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1
General introduction

Biomarkers

Biomedical research is continuously challenged to discover and elucidate 

relationships between health and disease on the one hand, and environmental 

factors such as nutrition and the use of pharmaceuticals on the other hand. 

Biomarkers can facilitate this quest [1-3]. A biomarker is defined as a parameter

that is objectively measured and evaluated as an indicator of normal biological or 

pathological processes, or pharmacological responses to a therapeutic intervention

[4].

A biological system must keep internal conditions within tolerable limits to continue 

a healthy functioning (see Figure 1). When a change occurs in a biological system, 

the system usually responds to reverse the change to maintain equilibrium. This 

control phenomenon is known as homeostasis. 

For instance, the body requires glucose to meet the demand for energy. The 

amount of glucose that is needed will depend on physical exertion. Glucose is

mainly obtained from the diet and when the body is provided with a surplus of 

glucose, this is converted to glycogen which is the principal storage form of glucose 

in the body. Under certain conditions, between meals for instance, glycogen can be 

converted to glucose if needed. The pancreas monitors the level of glucose in the 

blood and it controls the glucose concentration by releasing the hormone insulin or 

glucagon. Insulin is released as a result of an increase in the blood glucose level 

and stimulates the uptake of glucose into cells where it is stored as glycogen. 

Glucagon is released when the blood glucose level decreases, and thus promotes 

the conversion of glycogen into glucose. In this way, the glucose level in blood is 

maintained within tolerable limits. In case of diabetes type 1, the body is not able to 

produce sufficient insulin to stimulate the uptake of glucose into cells. Without this 

corrective feedback process the blood glucose level can raise above the tolerable 
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limits, which will result in biological derailment and finally in symptoms of disease. 

When the body is out of balance, drugs are in many cases the only remedy to 

reduce the unbalance but often the situation has reached an irreversible state. 

Nutrition, however, is often suitable for interventions between, but close to, the 

tolerable limits of equilibrium. 

Figure 1. A biological system must maintain internal conditions within tolerable limits to continue a healthy functioning. 

This phenomenon is known as homeostasis. Biomarkers are indicators for a biological process that is, or is likely to be, 

out of equilibrium and may reflect prognosis, diagnosis or progression of such a process.

Biomarkers may reflect different stages of a biological process that is, or is likely to 

get, out of equilibrium. There are three types of biomarkers: predisposition, 

prognostic and diagnostic biomarkers [5]. A predisposition biomarker reflects the 

sensitivity of a subject to a disease, like breast cancer predisposition genes for 

example. A prognostic biomarker has the ability to predict whether a subject will be 

susceptible to a disorder. For instance, a well-known prognostic biomarker is 

cholesterol, which is used to identify the risk of a heart disease. A diagnostic

biomarker measures the incidence and progression of a disease process. 

Haemoglobin A1C is an example of such a biomarker. When blood glucose levels 

increase in subjects with diabetes, the levels of haemoglobin A1C in the blood 

increase accordingly, providing a diagnostic marker of the progression of the 
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disease. Diagnostic biomarkers can be classified as early, late and surrogate 

biomarkers and have in common that they are indicators for a disorder that has 

already developed. Early biomarkers measure the appearance of a disease in an 

early stage, when curing may still be possible. Late and surrogate biomarkers 

reflect a state of disease in which relieving symptoms is often the most optimal

remedy. A surrogate biomarker is intended to substitute for a clinical endpoint of a 

disease, a characteristic or variable that reflects how a patient feels, functions or 

survives.

Research on the identification of biomarkers can greatly benefit from a systems 

biology approach [6]. Systems biology looks at all the elements of a biological 

system and reveals their interconnection and interdependence when the system 

functions in response to biological or environmental perturbations. This will lead to 

the discovery of new biomarkers, which can be represented by genes, proteins, 

metabolites, or a combination of these. 

Metabolites are intermediate or end products of biological processes [7]. As a 

result, metabolites play an important role as biomarkers. Metabolites can be 

endogenous or exogenous, primary or secondary. Endogenous metabolites are 

produced within a biological system. Exogenous metabolites are obtained from 

external factors, such as food or drugs that are converted in the system. Primary 

metabolites have a direct relation to an exogenous or endogenous biological 

process. Secondary metabolites have an indirect relation to a biological process. 

Biomedical research targets mainly endogenous primary and secondary 

metabolites [8]. In intervention studies and toxicological research, endogenous and 

exogenous as well as primary and secondary metabolites are subject of 

investigations [9]. 

Analytical techniques and MVDA for biomarker profile selection 

Metabolites provide valuable information on the activity of a biological system, and 

thus about its state. Biological fluids, such as urine and blood, contain thousands of 

metabolites that are potential biomarkers. Analytical techniques like proton nuclear 

magnetic resonance spectroscopy (NMR), gas chromatography-mass spectrometry 

(GC-MS) and liquid chromatography-mass spectrometry (LC-MS), enable 

quantification and identification of metabolites in biological fluid samples [10]. 
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However, data obtained with these techniques is very intricate, due to the mixture 

of numerous metabolites present in body fluids. Biological fluid samples from, for 

instance, a group of healthy versus a group of diseased subjects that are analysed 

with NMR, often show variations in metabolite levels between the groups that are 

too small and too complex to be recognized by visual inspection [11]. To find these 

differences, multivariate data analysis (MVDA) is needed to explore recurrent 

patterns in the data, as depicted in Figure 2. It is a powerful tool for the analysis of 

data sets with a large number of variables. In MVDA, samples are classified 

according to fine distinctions in the original data, such as NMR spectra, which are 

caused by small differences between metabolite levels of samples. Metabolites that 

discriminate between groups of samples and that can be correlated to clinical 

endpoints, are potential biomarkers. 

Figure 2. NMR spectra of biological fluid samples from a group of healthy versus a group of diseased subjects. The 

data often shows variations in metabolite levels between the groups that are too small and complex to be recognized 

by eye. To find these differences, multivariate data analysis (MVDA) is needed to explore recurrent patterns in the 

data.

The combination of NMR and/or GC-MS, LC-MS with subsequent MVDA is also 

referred to as metabolic fingerprinting, biomarker profiling, metabolomics, 

metabonomics or metanomics [7]. The technology has emerged from the biological 

fluid profiling approaches that were developed many decades ago for the study of 
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inborn errors of metabolism and effects of nutrition. The early work in this area was 

mainly driven by GC-MS, which allows low- concentration components to be 

measured in single profiles. In the eighties, mass spectrometric profiling has 

become a powerful fingerprinting methodology, especially when combined with 

MVDA [6]. 

Both GC-MS and LC-MS are highly suitable for identification of all metabolites in a 

sample, thus covering the complete metabolome. However, for global biomarker 

profiling, NMR is an attractive approach, as a wide range of metabolites can be 

quantified simultaneously without extensive sample preparation. More in-depth 

studies, using techniques like LC-MS-MS or 2-dimensional NMR, may be used 

subsequently to identify unknown metabolites and thus to elucidate metabolic 

pathways involved, especially when metabolite information is integrated with 

genome, gene expression (transcriptome) and proteome data in systems biology 

strategies [6].

In this thesis, the term metabolic fingerprinting or biomarker profiling will be used, 

because the focus will be on the recognition of global profiles, especially from NMR 

data, and less on the coverage of the complete metabolome.

Challenges in biomarker profiling

Biomarker profiling has already proven to be a valuable tool in several areas of life 

science research, such as toxicology and biomedicine. However, there are still 

frontiers of knowledge. For instance, differences in disease severity or in diet 

complicate the identification of a biomarker profile. Therefore often well-defined 

animal studies are used as a starting point. Once a biomarker profile is identified in 

an animal study, it is supposed that this profile, or part thereof, may also be 

applicable to the human situation. This issue of translational science is a major 

challenge for biomarker research. 

Other intriguing topics are early and prognostic biomarkers. Diseases as well as 

environmental factors disturb biorhythms. Such perturbations affect the biological 

system’s metabolism and are supposed to show up in time-course biological data. 

The metabolites that represent the first perturbation in time are early biomarkers. 

Early biomarkers may bring prevention of diseases nearer [5].
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Most biomarker profiling research is based on in vivo studies. Such studies are 

usually labour-intensive and expensive. In vitro studies are not hampered by these 

disadvantages and form therefore an interesting alternative. In vitro experiments 

could help in generating hypotheses about effects to be expected in vivo. Besides, 

in vitro research can help in the differentiation between primary and secondary 

metabolites. This may especially be helpful in the study of complex mixtures, like 

nutraceuticals and traditional Chinese medicine (TCM) and early biomarkers.

Finally, systems biology should be employed for a better understanding of 

biomarker profiles and of the underlying biological processes, from genes through 

proteins to the observed metabolites.   

Aim of this thesis

This thesis describes the exploration of metabolic fingerprinting in life sciences and 

the identification of several novel biomarker profiles, using NMR with subsequent 

MVDA. In a systems biology approach, metabolic profiling is also used to further 

understand biological processes. 

Outline of this thesis

The individual chapters of this thesis each address a different aspect. In Chapters 

2 and 3, the theory behind the analytical techniques NMR and LC-MS and 

multivariate data analysis is described. In Chapter 4, an application of NMR and 

MVDA is illustrated with a study in which a diagnostic biomarker profile is searched 

for osteoarthritis in guinea pigs. Osteoarthritis is further elaborated on in Chapter 5 

with the presentation of results of a study in human patients. The combination of 

NMR and MVDA as a method to find an early biomarker profile is depicted in 

Chapter 6, with acute rejection after kidney transplantation as an example. In 

Chapter 7, an in vitro study is presented to show that in vitro research is a useful 

approach to generate hypotheses about affected metabolic pathways. In Chapter 

8, a step is made towards systems biology, by combining metabolite profiles with 

transcriptomics in a hepatotoxic study with bromobenzene. In Chapter 9, 

conclusions are drawn and perspectives discussed.
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2
Analytical techniques

Proton NMR spectroscopy

Nuclear magnetic resonance spectroscopy is a method for structure research of 

compounds which have magnetic nuclei [1]. An example of such a nucleus is the 

proton, 1H. A proton has a magnetic dipole moment, which tends to align itself with 

respect to the direction of a sufficiently strong external magnetic field. If a proton is 

placed in such a field, its axis of rotation (spin) can take only two spatial 

orientations: aligned with the field or against it. Each of these orientations 

corresponds to a discrete energy level of the proton. Alignment with the field is the 

more stable one, and energy must be absorbed to flip the spin from this state to the 

less stable alignment against the field. Transitions between the two energy levels 

take place through absorption or emission of electromagnetic radiation:

νhE =∆ (1)

with ∆E the energy difference between the two states, h the Planck constant and υ
the frequency of the absorbed or emitted radiation. 

The energy needed to flip the proton spin depends on the strength of the external 

magnetic field. The stronger the magnetic field, the greater the tendency of the 

proton to remain aligned with the field. As a consequence, the required frequency 

of the radiation will be higher and is given by the relation:

π
γν
2

Bp= (2)

In this formula is B the strength of the magnetic field and γp the gyromagnetic ratio 

of the proton. 
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The frequency at which a proton absorbs energy depends on the total magnetic 

field strength, which is felt by the proton. This so-called effective field strength is 

not exactly the same as the applied field strength but also includes magnetic 

contributions from electrons and nuclei around the proton. As a consequence, the 

absorption frequency of a proton depends on the surroundings in which it is 

situated, such as the electron density at its location and the presence of 

neighboring protons. Each set of equivalent protons will have a different 

environment from other sets, and will thus require a different applied field strength 

to produce the same effective field strength. At a given frequency, all protons 

absorb at the same effective field but at a different applied field. This applied field 

strength is varied and the absorption of radiation, with a maximum for each set of 

protons, is plotted. The result is an NMR spectrum, an example of which is shown 

in Figure 1. The distance (δ) of an absorption peak to a reference position is called 

its chemical shift. Chemical shifts, measured in frequency units, are expressed in 

relation to a reference compound, which is often sodium 3-trimethylsilyl-propionate-

2, 2, 3, 3-2H4 (TMSP). The shift is expressed in parts per million (ppm):

referencereference x νννδ /10)( 6−= (3)

The peak area is proportional to the amount of equal protons, that is protons with 

the same chemical shift. Spin-spin interactions between protons in the same 

molecule cause splitting of signals. An NMR spectrum provides valuable 

information about (i) how many different kinds of nuclei there are in a molecule, (ii) 

the environment of each kind of nucleus, (iii) how many nuclei of each kind there 

are, and (iv) the environment of a nucleus with respect of other nearby nuclei.

Mixtures like biological fluids show very complex NMR spectra. Due to the 

enormous amount of metabolites that each have many different kinds of nuclei,

such mixtures show many NMR signals. Consequently, the identification of 

compounds in such NMR spectra is hampered.
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Figure 1. An example of an NMR spectrum.

Chromatography and Mass Spectrometry

Liquid chromatography (LC) is a separation method in which the sample 

components to be separated are distributed between two phases, a stationary 

phase and a mobile phase which is a liquid [2]. The chromatographic process 

occurs as a result of repeated sorption and desorption steps during the movement 

of sample components along the stationary phase. Separation of components 

takes place due to differences in interaction of the individual sample components 

with the stationary phase. Gas chromatography (GC) is based on the same 

principle, with the difference that in this case the mobile phase is a gas. It has the 

capability to separate very well, and in a short time, and is therefore preferable to 

LC. However, LC is very useful when compounds are not volatile, or not stable 

enough at the higher temperatures used in GC. 

Both GC and LC can be combined with mass spectrometry (MS), which is a 

powerful tool for analysing components of thermal lability and low volatility [3]. It is 

a quantitative method of analysis, in which molecules of a component are ionised 

and (partly) broken up into fragments. The fragments are selected according to 

their masses and their intensities are measured. In a mass spectrum, intensities 

9 8 7 6 5 4 3 2 1 0

ppm

9 8 7 6 5 4 3 2 1 0

ppm
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are plotted as function of the mass fragments upon which the chemical structure of 

a component can be determined. 

Many ionisation methods are available, such as chemical ionisation and 

electrospray ionisation (ESI). The latter is used in combination with LC for many 

biochemical analyses. It generates ions directly from the solution by creating a 

spray of highly charged droplets in the presence of a strong electric field. When a 

droplet decreases in size, the electric charge density on its surface will increase. 

Ions then leave the droplet when the mutual repulsion between like charges on the 

surface becomes large enough, upon which the escaping ions are directed into the 

mass analyzer.  

Comparison of the techniques

Both GC-MS and LC-MS are highly suitable for identification of a broad range of 

metabolites in a sample, thus covering the complete metabolome. Both techniques 

are sensitive but require extensive sample preparation. The main advantage of 

NMR, compared to GC-MS and LC-MS, is the fact that a wide range of compounds 

in a sample can be quantified simultaneously without extensive sample 

preparation. The disadvantage is that NMR is less sensitive and that the 

identification of   metabolites is more complicated. However, for global metabolic 

profiling NMR is an attractive approach, producing a good general impression of 

the contents of a sample. When interesting results show up, techniques like GC-

MS, LC-MS or 2-dimensional NMR, may still be used afterwards for a more 

detailed study of the sample and to identify metabolites of interest. 

References
1. Morrison, R.T., Boyd, R.N. (1987) Spectroscopy and Structure. In: Organic Chemistry. Allyn and Bacon Inc. 

Newton MA: 569-631.
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3
Multivariate data analysis

General introduction

In biomedical studies, enormous amounts of data are produced. Besides, data 

obtained from biological fluids with GC-MS, LC-MS as well as NMR is highly 

complex. The large number of metabolites present in biological fluids produces an 

overwhelming amount of signals. To find differences and similarities in such data, 

MVDA is indispensable. It visualizes the correlation between variables in complex 

or large data sets (e.g. hundreds of signals in NMR or LC-MS spectra) in relation to 

a target variable such as disease status.

In MVDA, unsupervised and supervised techniques can be used. Unsupervised 

methods such as principal component analysis (PCA) determine patterns within 

data sets, without prior knowledge, and visualize the data in such a way as to 

emphasize similarities and differences. With such methods, a direct comparison of 

for instance NMR spectra is made and samples are clustered, solely on the basis 

of NMR spectral similarities. Supervised methods, such as principal component 

discriminant analysis (PCDA) and partial least-squares (PLS), are more powerful 

tools. They use additional information in the analysis of the data set, such as 

biochemical, histopathological or clinical data, to identify differences between pre-

defined groups. 

In metabolic profiling, techniques like PCA, PCDA and PLS are often applied. 

However, new methods are being developed continuously, such as PLS batch 

processing and multilevel simultaneous component analysis (MSCA). These 

routines are extremely suitable to handle time-course data with a multilevel 

structure. 
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Component methods

In component models such as PCA, a large set of related variables is transformed 

to a smaller set of non-correlated variables that express the variation in the original 

variables to a maximum. This principle is shown in Figure 1. Two groups of 

samples are measured at two variables, v1 and v2. Most of the variation in the 

measurements is explained in the direction of the line PC1, and secondly in the 

direction of the line PC2, which is orthogonal to PC1. The new variables PC1 and 

PC2 are called components and each of them depicts an axis in multidimensional 

space. PC1 and PC2 are independent linear combinations of the original variables 

v1 and v2. 

Figure 1. Representation of principal component analysis (PCA). Six samples are measured on the original variables, 

v1 and v2. New non-correlated variables, so-called principal components (PC1 and PC2), describe most of the 

variation in the measurements. 

More in general, PCA compares objects (e.g. NMR spectra) and forms subsets of 

these objects on the basis of variable similarities. For this, a data matrix X, 

containing I samples and J variables, is transformed from a large set of related 

variables into a smaller set of non-correlated variables, called principal components 

(PC), which are chosen to express the maximum variation in the original variables

[1; 2]. A mathematical description of the PCA model is given in equation (1)
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ETPX += ' (1)

where X is the original IxJ set of data, P’ is a transpose matrix (FxJ) of variable 

coefficients (loadings), T is an IxF matrix of object scores and E is an IxJ matrix 

containing the residuals not explained by the model using F principal components.

Equation (1) can also be written as

ijjrir

R

r

ij eptx +=∑
=1

(2)

with xij, tir, pjr, eij the typical elements of X, T, P and E and R the number of 

components. 

The score on a PC is the distance of the projection of an original object on the PC

to the zero point. Scores are plotted in a score plot, with the PCs as axes. For 

example, NMR spectra are recorded from biological fluid samples. Scores are 

situated close to each other in a score plot when the NMR spectra of the samples 

Figure 2. A combined score and loading plot. A graphical representation of the projection of objects (e.g. NMR 

spectra) A, B, C, P, Q and R and the original variables (e.g. NMR signals) X1, X2 and X3 onto a plane through the first 

and second principal component (PC1 and PC2). The lower case characters denote the scores and loads. The 

distance between the clusters of scores is largest in the direction of PC1.
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are similar (see Figure 2). When the clustering of scores (NMR spectra) matches 

the controls, treated or diseased subjects in the original study set-up, a connection 

can be linked up between affected NMR signals, and treatment or disease.

The contribution of a variable to a principal component is named a loading. The 

loading on a PC is the distance of the projection of an original variable on the PC to 

the zero point. A high loading indicates a strong contribution of the original variable 

to the investigated PC (see Figure 2). In a so-called factor spectrum, henceforth 

named metabolic fingerprint or biomarker profile, loadings are presented as lines

(see Figure 3). Biomarker profiles are usually constructed in the direction in which 

the distance between clusters of scores is largest. The position of a line in a 

biomarker profile corresponds to the position of a variable in the original data, e.g. 

the position of a signal in an NMR spectrum in the mentioned example. The length 

of a line denotes the contribution of this variable, such as an NMR signal, to the 

clustering of scores in the investigated direction.

Figure 3. An example of a factor spectrum, obtained from Figure 2 in the direction of PC1. Loadings are presented as 

lines. The location of the lines corresponds to the location of the variables in the original data, for instance NMR 

signals. The length of a line denotes the contribution of a variable to a principal component. X1 is highly increasing for 

P, Q and R, whereas X3 is highly increasing for A, B and C.

Discriminant analysis

Discriminant analysis is often applied when the interest is centered on differences 

between groups, whereas component methods such as PCA are essentially 

dimension-reduction techniques. Discriminant analysis is based on the assumption 

that samples from a given group are more similar to each other than to samples 

from other groups. The technique aims at finding and identifying structures in the 

original data that show large differences in their group means. A priori knowledge 
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as to which samples are similar is needed; hence discriminant analysis is a 

supervised technique, in contrast to PCA. 

Discriminant analysis combines variables in such a way that differences between 

predefined groups are maximized. This is illustrated in Figure 4, where two groups 

of samples are measured on two variables. 

Figure 4. Principle of discriminant analysis. D is the discriminant axis, P is a projection line, X1 and X2 are two original 

variables and x and o represent samples from two different groups. Projection of samples on X1 and X2 shows no 

separation between the two clusters, whereas projection on line D shows a complete separation.

According to the principal component maximum variance criterion, these samples 

should be projected on line P. For discriminating between groups of samples, 

however, this is not the optimal solution. Projection of samples on line D shows a 

complete separation between the two clusters and is therefore a better solution [3]. 

Analogous to the PC’s in PCA, the new calculated variable in discriminant analysis 

is named D, discriminant axis. Discriminant axes are expressed as:
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with D the discriminant score, while wi and xj are weighting coefficient and score,

respectively, for the jth out of J variables. The new variables D describe differences 

between means of groups. Because these new variables must provide the most 

efficient representation of the differences between the means of the groups, the 

optimization criterion is the ratio of the between-group variation over the within-

group variation. In a technique like PCDA, the scores from PCA are used as a 

starting point for linear discriminant analysis, as depicted in Figure 5. 

Figure 5. Principal component discriminant analysis. The scores from PCA are used as a starting point for linear 

discriminant analysis (DA).

Regression analysis

A partial least-squares model has a predictive nature, in contrast to a PCA model 

that describes data. In PLS, pairs of scores and loadings, so-called latent variables, 

are not only calculated to maximize the explained variance in the predicting data 

set, X, but also to maximize the correlation with Y, the data to be predicted [4]. This 

can be written in the equations: 
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and

FTQY T += (5) 

 

where X represents an I x J matrix of independent variables and Y an I x K matrix 

containing the dependent variables. The matrices PT and QT are transpose S x J

and S x K matrices, containing the dependent and the independent variable 

loadings, respectively. The matrix T is an I x S matrix of S latent scores, whereas E 

and F are I x J and I x K matrices containing the residuals of the independent and 

the dependent variables, respectively.

Data preprocessing

Normalisation is a procedure that is often applied to analytical data, for instance 

when spectra contain no reference peaks. The assumption behind this is that each 

sample has the same amount of information present in the spectra. Normalising the 

spectra makes their absolute amount of information mutually comparable. 

To avoid that variables with relatively small values are hard to detect amidst

variables with relatively large values, it is often necessary to center or to scale the 

data. In case no centering or scaling techniques are used, it may occur that after 

application of MVDA only one or a few variables describe the full variance present 

in the dataset. If variables with different units are present in the dataset it may also 

be necessary to center or to scale the data before the application of MVDA.

Orthogonal signal correction (OSC) is a preprocessing method that may be applied 

to spectral data prior to developing a PLS model [7]. In situations where a PLS 

model captures a very large amount of predictor block (X) variance in the first 

factor but gets very little of the predicted variable (Y), it can be useful to remove 

extraneous variance from X that is unrelated to Y. OSC does this by finding 

directions in X that describe large amounts of variance while being orthogonal to Y. 

Reliability of MVDA models

Data for MVDA is often randomly divided into a training data set and a test data 

set. Models are built upon the training data set. Subsequently the test data set is 

used to test the reliability of the training model. This is done by passing the test 
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data through the training model. In this way the model’s prediction of classification 

of the test data is obtained. Predictions should be in agreement with the actual 

known results.

To obtain an objective assessment of the prediction error of a model obtained by 

MVDA, cross validation can also be carried out. For this, the measurements of one 

or more samples are left out of a data set. MVDA is applied then on the remaining 

data. The obtained model is used to predict the scores of the left out sample(s). 

Repeating this procedure until each of the samples is left out once and then 

comparing the predicted scores with the actual known scores gives an estimate of 

the reliability of the MVDA model. Leaving out one sample at a time is generally 

referred to as leave-one-out cross validation [8].
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4
Identification of disease-related 

metabolic fingerprints in 
osteoarthritic guinea pigs

Abstract
Osteoarthritis, one of the most common diseases among the elderly, is characterized by the progressive 

destruction of joint tissues. The etiology of osteoarthritis (OA) is largely unclear and no effective 

disease-modifying treatment is currently available. Metabolic fingerprinting provides a novel tool for the 

identification of biomarkers. A metabolic fingerprint consists of a typical combination of metabolites in a 

biological fluid and in this study is identified by a combination of 1H Nuclear Magnetic Resonance 

spectroscopy (NMR) and multivariate data analysis (MVDA). The current feasibility study was aimed at 

identifying a metabolic fingerprint for OA. Urine samples were collected from osteoarthritic male Hartley 

guinea pigs (n=15) at 10 and 12 months of age, treated with a medium vitamin C dose (30 mg/d) and 

from healthy male Strain 13 guinea pigs (n=8) at 12 months of age, treated with 30 mg/d vitamin C. 

NMR measurements were performed on all urine samples. Subsequently, MVDA was carried out on the 

obtained NMR data. An NMR fingerprint was identified that reflected the osteoarthritic changes in 

guinea pigs. The metabolites that comprised the fingerprint indicate that energy metabolism is of major 

importance in OA. This study demonstrates the feasibility of metabolic fingerprinting to identify disease-

specific profiles of urinary metabolites. NMR fingerprinting is a promising means of identifying new 

disease markers and of gaining fresh insights into the pathophysiology of disease. 

Based on: Lamers, R.A.N., DeGroot, J., Spies-Faber, E.J., Jellema, R.H., Kraus, V.B., Verzijl,N.,TeKoppele, J.M., 

Spijksma, G., Vogels, J.T.W.E., van der Greef, J., van Nesselrooij, J.H.J. (2003) Identification of disease and nutrient 

related metabolic fingerprints in osteoarthritic guinea pigs. J. Nutr., 133, 1776-1780.



Metabolic fingerprint for osteoarthritis in guinea pigs – Chapter 4

26

Introduction

Biomedical research is continuously facing the challenge of elucidating the 

relationship between health, disease and metabolism on one hand and effects of 

nutrition or pharmaceuticals on the other hand. Genomics will contribute to 

clarifying the etiology of most common genetic diseases and provide approaches 

for therapeutic intervention. However, knowledge of genomics is not the single 

universal tool for predictive medicine and nutritional strategies [1-2]. A person’s 

phenotype results from the interaction of the genotype with the environment, in 

which nutrition plays a major role. Metabolites are the quantifiable molecules that 

best reflect phenotype [3] and are attractive candidates for biomarker fingerprints in 

nutritional intervention studies.

Biological fluids, such as urine and blood, contain a large number of metabolites 

which may provide valuable information on the metabolism of an organism, and 

thus about its health status. Metabolic fingerprinting, also referred to as 

metabolomics, metabonomics [4], metanomics [1], or related terms, is a method 

that enables quantification and identification of metabolites in biological fluids. The 

methodology has emerged from the profiling of body fluid approaches that were 

developed many decades ago for the study of inborn errors of metabolism and 

effects of nutrition. The early work in this area was mainly driven by mass 

spectrometric techniques (GC-MS), which allow low concentration components to 

be measured in single profiles. In the eighties, especially with the combination of 

multivariate data analysis (MVDA), mass spectrometric profiling had become a 

powerful fingerprinting methodology [5]. 

For a full coverage of a complex mixture of metabolites, a combination of analytical 

techniques is desirable. However, for global screening, 1H Nuclear Magnetic 

Resonance spectroscopy (NMR) is an attractive approach, as a wide range of 

metabolites can be quantified at the same time without extensive sample 

preparation. More in-depth studies can subsequently elucidate the metabolic 

pathways involved, especially when metabolite information is integrated with gene 

expression and proteomic data in systems biology strategies [6]. 

NMR spectra of biological fluids are very complex due to the mixture of numerous 

metabolites present in these fluids. Therefore, variations between samples are 

often too small to be recognized by eye. In order to increase the comparability of 
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NMR spectra and thereby maximize the power of the subsequent data analysis, we 

have developed a Partial Linear Fit algorithm [7] in the past. This algorithm adjusts 

minor shifts in the spectra while maintaining the resolution. To find significant 

differences, multivariate data analysis (MVDA) is needed to explore recurrent 

patterns in a number of NMR spectra [4-5]. MVDA is a powerful tool for the 

analysis of data sets with a large number of variables. It visualizes the correlation 

between variables in complex or large data sets (e.g. thousands of signals in NMR 

spectra) in relation to a target variable such as disease status. MVDA falls into two 

general classes: unsupervised and supervised techniques. Unsupervised methods 

such as principal component analysis (PCA) determine patterns within data sets, 

without prior knowledge, and visualize the data in such a way as to emphasize their 

similarities and differences. With such methods, a direct comparison of NMR 

spectra is made and subsets of data are formed, solely on the basis of NMR 

spectral similarities. 

In PCA, data is transformed from a large set of related variables (e.g. NMR signals) 

to a smaller set of uncorrelated variables. The new created variables are called 

principal components (PCs) and aim at expression of maximum variation in the 

original variables. Each PC forms an axis in multidimensional space and the 

calculated distance of an object (e.g. a complete NMR spectrum of a guinea pig 

urine sample) to this axis is a so-called score. The contribution of each variable 

(e.g. a single NMR signal) to a PC can also be calculated, giving a so-called 

loading. A high loading indicates a strong contribution of the original NMR signal to 

the investigated PC. Loadings can be displayed in a so-called factor spectrum. 

Loading vectors are described as lines then, with a position equal to the position of 

the variables in the original spectra. The height of the lines indicates the 

contribution of the variables to the investigated direction.

Supervised methods such as partial least squares (PLS) and principal component 

discriminants analysis (PCDA) are more powerful tools, which use additional 

information on the data set such as biochemical, histopathological or clinical data 

to identify differences between pre-defined groups (8). In PCDA, the scores from 

PCA are used as a starting point for linear discriminant analysis. Discriminant 

analysis works by combining the PCs in such a way that differences between pre-

defined groups are maximised. 
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Osteoarthritis (OA), the most common form of arthritis, is a multi-factorial, chronic 

joint disease that is characterized by the progressive destruction of articular 

cartilage, resulting in impaired movement, pain and ultimately disability [9]. A 

variety of systemic and local risk factors have been identified that predispose to the 

development of OA, including -but not limited to- age, gender, bone density, 

obesity, joint injury and nutritional factors [10]. Despite the growing body of 

information on the pathogenesis of OA, its etiology is far from clear and effective 

disease-modifying treatment is lacking. Diagnosis of OA is currently based on 

clinical symptoms in combination with imaging techniques such as radiology or 

MRI, to visualize the degenerative changes in the joint. These changes can only be 

observed in an advanced stage of the disease, in which joint tissue damage is 

considered irreversible. Alternative methods are therefore needed in order to detect 

osteoarthritic changes in the joints in an early stage of the disease in a quantitative, 

reliable, and sensitive manner [11]. By measuring a combination of relevant 

metabolites in biological fluids, metabolic fingerprinting potentially meets these 

criteria.

The Hartley outbred strain guinea-pig develops spontaneous progressive knee OA, 

with features similar to the human disease [12-13] and was chosen to investigate 

the potential of metabolic fingerprinting as a tool for diagnosis. 

Materials and Methods

Animal handling procedure

Fifteen male Hartley guinea pigs that develop OA during aging were purchased at 

two months of age from Charles River Laboratories (Wilmington, MA, USA) and 

maintained on standard guinea pig feed. The guinea pigs were maintained at a 

medium dose of vitamin C (30 mg) provided with feed daily (supplemented with 

standard Purina Lab Diet 5025 (Purina Mills, LLC, St. Louis, MO, USA) without 

vitamin C ad libitum). Furthermore, eight Strain 13 guinea pigs (obtained from 

Crest Caviary, Prundale, CA, USA) which develop OA to a much lesser extent than 

the Hartley strain [14] were housed individually in solid bottom cages and fed 30 

mg/d of vitamin C. Metabolic cages (PLAS-LABS, Lansing MI) suitable for guinea 

pigs were used to collect 24-hour urine samples at 10 and 12 months of age for the 

Hartley guinea pigs and at 12 months of age for the Strain 13 guinea pigs. The 
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collected urines were centrifuged at 3000 rpm for 10 minutes to remove debris, and 

stored at –80°C until analyses. For all experiments “Principles of laboratory animal 

care” were followed and American guidelines and laws were applicable.

NMR analysis of urine samples

Prior to NMR spectroscopic analysis, 200 µL urine samples were lyophilized and 

reconstituted in 1 mL sodium phosphate buffer (0.1 mmol/L, pH 6.0, made up with 

D2O), to minimize spectral variance arising from differences in urinary pH. Sodium 

trimethylsilyl-[2,2,3,3,-
2
H4]-1-propionate (TMSP; 0.025 mmol/L) was added as an 

internal standard. NMR spectra were recorded in random order and in triplicate in a 

fully automated manner on a Varian UNITY 400 MHz spectrometer using a 1H 

NMR set-up operating at a temperature of 293 K. 

Free induction decays (FIDs) were collected as 64K data points with a spectral 

width of 8.000 Hz; 45 degree pulses were used with an acquisition time of 4.10 s 

and a relaxation delay of 2 s. The spectra were acquired by accumulation of 128 

FIDs. The signal of the residual water was removed by a pre-saturation technique 

in which the water peak was irradiated with a constant frequency during 2 s prior to 

the acquisition pulse. The spectra were processed using the standard Varian 

software. An exponential window function with a line broadening of 0.5 Hz and a 

manual baseline correction was applied to all spectra. After referring to the internal 

NMR reference (TMSP δ= 0.0), line listings were prepared using the standard 

Varian NMR software. To obtain these listings all lines in the spectra above a 

threshold corresponding to about three times the signal-to-noise ratio were 

collected and converted to a data file suitable for multivariate data analysis 

applications.

NMR data processing and multivariate data analysis

The NMR data reduction file was imported into Winlin (V1.10, TNO, The 

Netherlands). Minor variations from comparable signals in different NMR spectra 

were adjusted and lines were fitted without loss of resolution. To correct for urinary 

dilution, the data were auto-scaled so that small and large peaks contribute 

similarly to the final study result. Where needed endogenous and exogenous 

metabolites of vitamin C were eliminated from the NMR spectra leading to more 
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universal OA related changes and principal component discriminant analysis 

(PCDA) was performed [15]. 

Age, strain or dose was used as a priori information respectively. The NMR data 

set was randomly divided into a training data set and a test data set. PCDA models 

were built upon the training data set. Subsequently the test data set was used to 

test the reliability of the training model. Predictions were in agreement with the 

actual groupings.

The resulting discriminants were quantified for each of the urinary NMR spectra 

and the scores were plotted to visualize clustering. Factor spectra were used then 

to correlate the scores to the original NMR features in the spectra. These metabolic 

fingerprints provided insight into the type of metabolites responsible for differences

between categories. 

Results

Metabolic fingerprinting in disease diagnosis

The Hartley outbred stock albino guinea pig spontaneously develops an 

osteoarthritic condition that closely resembles its human counterpart. The earliest 

histological signs of the disease appear at 3 months of age in the medial tibial 

plateau which gradually progress to extensive cartilage degeneration in guinea 

pigs aged 12 months or older [16]. 

The underlying hypothesis of the present study is that OA will disturb metabolism, 

which will be reflected in an aberrant urinary metabolic composition. Using 

metabolic fingerprinting such OA-induced abnormal urinary composition may be 

quantified. However, also aging may cause disturbances in metabolism that are 

independent of a pathological change [17]. Therefore, a suitable control group was 

essential for the construction of a representative metabolic fingerprint for OA. To 

exclude the possibility that metabolic differences caused by aging interfered with 

those caused by OA, NMR analysis was performed on urine samples of Hartley 

guinea pigs that were followed longitudinally. Samples were collected of the same 

guinea pigs at 10 and 12 months of age, treated with 30 mg/d vitamin C. This 

approach minimized age effects on the metabolite profile: at 10 months of age 

guinea pigs are fully grown, while the OA severity is expected to increase in the 

guinea pigs from 10 months onward [14]. Comparison of two urinary spectra of a 
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single guinea pig at 10 and 12 months of age (Figure 1) showed that, on first sight, 

the differences between the respective NMR spectra were small.

Figure 1. NMR spectra of urine taken at 10 months (left) and 12 months (right) from one Hartley guinea 

pig. On first sight, no differences exist between the two spectra.

Since the NMR spectra contain a range of different signals, combinations of which 

represent the different metabolites, principal component discriminant analysis 

(PCDA) was used to visualize disease related differences in these spectra [15], 

using age (10 or 12 months) as additional input information. The resulting plot

(Figure 2) clearly showed that scores of samples were different per age group (and 

thus per OA severity). The scores of the 10 months samples are below zero, 

whereas the scores of the 12 months samples are above zero (P<0.001). The

distinction between scores is based on the concentrations of metabolites which are 

characteristic for each group. A metabolic fingerprint was derived from the plot of 

the scores, which is likely to reflect OA (Figure 3). In this fingerprint, NMR signals 

of urinary guinea pig metabolites are visualized which increased or decreased in 

association with age and thus OA.
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Figure 2. PCDA score plot of urinary NMR spectra of Hartley guinea pigs at 10 versus 12 months of age (the points 

represent the complete urinary NMR spectra of the guinea pigs). At 10 months of age guinea pigs are fully grown, 

while at 12 months of age their OA severity has substantially increased (14). This increase in OA severity is reflected 

by the urinary composition, as there is a clear difference between the positions of the two groups (P<0.001). 

Using the approach described above, in principle the small age difference (2 

months) rather than a different severity of OA could be responsible for the 

clustering of the data and thus the metabolic fingerprint. Therefore, to ascertain 

that the obtained metabolic fingerprint reflected OA differences and not age 

differences, a complementary approach was used. NMR spectra were obtained 

from urine samples of 12-months old Strain 13 guinea pigs, treated with 30 mg/d 

vitamin C, that show only very limited OA changes [14]. These NMR spectra were 

subjected to PCDA together with the data obtained from 12-months old Hartley 

guinea pigs, treated with 30 mg/d vitamin C. Using this design, only age-matched 

samples were compared, thereby completely eliminating age-related changes as

confounders of the differences in the metabolite profile. For PCDA an ideal 

situation was assumed in which, at 12 months of age, Hartley guinea pigs have 

OA, whereas Strain 13 guinea pigs did not have

-0,2

-0,15

-0,1

-0,05

0

0,05

0,1

0,15

0,2

10 months 12 months

S
co

re

-0,2

-0,15

-0,1

-0,05

0

0,05

0,1

0,15

0,2

10 months 12 months

S
co

re



Metabolic fingerprint for osteoarthritis in guinea pigs – Chapter 4

33

Figure 3. Factor spectrum, or metabolic fingerprint, of urinary NMR spectra of 10 versus 12 month old Hartley guinea 

pigs that is typical for OA. Peaks (representing NMR signals) in the positive direction indicate metabolites that are more 

abundant in urine of guinea pigs with severe OA (at 12 months) than in urine of guinea pigs with milder disease (at 10 

months). Consequently, metabolites that are more abundant in urine of these healthier guinea pigs are presented as 

peaks in the negative direction. 

OA [14]. The score plot resulting from this analysis, in which “strain” (i.e. Hartley 

versus Strain 13) was used as additional input data for PCDA, again showed a 

clear difference between scores of the two groups (Figure 4; P<0.001). The scores 

of Hartley guinea pigs are above zero, whereas the scores of the Strain 13 guinea 

pigs are below zero. 

A metabolic fingerprint was used to assign the NMR signals that explain 

differences between the two groups, and thus health status (Figure 5). In this 

analysis, both OA as well as strain differences could in principle be responsible for 

the separation in groups. 

Combining the results from both analyses allowed elimination of the confounding 

factor from each of the approaches, namely age and strain respectively. The 

metabolic fingerprint obtained from the comparison of urinary NMR spectra of 10 

and 12 months old Hartley guinea pigs was almost similar to the metabolic 

fingerprint obtained from the age-matched strain comparison (compare Figure 2B

and 3B). Thus, metabolites that were present in both fingerprints are likely to be 

OA specific. Using this approach, NMR regions in the metabolic fingerprint that 

emerged as strongly associated with OA are 2.0-2.9, 3.0-4.7 and 6.3-7.5 ppm. 
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Figure 4. PCDA score plot of urinary NMR spectra of 12 months old Hartley versus Strain 13 guinea pigs. Strain 13 

guinea pigs are healthy, while Hartley guinea pigs suffer from OA (14). The difference in urinary composition is 

reflected by the clear separation into two groups in the graph (P<0.001). 

Figure 5. OA specific metabolic fingerprint of urinary NMR spectra of 12 months old Hartley versus Strain 13 guinea 

pigs. Peaks in the positive direction indicate metabolites that are more abundant in urine of Hartley guinea pigs than in 

urine of Strain 13 guinea pigs. Consequently, metabolites that are more abundant in urine of Strain 13 guinea pigs are 

presented as peaks in the negative direction.
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1.45, 1.48 and 4.13 in a negative direction were especially abundant in the OA 

state. Signals in these regions represent, amongst others, hydroxybutyrate, 

creatine/creatinine, pyruvate, and lactic acid. These metabolites are consistent with 

the hypothesis suggesting altered energy utilization with OA [18].

Discussion

In the present study, a novel method was employed to identify a metabolic 

fingerprint for OA, using NMR in combination with MVDA on urine samples of 

outbred male Hartley guinea pigs that spontaneously develop knee OA. An NMR 

fingerprint for OA was identified that was independent of age or strain effects and 

therefore can be used as a diagnostic tool for OA in guinea pigs. 

In this study it was essential to use samples from a well-defined animal study, 

rather than using human material, since differences in OA severity, medication, 

diet, and habits etc create additional variability which would greatly hinder de novo

identification of an OA specific urinary fingerprint. However, once identified amidst 

the thousands of other metabolites, the urinary fingerprint for OA may also be 

quantified in humans. A feasibility study to this purpose will be initiated shortly.

This study demonstrates the feasibility of metabolic fingerprinting to identify 

metabolite profiles in (pre)clinical research. As shown here, this technique has the 

ability to distinguish a disease from a non-disease state. In addition to their 

contribution to the fingerprint, the individual metabolites may provide additional 

insight into the pathogenesis of OA. Lactic acid, malic acid, hypoxanthine and 

alanine contributed heavily to the fingerprint, suggesting their involvement in the 

osteoarthritic process. Altered energy demand may thus play an important role in 

OA. Further identification of the metabolites involved and combining the current 

metabolic data with proteomics and genomics approaches in order to form a 

holistic, integrated picture of the metabolic pathways implicated in OA, may provide 

new insights into OA pathogenesis and thereby identify new disease targets. This 

approach also has the potential to catalyze development of new biomarkers for OA. 

Metabolic fingerprinting has the ability to distinguish disease specific metabolites. 

Metabolic fingerprints, as demonstrated in this study of OA, can also provide a 

sensitive outcome measurement tool that can be used to evaluate the effects of a 

nutrient or drug intervention on the incidence and progression of disease. 



Metabolic fingerprint for osteoarthritis in guinea pigs – Chapter 4

36

Therefore, this powerful technique has broad applicability in the field of clinical 

nutritional and pharmaceutical research. 
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5
Identification of a urinary 

metabolite profile associated 
with osteoarthritis

Abstract
Objective: Osteoarthritis (OA) is one of the most common diseases among the elderly. The main 

characteristic is the progressive destruction of articular cartilage. We lack quantitative and sensitive 

biomarkers for OA to detect changes in the joints in an early stage of the disease. In this study, we 

investigated whether a urinary metabolite profile could be found that could serve as a diagnostic 

biomarker for osteoarthritis in humans. We also compared the profile we obtained previously in the 

guinea pig spontaneous OA model. 

Methods: Urine samples of 92 participants (47 non-OA controls and 45 individuals with radiographic OA 

of the knees or hips) were selected from the Johnston County Osteoarthritis Project (North Carolina, 

USA).  Participants ranged in age from 60 to 84 years. Samples were measured by 1H Nuclear 

Magnetic Resonance spectroscopy (NMR) with subsequent principal component discriminant analysis 

(PCDA). 

Results: Differences were observed between urine NMR spectra of OA cases and controls (P<0.001 for 

both male and female subjects). A metabolite profile could be determined which was strongly 

associated with osteoarthritis. This profile largely resembled the profile previously identified for guinea 

pigs with OA. A correlation was found between the metabolite profile and radiographic OA severity (R2= 

0.82 (male); R2= 0.93 (female)).  

Conclusion: This study showed that a urine metabolite profile may serve as a novel discriminating 

biomarker of osteoarthritis.

Submitted for publication.
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Introduction

Osteoarthritis (OA), or cartilage degeneration, is the most common form of arthritis 

[1]. An important feature of the disease is the progressive destruction of articular 

tissues, resulting in impaired movement, pain and ultimately disability. A variety of 

systemic and local risk factors have been identified that predispose to the 

development of OA, including age, gender, bone density, obesity, joint injury and 

nutritional factors [2]. Despite the growing knowledge on the pathogenesis of OA, 

its etiology is still not clear and effective disease-modifying treatment is lacking. 

Diagnosis of OA is currently based on clinical symptoms [3-5] in combination with 

radiology. Radiological evaluation of joints mainly images bone and is relatively 

insensitive: a follow-up period of two years is often needed to assess disease 

progression [6]. Magnetic Resonance Imaging (MRI) has the ability to 

simultaneously visualize all joint tissues. The technique is currently being optimized 

but has not yet reached its full potential. 

Alternative methods are therefore needed in order to detect osteoarthritic changes 

in the joints in an early stage of the disease in a quantitative, reliable, and sensitive 

manner. Biomarkers that monitor molecular events taking place during disease are 

well suited for this purpose. A good biomarker is disease-specific, reflects actual 

disease progression, is sensitive to changes due to therapeutic intervention and 

can predict disease outcome. Currently no single biomarker exists that meets these 

requirements [6]. Combining several biomarkers has been shown to improve the 

discriminatory capability considerably [7]. Recent developments in the field of 

metabolomics now provide the tools to go one step further: identify profiles of 

metabolites that together serve as a biomarker [8-9]. Biological fluids, such as urine 

and blood, contain a large number of metabolites that may provide valuable 

information on the metabolism of an organism, and thus about its health status. 

Metabolic profiling, also referred to as metabolomics, metabonomics [8], or related 

terms, is a technique that enables quantification and identification of metabolites in 

biological fluids. The technology has emerged from approaches to the profiling of 

body fluid that were developed many decades ago for the study of inborn errors of 

metabolism and the effects of nutrition. Our previous research has shown that such 

a metabolomics approach is also feasible for identifying a biomarker profile for OA. 

We discovered differences between urine samples of 10- and 12-month old Hartley 
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guinea pigs that spontaneously develop OA using nuclear magnetic resonance 

spectroscopy (NMR) and multivariate data analysis (MVDA). A metabolite profile 

was detected which was strongly associated with OA [10]. For initial metabolic 

profiling it was essential to use samples from a well-defined animal study, rather 

than using human material, since differences in OA severity, medication, diet and 

habits create additional variability that would greatly hinder the identification of an 

OA specific urinary metabolic profile in humans. However, once identified amidst 

the numerous other metabolites, the urinary metabolic profile for OA in the guinea 

pig model may also be quantified in humans. The present study was initiated from 

this assumption and designed to identify a biomarker profile that could distinguish 

unaffected from OA affected individuals. 

Materials and Methods

Study population and sample selection

Urine samples of 92 subjects were obtained from participants in the ongoing 

Johnston County Osteoarthritis Project (North Carolina, USA), that is described in 

detail elsewhere [11]. Participants were selected who were not using any medicine 

for joint complaints (NSAIDS and COX-2 inhibitors), varied in age between 60 and 

84 years, and had a body mass index (BMI) between 21 and 34. Radiographic 

knee osteoarthritis was defined from weight bearing bilateral anteroposterior 

radiographs of the knee, according to the Kellgren-Lawrence (K-L) grading scheme 

[12]. An OA case was defined as K-L grade ≥2 of at least two joints out of the four 

joints considered (knees and hips); controls were defined as K-L grade 0 in both 

knees and 0 or 1 in both hips. The selected group of participants consisted of 47 

controls (20 male and 27 female) and 45 patients with radiographic knee and/or hip 

OA (21 male and 24 females). 

Second morning voided urines were collected and centrifuged at 3000 rpm for 10 

minutes to remove debris, and stored at –80°C until analyses. The study was 

approved by the Institutional Review Board of the University of North Carolina 

School of Medicine and the Centers for Disease Control and Prevention. Written 

informed consent was obtained from all participants.
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NMR analysis of urine samples

Prior to NMR spectroscopic analysis, 1 mL urine samples were lyophilized and 

reconstituted in 1 mL sodium phosphate buffer (0.1 mmol/L, pH 7.4, made up with 

D2O), to minimize spectral variance arising from differences in urinary pH. Sodium 

trimethylsilyl-[2,2,3,3,-
2
H4]-1-propionate (TMSP; 0.1 mmol/L) was added as an 

internal standard. NMR measurements were carried out in random order and in 

triplicate in a fully automated manner on a 600 MHz spectrometer (Avance, Bruker 

BioSpin GmbH, Rheinstetten, Germany), using a proton NMR set-up operating at a 

temperature of 300K. For each sample, 128 free induction decays (FID) were 

collected. Each FID was induced using a 45-degree pulse, an acquisition time of 

2.73 s and a relaxation delay of 2 s. The FIDs were collected as 64K data points 

with a spectral width of 12.000 Hz. The spectra were processed using the standard 

Bruker software. An exponential window function with a line broadening of 0.3 Hz 

and a manual baseline correction were applied to all spectra. After referring to the 

internal NMR reference (TMSP δ= 0.0), line listings were prepared with the 

standard Bruker NMR software. To obtain these listings all lines in the spectra 

above a threshold corresponding to about three times the signal-to-noise ratio were 

collected and converted to a data file suitable for multivariate data analysis 

applications. The NMR data file was imported into Winlin (V2.1, TNO, The 

Netherlands). Minor variations from comparable signals in different NMR spectra 

were adjusted and lines were fitted without loss of resolution, after which MVDA 

was carried out. 

Multivariate data analysis

To correct for urinary dilution NMR data were centered and scaled to unit variance 

so that small and large peaks contributed similarly to the final study result. 

Subsequently Winlin was used to perform principal component discriminant 

analysis (PCDA) on the data. Principal component discriminant analysis is a 

powerful tool to identify and maximize differences between pre-defined groups in 

data sets with a large number of variables [13]. In this study, health status (controls 

versus OA cases) was used as a priori knowledge for PCDA discrimination. The 

NMR data set was randomly divided into a training data set and a test data set. 

The PCDA models were built upon the training data set. Subsequently the test data 



Metabolic fingerprint associated with osteoarthritis – Chapter 5

43

set was used to test the reliability of the training model. Predictions were in 

agreement with the actual groupings (controls versus cases). 

To visualize differences between NMR spectra of controls and OA cases, the 

PCDA scores were plotted and the unpaired T-test was performed to evaluate the 

statistical significance of the difference between the PCDA scores of the two 

groups (Excel Office 2003, Microsoft Corporation, USA). Subsequently, the original 

NMR spectra were used to calculate which metabolites contributed to the PCDA

scores that distinguished controls from OA cases (for male and female case 

separately). The combination of these metabolites (visualized via the position in 

ppm within the NMR-spectrum) formed (gender-specific) metabolic profiles for OA. 

These metabolic profiles provided insight into the type of metabolites responsible 

for the difference in PCDA scores of the two groups. 

Partial least square (PLS) regression analysis was carried out in Matlab (Version 

6.5, The MathWorks Inc., Natick, MA, USA) using the PLS toolbox (Version 3.0, 

Eigenvector Research Inc., Manson, WA, USA) to correlate urine NMR spectra 

with the sum of knee and hip K-L grades, a measure for OA status. Leave-one-out 

was used as a method for cross-validation to obtain a goodness of fit (R2) for the 

PLS model in its prediction of K-L grades from the urine NMR spectra. The PLS 

regression vectors, showing NMR signals that were correlated to the K-L grade, 

were plotted using Excel.

Results

Description of sample

The characteristics of the OA and control participants are given in Table 1. To 

minimize variation in urinary metabolites (and thus increase the chance of finding 

an OA-specific metabolic fingerprint) male and female subjects were analysed 

separately and for both genders, cases and controls were matched for age, height 

and weight. No consistent statistically significant differences were observed except 

for the presence of OA. The OA patients had a summed K-L grade (knee and hips) 

ranging from 4 and 10 while the control subjects had a summed K-L grade ranging 

from 0 – 2.
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mean ( sd ) range p value mean ( sd ) range

Number 27 24

Age [years] 69.5 ( 6.0 ) [ 60 - 84 ] 0.253 67.7 ( 4.8 ) [ 61 - 77 ]

Height [inches] 63.2 ( 2.0 ) [ 57.5 - 66.5 ] 0.183 62.4 ( 2.3 ) [ 58.3 - 65.5 ]

Weight [lbs] 161 ( 26 ) [ 109 - 198 ] 0.411 156 ( 25 ) [ 106 - 204 ]

Body mass index 28.4 ( 4.3 ) [ 20.9 - 34.0 ] 0.715 28.0 ( 3.5 ) [ 21.9 - 33.9 ]

BMD left hip 0.9 ( 0.1 ) [ 0.55 - 1.16 ] 0.049 0.9 ( 0.1 ) [ 0.65 - 1.18 ]

BMD spine 63.2 ( 0.2 ) [ 0.49 - 1.31 ] 0.112 1.1 ( 0.2 ) [ 0.73 - 1.46 ]

Affected joint [#] 0.0 ( 0.0 ) [ 0 - 0 ] < 0.001 2.4 ( 0.7 ) [ 2 - 4 ]

K/L grade right knee 0.0 ( 0.0 ) [ 0 - 0 ] < 0.001 1.3 ( 1.1 ) [ 0 - 3 ]

K/L grade left knee 0.0 ( 0.0 ) [ 0 - 0 ] < 0.001 1.5 ( 1.2 ) [ 0 - 4 ]

K/L grade right hip 0.9 ( 0.3 ) [ 0 - 1 ] < 0.001 1.8 ( 0.7 ) [ 0 - 3 ]

K/L grade left hip 1.0 ( 0.2 ) [ 0 - 1 ] < 0.001 1.7 ( 0.7 ) [ 0 - 3 ]

Summed K/L grade 1.9 ( 0.5 ) [ 0 - 2 ] < 0.001 6.2 ( 1.6 ) [ 4 - 9 ]

Current NSAID use

Current Cox-2 inhibitor use

mean ( sd ) range p value mean ( sd ) range

Number 20 21

Age [years] 66.9 ( 4.0 ) [ 61 - 75 ] 0.512 67.8 ( 4.8 ) [ 61 - 76 ]

Height [inches] 68.4 ( 3.0 ) [ 61.0 - 73.5 ] 0.774 68.1 ( 2.9 ) [ 63.3 - 73.5 ]

Weight [lbs] 177 ( 17 ) [ 144 - 212 ] 0.090 188 ( 23 ) [ 139 - 237 ]

Body mass index 26.6 ( 2.2 ) [ 24.0 - 31.4 ] 0.032 28.4 ( 3.0 ) [ 23.6 - 34.0 ]

BMD left hip 1.0 ( 0.1 ) [ 0.74 - 1.31 ] 0.453 1.0 ( 0.2 ) [ 0.76 - 1.52 ]

BMD spine 1.2 ( 0.2 ) [ 0.89 - 1.59 ] 0.566 1.2 ( 0.1 ) [ 0.96 - 1.54 ]

Affected joint [#] 0.0 ( 0.0 ) [ 0 - 0 ] < 0.001 2.2 ( 0.6 ) [ 2 - 4 ]

K/L grade right knee 0.0 ( 0.0 ) [ 0 - 0 ] < 0.001 1.5 ( 1.0 ) [ 0 - 3 ]

K/L grade left knee 0.0 ( 0.0 ) [ 0 - 0 ] < 0.001 1.3 ( 1.0 ) [ 0 - 3 ]

K/L grade right hip 0.8 ( 0.4 ) [ 0 - 1 ] < 0.001 1.7 ( 0.7 ) [ 0 - 3 ]

K/L grade left hip 0.9 ( 0.3 ) [ 0 - 1 ] < 0.001 1.6 ( 0.5 ) [ 1 - 2 ]

Summed K/L grade 1.7 ( 0.6 ) [ 0 - 2 ] < 0.001 6.1 ( 1.4 ) [ 4 - 10 ]

Current NSAID use

Current Cox-2 inhibitor use

none none

none none

Female

Male

Control Case

Control Case

none

none

none

none

Table 1. The characteristics of the OA and control participants.

Human urinary metabolite profile

The underlying hypothesis of the present study is that OA leads to, or is 

accompanied by, metabolic disturbances that are reflected in an aberrant urinary 

metabolite composition. NMR with subsequent multivariate data analysis revealed 

such OA-related alterations in the urinary metabolite composition, resulting in a 

metabolic biomarker fingerprint that distinguished healthy individuals without OA 

from individuals with OA. 
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When applying PCDA on the male and female NMR data sets, clear differences for 

both genders were observed between the NMR spectra of OA cases and controls 

(P<0.001 for both male and female subjects). Plots of the PCDA scores clearly 

showed this (Figure 1A and 1C). Thus, PCDA resulted in a distinct separation 

Figure 1. Plot of the scores of urinary NMR spectra of male (1A) and female (1C) participants without OA versus 

participants with OA (the points represent the complete urinary NMR spectra of the subjects). The prevalence of OA is 

reflected by the urinary composition, as there is a clear difference between the scores of the two groups (P<0.001 for 

both male and female subjects). In addition, metabolite profiles of male (1B) or female (1D) participants without OA 

versus participants with OA. Peaks (representing NMR signals, expressed in ppm) in the positive direction indicate 

metabolites that are more abundant in urine of participants with OA than in urine of participants without OA. 

Consequently, metabolites that are less abundant in urine of OA subjects as compared to the controls are presented 

as peaks in the negative direction. Signals that were also found in the guinea pig OA study are indicated. 
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between groups based on the metabolite composition and metabolite concentration 

of urine which is characteristic for each group. In other words, a specific 

combination of metabolites can distinguish OA cases from controls.

The profiles of these metabolites for male and female subjects are shown in Figure 

1B and 1D. In these ‘fingerprints’, NMR signals of urinary metabolites were 

depicted according to their relative abundance in OA versus non-OA subjects. 

NMR signals of the metabolic profile that displayed an association with OA for both 

males as well as females and that showed up in the same direction were δ 1.18, 

2.02, 2.22, 2.38, 2.58, 2.74, 3.02, 3.14, 3.18, 3.22, 3.26, 3.70, 3.74, 3.78, 3.94 ppm 

in the positive direction and δ 1.38, 3.58, 3.98, 7.02, 7.06, 7.10, 7.54, 7.58, 7.62, 

7.66, 7.78, 7.82 and 7.86 ppm in the negative direction. Signals at δ 3.06 ppm in a 

positive direction and δ 2.14, 2.18, 3.30, 3.62, 7.14, 7.38 ppm in the negative 

direction varied strongly between males and females.

Metabolite profile in relation to summed KL-grade

Partial least squares regression was performed to correlate urine NMR spectra with 

the summed knee and hip K-L grades of subjects. A model was obtained that could 

predict the K-L grade from the urine NMR spectra for male participants (R2=0.82) 

and female participants (R2=0.93) (Figure 2 left and right panel respectively), thus 

showing the sensitivity of the metabolite profile for OA. The NMR patterns (thus 

metabolite profiles) that were shown by PLS regression to be correlated to the K-L 

grade, were largely similar to the metabolite profiles obtained by PCDA on controls 

versus OA cases, respectively (Figure 3). NMR signals that correlated to OA and 

that showed similar patterns in men and women were δ 1.18, 2.38, 2.58, 2.74, 

3.10, 3.14, 3.18, 3.70, 3.74, 3.78, 3.94 ppm in a positive direction and δ 1.38, 3.58, 

3.98, 7.02, 7.10, 7.54, 7.58, 7.62, 7.66, 7.82 and 7.86 ppm in a negative direction. 

Identities of NMR signals

Although the NMR signals that make up the fingerprints are not yet characterized 

(which would require extensive mass spectroscopy), rough identification of the 

metabolites can be done based on the comparison of their NMR pattern with 

databases containing NMR signatures of known molecules. According to these 

databases, the NMR signals at δ 1.18, 2.38, 2.58, 2.74, 3.10, 3.14, 3.18, 3.70,
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Figure 2. Plot of measured summed K-L grades versus predicted summed K-L grades from urine NMR profiles for 

male (2A) and female (2B) participants, obtained with a PLS model. The goodness of fit (R2) of the model is 0.93 and 

0.82 for male and female subjects respectively, showing that the correlation between K-L grades and the urine 

metabolite profile is high. 

3.74, 3.78, 3.94 ppm in the positive direction (levels increased with OA) represent, 

among others, metabolites like hydroxybutyrate, pyruvate, creatine/creatinine and 

glycerol. Signals at δ 1.38, 3.58, 3.98, 7.02, 7.06, 7.10, 7.54, 7.58, 7.62, 7.66, 7.78, 

7.82 and 7.86 ppm in a negative direction (levels decreased with OA) represent, 

among others, compounds like histidine and methylhistidine. 

Discussion

A biomarker for OA that is useful for early disease detection, that reflects the 

course of joint destruction, and that predicts long-term outcome is currently lacking 

[14]. Such a biomarker could be used to assess disease progression and the 

effects of therapy and thereby serve as an outcome measure in clinical trials. 

Ultimately, an ideal OA biomarker would potentially facilitate the development of 

effective individualized treatment plans and approaches. 

Classical biomarker development, based on the detection of known tissue 

synthesis and resorption markers, has thus far not yielded biomarkers sufficiently 

specific and/or sensitive enough for the above mentioned applications [6]. The 
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Figure 3. Plot showing the NMR signals that correlate to the K-L grades according to PLS for both male and female 

participants. Peaks (representing NMR signals) in the positive direction indicate metabolites that are more abundant in 

urine of patients with OA than in urine of participants without OA. Consequently, metabolites that are less abundant in 

urine of participants with OA are presented as peaks in the negative direction. There is a large similarity with the 

metabolite profiles obtained with PCDA.

recent and rapid progression in the field of NMR with subsequent MVDA has 

heralded the advent of a new approach to OA biomarker development. From the

overall mixture of metabolites in a biological fluid like urine, a combination of 

molecules can be identified that together best reflect a disease process [8]. 

In the present study, we were able to discriminate between subjects who did not 

have OA and subjects with radiological OA, based on small differences in urinary 

metabolite composition and metabolite levels as detected by NMR and subsequent 

MVDA. We identified a urine metabolite profile that was strongly associated with 

OA and which appeared in male as well as in female subjects. A regression model 

showed that this metabolite profile correlated with the summed Kellgren Lawrence 

scale of radiological OA, for male as well as female subjects. Hence, from the 

metabolite profile it was possible to discriminate between OA cases and controls 

and, moreover, to predict the OA state and severity in a sensitive manner. The 

metabolite profile that we identified in human samples strongly resembled the one 
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we identified previously in samples from the guinea pig model for OA [10]. This 

further supports the supposition that the metabolite profile could serve as a

biomarker for OA.

In addition to its use as a biomarker for osteoarthritis, the OA-specific metabolic 

fingerprint also provides information on the cellular processes that occur during the 

disease and as such, the metabolic profile contributes to our understanding of the 

pathophysiology of the disease. The presence of hydroxybutyrate, pyruvate, 

creatine/creatinine and glycerol in the metabolite profile could point at an enhanced 

use of fat, and hence an altered energy utilization. This is consistent with studies 

described in the literature in which the involvement of altered energy metabolism in 

OA has been proposed [15]. It is possible that some of the metabolites associated 

with OA are intermediaries in these metabolic pathways.

The metabolite profile for human OA also indicated an alteration in histidine 

metabolism. Our results demonstrated lower levels of histidine and methylhistidine 

in association with OA. This finding is consistent with the hypothesis that histidine 

is consumed by metabolism to histamine, itself responsible for stimulating the 

proliferation of articular chondrocytes into clusters, a characteristic of OA cartilage 

[16-17]. The synthesis of histamine from histidine is catalysed by histidine 

decarboxylase [18-19] and both histamine and histidine decarboxylase have been 

demonstrated in chondrocytes of OA cartilage [16-17]. These results would 

suggest that lowered levels of histidine may be caused by over-expression of 

histidine decarboxylase. However, more studies are needed to confirm this 

hypothesis.

In conclusion, our study provides evidence of a diagnostic metabolite profile 

associated with OA that correlates with K-L grades. Our findings are consistent 

with other studies reporting effects on altered energy and histidine metabolism in 

association with OA. The metabolite profile may provide a sensitive outcome 

measurement tool that can be used to evaluate the effects of nutrients and drugs 

on the incidence and progression of the disease. Results are promising but further 

research will be necessary to validate this hypothesis. Moreover, this metabolite 

profile may provide a tool to allow physicians to better quantify the extent of 

disease. Mass-spectroscopy-based identification of the unknown metabolites will 

be an important next step in promoting an understanding of the disease 
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6
Urinary metabolite profile as

early biomarker for acute 
rejection after kidney 

transplantation

Abstract
Objective:  Renal transplantation is the preferred treatment option for patients with (or approaching) 

end-stage renal failure. A frequent problem after such an operation is acute rejection of the transplanted 

organ due to an attack of the immune system against the allograft. This may lead to functional 

deterioration of the kidney and to a negative effect on long-term graft survival. Early diagnosis of acute 

rejection may prevent structural damage to the kidney and is supposed to be beneficial for long-term 

allograft survival. This study was set up to investigate whether a urinary metabolite profile can be 

identified that is associated with an acute rejection episode. Such a profile could also serve as an early 

biomarker for acute allograft rejection. 

Methods: Urine samples of nineteen male participants who underwent a kidney transplantation were 

selected from a prospectively collected consecutive cohort transplanted at the Leiden University Medical 

Center. Nine patients with biopsy-confirmed acute rejection in the early posttransplantation period were 

identified, as well as ten control subjects who maintained proper function of their kidney transplant.

Samples were measured by 1H Nuclear Magnetic Resonance spectroscopy (NMR) with subsequent 

multivariate data analysis (MVDA). 

Results: Urine composition was different for patients showing acute rejection as compared to control 

subjects at time of biopsy (P<0.001) and also five days prior to the biopsy (P<0.001). A urinary 

metabolite profile was determined which was associated with the occurrence of an acute rejection 

episode. Five days prior to acute rejection, patients already showed an aberrant metabolite profile.

Conclusion: This study shows that a urinary metabolite profile may serve as a novel early biomarker 

that is able to predict the occurrence of an acute rejection episode in renal transplant recipients.

In preparation for publication.
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Introduction

The kidneys allow the excretion of waste products from the body, regulate the 

volume of extracellular fluid and the balance of electrolytes [1]. Acute renal failure 

is characterized by a sudden decrease in renal function due to injury, disease or 

toxins. When remedies are used in time, kidney functions may restore. In case of 

chronic renal failure, the functions of the kidney are slowly getting worse. With 

good medication however, it is possible to control the process of deterioration [1-2]. 

In end-stage renal disease, chronic renal failure progresses to a point at which the 

kidneys work less than 10% of their capacity [3]. At this point the kidneys are no 

longer fulfilling their role of removing waste and excess fluids from the body. Toxins 

start to build up in the blood causing progressive complaints and potentially life-

threatening complications such as hyperkalaemia. Currently there is no cure for 

end-stage renal disease. This condition is fatal to the patient unless dialysis on a 

regular basis or a kidney transplant is performed [2]. 

Renal transplantation is the preferred treatment of patients with, or those 

approaching end-stage rnal failure [4-5]. Allograft rejection remains an important

problem after renal transplantation. In case of an acute rejection episode, a 

transplant recipient's immune system attacks the transplanted organ or tissue. 

Therefore, kidney transplant patients require life-long treatment with 

immunosuppressive drugs that suppress the alloimmune response [4]. With the 

current regimen, the overall incidence of early acute rejection still about 20-30% of 

kidney transplant recipients [5]. Acute rejection occurs most often within three 

months after transplantation but it can occur at any time after transplantation. Acute 

rejection is predominantly mediated by T-cells that infiltrate the graft and cause 

tissue destruction [5]. Treatment with high-dose steroids, T cell antibodies or a 

change in immunosuppressant drug can in the large majority of cases effectively

control the rejection process. The functional response of an acute rejection episode 

to therapy has shown to be a strong impact factor for long-term graft survival after 

kidney transplantation [6-7]. Rejection episodes that do not affect renal function 

had no impact on graft survival whereas acute rejections in which baseline function 

was not restored were shown to have a profound impact on renal survival [7]. 

Currently, serum creatinine is used to monitor allograft function. Creatinine is a 

compound that is completely filtered from the blood by the glomerulus and also 
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secreted by the renal tubular epithelial cells. Hence its clearance is a good 

estimate of the glomerular filtration rate [1-2]. Although this is an easy and 

relatively inexpensive assay, it is not very sensitive and the blood creatinine level 

does not rise until significant injury to the kidney has occurred. Currently no 

biomarkers exist that can detect an acute rejection episode in a reliable and 

sensitive manner before the creatinine levels rise. Episodes of acute rejection are 

usually diagnosed by a kidney biopsy, which is performed at the time of graft 

dysfunction according to sequential serum creatinine levels. Since biopsy cannot 

be done frequently, it is not a very satisfactory method for early detection of acute 

rejection, i.e. before loss of function occurs. A prognostic biomarker for acute 

rejection will facilitate the appropriate and timely treatment of patients in order to 

prevent irreversible loss of renal allograft function. This is likely to have a beneficial 

effect on long-term graft survival. Next to that, the discovery and development of 

new therapies would greatly benefit from an early biomarker for acute rejection. 

Metabolomics is the untargeted profiling of metabolites in biological samples [8-10]. 

This technology, together with approaches such as transcriptomics and proteomics 

[11], provides more insight regarding the pathogenesis of diseases. Developments 

in the field of metabolomics now provide the tools to investigate pathways and 

molecules involved in allograft rejection and to identify metabolite profiles that 

contain potential biomarkers. The present study was initiated from the assumption 

that a biomarker profile, which reflects acute kidney rejection, may be detected in 

urine. Using 1H Nuclear Magnetic Resonance spectroscopy (NMR) and 

subsequent multivariate data analysis (MVDA) we investigated whether acute 

rejection after kidney transplantation is preceded by an aberrant urine metabolite 

profile that can be used to predict this occurrence in time.

Materials and Methods

Study population and sample selection

Early morning urine samples of nineteen male participants who underwent a kidney 

transplant operation were selected from a prospective study at the Leiden 

University Medical Centre (Leiden, The Netherlands). Subjects received a 

maintenance immunosuppressive regimen including prednisone, ciclosporin micro 

emulsion and mycophenolate mofetil. Patients with delayed graft function after 
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transplantation were excluded from the current study. Characteristics of patients 

their donor and the transplanted kidney were known (degree of mismatches for 

HLA antigens, ischemia time, sex, age). Daily serum creatinine values were 

collected to monitor kidney function. When creatinine values on two subsequent 

days were raised more than 10% over their baseline values, a biopsy was carried 

out after exclusion of potential pre- and post renal causes for graft dysfunction. 

Nine patients with a biopsy-confirmed acute rejection episode in the early 

posttransplantation period, as well as ten subjects with stable renal allograft 

function were selected. Urine samples collected at the time of rejection and at five 

days prior to the event were identified and samples collected within at comparable 

timeframe were chosen from the control subjects. The collected urine samples 

were centrifuged at 3000 rpm for 10 minutes to remove debris, and stored at –80°C 

until analyses. 

NMR analysis of urine samples

Prior to NMR spectroscopic analysis, 1 mL urine samples were lyophilized and 

reconstituted in 1 mL sodium phosphate buffer (0.1 mmol/L, pH 7.4, made up with 

D2O), to minimize spectral variance arising from differences in urinary pH. Sodium 

trimethylsilyl-[2,2,3,3,-
2
H4]-1-propionate (TMSP; 0.1 mmol/L) was added as an 

internal standard. NMR measurements were carried out in random order and in 

triplicate in a fully automated manner on a 600 MHz spectrometer (Avance, Bruker 

BioSpin GmbH, Rheinstetten, Germany), using a proton NMR set-up operating at a 

temperature of 300K. For each sample, 128 free induction decays (FID) were 

collected. Each FID was induced using a 45-degree pulse, an acquisition time of 

2.73 s and a relaxation delay of 2 s. The FIDs were collected as 64K data points 

with a spectral width of 12.000 Hz. The spectra were processed using the standard 

Bruker software. An exponential window function with a line broadening of 0.3 Hz 

and a manual baseline correction were applied to all spectra. After referring to the 

internal NMR reference (TMSP δ= 0.0), line listings were prepared with the 

standard Bruker NMR software. To obtain these listings all lines in the spectra 

above a threshold corresponding to about three times the signal-to-noise ratio were 

collected and converted to a data file suitable for multivariate data analysis 

applications. The NMR data file was imported into Winlin (V2.1, TNO, The 
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Netherlands). Minor variations from comparable signals in different NMR spectra 

were adjusted and lines were fitted without loss of resolution, after which MVDA 

was carried out. 

Multivariate data analysis

Data was centered and scaled to unit variance, upon which principal component 

discriminant analysis (PCDA) was performed using the Winlin software package. 

Health status (controls versus patients) was used as a priori knowledge for 

discrimination in PCDA. The NMR data set was randomly divided into a training 

data set and a test data set. The PCDA models were built upon the training data 

set. Subsequently the test data set was used to test the reliability of the training 

model. Predictions were in agreement with the actual groupings (patients versus 

controls). 

Scores were plotted against the discriminant axis. The unpaired T-test was 

performed to evaluate the statistical significance of the difference between the 

PCDA scores of the two groups (Excel Office 2003, Microsoft Corporation, USA). 

The difference between scores was correlated to the original NMR features in the 

spectra. The resulting metabolite profiles provided insight into the type of 

metabolites responsible for the disparity. 

Results

Description of sample

The mean characteristics of the group with patients showing acute rejection and 

the group with control participants are given in Table 1. No consistent statistically 

significant differences were observed except for the cold ischemia time (P<0.05) 

and creatinine clearance at three months (P<0.05). 

Urinary metabolite profile of patients versus controls at time of rejection

The underlying hypothesis of the present study is that a metabolite profile could be 

hidden in urine of patients who show acute kidney rejection after transplantation. 

This profile should be specific for this process. Using NMR with subsequent MVDA, 

such abnormal urinary composition may be quantified.  

When PCDA was applied on the NMR spectra of urine samples taken at the time of 
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biopsy, a difference showed up between scores of controls and patients (Figure

1A; P<0.001). Roughly, the scores of the controls are above zero, whereas the 

scores of the patients are below zero. The scores of two patients show overlap with 

the scores of the controls.

patients with 

rejection

patients without 

rejection P value

Female acceptor (%) 25 56 0.35

Age years (median) 53 39 0.15

First transplant (%) 62.5 77.8 0.60

Mismatches

HLA-A 

zero

12.5 55.6 0.15

HLA-B 

zero

12.5 44.4 0.30

HLA-DR 

zero

37.5 55.6 0.65

CMV status recipient 

negative (%)

25 33.3 1.00

CMV status donor 

negative (%)

50 55.6 1.00

Female donor (%) 37.5 33.3 1.00

Panel Reactive Abs 

(highest %)

17.86 34.67 0.35

Warm ischemia time 

(min)

32.5 30 0.75

Cold ischemia time (h) 27.22 17.38 0.05

creatinin clearance at 3 

month 

(median; mL/min)

47.1 79,6 0.02

creatinin clearance at 6 

month 

(median; mL/min)

60.2 82,1 0.2

Table 1.  Mean characteristics of the group with patients showing acute rejection and the group with control 

participants. No consistent statistically significant differences were observed except for the cold ischemia time (P<0.05) 

and creatinine clearance at three months (P<0.05). 
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A metabolite profile could be constructed that marks the difference between the 

groups, and which is likely to reflect acute kidney rejection (Figure 1B). In this 

fingerprint, NMR signals of urinary metabolites are visualized which increased or 

decreased in association with acute graft rejection at time of biopsy. NMR signals 

that were strongly associated with the event, were δ 2.18, 3.22, 7.46 ppm in 

positive direction. These signals represent trimethylamine N-oxide (TMAO), 

amongst other not identified signals. Signals at δ 3.18, 3.46, 3.58, 3.66, 3.78, 3.82, 

3.90 and 4.06 ppm in negative direction represent, amongst others, metabolites 

like glucose and creatinine. 

Metabolite profile five days before rejection

The question is now whether the observed differences in the metabolite profile at 

the time of acute rejection already can be detected at a time point when creatinine 

levels have not raised yet. When PCDA was carried out on the NMR data of urine 

samples taken five days prior to biopsy, a difference between scores of controls 

and patients showing acute rejection later on showed up (Figure 2A; P<0.001). 

Scores of the controls are above zero, whereas scores of the patients are below 

zero. 

Thus, five days before acute rejection is assessed with biopsy, MVDA showed a 

visible separation between patients and controls. This difference is based on the 

concentrations of metabolites which were characteristic for each group. The 

metabolite profile for kidney rejection at five days prior to biospy showed similarities 

but was in part different from the one obtained at the day of rejection (Figure 2B). 

NMR signals that were strongly associated with rejection, were δ 2.26, 2.78, 3.10, 

3.22 and 3.66 ppm in positive direction. Signals in these regions represent, 

amongst other not identified signals, metabolites like TMAO and dimethylglycine. 

Signals at δ 3.02, 3.26, 3.42, 3.50, 3.78, 3.82, 3.9 and 4.66 ppm in negative 

direction represent, amongst others, glucose that lowers in patients that showed 

rejection according to biopsy five days later on. 
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A

B

Figure 1. (A) A PCDA score plot of urinary NMR spectra of patients showing acute rejection upon kidney 

transplantation versus control subjects that presented no rejection (the points represent the complete urinary NMR 

spectra of the subjects). Urine was taken at time of biopsy. The prevalence of rejection is reflected in the urinary 

composition, as there is a clear difference between the scores of the two groups on the discriminant axis (P<0.001). 

(B) Metabolite profile showing differences between urinary NMR spectra of controls versus patients showing acute 

rejection. Peaks (representing NMR signals) in the positive direction indicate metabolites that are more abundant in 

urine of patients showing acute rejection than in urine of the controls. Consequently, metabolites that are more 

abundant in urine of these controls are presented as peaks in the negative direction. 
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Discussion

A biomarker that can early diagnose acute kidney rejection is important as it will 

clear the way for preventive therapy. This will allow for less functional damage to 

the kidney and may eventually result in prolonged long-term renal allograft survival. 

Currently no biomarkers exist that can detect an acute rejection episode in a 

reliable and sensitive manner and in an early stage. Using a metabolomics 

approach, we investigated whether a metabolite profile could be identified that is 

predictive for an acute rejection episode in renal allograft recipients. With NMR and 

subsequent MVDA we analyzed urine samples of nineteen male participants who 

underwent a kidney transplant operation. Nine of these patients were faced with 

acute rejection in the early posttransplantation months according to biopsy, 

whereas ten subjects showed no complications and served as controls. 

We were able to discriminate patients who showed acute graft rejection from 

control subjects. The distinction between these groups was based on small 

differences between urinary metabolite levels of the respective groups as 

measured by NMR. We found a urinary metabolite profile that was strongly 

associated with acute rejection. We also showed that, already five days before 

rejection was assessed according to biopsy, discrimination between urine contents 

of patients and controls was feasible. A metabolite profile was presented that may 

predict the subsequent acute rejection episode at least five days prior to the event. 

According to our results, the creatinine level in urine at biopsy was decreased in 

patients showing acute rejection. This finding was in line with clinical chemistry, in 

which patients with acute rejection showed a significant lower creatinine clearance 

as compared to the control subjects. An elevated blood creatinine level and 

reduced urinary creatinine excretion is a well-known characteristic in patients 

showing acute rejection [1-2]. 

However, the metabolite profile was not dominated by creatinine solely. TMAO was 

identified as a metabolite highly associated with acute graft rejection at biopsy as 

well as five days prior to the event. The metabolite TMAO has been associated 

with the occurrence of delayed graft function, and in particular to the cold ischemia 

time, the time a kidney is preserved on ice before transplantation [12-15]. Damage 

to the renal medulla due to cold preservation may cause the release in urine of 

TMAO and dimethylglycine [16-17]. In our study, the cold ischemia time was 
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A

B

Figure 2. (A) A PCDA score plot of urinary NMR spectra of patients developing acute rejection versus controls that 

presented no rejection (the points represent the complete urinary NMR spectra of the subjects). Urine was taken five 

days before the actual rejection found place according to biopsy. The prevalence of acute rejection is already reflected 

in the urinary composition five days before biopsy, as there is a clear difference between the scores of the two groups 

on the discriminant axis at this time point (P<0.001). (B) Metabolic profile showing differences between urinary NMR 

spectra of controls versus patients showing acute rejection. Peaks (representing NMR signals) in the positive direction 

indicate metabolites that are more abundant in urine of patients showing acute rejection than in urine of the controls. 

Consequently, metabolites that are more abundant in urine of these controls are presented as peaks in the negative 

direction. This biomarker profile predicts acute rejection five days prior to biopsy. 
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significantly higher for the patients showing acute rejection, which is in agreement 

with an elevated amount of TMAO in urine of these patients, but none of the patient 

had delayed graft function. 

The metabolite profile also pointed at lowered amounts of glucose in urine, which 

may be explained by the fact that renal perfusion is hampered by an acute 

rejection episode and consequently the glomeruli function less properly. 

This study shows that use of NMR with subsequent MVDA enables to measure 

biological fluids without pretreatment in a quick manner. It provides an unbiased 

and broad overview of many important metabolites present in biological samples 

and can thus be beneficial in the search for new biomarkers. However, many of the 

NMR signals in the metabolic profiles that were measured in our study could not be 

assigned to metabolites. Nominating compounds in NMR spectra of biological 

fluids is a common problem [10]. The choice for assigning an NMR signal to a 

metabolite may be influenced by existing knowledge about metabolic pathways 

that is already known. However, there are still many metabolites and pathways in 

the body we do not know. The interpretation of signals in an NMR spectrum of a 

biological fluid is hampered by an incomplete knowledge of metabolism [18]. More 

efforts should therefore be made to identify and validate metabolites. Seen in this 

light, for example liquid chromatography-mass spectrometry (LC-MS) and gas 

chromatography-mass spectrometry (GC-MS) are valuable complementary 

analytical tools.

In conclusion, the results of this study give evidence of a metabolite profile 

associated with acute kidney rejection at time of biopsy. We also identified an 

aberrant metabolite profile five days prior to the clinical assessment of an acute 

rejection episode. The obtained metabolite profiles, especially the metabolites 

upon which the identified profile is based, could play an important role as potential 

early biomarker for acute graft rejection. Findings about involved metabolites are in 

line with clinical chemistry and other studies that reported effects of metabolites 

related to the ischemia/reperfusion injury. The metabolites in the metabolic 

fingerprints could not all be nominated, but our results justify further research in this 

area. The identified early metabolite profile may contain potential early biomarkers 

that will provide a tool for physicians to diagnose acute rejection in time such that 
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preventive and custom-made therapy can be applied. Eventually, this should lead 

to less functional renal damage and an increase the longevity of renal allografts.
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7
A pilot study to investigate 

effects of inulin on Caco-2 cells 
through in vitro metabolic 

fingerprinting

Abstract
Metabolic fingerprints are novel measurement tools to evaluate the biochemical status of a living 

organism by using 1H Nuclear Magnetic Resonance spectroscopy (NMR) and multivariate data analysis 

(MVDA). In this way, a quick evaluation of changes in health or diseased state can be given, reflected in 

alterations of metabolic patterns. Normally, metabolic fingerprinting is based on in vivo studies. These 

studies are most times a labour-intensive and expensive manner of investigation. In vitro studies are not 

hampered by these disadvantages and form therefore an interesting alternative. In this research, results 

are presented of a pilot experiment in which metabolic fingerprinting was combined with an in vitro

model. For this purpose, differentiated Caco-2 cells were exposed to inulin respectively its fermentative 

metabolites, both dissolved in culture medium. Cells were incubated for 0 or 48 hours. Cell fractions 

were analyzed by NMR with subsequently MVDA. It was shown that differences in treatment provided 

detectable variations in time of metabolic patterns of cell contents. Results indicated that glucose 

metabolism linked to glutamate was of major importance in the effects of inulin and its metabolites on 

Caco-2 cells under the conditions of our study. Metabolic fingerprinting in combination with an in vitro

model appears to be a feasible method to visualize metabolic patterns of cell contents and provides an 

efficient procedure for generation of hypotheses about metabolic pathways involved. In vitro metabolic 

fingerprinting may in future be of great benefit for a better understanding of relations between nutrition 

and health. 

Based on: Lamers, R.A.N., Wessels, E.C.H., van de Sandt, J.J.M., Venema, K., Schaafsma, G., van der Greef, J., van 

Nesselrooij, J.H.J. (2003) A pilot study to investigate effects of inulin on Caco-2 cells through in vitro metabolic 

fingerprinting. J. Nutr., 133, 3080-3084.
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Introduction

Fructans are polymers of fructose. Inulin and oligofructose belong to this class of 

carbohydrates. Inulin is found in many plants and vegetables (e.g. chicory and 

Jerusalem artichoke). Chicory is by far the most commonly used source for the 

industry to obtain inulin as a commercial product. As an ingredient of foods, inulin 

functions, amongst others, as a fat and sugar replacement, mouth feel and texture 

improvement and dietary fibre. Inulin is counted as a prebiotic, since it is not 

susceptible to digestion and hydrolyzes by endogenous enzymes. By reaching the 

colon it will be fermented by the microbiota and selectively stimulate the growth of 

bifidobacteria [1]. Predominance of bifidobacteria in the large intestine is supposed 

to be beneficial for maintaining good health [1-2]. Fermentation products of inulin 

are short-chain fatty acids (SCFA; acetate, propionate and butyrate), lactate and 

gasses [2]. Functional effects of inulin on humans and experimental animals are 

relieved constipation, lowering blood glucose levels, improvement of absorption of 

calcium, reducing fasting triglycerides and LDL cholesterol, inhibition of growth of 

various kinds of tumours [3]. 

The underlying metabolism, which causes the effects of inulin, remains indistinct 

and not yet fully understood [3]. This is a more common problem in nutritional 

research, where there is a shortage of knowledge of the relationships between 

health and disease and effects of nutrition on the latter. Fortunately, in the field of 

metabolite research great progress was made recently due to metabolic 

fingerprinting [4-7]. This technique utilizes 1H Nuclear Magnetic Resonance 

spectroscopy (NMR) in combination with multivariate data analysis (MVDA) to 

analyze biological fluids. 

NMR provides concurrent detection of all hydrogen containing molecules in a 

sample without pre-treatment. NMR can thus reveal chemical structures of 

metabolites in biological fluids and subsequently clarify metabolic pathways 

involved in nutrition and health [8]. Nevertheless, interpretation of NMR spectra 

obtained from biological fluids is very complicated due to the enormous amount of 

spectral signals produced. 

MVDA is known to be a powerful technique for the analysis of data sets with a 

large number of variables. For this reason, MVDA is particularly opportune to find 

significant spectral changes in NMR spectra: it enables to visualize spectral 
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patterns in NMR data, and thus metabolites, which correlate with e.g. treatment or 

disease [4-6]. 

In MVDA, unsupervised and supervised techniques can be used. Unsupervised 

methods such as principal component analysis (PCA) search for similarities and 

differences in data sets without foreknowledge. A large set of related variables (e.g. 

NMR signals) is converted to a smaller set of uncorrelated variables, which express 

maximum variation in the original variables. The new variables are called principal 

components (PC) and each of them depicts an axis in multidimensional space. The 

distance of an object (e.g. a complete NMR spectrum of a sample) to a PC is called 

a score. Scores are plotted in a score plot, with the PCs as axes. When scores are 

situated close to each other in a score plot, this implicates that the NMR spectra of 

the samples are similar. When the clustering of scores matches the samples that 

were controls, treated or diseased in the original study set-up, a connection can be 

linked up between affected NMR signals, and thus metabolites, and treatment or 

disease. 

Calculation of the contribution of each original variable (e.g. a single NMR signal) 

to a PC yields a loading. When a loading is high, the original NMR signal adds 

greatly to the clustering of scores in the direction of the investigated PC. In a so-

called factor spectrum or metabolic fingerprint, loadings are presented as lines. 

The location of the lines in a factor spectrum corresponds to the location of the 

variables in the original NMR spectra. The length of a line denotes the contribution 

of a variable to the grouping of scores in the investigated direction [4]. Thus, a high 

line in positive direction indicates an NMR signal that is strongly ascending for a 

particular group of scores.   

Supervised methods such as partial least squares (PLS) and principal component 

discriminant analysis (PCDA) exploit supplemental information on the data set (e.g. 

biochemical, histopathological or clinical data) to identify and maximize similarities 

and differences between pre-defined groups [4-6]. In PCDA, the scores from PCA 

are used as a basis for linear discriminant analysis: discriminant analysis combines 

the PCs in such a way that differences between pre-defined groups are optimized 

[9]. 

Up to now, metabolic fingerprinting was mainly used in combination with in vivo

studies. These studies are time-consuming, labour-intensive and, because of these 
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and other factors, expensive compared to in vitro studies. When metabolic 

fingerprinting could successfully be applied to in vitro studies, this may be a useful 

alternative for in vivo based metabolic fingerprinting. Nutritional society could take 

great advantage of this in future. In vitro metabolic fingerprinting may be a relatively 

inexpensive and quick way to fill the gap in the lack of evidence for effects of e.g. 

functional foods on health.  

In the underlying research, a pilot in vitro experiment with metabolic fingerprinting 

was carried out. The suitability of in vitro metabolic fingerprinting was assessed by 

investigation of direct and indirect effects (after fermenting with the colonic 

microbiota) of inulin on Caco-2 cells [10]. 

Materials and methods

In vitro experiment

Caco-2 cells (designation HTB 37) were obtained from the American Type Culture 

Collection (ATCC, Rockville, MD, USA). For 500 mL culture medium, 440 mL 

Dulbecco’s modified Eagle medium (DMEM; cat.no. 42430) was used 

supplemented with 50 mL heat-inactivated foetal calf serum, 5 mL non-essential 

amino acids (10 mmol/L), 5 mL L-glutamine (200 mmol/L) and 0.5 mL gentamicin 

(50 mg/mL). Cell cultures were grown in this medium and maintained at 37oC in 

95% air and 5% CO2 (v/v; Sanyo incubator). Near confluent Caco-2 cell cultures 

were harvested by trypsinisation with 3 mL trypsin solution (25 g/L) in 147 mL 

phosphate buffered saline (PBS) and were resuspended in 10 mL culture medium 

and 5 times diluted. All chemicals were obtained from Gibco (Breda, the 

Netherlands).

For the experiment, cells were seeded in TranswellTM inserts in 12-well plates (1 

mL of cell suspension with 1.5 mL DMEM per well). The medium was changed 

every 2-3 days. Cells became confluent after about 4 days, at which time 

differentiation could begin. After complete differentiation, samples (wells) were fed 

with various media. Four samples were treated with 1.5 mL DMEM for 0 hours and 

four samples for 48 hours. A 10 times dilution of a saturated solution of 1.5 g 

Frutafit® EXL (Sensus, Roosendaal, The Netherlands) and 30 ml DMEM was used 

to treat four samples with 1.5 mL for 0 hours whereas four samples were treated 

with the same solution for 48 hours. Besides, four samples were treated with 1.5 



                                                                         Effects of inulin on Caco-2 cells – Chapter 7

69

mL metabolized inulin (run in TIM-2 feeding, 10 times diluted with DMEM) for 0 

hours and four samples for 48 hours. Another four samples were treated with 1.5 

mL TIM-2 feeding after passing the TIM-2 model (10 times diluted with DMEM) for 

0 hours and four samples for 48 hours.  The 0 hour samples were collected directly 

after start exposure 

The TNO in vitro model of the large intestine (nick-named TIM-2) simulates the 

physiological parameters in the large intestine (or colon), such as pH, temperature 

and an active microbiota similar in composition and activity to that in the human 

colon [11, 12]. Fermentation in the proximal colon was mimicked in this in vitro

model. To the control TIM-2 medium, the test compound in question (i.e. inulin) 

was added. This mixture was added to the TIM-2 system, giving rise of 

metabolized inulin. The temperature was kept at 37 oC, while the pH was kept at 

5.8. The model was flushed with gaseous nitrogen to allow growth of an active 

anaerobic, complex microbiota of human origin. The model was inoculated with a 

microbiota from human faecal material. Inulin was dosed at 10 gram per day in 

doses of approximately 104 mg per 15 minutes. The contents were mized by 

peristaltic movements. Microbial metabolites were removed from the model by a 

dialysis system running through the model. This prevented inhibition of the activity 

of the microbiota by accumulation of microbial metabolites. For more details on the 

in vitro model, please refer to Minekus et al (11) and Venema et al. (12).

All dilutions were centrifuged at 2500 x g for 10 min (Megafuge 2.0 RS, Heraeus, 

Germany). The dilutions with control TIM-2 medium and metabolized inulin were 

passed through a 0.2 µm filter before exposing them to the cultured cells.

Solutions with the respective test compounds were removed at 0 or 48 hours, 

depending on time of exposure. Cells were washed then with PBS of 37°C and 

dissolved in 1 mL of a solution of methanol (Sigma-Aldrich, Zwijndrecht, The 

Netherlands) in demineralized water (7.5 mol/L). Samples were sonicated for 10 

seconds at 20 µm to lyse the cells, using a MSE Ultrasonic disintegrator sonifier

(Beun-de Ronde BV, Amsterdam, The Netherlands). After that they were 

centrifuged (Eppendorf, Germany) at 13000 min-1 for 5 minutes, yielding samples 

of cell contents which were stored at -40°C until NMR analysis.



Effects of inulin on Caco-2 cells – Chapter 7

70

NMR analysis of in vitro medium and cell samples

Prior to NMR spectroscopic analysis, the culture medium was removed from the 

cell samples. Cells were evaporated to dryness under a stream of nitrogen gas. 

The samples were dissolved in 1 mL of sodium phosphate buffer (0,1 mol/L, pH 

6.0, made up with D2O). Sodium trimethylsilyl-[2,2,3,3,4-
2
H4]-1-propionate (TMSP; 

0.05 mmol/L) was added as internal standard. 

NMR measurements were carried out in random order and in triplicate in a fully 

automated manner on a 600 MHz spectrometer (Avance, Bruker BioSpin GmbH, 

Rheinstetten, Germany), using a proton NMR set-up operating at a temperature of 

300K. For each sample, 256 free induction decays (FID) were collected. Each FID 

was induced using a 45-degree pulse, an acquisition time of 4.10 s and a 

relaxation delay of 2 s. The FIDs were collected as 64K data points with a spectral 

width of 12.000 Hz. The spectra were processed using the standard Bruker 

software. An exponential window function with a line broadening of 0.5 Hz and a 

manual baseline correction were applied to all spectra. After referring to the internal 

NMR reference (TMSP δ= 0.0), line listings were prepared with the standard Bruker 

NMR software. To obtain these listings all lines in the spectra above a threshold 

corresponding to about three times the signal-to-noise ratio were collected and 

converted to a data file suitable for multivariate data analysis applications.

NMR data preprocessing and multivariate data analysis

The NMR data reduction file was imported into Winlin (V1.11, TNO, The 

Netherlands). Minor variations from comparable signals in different NMR spectra 

were adjusted and lines were fitted without loss of resolution [13]. To correct for 

sample dilution, the data were auto-scaled so that small and large signals 

contributed similarly to the final study result. Principal component discriminant 

analysis (PCDA) was performed, with treatment and time as additional information 

respectively. For PCDA, the NMR data set was randomly divided into a training 

data set and a test data set. The PCDA models were built upon the training data 

set. Subsequently the test data set was used to test the reliability of the training 

model. Predictions were in agreement with the actual groupings. 

The resulting discriminants were quantified for each of the NMR spectra and the 

first discriminant (D1) was plotted versus the second discriminant (D2) to visualize 
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clustering. Factor spectra were used to correlate the position of clusters in the 

score plot to the original NMR signals in the spectra. The metabolic fingerprints 

were prepared in directions of maximum separation of one cluster versus another 

cluster, to provide insight into the type of metabolites responsible for the separation 

between clusters [4]. Metabolites were assigned from the metabolic fingerprints 

using an in-house database with NMR spectra. 

Results

This research was initiated from the assumption that inulin and its metabolites will 

affect Caco-2 cells. Consequently, due to a change in metabolite levels in these 

cells an aberrant metabolite profile would normally arise. This alteration in cell 

contents could then be visualized by using metabolic fingerprints. 

The effect of inulin on cell contents

If there is an effect of inulin on cell contents, this information will be contained in 

the NMR spectra of these cells. Principal component discriminant analysis (PCDA) 

was used to visualize differences between NMR spectra obtained from contents of 

cells exposed to DMEM solely versus contents of cells exposed to DMEM with 

inulin, at two points of time (Figure 1A). The first (D1) and second (D2) discriminant 

explained 36% respectively 33% of the variance. It is clear that the contents of 

Caco-2 cells treated with inulin in DMEM are positioned in about the same location 

in the score plot at 0 hours as the contents of cells treated with DMEM solely. 

However, after 48 hours differences were clearly visible between contents of cells 

exposed to DMEM with, respectively without, inulin. When looking at the metabolic 

fingerprint (Figure 1B), it can be noticed that the differences were due to changes 

in regions 1-4.5 ppm and 7-8.5 ppm. Metabolites that could be assigned to these 

signals using the in-house database with NMR spectra, were leucine (δ 0.96, 1.71), 

isoleucine (δ 0.94, 1.01), valine (δ 0.99, 1.04), alanine (δ 1.48, 3.79), α- and β-

glucose (δ 3.47, 3.49, 3.53, 3.71, 3.72, 3.74, 3.84, 3.9, 4.64, 5.24), phenylalanine 

(δ 7.33, 7.38, 7.43), tyrosine (δ 6.91, 7.2) and glutamate (δ 2.1, 2.35, 3.77). 
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Figure 1. Principal component discriminant analysis (PCDA) score plot and factor spectrum visualizing effects of inulin 

on Caco-2 cell contents. (A) PCDA score plot of NMR spectra of cells treated with control medium and cells treated 

with medium containing inulin at 0 versus 48 hours (the points represent the complete NMR spectra of Caco-2 cell 

contents; each cluster contains four samples (wells) measured in triplicate). At 0 hours there is no difference between 

NMR spectra, and thus cell contents, of the different treated cells, whereas a clear difference has developed between 

the two groups at 48 hours. This indicates an effect of inulin on cells. (B) Factor spectrum, or metabolic fingerprint, of 

NMR spectra of cells treated with inulin containing medium versus cells treated with control medium at 48 hours. Peaks 

(representing NMR signals) in the positive direction indicate metabolites that are more abundant in cells treated with 

inulin (at 48 hours) compared to cells treated with control medium (at 48 hours). Consequently, metabolites that are 

more abundant in cells treated with control medium are presented as peaks in the negative direction. 
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The effect of fermented inulin on cell contents

When PCDA was performed on the NMR spectra of contents of Caco-2 cells 

treated with fermented inulin versus contents of cells treated with the 

accompanying control medium, the first (D1) and second (D2) discriminant 

explained 41% respectively 35% of the variance. The score plot reveals that both 

groups have the same location at 0 hours (Figure 2A). However, after 48 hours of 

exposure, a difference could be observed between contents of Caco-2 cells 

exposed to control medium solely and contents of cells exposed to medium with 

fermented inulin. This was also reflected in the metabolic fingerprint at 48 hours 

(Figure 2B). From the fingerprint, it can be noticed that differences in regions 

around 1.5, 2, 3, 4 and 8 ppm contributed heavily to this effect. According to the 

NMR database, metabolites that, amongst others, belong to these signals are 

lactate (δ 1.33, 4.12), alanine (δ 1.48, 3.78), proline (δ 2.01, 2.07, 4.14), succinate, 

2-oxoglutarate (δ 2.44, 3), nicotinate and nicotinamide (δ 7.97, 8.20, 8.28, 8.52).

Discussion 

In the present study, a first step was taken in combining metabolic fingerprinting 

with in vitro models. From a pilot experiment with Caco-2 cells exposed to inulin, it 

became clear that the combination of in vitro models, NMR and MVDA may 

develop into a promising way to evaluate the biochemical status of cells. 

Differences could clearly be revealed between contents of cells exposed to DMEM 

with, respectively without, inulin after 48 hours. At 0 hours this difference was not 

visible. Hence, their NMR spectra, and thus metabolite levels in the cells, were 

significantly different. This indicates that inulin had an effect on contents of Caco-2 

cells in time. The score plot of NMR spectra from contents of Caco-2 cells treated 

with fermented inulin versus contents of cells treated with the accompanying 

control medium pointed out that a difference could be observed between the two 

groups at 48 hours. 

Metabolic fingerprints were identified that reflected effects of inulin as well as its 

metabolites on Caco-2 cell contents. The height of a line in a metabolic fingerprint 

reflects the importance of an NMR signal to investigated clusters in a score plot. 

Metabolic fingerprints thus provided information about metabolites, which were 

elevated or lowered in one cluster compared to another cluster. 
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Effects of inulin itself on cell contents have not been investigated widely yet, 

because it is presumed that it is fermented near to completion in the gut. However, 

effects may occur in the small intestine, where inulin is not digested neither 

fermented. According to the metabolic fingerprint derived from our study, inulin 

itself seemed to influence metabolism in Caco-2 cells. The amount of glucose, 

together with glutamate contents, ascended after 48 hours due to treatment with 

inulin compared to the controls. This could point at activated gluconeogenesis in 

the Caco-2 cells under the conditions of our experiments. It is known that glucose 

metabolism is altered by glutamine via the citrate cycle [14]. However, the liver and 

kidney are considered as the only organs capable of gluconeogenesis although 

fresh concepts on glutamine and glucose metabolism have revealed that release of 

glucose might also find place in the small intestine when in fasting state [15]. Since 

Caco-2 cells develop some properties 

of the small intestinal epithelium during differentiation, this hypothesis merits further 

investigation using isotopes to measure rates of gluconeogenesis. 

Another explanation for the rise in level of glucose due to inulin treatment could be 

the fact that some inulin, or a breakdown product, was taken up by the cells. 

However, it is unlikely that inulin passed through the membrane into the cell by 

facilitar diffusion. For this, inulin is too large of a molecule unless pinocytosis had a 

share in it. When the latter is the case, fructose would be converted to glucose in 

the cell. Contents of glucose would grow then and thus also become available for 

glycolysis to form phosphoenol pyruvate. This compound is the origin for 

production of tyrosine via the shikimate pathway. A rised level of this compound in 

the metabolic fingerprint supports that this biochemical route was affected.  

Furthermore, phosphoenolpyruvate can be converted to pyruvate. Subsequently, 

pyruvate is oxidized to acetyl-CoA that enters the citrate cycle. When oxidation of 

pyruvate is not complete, alanine and lactate may be formed. These compounds 

showed elevated levels in the metabolic fingerprint. Glutamate production 

(ascending in the metabolic fingerprint) takes place from the citrate cycle by 

transamination between 2-oxoglutarate and amino acids to be catabolized [16]. 

According to the metabolic fingerprint, levels of phenylalanine, valine, leucine and 

isoleucine  were elevated due to inulin compared to the controls.  These 

compounds are essential amino acids. It therefore seems unlikely that Caco-2 cells
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Figure 2. Principal component discriminant analysis (PCDA) score plot and factor spectrum visualizing effects of 

metabolized inulin on  Caco-2 cell contents. (A) PCDA score plot of NMR spectra of cells treated with control medium 

versus medium containing fermented inulin at 0 and 48 hours (the points represent the complete NMR spectra of 

Caco-2 cell contents; each cluster contains four samples (wells) measured in triplicate). The difference between NMR 

spectra of cell contents at 48 hours is reflected by the clear separation into two groups at this time point whereas at 0 

hours no difference is visible.  This points at an effect of metabolized inulin on cells. (B) Factor spectrum, or metabolic 

fingerprint, of NMR spectra of Caco-2 cells treated with medium containing fermented inulin versus cells treated with 

medium solely at 48 hours. Peaks in the positive direction indicate metabolites that are more abundant in Caco-2 cells 

treated with fermented inulin than in Caco-2 cells treated with control medium. Consequently, metabolites that are 

more abundant in cells treated with control medium are presented as peaks in the negative direction.
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are able to synthesize these compounds but it may be hypothesized that protein 

synthesis and degradation was altered due to inulin.  

After exposure to fermented inulin, metabolites related to the citrate cycle, like 

alanine, lactate, succinate, 2-oxoglutarate were most prominent. Besides, the 

amount of nicotinate and nicotinamide increased and glutamate production was 

enhanced, reflected in an elevated level of proline. These metabolites support the 

idea that glycolysis in Caco-2 cells seemed to be stimulated by fermented inulin 

compared to the controls. In Figure 3, altered metabolites and the metabolic 

pathways in which they are involved are depicted.

The metabolites mentioned in this article could quiet easily be nominated from the 

metabolic fingerprints by experience and using an in-house database with NMR 

spectra. Metabolic fingerprinting thus provides an efficient place to start 

hypotheses about affected metabolic pathways. However, definitive evidence will 

await confirmatory studies using techniques like liquid chromatography-mass 

spectrometry (LC-MS) and 2-dimensional NMR. Besides, from the presented 

metabolic fingerprints it becomes clear that not all signals could be identified using 

an in-house database. For elucidating structures of metabolites that are more 

difficult to identify from metabolic fingerprints (e.g. the heavily contributing signals 

around δ 3.25 in Figure 2B) other techniques are also indispensable in future. 

Nevertheless, for global screening in vitro metabolic fingerprinting seems a 

promising technology: in a realistic nutritional research study with Caco-2 cells, 

biochemical changes in cells, resulting from exposure, could be detected well. 

Metabolic fingerprinting might in principle even be able to measure excretion of 

metabolites from cells into the culture medium, thus further helping the elucidation 

of cell metabolism.

In vitro metabolic fingerprinting studies provide an inexpensive starting point for 

formulation of hypotheses about affected metabolic pathways and could even 

become a replacement of costly in vivo metabolic fingerprinting studies. It will be a 

great challenge to develop more in vitro models to combine with metabolic 

fingerprinting. The results of these studies should be compared with similar in vivo

studies, upon which in future in vitro based metabolic fingerprinting may function as 

an alternative for in vivo based fingerprinting in specific occasions. This could 

greatly enhance and facilitate evidence-based nutritional studies. 
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Figure 3. Metabolic pathways in Caco-2 cells, which may be affected by treatment with inulin and its metabolites.
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8
Profiles of metabolites and 

gene expression in rats with 
chemically induced hepatic 

necrosis 

Abstract
This study analysed changes in gene expression patterns and metabolite levels in plasma or urine in 

parallel. The aim was to more sensitively detect hepatotoxicity and provide new insights in molecular 

mechanisms of hepatic necrosis. Rats received the model hepatotoxicant bromobenzene at three dose 

levels, the highest dose inducing acute centrilobular necrosis. The hepatic transcriptome and plasma 

and urine metabolite profiles were analysed after 6, 24 and 48 hours, using multivariate statistics.

Principal component analysis showed that molecular profiles from rats with hepatic necrosis differed 

largely from controls. Changes in levels of genes and metabolites were identified in correlation with the 

degree of necrosis, providing putative novel markers of hepatotoxicity. Moreover, samples from treated 

rats were distinguished from controls after exposure to bromobenzene below the concentration that 

induced hepatotoxicity markers or histopathological changes. Genes with altered expression were 

involved in oxidative stress, the acute phase response, cytoskeleton structure, apoptosis, 

biotransformation, glycolysis, cholesterol and fatty acid metabolism. Levels of endogenous metabolites

like alanine, lactate, tyrosine and dimethylglycine distinguished plasma from treated and control rats.

Complementary, NMR metabolite profiling enabled to distinguish the urine samples based on the 

exposure levels, primarily through presence of a multitude of bromobenzene-derived metabolites.

Concluding, this parallel analysis of the liver transcriptome and metabolite profiles in plasma enabled to 

more sensitively detect changes related to hepatotoxicity and discover novel markers. Additional 

insights in the role of various biological pathways in bromobenzene-induced hepatic necrosis were 

obtained. 

Submitted for publication.
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Introduction 

Previous toxicogenomics studies have shown that both large-scale measurement 

of gene expression (transcriptomics) and metabolite profiling complement the 

current methods to identify and discriminate different types of toxicity. Moreover, 

the new technologies enable to investigate the mechanisms that lead to toxicity. To 

this date, most studies concentrated on hepatic toxicity. Transcriptomics using 

DNA-microarrays enabled the discrimination of responses by different classes of 

hepatotoxicants in vivo, as shown by [1-3]. Hamadeh and coworkers distinguished 

samples treated with two classes of toxins, and provided more details on the 

mechanisms of action [4].

In parallel, metabolomics, i.e. metabolite profiling by NMR combined with pattern 

recognition techniques, has been used to classify urine samples of rats treated with 

either a liver or a kidney toxicant [5-6]. Others analysed metabolites in liver, plasma 

and urine of rats treated with the model hepatotoxicant alpha-

naphthylisothiocynanate (ANIT) [7-8]. Urine profiles were analysed in time upon 

single dosage of ANIT, galactosamine and butylated hydroxytoluene [9]. Time-

related differences in metabolite contents were related to the stage of the lesions, 

and specific changes in metabolite levels were identified for each compound. 

While gene expression changes influence biochemical reactions, metabolite levels 

are determined by those biochemcial reactions. Therefore, complementary 

information is expected from so-called systems toxicology approaches, where 

transcriptomics, proteomics and/or metabolomics are combined to analyse toxicity 

in a systematic and holistic manner. Only few experiments integrating results from 

transcriptomics and metabolite profiling have been described. Very recently, Coen 

and colleagues reported transcriptomics and metabolomics analyses in mice 

treated with acetaminophen (paracetamol) [10]. This study demonstrated that 

analysis of gene expression and metabolite profiles provided complementary 

insights in APAP-induced hepatic effects. In earlier studies in our laboratory, we 

evaluated the combined use of transcriptomics and proteomics analyses of 

hepatotoxicity induced by bromobenzene (BB). Bromobenzene is a well studied 

model toxicant that causes necrosis in the liver (centrilobular) and kidney. Hepatic 

biotransformation and toxicity of BB in rat have been reported in detail [11-15]. 

Because the liver is the target for toxicity induced by many compounds including 
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bulk chemicals, drugs and food ingredients, the characteristics of the response 

induced by BB could be helpful in understanding hepatotoxicity induced by a 

variety of xenobiotics. 

Transcriptomics and proteomics analyses of hepatotoxicity were evaluated 24 

hours after a single i.p. dose of BB [16]. A new study was designed to determine 

the acute hepatotoxic effects at the gene expression level in time, after oral dosage 

of various concentrations of BB. Hepatic necrosis was observed only at the high 

dose level after 24 h, though gene expression changes characteristic for BB 

exposure were observed at 2.5 times lower dose level.  A few genes changed at 10 

times lower dose levels. expression of several genes was found to change 6 h after 

dosage. Genes that were statistically significant differentially expressed upon BB 

dosage were involved in processes like drug metabolism, oxidative stress, GSH 

synthesis and the acute phase response [16].

Aim of the study

In the present study, the aim was to investigate whether integrated analysis of the 

data from transcriptomics and metabolite profiling further increased the sensitivity 

of detection of hepatotoxicity. Our second question was how the combined analysis 

may expand current knowledge about the mechanism of chemically-induced 

hepatotoxicity. Moreover, relationships between gene expression changes and 

altered metabolite levels were assessed. Thus, NMR-based metabolite profiles of 

plasma and urine samples, collected from the study described by Heijne and 

colleagues [16] were combined with the transcriptomics data of this same study. 

The metabolite profiling aimed at detecting changed concentrations of endogenous 

metabolites as a result of hepatotoxicity (biomarkers of effect) and of BB-derived 

metabolites in urine and plasma (biomarkers of exposure). Results from parallel 

gene expression and metabolite analysis were combined with pre-existing 

biochemical knowledge in an overall interpretation of the mechanisms of action and 

effects of BB, a necrosis-inducing chemical, on liver physiology. 

Materials and methods

Urine and plasma samples were collected from the study by Heijne and colleagues 

[16] which was also the source of the transcriptomics and toxicity data. Briefly,
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three doses of bromobenzene (0.5, 2.0 and 5.0 mmol/kg body weight, dissolved in 

corn oil, 40% v/v) were administered to male Wistar rats by oral gavage. Animals 

were kept under controlled conditions, and the welfare of the animals was 

maintained in accordance with the general principles governing the use of animals 

in toxicity experiments of the European Communities (Directive 86/609/EEC) and 

Dutch legislation (The Experiments on Animals Act, 1997). Nine rats per dose 

group were treated BB or corn oil, while an additional group was not treated. Three 

rats per group were sacrificed after 6, 24 and 48 h and blood and livers were 

collected. Urine was collected for metabolomics between dosing and sacrification 

for the 6 h group, and during the last 16 h before sacrifice for the 24 and 48 h 

groups. During the time urine was collected, rats received water ad libitum, but no 

food. 

Transcriptomics

cDNA microarray preparation and hybridization was described previously [16]. A 

reference RNA was used, and hybridizations were replicated with swapped 

fluorophore incorporation (Cy3 and Cy5) in the sample and reference RNA. After 

quality filtering, lowess normalization and log(base 2) transformation, a set of about 

2700 cDNAs was obtained. In present study, we required a correlation higher than 

0.6 between the duplicate sets of dye-swap measurements, keeping  about 400 

genes in the dataset.

NMR analysis

NMR spectra of urine of individual animals were recorded in triplicate, according to 

[17]. Plasma samples were deproteinised by filtration. Filters with a cutoff of 10 kDa 

(Microcon YM-10, Millipore) were spin-rinsed with 0.5 ml of 0.05 M NaOH followed 

by 2 × 0.5 ml de-ionised water to avoid contamination of the ultrafiltrate with 

glycerin. Centrifugation (1h at 10000 rpm) of 0.5 ml plasma over a filter was 

followed by the centrifugation (1h at 10000 rpm) of 0.5 ml de-ionised water. 

Filtrates were freeze-dried and reconstituted in 750 µl sodium phosphate buffer (pH 

6.0, made up with D2O) containing 1mM sodium trimethylsilyl-[2,2,3,3,-2H4]-1-

propionate (TMSP) as an internal standard. NMR spectra were recorded in a fully 
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automated manner on a Varian UNITY 400 MHz spectrometer (Palo Alto, CA, 

USA) according to [17].

Data preprocessing and multivariate data analysis

The NMR data file was imported into Winlin (V1.12, TNO, Zeist, The Netherlands). 

Minor variations from comparable signals in different NMR spectra were adjusted 

and aligned without loss of resolution. The intensities of signals present in each 

NMR spectrum were normalised, so that the sum of all intensities was equal to 1. 

This data set was imported into Matlab (Version 6.5, The MathWorks Inc., Natick, 

MA, USA) together with the transcriptomics data for preprocessing and multivariate 

data analysis. The data matrix was centered across time and dose. The sum of 

squares per variable over time and dose was scaled to 1, and PCA was performed. 

PCA is a multivariate statistical analysis that reduces the many dimensions of a 

dataset to few dimensions that describe the majority of the variance. PCA was 

performed with the PLS toolbox (Version 3.0, Eigenvector Research Inc., Manson, 

WA, USA), and a score plot visualised differences in gene expression and 

metabolite profiles. The contribution of each variable to the trend observed in the 

plot was determined. PCA was also performed on plasma and urine NMR data 

separately. When score plots revealed differences between groups, the 

contributions of the original NMR signals to these difference between treated and 

control were displayed in a factor spectrum. Metabolites were identified using an in-

house reference database.

Results

Rats were exposed to the chemical compound bromobenzene and developed 

hepatic necrosis 24 h after dosing with the high concentration. In parallel, hepatic 

gene transcription and profiles of plasma and urine metabolites were analysed.  

Toxicological examinations

No macroscopic aberrancies of the liver or other organs were observed in any of 

the rats sacrificed 6 hours after dosage. Histopathology of liver tissue showed no 

abnormalities in the controls and low dose rats. In some livers a slight presence of 

mononuclear cell aggregates and/or necrotic hepatocytes was observed. Only in 
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rats that received high concentration of BB, livers had a patchy appearance and 

gross lesions after 24 hours and focal discoloration after 48 hours. Centrilobular 

necrosis was found in livers of all those rats, with inter-individual variation in the 

degree of response. Plasma levels of ASAT, ALAT and bilirubin were markedly 

elevated, also with inter-individual varation. To correlate the conventional markers 

of hepatotoxicity with the degree of necrosis in the individual rats, a semi-

quantitative score was defined for the hepatocellular necrosis ranging from 0 (no 

effects) to 10 (very severe centrilobular necrosis) (Table 1). This score was also 

used to correlate gene expression levels to necrosis. Figure 1 depicts the 

correlation of ASAT, ALAT, bilirubin, and the relative liver weight with the observed 

degree of hepatocellular damage. 

Apart from the signs of hepatotoxicity, BB significantly decreased plasma levels of 

glucose at the mid and high dose, after 24 and 48 hours. Cholesterol (n.s.) and 

phospholipid levels increased by high BB treatment at all time points. Hepatic GSH 

levels, which play a pivotal role in the hepatotoxicity induced by BB, were slightly 

decreased six hours after administration of BB. The mid and high dose depleted 

GSH levels to ~25% of control levels. After 24 hours, GSH levels were nearly 

restored.
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Figure 1.  Correlation of toxicity markers ALAT, ASAT, bilirubin and relative liver weight with the observed degree of 

hepatic necrosis in individual rats. 
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Table 1. Histopathological and clinical chemistry findings in rats, 24 and 48 hours after exposure to mid and high 

dose of bromobenzene. The degree of hepatic necrosis was expressed with a score (S) between 0-10; M is mean. 

Dose

mmol

/

kg 

BW

T

h

Rat Rel.

liver

% of 

CO

BW

g

Gross 

pathology 

of the liver

Liver histopathology S

2.0 24 M 109% 187 No gross 

lesions

(Very) Slight mononuclear cell 

aggregates/ necrotic 

hepatocytes

62 108% 188 - Slight mononuclear cell 

aggregates/ necrotic hepatocytes

1

64 108% 178 - Slight mononuclear cell 

aggregates/ necrotic hepatocytes

1

66 110% 194 - Very slight mononuclear cell 

aggregates/ necrotic hepatocytes

0.5

2.0 48 M 108% 184 No gross 

lesions

Very slight mononuclear cell 

aggregates/ necrotic 

hepatocytes (1/3)

68 114% 191 - Very slight mononuclear cell 

aggregates/ necrotic hepatocytes

0.5

70 105% 186 - No abnormalities 0

72 104% 175 - No abnormalities 0

5.0 24 M 131% 177 Patchy 

appearance

Centrilobular necrosis

Nucleolar enlargement (2/3)

80 120% 183 Patchy 

appearance

Very slight centrilobular necrosis

Nucleolar enlargement

3

82 125% 173 Patchy 

appearance

Severe centrilobular necrosis

Nucleolar enlargement

8

84 149% 174 Patchy 

appearance

Very severe centrilobular necrosis 10

5.0 48 M 142% 181 Pale 

appearance 

others (2/3)

Centrilobular necrosis

Slight centrilobular fatty change 

(2/3)

Mitotic increase (2/3)

Nucleolar enlargement

86 129% 187 No gross 

lesions

Slight centrilobular necrosis

Nucleolar enlargement

4
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88 136% 186 Pale 

appearance

Pronounced 

lobular 

pattern

Moderate centrilobular necrosis

Slight centrilobular fatty change

Slight mitotic increase

Nucleolar enlargement

6

90 161% 170 Pale 

appearance

Red areas

Firm tissue

Severe centrilobular necrosis

Slight centrilobular fatty change

Slight mitotic increase

Nucleolar enlargement

8

Transcriptomics analysis and parallel metabolite profiling

BB elicited specific changes in gene expression of many rat liver genes, as 

reported before [16]. In this study, the profiles of the transcriptomics measurements 

were combined with the profiles obtained by NMR, describing the metabolite 

contents of plasma. Consensus PCA [18] was performed using both types of data 

in one integrated analysis, and results are shown in Figure 2. This plot indicates 

that the samples from the high and mid dose groups, collected after 24 and 48 

hours were distant from the others, having lower PC1 scores. Most distinct from all 

the other samples were the samples from rats #84, #82, and #90, that received a 

high dose of BB. Microscopic examination revealed (very) severe hepatic 

centrilobular necrosis in those rats. Profiles of rats #80, #86 and #88 were less 

distant from the controls. Correspondingly, moderate centrilobular necrosis was 

observed in rat #88, and (very) slight necrosis in rats #86 and #80. The profiles of 

the rats treated with a mid dose of BB were distinct from the controls after 24 

hours. Routine markers were not able to indicate hepatotoxicity in those rats. After 

48 hours, rats treated with the mid dose were not distinct from controls. Samples 

from rats treated with the low dose of BB were not readily separatable from the 

controls, after 24 or 48 hours. All samples collected after 6 hours were distinct from 

the other time points in the down right corner of the plot. Treatment with BB 

resulted in patterns distinct from the controls. 
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Figure 2. Score plot of consensus PCA. Consensus PCA was performed using both hepatic transcriptomics and 

plasma metabolite profilng data in one integrated analysis. The percentage of the total variance explained by the 

individual PCs is indicated in the plots. Time points: Boxes: 6 h samples, circles: 24 h samples; triangles: 48 h 

samples. Dose levels: white: controls, light gray: low BB; dark grey: mid BB; black: high BB.

Genes and metabolites were sorted according to their contribution to the observed 

trend, reflecting the degree of hepatic necrosis. Tables 2A and B list the genes and 

metabolites with the highest and lowest scores, that therefore putatively correlate 

with the degree of hepatotoxicity. The levels of gene expression and metabolites 

listed in are present at either high or low levels in correlation with the necrosis. 

Many genes with a significant contribution to pattern differences in the PCA were 

identified to be up- or down regulated by BB with high significance in univariate 

statistical tests, and the rationale of these changes in terms of toxicology was 

discussed before [16].

Genes with high scores in the parallel analysis include structure and cytoskeleton-

related genes (beta actin, weakly similar to pervin, tubulin), many ribosomal 
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subunits, and other factors involved in protein synthesis (eg. nucleophosmin). Also 

oxidative stress induced genes (Ho-1, Timp1, peroxiredoxin1, ferritins), hepatic 

acute phase response genes (orosomucoid 1, fibrinogen gamma) and enzymes 

involved in glucose metabolism (Gapdh, phosphoglycerate mutase 1, aldolase A) 

have high rankings. Drug metabolising enzymes like Ephx1, Afar, Gsta and aldo-

keto reductases, likely involved in the hepatic biotransformation of bromobenzene, 

appeared in the upper part of the ranking. Several cell cycle and apoptosis related 

genes (Bcl2-related protein A1, Pcna, p53, p21 (Waf), EST, highly similar to p53-

regulated PA29-T2, cyclin G1) were coordinately upregulated. High ranked genes 

with others functions include casein kinase II, VL30 element and RAN. Plasma 

metabolites with a high score in the analysis include acetate, choline, 

phenylalanine and some uncharacterised metabolites.

Genes with low scores include hepatic acute phase response genes like alpha-1-

inhibitor, serine protease inhibitor, fibrinogen beta, complement components, drug 

metabolising enzymes like Cyps, aldehyde dehydrogenases, Fmo3, enzymes 

involved in fatty acid and cholesterol metabolism (HMG-CoA synthase, Lcat, Star, 

fatty acid CoA ligase, acyl CoA dehydrogenases) and glucose metabolism (G6pt1, 

alanine-glyoxylate aminotransferase) Many genes with other functions, like 

asialoglycoprotein receptor 2, Cathepsin S, and dimethylglycine dehydrogenase 

had a low score, indicating that they were down regulated  compared to the 

controls. Plasma metabolites with a low score in the analysis include 

dimethylglycine, tyrosine and glucose.
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Table 2A: Highest and lowest ranked genes from consensus principal component analysis. Rank, gene name 

and Genbank accession number, category, and the correlation to the degree of hepatic necrosis are indicated. 

Expression of high ranked genes is upregulated, while low ranked genes are downregulated in the samples 

with a high degree of hepatic necrosis.

Rank  Gb Acc. Category Gene name Correl 

1 AA859846 Structure actin, beta 0.881

2 AA964725 Structure Weak sim to pervin 0.842

3 AA964496 Structure High sim to S11222 actin gamma, 

cytoskeletal

0.853

4 AA957078 Structure alpha-tubulin 0.842

5 AA924111 glycolysis Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH)

0.811

6 AI029162 APR Orosomucoid 1 0.885

8 AA997175 Signal transd. casein kinase II beta subunit 0.835

10 AA900726 Signal transd. GTP-binding protein (ral A) 0.789

552 AI070895 Fatty acid Weakly sim. to acyl-CoA 

dehydrog.,epoxide hydr.[Cel]

-0.735

553 AA866389 other lumican -0.865

554 AA964340 other syndecan 2 -0.747

555 AA955402 Cysteine S-adenosylhomocysteine hydrolase -0.776

556 AA925933 Proteolysis cathepsin S -0.801

557 AA819756 Drug metab arachidonic acid 

epoxygenase;Cyp2C23

-0.888

558 AI136048 Cholesterol 3-hydroxy-3-methylglutaryl-

Coenzyme A synthase 2

-0.821

559 AI071033 acute phase Fibrinogen, B beta polypeptide -0.820

560 AA997322 Cholesterol Lecithin-cholesterol acyltransferase 

(Lcat)

-0.745

561 AA997920 Signal transd. asialoglycoprotein receptor 2 -0.900



Gene expression and metabolic profiles in hepatotoxicity – Chapter 8

90

Table 2B. Highest and lowest ranked metabolites from consensus principal component analysis. The rank and chemical 

shift in the NMR analysis of the (putatively) identified metabolites is indicated. High ranked metabolites are more 

abundant in treated compared to control plasma samples, and metabolites with a low rank  are more abundant in 

controls.

High rank Low rank 

Rank Shift Metabolite Rank Shift Metabolite

7 1.475 alanine 430 2.935 dimethylglycine?

9 1.4925 alanine 391 6.91 tyrosine

51 8.4575 formate 390 6.89 tyrosine

61 7.83 unidentified metabolite 389 7.185 tyrosine

70 1.9275 acetate 383 7.2075 tyrosine

73 3.2075 choline? 379 3.4925 glucose

82 3.0075 unidentified metabolite 378 3.245 glucose

100 7.4325 phenylalanine? 376 3.3775 glucose

109 3.5975 choline? 375 3.7325 glucose

110 5.3875 unsaturated lipid? 374 3.4225 glucose

111 3.0275 cysteine? 373 4.64 glucose

114 7.8475 histidine? 372 3.715 glucose

119 7.4125 phenylalanine? 369 5.23 glucose

124 7.3375 phenylalanine? 368 3.09 unidentified 

metabolite

126 7.375 phenylalanine? 367 3.7475 unidentified 

metabolite

129 1.005 isoleucine? 366 3.2225 unidentified 

metabolite

130 3.0525 unidentified metabolite 365 3.4375 unidentified

metabolite

Gene expression markers

The correlation between the level of gene expression and the degree of necrosis in 

the individual rats was calculated (Table 2). Figure 3 illustrates expression of ESTs 

highly similar to actin and pervin, and orosomucoid 1 in relation to hepatic necrosis. 



Gene expression and metabolic profiles in hepatotoxicity – Chapter 8

91

Expression levels of asialoglycoprotein receptor 2 and lecithin-cholesterol 

acyltransferase (Lcat) decreased in concordance with the degree of hepatic 

damage. In total, 14 genes were found with a positive correlation between 0.80 and 

0.89, the highest coefficient. The correlation of the average expression level of 

these 14 genes with necrosis was 0.969. In parallel, 20 negatively correlated genes 

were found with an individual correlation to necrosis varying from -0.80 to -0.90. 

The correlation of the average gene expression of these 20 genes with necrosis 

was -0.959. This suggests that valuable markers of hepatocellular necrosis consist 

of combination of gene expressions. 
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Figure 3. Levels of expression of genes that correlate with the observed degree of hepatic necrosis in individual rats.
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Figure 4. (A) and (B) Factor Spectra of NMR measurements after principal component discriminant  analysis. Panel A: 

plasma after 6 hours, panel B: plasma after 24 hours.
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Time and dose-dependent changes in plasma metabolites

Besides the parallel analysis of transcriptomics and metabolite profiling, the plasma 

NMR data were analysed separately by PCA, and time and dose specific changes 

in metabolite levels between treated and control samples were visualised in factor 

spectra. (Figure 4a and b). After both high and mid dose of BB, lipid levels were 

higher than in controls. Clinical chemistry indicated an increase in plasma 

phospholipid levels upon high but not mid dose treatement. The levels of glucose 

were higher 6 hours after a high dose of BB, but lower after 24 and 48 hours. 

These observations were identical to the clinical chemistry measurements. NMR of 

plasma showed higher levels of creatine and/or creatinine in BB-treated rats, 

though clinical chemistry did not reveal significant changes in creatinine. The levels 

of tyrosine were lower 6 and 24 hours after BB, while higher after 48 hours. 

Methionine, alanine and lactate levels in plasma of BB-treated rats were lower 6 

hours after dosage but higher 24 and 48 hours after dosage. Dimethylglycine and 

taurin levels were increased compared to controls 6 hours after the BB treatment, 

and decreased after 24 hours. Choline levels were decreased after treatment to 

mid or high dose of BB.

Profiles of urine metabolites

Also in urine, metabolite NMR profiles were discerned using PCA. Analysis per 

time point showed that BB treatment changed urine profiles (data not shown). All 

rat urines collected during the first 6 hours could be distinguished by levels of 

exposure. By 48 hafter dosage, rats treated with the high concentration of BB could 

still be recognised from controls by their urine profiles. In order to determine the 

NMR signals that most significantly differed between the high dose and control 

group, factor spectra were constructed. Figure 5 shows the factor spectrum for rat 

urine collected during the 6 hours after dosage. Using reference databases, the 

identity of several peaks was established. Factor spectra revealed the marked 

presence of BB-derived metabolites like bromphenols, bromcatechols, and 

quinones in urine. It was not possible to discriminate and identify these various 

metabolites. Markedly elevated levels of mercapturic acids, derived from GSH-

conjugates, were observed after treatment. Methionine levels in urine were higher 

in the treated rats compared to controls. Formate levels increased after 24 hours in 
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the treated rats, and elevated levels were observed of urocanate and 

(methyl)histidine, as well as decreased levels of nicotinate, hippurate, 

phenylalanine/tyrosine and glucose/fructose.

Figure 5. Factor spectrum after principal component discriminant analysis of NMR spectra of urine, 6 hours after 

dosage with bromobenzene, compared to vehicle control.

Discussion

This study presents one of the first integrated toxicogenomics studies, where acute 

hepatotoxicity was analysed at the transcriptome and metabolite level in a time-

and dose-dependent manner. An integration of the (raw) datasets of the 

transcriptomics and metabolomics experiments could increase the sensitivity of 

detection of hepatotoxicity. Moreover, this could enhance the assessment of 

relationships between gene expression and metabolite level changes. 

When rats were treated with BB, hepatic centrilobular necrosis was observed after 
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very slight to very severe hepatic centrilobular necrosis. Individual plasma ALAT, 

ASAT and bilirubin levels and the increase in relative liver weight correlated with 

the severity of the necrosis. Complementary to these toxicological observations, 

the molecular profiles of hepatic gene expression and plasma metabolites were 

analysed in parallel. Differences beteween molecular profiles were dependent on 

the dose and time after dosage. Profiles from the 6 htime point were 

distinguishable from other time points. BB treatment at the high dose resulted in 

highly distinct profiles, while the mid dose altered the profiles up to 24 hafter 

dosage. At this dose level, conventional signs of hepatotoxicity were not observed. 

Combining transcriptomics and metabolite profiling did not allow to discriminate 

samples treated with the low dose from controls. 

Markers of gene expression

Gene expression changes were identified in correlation with the degree of hepatic 

necrosis, providing comprehensive means to diagnose the degree of necrosis. 

Moreover, if these markers prove to be predictive at earlier time points or lower 

dose levels, they will improve detection of hepatotoxicity. Changes in these marker 

gene expression levels could be explained from a mechanistic point of view. The 

upregulation of cytoskeleton constituents (actin and pervin ao.) with the degree of 

necrosis indicates remodelling of the cytoskeleton. Presumably, necrosis and 

repair occur simultaneously in different liver cells, but our experiments using whole 

liver do not allow to localise the events. The negative correlation of genes like 

alpha-1-inhibitor and serine protease inhibitor is probably related to the acute 

phase response, involving altered hepatic synthesis of proteins. When expression 

levels were averaged for sets of genes, the correlation with the degree of necrosis 

increased. A further suggestion would be to construct a model of combined sets of 

positively and negatively correlated genes and metabolites to further increase the 

relation with hepatocellular necrosis.

Metabolite profiles

Xenobiotic compounds like BB are degraded into many metabolites, and ultimately 

excreted in urine. BB-derived metabolites could be suitable to monitor exposure 

and to elucidate routes of biotransformation. Levels of endogenous metabolites 
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that changed after treatment form putative biomarkers of toxicity, and could help to 

identify the mechanism of hepatotoxicity. 

Urine collected from rats exposed to different doses of BB varied in metabolite 

contents, in agreement with the levels of exposure. Especially shortly after dosage, 

many water-soluble BB-metabolites were found, like bromphenols, -catechols and -

quinones, and mercapturic acids. The lack of reference spectra and insufficient 

resolution of the separation frustrated the identification of all corresponding 

metabolites. Peaks around 6 ppm in the spectra could result from bromphenols, 

bromcatechols and/or BB-dihydrodiols. Therefore, the precise biotransformation of 

BB could not be determined. Further efforts to elucidate this based on urine 

metabolite profiles require techniques like liquid chromatography and mass 

spectrometry (LC-MS) for identification of the compounds. Few endogenous 

metabolites, putative markers of hepatotoxicity, were discovered in urine. Levels of 

methionine were higher 24 hours after BB dosage. Urocanate, related to histidine 

metabolism, and histidine itself displayed elevated levels. Notably, elevated 

urocanate levels were also found with galactosamine-induced hepatotoxicity [9]. 

Contrary to urine, in plasma, distinct signals of BB-derived metabolites were not 

found. On the other hand, endogenous metabolites in plasma, or combinations of 

them, could be effective biomarkers of toxicity. Decreased glucose and increased 

lipid levels measured by NMR were corroborated by clinical chemistry. The levels 

of formate in plasma, and urine, were increased after 24 and 48 hours. Formate 

could be produced from dimethylglycine through sarcosine and formaldehyde. 

Formate is also a product of oxalate in the glyoxylate catabolism, and possibly 

related to folate synthesis in the one-carbon metabolism.

Biochemical pathways

The most significant effects determined in the parallel analysis of transcriptomics 

and plasma metabolite profiling were categorised according to biochemical 

pathways. Changes in gene expression in several pathways were described  

previously [16]. Other changes, eg. in apoptosis and cell cycle were not noted 

before. Pathways like glycolysis, GSH and amino acid metabolism were disturbed 

both at the gene expression and metabolite level, and are described below. Figure 
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6 presents a proposed schematic overview of changes in GSH and amino acid 

metabolism, associated to bromobenzene-induced hepatic necrosis. 

Figure 6. Simplified, schematic representation of gene expression and plasma metabolite changes in bromobenzene-

induced hepatic necrosis, related to GSH and amino acid metabolism. Ovals represent genes, boxes represent 

metabolites in plasma. When measured, changes in geneexpression or plasma metabolite levels are indicated 

schematically to the right of each object.

Glycolysis

Glucose levels in plasma decreased in time after BB treatment. This could be 

ascribed to increased glycolysis, in order to increase the production of energy to 

restore homeostasis after the toxic insult. Decreasing glucose levels are 

corresponding with increasing plasma levels of alanine and lactate, products that 

may be formed by breakdown of glucose when the oxidation of pyruvate is 

incomplete. Expression of many genes involved in glycolysis, gluconeogenesis and 
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glucose transport was altered. Expression of a glucose transport protein was 

decreased by BB. From the changes, we conclude that glycolysis enzymes were 

induced (GAPDH, aldolase A, pyruvate kinase, G6PD and PGAM), and 

gluconeogenesis was reduced through down regulation of G-6-phosphatase, 

transport protein 1 (G6pt1), alanine-glyoxylate aminotransferase and  pyruvate 

carboxylase. It is known that the hepatotoxic effects of high doses of APAP are 

similar to the effects of bromobenzene. In agreement with our findings, APAP was 

found to decrease glucose levels and was suggested to induce glycolysis based on 

gene expression and metabolite profile changes, suggestively as a reaction to 

decreased ATP availability from beta oxidation of fatty acids [10].

GSH and amino acid metabolism

A central process in the chemically-induced hepatic necrosis is the depletion of 

GSH levels, which normally protect cells by scavenging of hazardous, reactive 

molecules. GSH levels decreased to around 25% of controls, 6 hours after oral BB 

dosage, [16], while total depletion of hepatic GSH was observed 24 h after i.p. 

administration of BB. GSH is used in conjugation reactions to BB-derived 

metabolites, catalysed by GSTs. The reduction of GSH levels was accompanied by 

a decrease of plasma methionine, according to NMR measurements. The GSH 

depletion was countered through induction of GSH synthase protein [16] and Gclc

gene expression. Along with the changes in GSH and methionine levels, related 

enzymes and metabolites were found to change. GSH and methionine levels are 

connected via cysteine and homocysteine levels, involving enzyme activity of 

BHMT. Gene expression of BHMT was found to initially increase, and later 

decrease upon BB treatment. The expression of S-adenosyl homocysteine 

hydrolase was decreased. Plasma levels of dimethylglycine, produced in the 

reaction catalysed by BHMT were found to correlate with the BHMT mRNA levels 

in time, and also the hepatic dimethylglycine dehydrogenase gene expression 

levels followed this pattern. Dimethylglycine can be catalysed in a multi-step 

reaction to formate, which levels were increased both in plasma and urine after 

treatment. Induced levels of cysteine in plasma were observed after BB treatment, 

along with increased gene expression of cysteine dioxygenase, while increased 

levels of cysteine sulfinic acid decarboxylase were observed before [16]. Plasma 
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tyrosine levels show a characteristic pattern, decreasing drastically 24 hours after 

high BB, while 48 hours after high BB, levels were highly increased compared to 

controls. Protein levels of HPD, an enzyme involved in tyrosine metabolism, were 

found to decrease 24 hours after BB [16]. The level of phenylalanine is related to 

tyrosine and seems to decrease in plasma due to the treatment.

Conclusion

In summary, this study presents one of the first integrated analyses of 

transcriptomics and metabolite profiling, revealing additional information in the 

process of chemically-induced hepatic necrosis. A full merge between the methods 

awaits technical optimization, especially for the identification of metabolites. 

Nevertheless, corroborating findings from liver transcriptomics and plasma 

metabolite profiling aided in the generation of new hypotheses concerning cellular 

mechanisms putatively related to necrosis, such as changes in cytoskeleton 

remodeling and acute phase response,  apoptosis, glycolysis, amino acid, fatty 

acid and cholesterol metabolism. Through integration of the datasets, changes 

were observed before histopathology or clinical chemistry indicated necrosis. Both 

liver gene and plasma metabolite markers were discovered in correlation with the 

degree of hepatocellular necrosis in individual animals. Through measurement of 

urine metabolite profiles, exposure was rapidly recognised. 
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Conclusions and perspectives

Biomarkers play an important role in biomedical research and will become more 

and more essential for the study of new intervention therapies in the near future. 

The approach to identify specific metabolite profiles for disease processes by using 

analytical techniques like NMR or LC-MS with subsequent MVDA is promising. The 

human body consists, amongst others, of numerous metabolites. Most of these act 

on a complex variety of processes that are related to each other. Therefore, 

generally it is not a single metabolite which acts as a biomarker but a combination 

of metabolites. The advantage of linking NMR and other analytical techniques to

MVDA is the fact that the generated profiles consist of a combination of metabolites

which together meet the criteria to serve as biomarker. Biomarker profiles can thus 

aid disease diagnosis, measurement of disease progression or tumor regression, 

and drug development. 

In this thesis, several disease processes were investigated by applying NMR on 

biological fluids and analyzing the resulting data with MVDA in order to discover 

potential biomarkers. A metabolite profile was identified for OA in guinea pigs as 

well as in humans, which correlated with conventional histopathology. In addition, 

in vitro metabolite profiles were used to investigate the effects of inulin, a prebiotic, 

on gut health. A profile was discovered which could serve as early biomarker for 

acute rejection after kidney transplantation. Also, using biomarker profiles in a 

toxicological study, metabolite profiles were linked to gene expression data.

The results described in this thesis show that metabolic profiling using NMR 

enables to measure biological fluids without pretreatment in a quick manner. It 

provides an unbiased overview of many important metabolites present in biological 

samples and can be used in the search for new diagnostic biomarkers as well as 

early biomarkers.
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Early biomarkers are of importance in the understanding of the origins of diseases 

or of environmental effects. Current medicine is mainly oriented at relieving 

symptoms of diseases, but early biomarkers could help to bring curing nearer. 

Time-course metabolomics could have potential for finding more early biomarker 

profiles. Much research still has to be done in this field, but it is definitely worth the 

effort. Yet, in general one should be aware of the fact that time-course biological 

studies are very expensive, time-consuming and make demands on an enormous 

amount of time on the analytical equipment, without a guarantee for a positive 

outcome. Only few organisations will take the risk and have the money to carry out 

such studies. 

A topic that needs attention in metabolic profiling is the validity of the obtained 

results. MVDA is an exploratory way of data analysis. The obtained metabolic 

fingerprints are well suited for the generation of new hypotheses about disease-

related metabolic pathways. However, more efforts will have to be made to 

investigate the validity and specificity of relations between metabolic profiles and 

diseases. Otherwise public health institutions will not accept the discovered profile

as a valid biomarker for a disease. For early biomarkers this will even be more the 

case. If after a long time of research and spending of much money finally a 

potential early biomarker profile is found, one should be able to prove that it is 

related to a clinical endpoint of a disease. 

For metabolic profiling to become a generally accepted tool to discover biomarkers, 

a deeper understanding of the metabolism that underlies the profile and its 

correlation to disease processes is needed, and also of the mechanisms of 

intervention. In vitro studies and translational science can facilitate the clarification 

of the identity of metabolites and the formulation of ideas about metabolic 

pathways involved. However, identification of metabolites is still the point where 

normally studies of metabolite profiling with NMR stagnate. Well-known metabolites 

like glucose or creatinine can be assigned quite easily. Yet, many compounds are 

still difficult to identify. The choice for assigning an NMR signal to a metabolite may 

be influenced by existing knowledge about metabolic pathways that is already 

known. However, there are still many metabolites and pathways in the body we do 

not know. The interpretation of signals in an NMR spectrum of a biological fluid is 

thus hampered by an incomplete knowledge of metabolism. For this reason,
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identification of more signals in the profiles is indispensable. Intensive efforts 

should be made to identify metabolites in the profiles, using techniques like GC-

MS, LC-MS and 2D-NMR. Besides, databases with known metabolites should be 

set up to facilitate the generation of hypotheses about metabolites. In addition, 

more in-depth studies should elucidate the metabolic pathways involved. This can 

be done when metabolite information is integrated with gene expression and 

proteomic data.

The key for metabolite profiling to become a successful way to discover biomarkers 

thus lies in a systems biology strategy. Integration of all types of biological 

information, such as DNA, RNA, protein and metabolites, and study of their mutual 

relationships to obtain a model of a biological system as a whole, should provide

evidence that certain metabolite profiles are related to disease processes.

Subsequently, intervention studies can be carried out that rely on these profiles. 

Therefore high-throughput facilities for genomics, transcriptomics, proteomics and 

metabolomics, computational infrastructure, development of tools to process, 

integrate and model all the obtained biological information, are important future

developments. For such a systems biology approach to become successful, it is 

necessary that biologists, chemists, mathematicians, physicists and informaticians

are teamed up together, in order to facilitate the development and integration of 

new technologies.

Still, looking at all system’s elements, which is the true essence of systems biology, 

is sometimes hampered due to practical and ethical reasons. For instance, in 

studies with humans, it is often difficult, if not impossible, to obtain specific biofluid 

and tissue samples. In animal studies, it is often required that animals are 

sacrificed to obtain certain samples, which can be a severe limitation due to the 

fact that the biological process can not be followed in the same animal and the 

expense of studies is dramatically increased because large numbers of animals are 

needed. Functional imaging techniques circumvent the mentioned difficulties. 

Functional imaging enables to look in vivo in biological systems as a whole in a 

sensitive manner, even in tissues that are not suitable for sampling for systems 

biology studies. Therefore the use of functional imaging techniques like Positron 

Emission Tomography (PET) and Single Photon Emission Computed Tomography 

(SPECT) will be an important future development for systems biology in the 
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elucidation of the pathophysiology and etiology of disease processes and the 

discovery of new biomarkers. 
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Summary

Biomedical research aims at the elucidation of relationships between state of 

health and environmental factors, such as lifestyle, nutrition and pharmaceuticals. 

Biomarkers, biological indicators that can be used to measure and evaluate 

disease, disease risk and effects of exposure, will facilitate biomedical research. 

Metabolites are intermediate or end products of biological processes and thus play 

an important role as biomarkers. Nuclear magnetic resonance spectroscopy 

(NMR), gas chromatography-mass spectrometry (GC-MS) and liquid 

chromatography-mass spectrometry (LC-MS) are analytical techniques that enable 

the identification and measurement of metabolites in biological fluids. However, 

data obtained with these techniques is very complex, due to the vast amount of 

metabolites contained in biofluids. Therefore MVDA is needed to find differences 

and similarities in data obtained with NMR or LC-MS. When MVDA reveals clusters

with similar characteristics in the analytical data, and these clusters match the 

original study set-up (the established healthy, treated or diseased subjects), a 

connection can be established between affected metabolites on one side, and 

treatment or disease on the other.

In this thesis, MVDA is applied to data obtained from NMR as a tool to select 

biomarker profiles in body fluids, that are specific for certain disease processes. 

These profiles can, for instance, be used for (early) diagnosis or to study effects of 

pharmaceuticals or food supplements. 

In Chapter 2, general NMR theory is described jointly with a short introduction to

GC-MS and LC-MS. In Chapter 3, an overview is presented of MVDA techniques 

that are used to identify profiles of biomarkers. Both chapters are intended to give

the reader some general background about the analytical techniques that are used 

in the investigations reported in this thesis. 

Chapter 4 reports a diagnostic biomedical study, in which it is shown that NMR with 

subsequent MVDA is a suitable tool to discriminate between healthy guinea pigs 

and guinea pigs suffering from osteoarthritis (OA). A diagnostic biomarker profile is 

presented for OA in guinea pigs and effects of vitamin C on the disease process 
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are investigated using this profile. Chapter 5 reveals that the biomarker profile 

observed in guinea pigs is also a valid diagnostic tool for human OA patients. In 

addition, it is demonstrated that the profile shows a correlation with 

histopathological data, the so-called Kellgren-Lawrence grade, which is a measure 

for OA state.

In Chapter 6, it is shown that NMR in conjunction with MVDA, apart from detection 

of diagnostic biomarker profiles, can also play an important role in disease 

prognosis. In a study with patients who underwent a kidney transplant operation, it 

is shown that patients with graft rejection have a biomarker profile, which can

already be detected five days before rejection is observed with the conventional 

clinical techniques. This biomarker profile can thus be used as a prognostic tool. 

The method is also employed in an in vitro study, which is described in Chapter 7. 

The effects of inulin, a prebiotic, on gut health are investigated. The results show

that in vitro research can be a useful starting point for generating hypotheses about 

affected pathways and can thus facilitate in vivo studies.

In Chapter 8, the final part of this thesis, a step towards systems biology is made 

by linking results of metabolomics to gene expression. In this way, effects of 

bromobenzene in rats are studied to further understand hepatotoxicity and to get 

insight into metabolic pathways. 

In conclusion, the approach to identify biomarker profiles for disease processes by 

means of NMR with subsequent MVDA is promising. Metabolite profiles have been

identified for, amongst others, OA, hepatotoxicity and kidney rejection. However, to 

exploit the full potential of biomarker profiles, extensive efforts should be made to 

identify the metabolites in the profiles and to further understand the metabolic 

pathways involved. This will be enhanced and facilitated by a systems biology 

approach with the integration of genomics, transcriptomics, proteomics and 

metabolomics.
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Samenvatting

Biomedisch onderzoek richt zich op het ophelderen van de relaties tussen ziekte 

en omgevingsfactoren, zoals bijvoorbeeld levensstijl, voeding en medicijnen. 

Biomarkers zijn biologische indicatoren die gebruikt kunnen worden om ziekte, 

kans op ziekte, en effecten van de omgeving, te meten en te bestuderen. 

Metabolieten zijn tussen- of eindprodukten van biologische processen en spelen 

als zodanig een belangrijke rol als biomarkers. Kernspinresonantie (NMR) en 

vloeistofchromatografie-massaspectrometrie (LC-MS) zijn analytisch-chemische 

technieken die het mogelijk maken metabolieten in biologische vloeistoffen te 

identificeren en meten. De gegevens uit deze metingen zijn echter zeer complex,

doordat biologische vloeistoffen een enorme hoeveelheid metabolieten bevatten. 

Daarom is multivariate data analyse (MVDA) nodig om overeenkomsten en 

verschillen in data die met NMR en LC-MS wordt verkregen, te vinden. Wanneer 

uit MVDA blijkt dat de analytische data in een aantal groepen met een grote 

overeenkomst in kenmerken uiteenvalt, en deze clustering komt overeen met de 

originele proefopzet (zoals een gezonde groep, een behandelde groep of een 

zieke groep), dan kan een link worden gelegd tussen metabolieten die zijn 

veranderd in kwantiteit enerzijds, en ziekte of gezondheid anderzijds. 

In dit proefschrift wordt MVDA toegepast op data die wordt verkregen uit NMR. Op 

deze wijze worden in lichaamsvloeistoffen biomarkerprofielen geselecteerd die 

specifiek zijn voor bepaalde ziekten. Deze profielen kunnen bijvoorbeeld gebruikt 

worden om (vroege) diagnostiek te plegen of effecten van bijvoorbeeld medicijnen 

of voedingssupplementen te onderzoeken. 

In hoofdstuk 2 wordt een samenvatting gegeven van de theorie achter NMR,

tezamen met een korte introductie in GC-MS en LC-MS. In hoofdstuk 3 worden

diverse MVDA technieken behandeld, die gebruikt kunnen worden om 

biomarkerprofielen te identificeren. Beide hoofdstukken zijn bedoeld om de lezers 

achtergrondinformatie te verschaffen over de analytische technieken die worden 

toegepast bij het onderzoek beschreven in dit proefschrift.

Hoofdstuk 4 beschrijft een diagnostische biomedische studie, waarin wordt 

aangetoond dat NMR samen met MVDA een geschikte methode is om, op basis 
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van verschillen in urinesamenstelling, gezonde cavia’s te onderscheiden van 

cavia’s die lijden aan artrose. Een diagnostisch biomarkerprofiel voor artrose in 

cavia’s is daarbij gevonden. Daarmee is een interventiestudie uitgevoerd met 

vitamine C, een stof die mogelijk positieve effecten op het ziekteproces heeft. In 

hoofdstuk 5 wordt daarna getoond dat het biomarkerprofiel voor artrose in cavia’s 

ook wordt gezien in urine van mensen. Dit profiel vertoont bovendien correlatie met 

histopathologische data.

De resultaten in hoofdstuk 6 laten zien dat de methode ook geschikt is om 

prognostische biomarkerprofielen te identificeren. Uit een studie met patiënten die 

niertransplantatie hadden ondergaan, blijkt dat patiënten die acute 

afstotingsverschijnselen vertoonden een afwijkend urine patroon hebben. Dit 

afwijkende profiel kon al worden waargenomen vijf dagen voordat dit met 

conventionele technieken kan worden gedetecteerd. 

De resultaten in hoofstuk 7 tonen dat toepassing van de techniek op in vitro studies 

interessante hypotheses kan opleveren over betrokken metabole paden.

Bovendien kan in vitro onderzoek de daaropvolgende in vivo studies 

vergemakkelijken.

In hoofdstuk 8 wordt een opstap gemaakt naar een aanpak vanuit de 

systeembiologie. Resultaten van gen expressie en metabolomics worden 

gekoppeld, met het doel levertoxische effecten van broombenzeen in ratten te 

bestuderen en de betrokken metabole paden te doorgronden. 

Concluderend kan gezegd worden dat de aanpak om biomarker profielen te 

identificeren met behulp van NMR en LC-MS met daaropvolgend MVDA,

veelbelovend is voor het herkennen van biomarkerprofielen. In het onderzoek dat 

in dit proefschrift is beschreven, zijn metabolietprofielen gevonden voor onder 

andere artrose, hepatotoxiciteit en nierrejectie. Om het potentieel van de techniek 

volledig te benutten zal nog veel inspanning moeten worden gestoken in het 

identificeren van de metabolieten in de profielen, en in het doorgronden van de 

betrokken metabole paden. Een aanpak vanuit de systeembiologie, waarbij 

resultaten van onderzoek naar DNA, gen-expressie, eiwitten en metabolieten

worden geïntegreerd, zal dit proces versnellen en vergemakkelijken. 
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Nawoord

Een proefschrift kan alleen maar tot stand komen met de hulp van heel veel 

mensen. Op deze plaats wil ik deze personen dan ook graag vermelden. 

Elly en Gerwin, jullie stonden altijd voor mij klaar, zonder jullie hulp had dit 

proefschrift er heel anders uit gezien. Jeroen, Nicole en Johan, de discussies met 

jullie waren inspirerend en leverden interessante ideeën op. Wilbert, de 

samenwerking met jou was erg plezierig. De stagiairs Marc en Eveline, jullie 

onbevangenheid heeft ervoor gezorgd dat jullie stage onderzoeken publicaties 

hebben opgeleverd. Johan de Fijter, je hebt mij wegwijs gemaakt in het nier-

transplantatie onderzoek. 

De patroonherkenners Henk, Bianca, Jack, Sabina, Renger, Florian, ieder van jullie 

heeft op zijn eigen manier inbreng in dit proefschrift gehad. Mijn eerste 

kamergenoot, Albert: je positivisme (“Uitstekend idee, goed werk”) werkte 

aanstekelijk. Mijn daaropvolgende kamergenoten (in chronologische volgorde) Elly, 

Jacques, Marco, Bianca, Gerwin, Henk en Wilbert, jullie hebben voor de 

gezelligheid gezorgd. Daarnaast ben ik Henk erkentelijk voor het niet halen van 

koffie voor mij. Valentijn, kamergenoot voor 1 dag in de week: het combineren van 

een promotie-onderzoek met een (aanstaand) vaderschap heeft voor heel wat 

gesprekstof gezorgd. De dagen dat jij in Zeist was, kwam er van werken over het 

algemeen weinig terecht. 

Tot zover de mensen die direct bij mijn promotie-onderzoek betrokken waren. 

Daarnaast zijn er veel mensen indirect betrokken geweest bij mijn reilen en zeilen. 

Zo toonden de collega’s van de Genomics-groep, vrienden en (schoon)familie altijd 

hun belangstelling. De volgende mensen wil ik hier speciaal nog vernoemen:

Ineke, je weet het misschien niet maar jij bent de aanstichtster van het geheel. Jij 

hebt me op 16-jarige leeftijd meegenomen naar de chemische fabrieken van Shell 

in Pernis. Hier was ik zo van onder de indruk dat ik besloot om scheikunde te gaan 

studeren.

Monique, we hebben in mijn eerste jaren bij TNO vaak bij elkaar in de bus gezeten, 

de ritjes met lijn 50 van Utrecht CS naar Zeist v.v. waren altijd gezellig en een 

goede gelegenheid om mijn ei even kwijt te kunnen.
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Voordat ik bij TNO kwam werken, heb ik een drietal jaren aan de Universiteit 

Utrecht gewerkt. Het AMS-groepje met Arie, Cees en Wybe stond garant voor veel 

gezelligheid, humor en niet te vergeten…. thee. Cees, je hebt me geholpen door 

dit proefschrift te becommentariëren en je bleef me lastigvallen met emails over 

mannen in witte jassen, NEC-bronnen en andere onzin. Wybe, altijd even attent en

belangstellend, ik realiseer me dat promoveren maar een bijzaak in het leven is. 

Arie, jij zag mijn mogelijkheden en stimuleerde me om na te denken over hoe ik 

deze kon benutten. Jij hebt dan ook de kiem voor dit proefschrift gelegd. Daarnaast 

heb je er voor gezorgd dat dit proefschrift een stuk leesbaarder is geworden. Leuk 

dat je me als paranimf terzijde wilt staan. 

Wim, het begon in Breda met een introductiekamp waarna we als 

practicummaatjes verder gingen. We belandden toevalligerwijs allebei via 

Eindhoven in Arnhem. Inmiddels zijn we vele jaren van verhuizingen (vooral van 

mijn kant), hoogtepunten en wedstrijden van Vitesse verder en ben ik blij dat je 

mijn paranimf wilt zijn. 

Monique, broer en zus is als trein en bus. Francesco, tu sei come un fratello per 

questa testa di formaggio. 

Mam, ik wil je bedanken voor alles maar vooral voor de mogelijkheden en de 

vrijheid die je samen met pap aan mij hebt gegeven. Jullie grenzeloze vertrouwen 

dat ik hiermee om kon gaan, heeft ervoor gezorgd dat ik onafhankelijk mijn eigen 

kronkelige weg heb kunnen bepalen. Dat heeft uiteindelijk tot dit boekje geleid. 

Pap, je wist dat ik dit boekje aan het schrijven was maar helaas is de afronding 

ervan voor jou te laat gekomen. Ik had dit moment erg graag met je willen delen. Ik 

weet dat je trots op me zou zijn geweest. 

Annette, ons leven lijkt continu in de hoogste versnelling te lopen. Door jouw liefde, 

steun en nuchterheid kan ik het bijbenen. Als je dat maar weet en nooit vergeet.

Ten slotte Annika: vader is de mooiste titel die er is.
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