolase A, pyruvate kinase, G6PD and PGAM), and
gluconeogenesis was reduced through down regulation of G-6-phosphatase,
transport protein 1 (G6ptl), alanine-glyoxylate aminotransferase and pyruvate
carboxylase. It is known that the hepatotoxic effects of high doses of APAP are
similar to the effects of bromobenzene. In agreement with our findings, APAP was
found to decrease glucose levels and was suggested to induce glycolysis based on
gene expression and metabolite profile changes, suggestively as a reaction to
decreased ATP availability from beta oxidation of fatty acids [10].

GSH and amino acid metabolism

A central process in the chemically-induced hepatic necrosis is the depletion of
GSH levels, which normally protect cells by scavenging of hazardous, reactive
molecules. GSH levels decreased to around 25% of controls, 6 hours after oral BB
dosage, [16], while total depletion of hepatic GSH was observed 24 h after i.p.
administration of BB. GSH is used in conjugation reactions to BB-derived
metabolites, catalysed by GSTs. The reduction of GSH levels was accompanied by
a decrease of plasma methionine, according to NMR measurements. The GSH
depletion was countered through induction of GSH synthase protein [16] and Gclc
gene expression. Along with the changes in GSH and methionine levels, related
enzymes and metabolites were found to change. GSH and methionine levels are
connected via cysteine and homocysteine levels, involving enzyme activity of
BHMT. Gene expression of BHMT was found to initially increase, and later
decrease upon BB treatment. The expression of S-adenosyl homocysteine
hydrolase was decreased. Plasma levels of dimethylglycine, produced in the
reaction catalysed by BHMT were found to correlate with the BHMT mRNA levels
in time, and also the hepatic dimethylglycine dehydrogenase gene expression
levels followed this pattern. Dimethylglycine can be catalysed in a multi-step
reaction to formate, which levels were increased both in plasma and urine after
treatment. Induced levels of cysteine in plasma were observed after BB treatment,
along with increased gene expression of cysteine dioxygenase, while increased
levels of cysteine sulfinic acid decarboxylase were observed before [16]. Plasma
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tyrosine levels show a characteristic pattern, decreasing drastically 24 hours after
high BB, while 48 hours after high BB, levels were highly increased compared to
controls. Protein levels of HPD, an enzyme involved in tyrosine metabolism, were
found to decrease 24 hours after BB [16]. The level of phenylalanine is related to
tyrosine and seems to decrease in plasma due to the treatment.

Conclusion

In summary, this study presents one of the first integrated analyses of
transcriptomics and metabolite profiling, revealing additional information in the
process of chemically-induced hepatic necrosis. A full merge between the methods
awaits technical optimization, especially for the identification of metabolites.
Nevertheless, corroborating findings from liver transcriptomics and plasma
metabolite profiling aided in the generation of new hypotheses concerning cellular
mechanisms putatively related to necrosis, such as changes in cytoskeleton
remodeling and acute phase response, apoptosis, glycolysis, amino acid, fatty
acid and cholesterol metabolism. Through integration of the datasets, changes
were observed before histopathology or clinical chemistry indicated necrosis. Both
liver gene and plasma metabolite markers were discovered in correlation with the
degree of hepatocellular necrosis in individual animals. Through measurement of
urine metabolite profiles, exposure was rapidly recognised.
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Conclusions and perspectives

Biomarkers play an important role in biomedical research and will become more
and more essential for the study of new intervention therapies in the near future.
The approach to identify specific metabolite profiles for disease processes by using
analytical techniques like NMR or LC-MS with subsequent MVDA is promising. The
human body consists, amongst others, of numerous metabolites. Most of these act
on a complex variety of processes that are related to each other. Therefore,
generally it is not a single metabolite which acts as a biomarker but a combination
of metabolites. The advantage of linking NMR and other analytical techniques to
MVDA is the fact that the generated profiles consist of a combination of metabolites
which together meet the criteria to serve as biomarker. Biomarker profiles can thus
aid disease diagnosis, measurement of disease progression or tumor regression,
and drug development.

In this thesis, several disease processes were investigated by applying NMR on
biological fluids and analyzing the resulting data with MVDA in order to discover
potential biomarkers. A metabolite profile was identified for OA in guinea pigs as
well as in humans, which correlated with conventional histopathology. In addition,
in vitro metabolite profiles were used to investigate the effects of inulin, a prebiotic,
on gut health. A profile was discovered which could serve as early biomarker for
acute rejection after kidney transplantation. Also, using biomarker profiles in a
toxicological study, metabolite profiles were linked to gene expression data.

The results described in this thesis show that metabolic profiling using NMR
enables to measure biological fluids without pretreatment in a quick manner. It
provides an unbiased overview of many important metabolites present in biological
samples and can be used in the search for new diagnostic biomarkers as well as
early biomarkers.
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Early biomarkers are of importance in the understanding of the origins of diseases
or of environmental effects. Current medicine is mainly oriented at relieving
symptoms of diseases, but early biomarkers could help to bring curing nearer.
Time-course metabolomics could have potential for finding more early biomarker
profiles. Much research still has to be done in this field, but it is definitely worth the
effort. Yet, in general one should be aware of the fact that time-course biological
studies are very expensive, time-consuming and make demands on an enormous
amount of time on the analytical equipment, without a guarantee for a positive
outcome. Only few organisations will take the risk and have the money to carry out
such studies.

A topic that needs attention in metabolic profiling is the validity of the obtained
results. MVDA is an exploratory way of data analysis. The obtained metabolic
fingerprints are well suited for the generation of new hypotheses about disease-
related metabolic pathways. However, more efforts will have to be made to
investigate the validity and specificity of relations between metabolic profiles and
diseases. Otherwise public health institutions will not accept the discovered profile
as a valid biomarker for a disease. For early biomarkers this will even be more the
case. If after a long time of research and spending of much money finally a
potential early biomarker profile is found, one should be able to prove that it is
related to a clinical endpoint of a disease.

For metabolic profiling to become a generally accepted tool to discover biomarkers,
a deeper understanding of the metabolism that underlies the profile and its
correlation to disease processes is needed, and also of the mechanisms of
intervention. In vitro studies and translational science can facilitate the clarification
of the identity of metabolites and the formulation of ideas about metabolic
pathways involved. However, identification of metabolites is still the point where
normally studies of metabolite profiling with NMR stagnate. Well-known metabolites
like glucose or creatinine can be assigned quite easily. Yet, many compounds are
still difficult to identify. The choice for assigning an NMR signal to a metabolite may
be influenced by existing knowledge about metabolic pathways that is already
known. However, there are still many metabolites and pathways in the body we do
not know. The interpretation of signals in an NMR spectrum of a biological fluid is
thus hampered by an incomplete knowledge of metabolism. For this reason,
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identification of more signals in the profiles is indispensable. Intensive efforts
should be made to identify metabolites in the profiles, using techniques like GC-
MS, LC-MS and 2D-NMR. Besides, databases with known metabolites should be
set up to facilitate the generation of hypotheses about metabolites. In addition,
more in-depth studies should elucidate the metabolic pathways involved. This can
be done when metabolite information is integrated with gene expression and
proteomic data.

The key for metabolite profiling to become a successful way to discover biomarkers
thus lies in a systems biology strategy. Integration of all types of biological
information, such as DNA, RNA, protein and metabolites, and study of their mutual
relationships to obtain a model of a biological system as a whole, should provide
evidence that certain metabolite profiles are related to disease processes.
Subsequently, intervention studies can be carried out that rely on these profiles.
Therefore high-throughput facilities for genomics, transcriptomics, proteomics and
metabolomics, computational infrastructure, development of tools to process,
integrate and model all the obtained biological information, are important future
developments. For such a systems biology approach to become successful, it is
necessary that biologists, chemists, mathematicians, physicists and informaticians
are teamed up together, in order to facilitate the development and integration of
new technologies.

Still, looking at all system’s elements, which is the true essence of systems biology,
is sometimes hampered due to practical and ethical reasons. For instance, in
studies with humans, it is often difficult, if not impossible, to obtain specific biofluid
and tissue samples. In animal studies, it is often required that animals are
sacrificed to obtain certain samples, which can be a severe limitation due to the
fact that the biological process can not be followed in the same animal and the
expense of studies is dramatically increased because large numbers of animals are
needed. Functional imaging techniques circumvent the mentioned difficulties.
Functional imaging enables to look in vivo in biological systems as a whole in a
sensitive manner, even in tissues that are not suitable for sampling for systems
biology studies. Therefore the use of functional imaging techniques like Positron
Emission Tomography (PET) and Single Photon Emission Computed Tomography
(SPECT) will be an important future development for systems biology in the
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elucidation of the pathophysiology and etiology of disease processes and the
discovery of new biomarkers.
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Summary

Biomedical research aims at the elucidation of relationships between state of
health and environmental factors, such as lifestyle, nutrition and pharmaceuticals.
Biomarkers, biological indicators that can be used to measure and evaluate
disease, disease risk and effects of exposure, will facilitate biomedical research.
Metabolites are intermediate or end products of biological processes and thus play
an important role as biomarkers. Nuclear magnetic resonance spectroscopy
(NMR), gas chromatography-mass spectrometry (GC-MS) and liquid
chromatography-mass spectrometry (LC-MS) are analytical techniques that enable
the identification and measurement of metabolites in biological fluids. However,
data obtained with these techniques is very complex, due to the vast amount of
metabolites contained in biofluids. Therefore MVDA is needed to find differences
and similarities in data obtained with NMR or LC-MS. When MVDA reveals clusters
with similar characteristics in the analytical data, and these clusters match the
original study set-up (the established healthy, treated or diseased subjects), a
connection can be established between affected metabolites on one side, and
treatment or disease on the other.

In this thesis, MVDA is applied to data obtained from NMR as a tool to select
biomarker profiles in body fluids, that are specific for certain disease processes.
These profiles can, for instance, be used for (early) diagnosis or to study effects of
pharmaceuticals or food supplements.

In Chapter 2, general NMR theory is described jointly with a short introduction to
GC-MS and LC-MS. In Chapter 3, an overview is presented of MVDA techniques
that are used to identify profiles of biomarkers. Both chapters are intended to give
the reader some general background about the analytical techniques that are used
in the investigations reported in this thesis.

Chapter 4 reports a diagnostic biomedical study, in which it is shown that NMR with
subsequent MVDA is a suitable tool to discriminate between healthy guinea pigs
and guinea pigs suffering from osteoarthritis (OA). A diagnostic biomarker profile is
presented for OA in guinea pigs and effects of vitamin C on the disease process
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are investigated using this profile. Chapter 5 reveals that the biomarker profile
observed in guinea pigs is also a valid diagnostic tool for human OA patients. In
addition, it is demonstrated that the profile shows a correlation with
histopathological data, the so-called Kellgren-Lawrence grade, which is a measure
for OA state.

In Chapter 6, it is shown that NMR in conjunction with MVDA, apart from detection
of diagnostic biomarker profiles, can also play an important role in disease
prognosis. In a study with patients who underwent a kidney transplant operation, it
is shown that patients with graft rejection have a biomarker profile, which can
already be detected five days before rejection is observed with the conventional
clinical techniques. This biomarker profile can thus be used as a prognostic tool.
The method is also employed in an in vitro study, which is described in Chapter 7.
The effects of inulin, a prebiotic, on gut health are investigated. The results show
that in vitro research can be a useful starting point for generating hypotheses about
affected pathways and can thus facilitate in vivo studies.

In Chapter 8, the final part of this thesis, a step towards systems biology is made
by linking results of metabolomics to gene expression. In this way, effects of
bromobenzene in rats are studied to further understand hepatotoxicity and to get
insight into metabolic pathways.

In conclusion, the approach to identify biomarker profiles for disease processes by
means of NMR with subsequent MVDA is promising. Metabolite profiles have been
identified for, amongst others, OA, hepatotoxicity and kidney rejection. However, to
exploit the full potential of biomarker profiles, extensive efforts should be made to
identify the metabolites in the profiles and to further understand the metabolic
pathways involved. This will be enhanced and facilitated by a systems biology
approach with the integration of genomics, transcriptomics, proteomics and
metabolomics.
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Biomedisch onderzoek richt zich op het ophelderen van de relaties tussen ziekte
en omgevingsfactoren, zoals bijvoorbeeld levensstijl, voeding en medicijnen.
Biomarkers zijn biologische indicatoren die gebruikt kunnen worden om ziekte,
kans op ziekte, en effecten van de omgeving, te meten en te bestuderen.
Metabolieten zijn tussen- of eindprodukten van biologische processen en spelen
als zodanig een belangrijke rol als biomarkers. Kernspinresonantie (NMR) en
vloeistofchromatografie-massaspectrometrie (LC-MS) zijn analytisch-chemische
technieken die het mogelijk maken metabolieten in biologische vloeistoffen te
identificeren en meten. De gegevens uit deze metingen zijn echter zeer complex,
doordat biologische vloeistoffen een enorme hoeveelheid metabolieten bevatten.
Daarom is multivariate data analyse (MVDA) nodig om overeenkomsten en
verschillen in data die met NMR en LC-MS wordt verkregen, te vinden. Wanneer
uit MVDA blijkt dat de analytische data in een aantal groepen met een grote
overeenkomst in kenmerken uiteenvalt, en deze clustering komt overeen met de
originele proefopzet (zoals een gezonde groep, een behandelde groep of een
zieke groep), dan kan een link worden gelegd tussen metabolieten die zijn
veranderd in kwantiteit enerzijds, en ziekte of gezondheid anderzijds.

In dit proefschrift wordt MVDA toegepast op data die wordt verkregen uit NMR. Op
deze wijze worden in lichaamsvloeistoffen biomarkerprofielen geselecteerd die
specifiek zijn voor bepaalde ziekten. Deze profielen kunnen bijvoorbeeld gebruikt
worden om (vroege) diagnostiek te plegen of effecten van bijvoorbeeld medicijnen
of voedingssupplementen te onderzoeken.

In hoofdstuk 2 wordt een samenvatting gegeven van de theorie achter NMR,
tezamen met een korte introductie in GC-MS en LC-MS. In hoofdstuk 3 worden
diverse MVDA technieken behandeld, die gebruikt kunnen worden om
biomarkerprofielen te identificeren. Beide hoofdstukken zijn bedoeld om de lezers
achtergrondinformatie te verschaffen over de analytische technieken die worden
toegepast bij het onderzoek beschreven in dit proefschrift.

Hoofdstuk 4 beschrijft een diagnostische biomedische studie, waarin wordt
aangetoond dat NMR samen met MVDA een geschikte methode is om, op basis
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van verschillen in urinesamenstelling, gezonde cavia's te onderscheiden van
cavia's die lijden aan artrose. Een diagnostisch biomarkerprofiel voor artrose in
cavia's is daarbij gevonden. Daarmee is een interventiestudie uitgevoerd met
vitamine C, een stof die mogelijk positieve effecten op het ziekteproces heeft. In
hoofdstuk 5 wordt daarna getoond dat het biomarkerprofiel voor artrose in cavia’'s
ook wordt gezien in urine van mensen. Dit profiel vertoont bovendien correlatie met
histopathologische data.

De resultaten in hoofdstuk 6 laten zien dat de methode ook geschikt is om
prognostische biomarkerprofielen te identificeren. Uit een studie met patiénten die
niertransplantatie  hadden ondergaan, blijkt dat patiénten die acute
afstotingsverschijnselen vertoonden een afwijkend urine patroon hebben. Dit
afwijkende profiel kon al worden waargenomen vijff dagen voordat dit met
conventionele technieken kan worden gedetecteerd.

De resultaten in hoofstuk 7 tonen dat toepassing van de techniek op in vitro studies
interessante hypotheses kan opleveren over betrokken metabole paden.
Bovendien kan in vitro onderzoek de daaropvolgende in vivo studies
vergemakkelijken.

In hoofdstuk 8 wordt een opstap gemaakt naar een aanpak vanuit de
systeembiologie. Resultaten van gen expressie en metabolomics worden
gekoppeld, met het doel levertoxische effecten van broombenzeen in ratten te
bestuderen en de betrokken metabole paden te doorgronden.

Concluderend kan gezegd worden dat de aanpak om biomarker profielen te
identificeren met behulp van NMR en LC-MS met daaropvolgend MVDA,
veelbelovend is voor het herkennen van biomarkerprofielen. In het onderzoek dat
in dit proefschrift is beschreven, zijn metabolietprofielen gevonden voor onder
andere artrose, hepatotoxiciteit en nierrejectie. Om het potentieel van de techniek
volledig te benutten zal nog veel inspanning moeten worden gestoken in het
identificeren van de metabolieten in de profielen, en in het doorgronden van de
betrokken metabole paden. Een aanpak vanuit de systeembiologie, waarbij
resultaten van onderzoek naar DNA, gen-expressie, eiwitten en metabolieten
worden geintegreerd, zal dit proces versnellen en vergemakkelijken.
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Nawoord

Een proefschrift kan alleen maar tot stand komen met de hulp van heel veel
mensen. Op deze plaats wil ik deze personen dan ook graag vermelden.

Elly en Gerwin, jullie stonden altijd voor mij klaar, zonder jullie hulp had dit
proefschrift er heel anders uit gezien. Jeroen, Nicole en Johan, de discussies met
jullie waren inspirerend en leverden interessante ideeén op. Wilbert, de
samenwerking met jou was erg plezierig. De stagiairs Marc en Eveline, jullie
onbevangenheid heeft ervoor gezorgd dat jullie stage onderzoeken publicaties
hebben opgeleverd. Johan de Fijter, je hebt mij wegwijs gemaakt in het nier-
transplantatie onderzoek.

De patroonherkenners Henk, Bianca, Jack, Sabina, Renger, Florian, ieder van jullie
heeft op zijn eigen manier inbreng in dit proefschrift gehad. Mijn eerste
kamergenoot, Albert: je positivisme (“Uitstekend idee, goed werk”) werkte
aanstekelijk. Mijn daaropvolgende kamergenoten (in chronologische volgorde) Elly,
Jacques, Marco, Bianca, Gerwin, Henk en Wilbert, jullie hebben voor de
gezelligheid gezorgd. Daarnaast ben ik Henk erkentelijk voor het niet halen van
koffie voor mij. Valentijn, kamergenoot voor 1 dag in de week: het combineren van
een promotie-onderzoek met een (aanstaand) vaderschap heeft voor heel wat
gesprekstof gezorgd. De dagen dat jij in Zeist was, kwam er van werken over het
algemeen weinig terecht.

Tot zover de mensen die direct bij mijn promotie-onderzoek betrokken waren.
Daarnaast zijn er veel mensen indirect betrokken geweest bij mijn reilen en zeilen.
Zo toonden de collega’s van de Genomics-groep, vrienden en (schoon)familie altijd
hun belangstelling. De volgende mensen wil ik hier speciaal nog vernoemen:

Ineke, je weet het misschien niet maar jij bent de aanstichtster van het geheel. Jij
hebt me op 16-jarige leeftijd meegenomen naar de chemische fabrieken van Shell
in Pernis. Hier was ik zo van onder de indruk dat ik besloot om scheikunde te gaan
studeren.

Monique, we hebben in mijn eerste jaren bij TNO vaak bij elkaar in de bus gezeten,
de rities met lijn 50 van Utrecht CS naar Zeist v.v. waren altijd gezellig en een
goede gelegenheid om mijn ei even kwijt te kunnen.
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Voordat ik bij TNO kwam werken, heb ik een drietal jaren aan de Universiteit
Utrecht gewerkt. Het AMS-groepje met Arie, Cees en Wybe stond garant voor veel
gezelligheid, humor en niet te vergeten.... thee. Cees, je hebt me geholpen door
dit proefschrift te becommentariéren en je bleef me lastigvallen met emails over
mannen in witte jassen, NEC-bronnen en andere onzin. Wybe, altijd even attent en
belangstellend, ik realiseer me dat promoveren maar een bijzaak in het leven is.
Arie, jij zag mijn mogelijkheden en stimuleerde me om na te denken over hoe ik
deze kon benutten. Jij hebt dan ook de kiem voor dit proefschrift gelegd. Daarnaast
heb je er voor gezorgd dat dit proefschrift een stuk leesbaarder is geworden. Leuk
dat je me als paranimf terzijde wilt staan.

Wim, het begon in Breda met een introductiekamp waarna we als
practicummaatjes verder gingen. We belandden toevalligerwijs allebei via
Eindhoven in Arnhem. Inmiddels zijn we vele jaren van verhuizingen (vooral van
mijn kant), hoogtepunten en wedstrijden van Vitesse verder en ben ik blij dat je
mijn paranimf wilt zijn.

Monique, broer en zus is als trein en bus. Francesco, tu sei come un fratello per
guesta testa di formaggio.

Mam, ik wil je bedanken voor alles maar vooral voor de mogelijkheden en de
vrijheid die je samen met pap aan mij hebt gegeven. Jullie grenzeloze vertrouwen
dat ik hiermee om kon gaan, heeft ervoor gezorgd dat ik onafhankelijk mijn eigen
kronkelige weg heb kunnen bepalen. Dat heeft uiteindelijk tot dit boekje geleid.
Pap, je wist dat ik dit boekje aan het schrijven was maar helaas is de afronding
ervan voor jou te laat gekomen. Ik had dit moment erg graag met je willen delen. 1k
weet dat je trots op me zou zijn geweest.

Annette, ons leven lijkt continu in de hoogste versnelling te lopen. Door jouw liefde,
steun en nuchterheid kan ik het bijbenen. Als je dat maar weet en nooit vergeet.
Ten slotte Annika: vader is de mooiste titel die er is.
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ALAT, alanine amino transferase;
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BB, bromobenzene;

BMI, body mass index;

D, discriminant;

DMEM, Dulbecco’s modified Eagle medium;
ESI, electrospray ionization;

FID, free induction decay;

GC, gas chromatography;
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LC, liquid chromatography;

MRNA, messenger RNA;

MRI, magnetic resonance imaging;

MS, mass spectrometry;

MSCA, multilevel simultaneous component analysis;
MVDA, multivariate data analysis;

NMR, *H nuclear magnetic resonance spectroscopy;
NO, nitric oxide;

n.s., not statistically significant,

OA, osteoarthritis;

OSC, orthogonal signal correction;

PBS, phosphate buffered saline;

PC, principal component;

PCA, principal components analysis;

PCDA, principal components discriminant analysis;
PLS, partial least squares;

ppm, parts per million;

SCFA, short-chain fatty acids;

TCM, traditional Chinese medicine;

TIM, TNO’s intestinal model;

TMAO, trimethylamine N-oxide;

2
TMSP, sodium trimethylsilyl-[2,2,3,3,- Hg]-1-propionate.
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