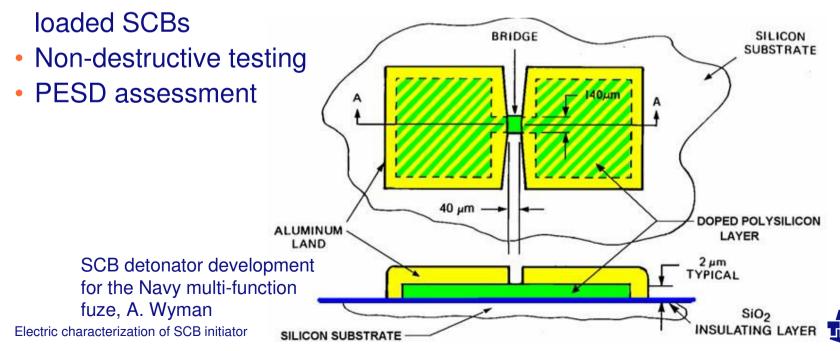
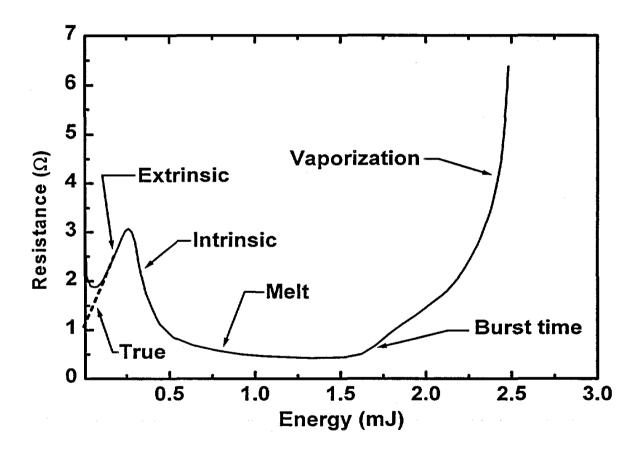


R.H.B. Bouma, A.G. Boluijt, W.C. Prinse, T.T. Griffiths, M.P. Wasko


**TNO** | Knowledge for business

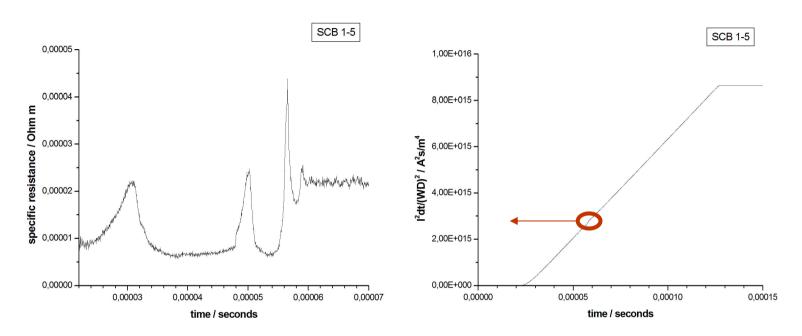



#### Introduction

- SemiConducting Bridge initiator
  - A promising new type of initiator
  - Relatively insensitive to Personnel Electrostatic Discharge and Electromagnetic Interference
  - Fast acting device
  - Mass production feasible

Destructive and constant current characterisation of bare and

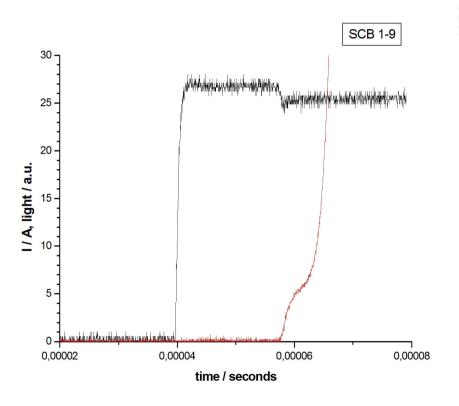


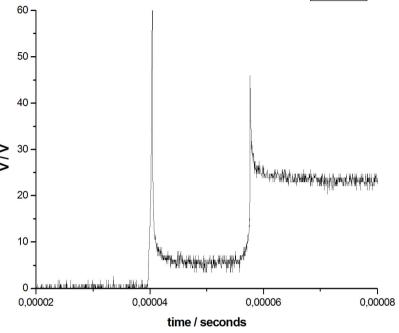

### Generic behaviour of SCB Resistance vs deposited electric energy



· Characterization and Electrical Modeling of Semiconductor Bridges, K.D. Marx et al., Sandia report



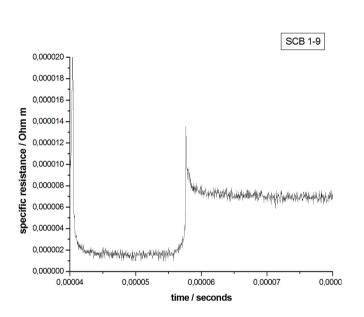

## Firing of bare SCB at 7.0 A - 100 µs pulse Specific resistance and action integral

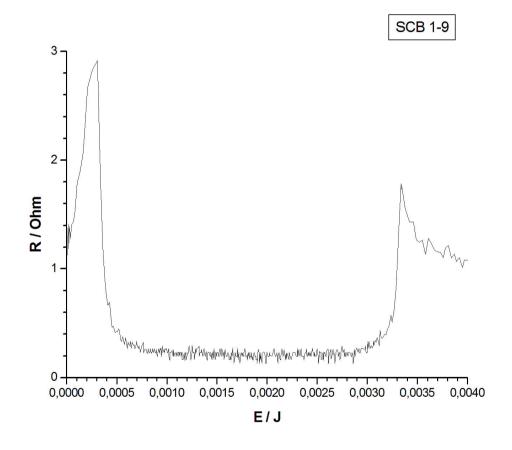



- Specific resistance evaluated directly from voltage, current and bridge dimensions
- $\int I^2 dt / (W \cdot D)^2$  at moment of bridge explosion is a complex function of temperature dependent density, specific heat and specific resistance, and enthalpies associated with phase changes



SCB firing at 25 A - 100 µs pulse Voltage and current profile <sup>60</sup>7




SCB 1-9

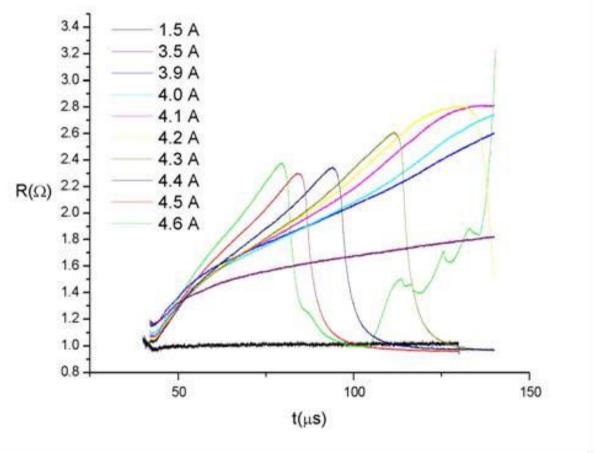


# SCB firing at 25 A - 100 µs pulse (Specific) resistance





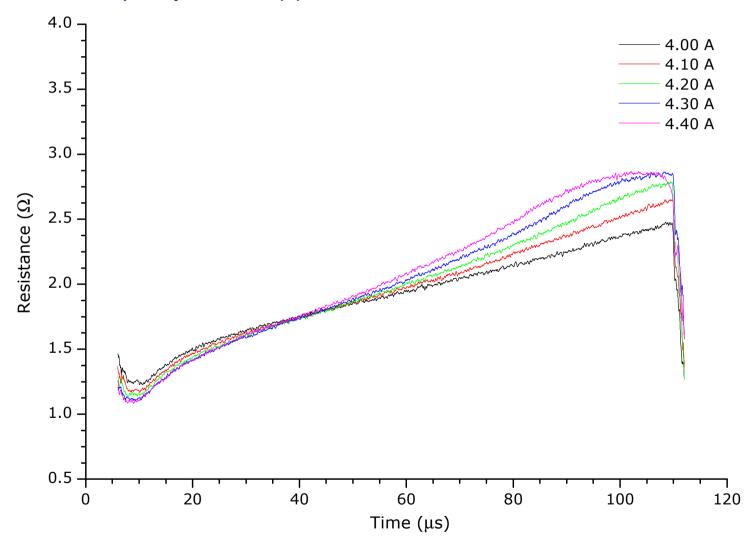



### Summary of destructive tests, bare SCB

| SCB  | ı    | Pulse     | Firing | ∫l <sup>2</sup> dt/(WD) <sup>2</sup>             | E                  | σ*                  |
|------|------|-----------|--------|--------------------------------------------------|--------------------|---------------------|
|      | Α    | μs        | μs     | 10 <sup>15</sup> A <sup>2</sup> s/m <sup>4</sup> | 10 <sup>-3</sup> J | 10 <sup>-6</sup> Ωm |
| 1-4  | 4.6  | 100       | 100    | 3.5                                              | 3.2                | 11                  |
| 1-2  | 5.5  | 100       | 100    | 5.0                                              | 3.2                | 5.5                 |
| 1-5  | 7.0  | 100       | 35     | 2.6                                              | 2.0                | 5.5                 |
| 1-12 | 8.5  | Discharge | 32     | 3.4                                              | 2.2                | 5.0                 |
| 1-13 | 8.5  | Discharge | 49     | 5.5                                              | 2.8                | 5.0                 |
| 1-6  | 10.0 | 100       | 35     | 5.3                                              | 2.5                | 4.0                 |
| 1-14 | 15   | Discharge | 15     | 5.9                                              | 2.2                | 3.0                 |
| 1-8  | 24   | 100       | 16     | 17.7                                             | 3.0                | 2.0                 |
| 1-9  | 25   | 100       | 17     | 20.7                                             | 3.1                | 1.2                 |
| 1-10 | 52   | Discharge | 3.7    | 15.9                                             | 2.6                | 2.0                 |
| 1-11 | 100  | Discharge | 1.0    | 13.0                                             | 2.5                | 1.5                 |

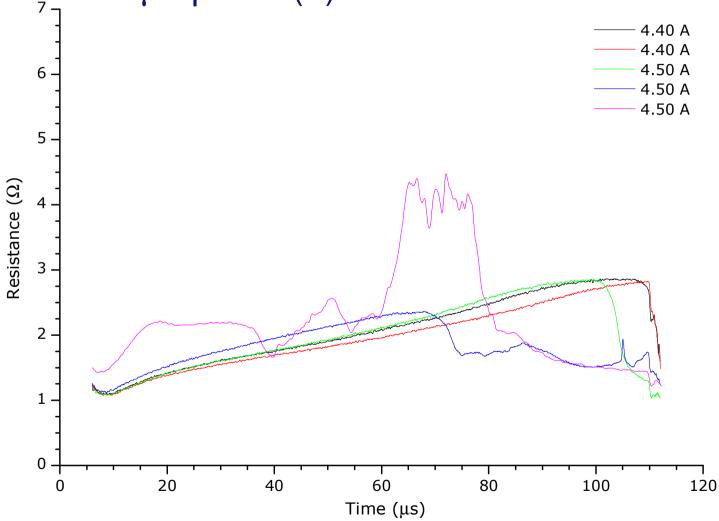
<sup>\*</sup> Specific resistance level after first maximum, melt region




### Non-destructive testing of bare SCB with 100 µs pulse

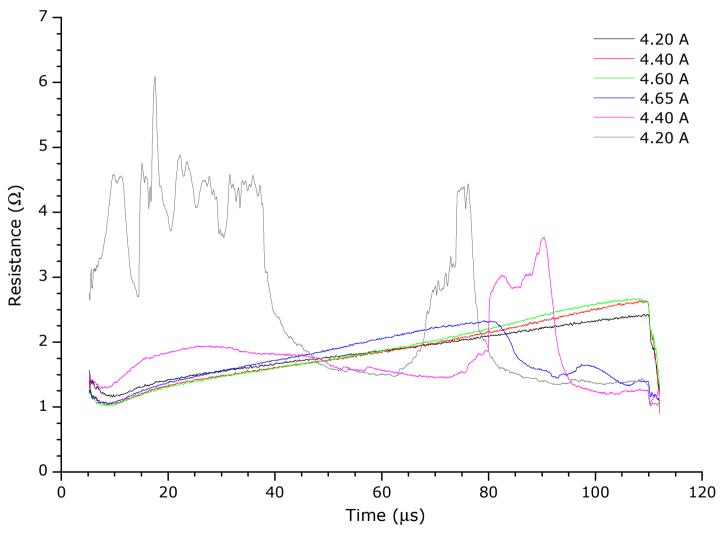


- Short duration pulse of increasing strength applied to a single SCB, indicates reversible behaviour up to the moment of bridge fusion
- NB: the No-Fire current has not been determined here, even though 1.5 A 100  $\mu$ s pulse hardly shows a resistance increase




# Non-destructive testing of SCB with $B/Bi_2O_3$ , and 100 $\mu s$ pulse (I)






Non-destructive testing of SCB with  $B/Bi_2O_3$ , and 100  $\mu s$  pulse (II)





## Non-destructive testing of another SCB with B/Bi<sub>2</sub>O<sub>3</sub>, and 100 μs pulse: effect of current aging





### Summary of destructive tests, SCB with B/Bi<sub>2</sub>O<sub>3</sub>

| SCB | I<br>A | Pulse<br>μs | Firing<br>μs | $\int I^2 dt/(WD)^2$<br>10 <sup>15</sup> A <sup>2</sup> s/m <sup>4</sup> | E<br>10 <sup>-3</sup> J | σ*<br>10 <sup>-6</sup> Ωm |
|-----|--------|-------------|--------------|--------------------------------------------------------------------------|-------------------------|---------------------------|
| 103 | 6.0    | 100         | 44           | 2.3                                                                      | 3.0                     | 11                        |
| 104 | 8.0    | 100         | 28           | 2.5                                                                      | 2.3                     | 6.7                       |
| 105 | 10.0   | 100         | 21           | 2.7                                                                      | 2.1                     | 6.1                       |
| 107 | 15     | Discharge   | 15           | 5.9                                                                      | 2.3                     | 3.3                       |
| 108 | 25     | Discharge   | 10           | 9.8                                                                      | 3.3                     | 2.3                       |
| 109 | 50     | Discharge   | 3.4          | 13.6                                                                     | 3.9                     | 1.9                       |
| 106 | 100    | Discharge   | 1.1          | 15.9                                                                     | 4.5                     | 1.8                       |



<sup>\*</sup> Specific resistance level after first maximum, melt region

#### PESD assessment

- Personnel ElectroStatic Discharge threat (STANAG 4239)
  - ±25 kV, ±20 kV, ±15 kV, ±10 kV, ±5 kV discharge from 500 pF capacitor
  - 500, 5000  $\Omega$  resistance in series with munition
- Available energy 156 mJ, RC-time 0.25, 2.5 μs
- Resistance SCB is not constant, R  $\leq$  1  $\Omega$  with peaks up to  $\approx$  3  $\Omega$
- The maximum electrostatic discharge threat of personnel, simulated by a 500 pF capacitor at 25 kV and discharged through 500  $\Omega$  in series with a "1  $\Omega$ " SCB, will deposit 0.3 mJ
- Deposited energy 0.3 mJ < 2.2-3.2 mJ measured firing energy</li>



### PESD experimental

- 25 kV, 500  $\Omega$  in series with B/Bi<sub>2</sub>O<sub>3</sub> loaded SCB, duplo experiment
  - 1st experiment, 1.5  $\Omega$  before and 4.9  $\Omega$  after PESD
  - 2<sup>nd</sup> experiment, 1.1  $\Omega$  before and 2.4  $\Omega$  after PESD





#### Discussion and conclusions

- SCBs (bare and loaded with B/Bi<sub>2</sub>O<sub>3</sub> pyrotechnic mixture) have been characterized electrically
- In destructive testing the electrical characteristics (ignition time, firing energy, specific resistance) are the same for bare and loaded SCBs, when comparing similar current pulses
- The presence of the pyrotechnic mixture on the SemiConducting Bridge is noticed in non-destructive testing
- One can thermally age a loaded SCB by application of a nondestructive current pulse, and eventually lower the initiation threshold
- The SCB is assessed to pass the PESD test. This is verified in a duplo test, but resistance of SCB has increased after PESD pulse



### Acknowledgement

 This work was carried out as part of the Weapon and Platform Effectors Domain of the MoD Research Programme under an Anglo-Netherlands-Norwegian Collaboration (ANNC).





 This work was carried out as part of the MoD Programme Munitions and Explosive Substances under an Anglo-Netherlands-Norwegian Collaboration (ANNC).





