Media Synchronization Workshop 2013 — Organized by CWI, TNO & UPV

MediaSync 2013

Immersive second-screen experiences
using hybrid media synchronization

Ray van Brandenburg®, Arjen Veenhuizen?
L2TNO, Delft, the Netherlands;

E-mail: ‘ray.vanbrandenburg@tno.nl, %arjen.veenhuizen@tno.nl

Abstract: Most second-screen services have so far been
relying on watermarking and fingerprinting for
providing synchronisation with the main TV screen.
In the EU FP7 HBB-Next project, a new timestamp-
based inter-device synchronization system has been
developed, allowing for frame-accurate
synchronisation between DVB streams and over-the-
top HTTP adaptive streaming content. As a showcase
for this technology, this paper describes a system that
allows users to navigate through ultra-high resolution
content on their tablets, while watching the main
director-controlled stream on their TV.

Keywords: Inter-device synchronization, DVB, tiled
streaming, HTTP Adaptive Streaming, clock
synchronization

1 INTRODUCTION

In the past few years a number of technologies have
become available that allow extending the linear
broadcast TV experience with additional interactive
features delivered over the Internet. A prime example of
such a technology is HbbTV (Hybrid Broadcast
Broadband TV), a standardized [1] technology that
bridges the gap between broadcast DVB streams and the
IP Internet world. By including special packets containing
URLs in the DVB streams, it is possible to trigger a
HbbTV-enabled TV to start retrieving and showing
HTML applications to accompany the TV content.
Currently, the somewhat limited feature set of the HbbTV
standard has limited most such applications to interactive
portals featuring news, catch-up TV and access to video-
on-demand content.

Simultaneously, a completely orthogonal set of
technologies, most notably watermarking and
fingerprinting, have allowed the rise of companion
applications on second screen devices such as
smartphones and tablets. By either detecting audio
watermarks in the TV content stream or by exchanging
audio fingerprints with a centralized server, any device
equipped with a microphone can roughly synchronize to
the TV content. The combination of synchronization with
the more advanced feature set of second screen devices
have allowed for more advanced second screen
applications compared to those offered by HbbTV, such
as applications where a user can play along with a TV
show or receive streams containing statistics and
additional information during sports matches. However,

the limited synchronization accuracy provided by both
fingerprinting and watermarking, combined with the
proneness to error because of the reliance on audio feeds,
have restricted such second screen applications from
providing truly frame accurately synchronized
experiences such as providing auxiliary audio or video
feeds on second screen devices.

In this paper we will present a new set of technologies
that allow for immersive second screen experiences which
are frame-accurately synchronized with an HbbTV
application running on the main TV screen. As a
showcase of this technology, we have implemented a
second screen application that allows users to freely
navigate (e.g. panftilt/zoom) around an ultra-high
resolution video panorama which is synchronized with a
main DVB stream shown on the TV. Using this
technology, users have the freedom to navigate spatially
through a football match, without missing anything of the
action on the main TV screen, or can zoom in to specific
musicians while watching a concert or festival registration.
At the same time, he can still watch the director-
controlled feed shown on the main TV screen. As such,
the passive lean-back experience of watching TV is
combined with the more active and lean-forward
experience of interacting with TV content.

Apart from introducing a set of synchronization
technologies that allow frame-accurate synchronization
both between different devices as well as between
different video delivery technologies (DVB versus IP),
this paper will further discuss new methods for clock
synchronization between devices and auto discovery
mechanisms which can be used to provide seamless and
user-friendly device discovery between HbbTV
applications and second screen devices. These
components have been designed making sure that all
elements need to be able to be implemented without any
significant changes to the broadcast chain. Furthermore,
they should be implementable on all major mobile
platforms, not requiring any proprietary or hard-to-
implement features.

2 USE CASE & REQUIREMENTS

The concept of Tiled Streaming [5] allows for scalable
delivery of ultra-high resolution video (4K and higher) to
mobile devices. By allowing users to spatially navigate in
the video and only sending that part of the video a user is
interested in, the total bandwidth necessary does not
exceed that of a regular HD stream. In the EU FP7

Corresponding author: Ray van Brandenburg, TNO, Brassersplein 2, Delft, NL, +31 6 51219254, ray.vanbrandenburg@tno.nl

ISBN/EAN — 978-90-5986-439-9

Media Synchronization Workshop 2013 — Organized by CWI, TNO & UPV

FascinatE project we’ve developed a mobile application
for the Apple iOS platform (both iPad and iPhone) that
implements Tiled Streaming.

A fact that became immediately obvious while developing
Tiled Streaming and seeing users interact with it, is that
interacting with video is an inherently active and lean-
forward experience. While such interaction can definitely
add a level of immersion to experiencing a video, it is
hard to imagine it becoming the primary method with
which users experience a football match or a musical
performance. TV has traditionally been a passive lean-
back experience and this is unlikely to change with the
advent of Tiled Streaming and similar interactive services.
Such applications however, might be interesting value-
added services when added as a second-screen application
to regular TV broadcasts. It is this application of Tiled
Streaming that is the subject of this paper. In particular,
the combination of Tiled Streaming on a tablet or
smartphone synchronized with a DVB stream on the main
TV screen.

The rest of this paper will describe how the existing Tiled
Streaming application was extended with functionality
that allows it to be synchronized with an external DVB
stream. During this discussion, a number of new
synchronization techniques will be presented.

2.1 Requirements

2.1.1 Inter-device and Clock Synchronization

In existing second-screen applications that implement
synchronisation, such as used for interactive quiz-shows
and sports statistics, the level of synchronization accuracy
needed is typically in the order of half a second to a
couple of seconds. When synchronizing two audio/video
streams on multiple devices however, the level of
accuracy required is an order of magnitude higher.
Especially in the case where audio streams are played
from multiple speakers, studies have shown the need for
accuracy to be in the order of 50ms or less. In general we
can therefore say that for this type of inter-device
synchronization, frame-accurateness is a requirement (i.e.
40ms for 25fps content).

A concept closely tied to inter-device synchronization is
that of clock synchronization. In order for two devices to
synchronize playback of content streams to a frame-
accurate level, it is first necessary for these two devices to
share a common wallclock. In synchronization
mechanisms that assume such a common clock, the level
of synchronization accuracy is therefore determined by
the accuracy of the clock synchronization method. For the
purposes of the use case described in this document,
where two 25fps video stream will be synchronized across
multiple devices, it is therefore vital that the clock
synchronization is as accurate as possible (error at least
<40ms).

2.1.2 Hybrid timelines

Another important element when considering the
presented use case is the issue of hybrid media timelines.
Whenever it is necessary to synchronize two distinct

MediaSync 2013

streams, one of the requirements is to have a common
content timeline between the two streams.

In most video delivery mechanisms, the content timeline
is tied together with the used video container. However,
where in DVB environments the MPEG Transport Stream
(MPEG-TS) is the audio-visual delivery method, the same
is not true for the over-the-top IP world. In recent years
the method of choice for internet streaming to mobile
devices has become HTTP Adaptive Streaming (HAS) in
one of its many variants (e.g. Apple HLS, Microsoft SS or
MPEG DASH). The problem here is that MPEG-TS and
HAS use two very different methods of providing a
content timeline. While MPEG-TS uses a concept of
Presentation Timestamps and Decoding Timestamps
(PTS/DTS), in HAS the timeline is typically
communicated via the so-called manifest file. (One could
argue that both Apple HLS and a specific version of
MPEG DASH actually use MPEG-TS as the underlying
video container, however, in these cases the PTS/DTS
values are only used within segments and not as the
primary synchronization method between segments. In
addition, typical HAS client side implementations don’t
make these values available to the application).

What therefore is needed is a common content timeline
that unifies the DVB PTS/DTS system and the HAS
manifest-based timelines.

2.1.3 Device discovery

Before synchronization between the TV and the second
screen device can occur, it is necessary to first create a
communication link between the two devices. Device
discovery is a topic which has received significant
attention from both the research community as well as the
industry. For the purposes of the presented use case, the
most important requirements are that the solution is user
friendly and thus does not require any active input from
the user (e.g. pairing, typing passcodes, scanning QR
codes, tc.) and that the solution can be implemented
relatively easy on multiple devices which are typically
limited by their respective platforms (e.g. TV/STBs with
simple browsers, Android, iOS, etc.).

2.1.4 Application bootstrapping & Communication

A final element to include in the to-be-developed system
is application bootstrapping: how to make sure that the
proper application is launched on the TV and how to
notify the second screen app of the appropriate content?
For the former problem the HbbTV specification already
utilizes the so-called Application Information Table (AIT)
[11]. With this table, which can be included in the DVB
stream, a broadcaster is able to signal a URL that points to
an HbbTV application that should be launched upon
switching to a particular TV channel. For the latter
problem, signalling a content identifier to the second
screen, no standardized solution exists to date.

3 RELATED WORK

A technique very similar to Tiled Streaming was first
proposed by Mavlankar et. al. [3]. In their work, they
proposed an interactive video streaming system that

ISBN/EAN — 978-90-5986-439-9

Media Synchronization Workshop 2013 — Organized by CWI, TNO & UPV

allows users to change the region-of-interest while
watching online lectures. Related techniques were
explored by Khiem et. al in [2]. Furthermore, Alface et al.
[4] proposed a server-centric method for tiled streaming
that allows browser-based client to interactively navigate
around a video panorama without any processing on the
client-side. The main differences between these systems
and the Tiled Streaming system discussed in [5] is the
focus on the client as the node responsible for selecting
the appropriate tiles instead of an intelligent network node.
Using a so-called spatial manifest in combination with
standard HLS streams, all intelligence is placed on the
client, allowing the use of standard off-the-shelf HTTP
servers and making the system highly scalable. Another
difference is the use of an overlapping tiling scheme,
reducing the number of necessary decoders on the client
side, allowing Tiled Streaming to be performed on
performance-restricted mobile clients.

One of the first projects to focus on synchronisation
between the broadcast world and the over-top internet
world was the SAVANT project [19], developing a
system that allows a sign language video stream to be
shown as an overlay on a broadcast stream or on a
second-screen device. More recent research has included
work on re-using the PCR/PTS timestamp system present
in DVB and adding this information to IP streams as well,
either by the broadcaster [20] or by a third party [21]. A
downside of such systems is that the PCR and PTS values
are often changed within the delivery network, as a result
of re-multiplexing operations. Finally, the combination of
DVB and RTP has also been the topic of significant study,
such as that by Leroux et. al. [22] who proposed a system
for synchronizing DVB-H with RTP streams on mobile
devices.

In recent years, with the advent of tablets and
smartphones, the topic of inter-device synchronization has
received renewed interest from both the industry as well
as the research community. However, this attention has
been mostly directed at fingerprinting [8] and
watermarking-based [7] techniques. An exception is [6],
where Howson et. al. propose using synchronised
auxiliary data packets to carry timeline data in DVB
streams in order to allow synchronization with RTP
streams.

4 COMPONENT DESIGN

This section discusses the main design decisions that were
made while developing the system. Before proceeding
with the details behind the various components, Figure 1
shows an architectural overview of the proposed
demonstrator in an HbbTV context.

On the TV/STB side, there is an HbbTV application
which features modules for clock synchronization, inter-
device synchronization and device discovery. On the
second-screen side, there exists the Tiled Streaming
application which has been extended with modules that
form the counterparts of those in the TV/STB. Where the
main input for the TV/STB consist of the DVB stream,
the second-screen application retrieves Tiled Streaming
segments from a standard web server via HTTP.

MediaSync 2013

Second-screen Device

App

Device Tiled Streaming
Discovery Client

I
+

Inter-device
Sync
HAS segments
t
I
Inter-device Device
Sync Discovery

Tv/sTe Y Dvi O

Figure 1: Architectural overview

4.1 Content Timelines

In order to synchronize the DVB broadcast stream with
the HAS-based streams used in Tiled Streaming, a
common timeline between the two video delivery
mechanisms is necessary.

The PTS/DTS values which form the basis of the inter-
media synchronization mechanism present in an MPEG-
TS are not suitable for any type of synchronization with
streams not present in the same MPEG-TS multiplex. The
main reason for this is that PTS/DTS values are not a
product of the content itself but of the transport
mechanism. In a typical DVB stream, the PTS/DTS
values form a continuous stream, irrespective of program
changes or advertisements. While this is a positive thing
from a broadcaster-perspective, in the sense that it is
impossible to use PTS/DTS values to automatically
remove ads from a recording, it also makes it difficult to
distinguish different programs. Furthermore, since
PTS/DTS values are not inserted by the broadcaster but
by the network operator, these values may also change
depending on the network. This means that a particular
program being broadcasted on Network A will typically
have different PTS/DTS values than the exact same
program at the same time on Network B. The PTS/DTS
values may even change within the same network, for
example after a re-multiplexing operation. Clearly, this
disqualifies PTS/DTS values as a candidate for providing
content timelines for inter-device synchronization
purposes in a real-world scenario.

A more suitable form of timeline might be an absolute
content-time, starting at 00:00:00 at the start of the
program and counting the number of minutes and seconds
since. Such a timeline is particularly well-suited to be
synchronized with an HAS stream, since the manifest
files used in the various HAS variants all include the
length of the individual segments, from which the
absolute time since the start of the content can be deduced.
The question is how this content timeline can be signalled
in the DVB stream.

As mentioned by Howson et. al. earlier [6], DVB has
standardized so-called DVB Synchronized Auxiliary Data
(SAD) packets in 2005 [12]. Using these packets, it is
possible to include additional packets in an MPEG-TS

ISBN/EAN — 978-90-5986-439-9

Media Synchronization Workshop 2013 — Organized by CWI, TNO & UPV

that contain arbitrary data which is synchronized to the
media streams present in the MPEG-TS. In short, each of
these SAD packets contains a PTS/DTS value, which
allows it be accurately synchronized with audio/video
packets. By including the absolute content time in each
SAD packet up to that point, one can create a mapping
from PTS/DTS values to absolute content time.
Furthermore, since these packets can be packetized as any
other Packetized Elementary Stream (PES), they are
transparent from a network perspective. Should any
intermediate (re-)multiplexer change the PTS/DTS values
in the audio/video PESs, the packets in the SAD stream
will be changed accordingly. This property allows SAD
packets to be added to a stream by a broadcaster and
arrive unharmed at the client side.

Using a combination of SAD packets in the DVB stream
and either an implicit or explicit absolute content timeline
in the HAS manifest files, a common content is achieved
between these two heterogeneous media delivery methods.

Now that the content timeline is available, the next step is
using it to synchronize the two streams on different
devices.

4.2 Inter-device synchronization

As discussed in section 2.1.1, there are multiple
approaches for achieving inter-device synchronization.
The mechanism developed for the system being discussed
here, in which frame-accurate synchronization is a
requirement, is to exchange media timestamps.
Specifically, repeatedly communicating a single tuple
between the to-be-synchronized devices: a content time
and a wallclock time.

7= 00:00:00
t= 00:00:10
t= 00:00:20
= 00:00:40
t= 00:00:50

Content

=eeadp b= 00:00:30

Wallclock

15'12 o
6. 7 235_1
5. 23 o

¥
1 | 1 l
5 o & ¥
= 2 = =z
@ @ @ G
~ ~ ~ ~

contentinstant@wallclockinstant
00:00:30@16:13:21

Figure 2: Synchronization Tuple

Figure 2 shows the two relevant timelines schematically:
a content timeline starting at 00:00:00 and increasing
monotonically with the media stream, and a wallclock
timeline representing the moment in time at which the
media was played back. The circled area in the figure
displays a single synchronization tuple which can be
signalled to other players to achieve inter-device
synchronization. In this particular case, it shows that the
media samples with content time 00:00:30 where played
back at 16:13:21. Based on this single tuple, the receiver
has enough information to calculate the appropriate
playback instant for any given media sample in the
content stream. Assuming successful clock
synchronization, it can simply calculate that the media
samples at 00:00:50 should be played back at 16:13:41.
The advantage of sending timestamps tuples instead of

MediaSync 2013

control commands over the synchronization interface is
that it the synchronization accuracy is independent of the
network delay. Even if the tuple arrives at the receiver a
couple of seconds after it was sent, it still provides all the
information the receiver needs to calculate the appropriate
playback time for any given media sample.

In order to prevent desynchronization resulting from
clock drift and packet-loss, the synchronization tuple can
be sent repeatedly, e.g. once every 5 seconds.

While in the current implementation the synchronization
tuples were communicated over a WebSocket [14]
between the TV and the second-screen device, the same
mechanism can be applied over any underlying transport
mechanism. In large-scale synchronization architectures,
one could even broadcast the synchronization tuples to all
receivers.

Depending on device capabilities and the availability of
the media streams, either the TV/STB or the second-
screen device can delay its media playback depending on
the tuples it receives. For example, a given STB might
only be able to buffer incoming DVB streams for a short
period of time due to memory limitations. In this case, it
might be easier for the second-screen device to adjust its
playback to match the DVB stream. Alternatively, in live
situations the Tiled Streaming segments might only be
available a certain period of time after the DVB broadcast
stream, which means that in these cases the DVB stream
playback might have to be delayed.

4.2.1 Clock Synchronization

The inter-device synchronization method discussed in the
previous section assumes clock synchronization between
the different devices. However, such synchronization is
not a given.

Traditionally, NTP [13] has been the main method for
clock synchronization employed on devices connected to
the public internet. One of the advantages of using NTP is
that it has been deployed widely, with client-side libraries
available for most platforms (although most
implementations focus on SNTP, a simpler and less
accurate version of NTP [REF]) and a large set of public
NTP servers to synchronize to is available. The downside
of using NTP is that it is generally not accurate enough
for all use cases [How accurate is it typically?]. For this
reason, the Precision Time Protocol (PTP) was
standardized [15]. However, PTP implementations are not
yet commonly available and require, in order to work with
the highest precision, PTP-enabled layer 2 elements in the
network.

There are a number of factors that contribute to the
inaccuracy of NTP, most notably the fact that it assumes
symmetric network connections. Since measuring one-
way delay over a network is quite difficult, NTP measures
the round-trip-time (RTT) and assumes the one-way delay
is exactly half the RTT. Of course, data latencies over the
internet are never 100% symmetric, especially if wireless
networks are involved.

However, despite the fact that NTP is not perfect, it is still
the only standardized clock synchronization algorithm

ISBN/EAN — 978-90-5986-439-9

Media Synchronization Workshop 2013 — Organized by CWI, TNO & UPV

that is currently widely available, so it was selected as one
of the two clock synchronization mechanisms included in
the system described here.

In order to try to increase the accuracy of the clock
synchronization for the inter-device synchronization
scenario, a second, new, clock synchronization
mechanism was developed for specifically this purpose:
the so-called ping-pang-pong protocol.

The ping-pang-pong protocol works on the assumption
that the shorter the network paths are, the lower the
latencies and the smaller the absolute error in determining
the one-way delay between two network elements. Based
on this assumption, the idea is to have the two devices
(TV and second-screen device) try to synchronize their
clocks peer-to-peer, without an external server.

The method developed for this is similar to how the well-
known ping protocol works: one device sends a short ping
packet to another device, with the second one responding
with a short pong packet. By including in the message the
timestamp at the moment it was sent, it is possible for the
first device to calculate the RTT between the two devices.
In the newly developed ping-pang-pong protocol, a third
message is added, so that the second device can also
determine the RTT. In addition, by not only including the
transmission time of the messages but also the reception
time of all earlier messages (in 64bit Unix epoch time
format), both devices can not only calculate the one-way
delay between the devices, but their absolute time
difference as well, providing clock synchronization.

Node A Node B

TAl -

Figure 3: Ping-pang-pong protocol

Similar to NTP, this new protocol also assumes
symmetric network paths. However, in this case the
network paths are significantly shorter, typically only
including a single hop when on the same Wifi network,
which makes the absolute error smaller. In addition, well-
known statistical algorithms can be applied to reduce the
error in the one-way delay measurement even further.

MediaSync 2013

4.3 Device Discovery

For device discovery, it was decided to use a mechanism
that is simple to implement and can be deployed on a
wide variety of devices. While standards like UPNP and
DLNA have been around for many years and have aimed
to solve the device discovery problem, interoperability
has historically been a major problem for both. While the
situation is slowly getting better, guaranteed
interoperability and frictionless use between two devices
running either of the two systems is still not a given due
to the complexity of the protocols and many proprietary
extensions. In addition, and maybe more importantly,
implementing a full DLNA or UPNP client requires a lot
of effort on the part of the app developer. Current mobile
platforms such as iOS and Android do not include
implementations in the platforms themselves which
means that any app developer wishing to support them
has to implement the standards themselves. For these
reasons UPNP and DLNA have been rejected as
candidates for device discovery.

Instead, the choice has been to utilize the combination of
Multicast DNS (mDNS) [9] and DNS Service Discovery
(DNS-SD) [10], together also known as ZeroConf or
Bonjour. The main advantage of this combination is that it
provides a simple to implement, lightweight but powerful
method for service and device discovery. In addition,
numerous libraries exist for almost all major
programming languages and support is present in both
iOS and Android. Most importantly, and industry
adoption has shown this in the past few years, the relative
simplicity of mDNS and DNS-SD means that
implementations just work and interoperability is not an
issue.

4.4 Application Bootstrapping &
Communication

As discussed in section 2.1.4, the HbbTV application
running on the TV is launched upon the TV receiving a
so-called AIT tablet with embedded URL in the DVB
stream. Once the HbbTV application itself is launched, all
other functionality that needs to be present in the TV can
be part of that HbbTV application through JavaScript
code.

The remaining open issue is how the TV knows which
content to tell the second screen device to start playing.

For this particular problem, two categories of solutions
are available: server-based or stream-based. In the server-
based case, the HbbTV application running on the TV
queries a central server (e.g. hosted by the broadcaster) to
request the location of the second-screen content. As part
of this query the HbbTV application might include some
identifier representing the content currently being
watched on the TV (e.g. a channel or program ID
obtained from the DVB stream).

The second type of solution, and the one that is
implemented in the demonstrator, is placing the content
URL in the DVB stream itself. In this case, a new field,
the < auxiliary_content_url> field, is included in the AIT.

ISBN/EAN — 978-90-5986-439-9

Media Synchronization Workshop 2013 — Organized by CWI, TNO & UPV

The AIT specification allows for such new fields through
so-called private descriptors [1][11].

Upon finding the AIT and extracting both the HbbTV
application URL as well as the auxiliary content URL, the
HbbTV application which is launched, communicates the
auxiliary content URL to the second-screen application
over the same WebSocket interface that is used to
exchange synchronization tuples (see Section 4.2). To this
purpose, a lightweight JSON based message protocol has
been developed.

5 IMPLEMENTATION

Since the proposed demonstrator consists of two distinct
components, a second-screen component and a TV/STB
component, an important element of this project was to
create both elements in a way that they could also work
independently. As an example, instead of synchronizing
with a DVB stream shown on a TV or STB, the second-
screen application should also allow for synchronization
between multiple tablets and/or smartphones on the same
network. Similarly, the TV/STB components should also
allow for synchronization with other TV/STBs at remote
locations (although in this case using NTP is probably
more accurate than the ping-pang-pong protocol).

As part of the FP7 FascinatE project, a Tiled Streaming
application for iOS has already been developed [16]. For
this new demonstrator, this application was extended with
the described clock synchronization, inter-device
synchronization and device discovery functionality.

For the TV/STB part of the demonstrator, the existing
HBB-Next Synchronization platform [17] was leveraged.
With this platform, it was already possible to perform
heterogeneous inter-media synchronization, allowing for
different types of media streams, such as DVB streams,
HLS streams and MPEG DASH streams to be frame-
accurately synchronized on a single device. As part of the
project described in this paper, the existing platform was
extended with inter-device synchronization and device
discovery capabilities.

The HBB-Next synchronization platform builds upon the
open source GStreamer framework [18], a pipeline-based
environment that allows for flexible handling of media
flows. While the demonstrator discussed in this document
runs on a Linux-based PC, the GStreamer framework has
also been implemented in various commercial chipsets,
finding its way into commercial TVs and STBs, and
making it an ideal environment for developing and testing
new features with.

5.1 Impressions and performance

The following figures give an overview of the developed
application.

MediaSync 2013

Figure 5: DVB-S stream on TV, synchronized with a video
panorama of the same event running on a tablet

Since the research presented in this document is still on-
going, extensive performance measurements have yet to
be performed to determine the achieved synchronization
accuracy. However, initial experiments with a video
camera recording both devices in a single shot have
shown the synchronization accuracy between the two
devices to be at least within the 40ms boundary that
determines frame-accuracy for 25fps content. Future
experiments will have to confirm these observations.

In addition, the authors are planning to conduct tests to
compare the performance of the developed ping-pang-
pong protocol with the performance of NTP when used on
local Wifi networks.

6 CONCLUSION

In this paper we have described a novel use case for
immersive second screen experiences. By allowing users
to use their tablet to navigate around an ultra-high
resolution video panorama of the sports event they are
watching on the main TV screen, the lean-back
experience of watching TV has been merged with the
more active experience of interacting with content.

In order to solve the synchronization problems present in
the proposed use case, a set of synchronization
components was described, among them a simple yet

ISBN/EAN — 978-90-5986-439-9

Media Synchronization Workshop 2013 — Organized by CWI, TNO & UPV

powerful method for synchronizing heterogeneous media
streams between different devices and a new clock
synchronization protocol.

Future work will focus on determining the accuracy of the
proposed inter-device and clock synchronization
protocols. In addition, the case of inter-destination
synchronization, where the two devices are at different
geographical locations, will be explored in more detail.
Finally, work is currently on-going on scaling-up the used
synchronization algorithms to be used in large groups of
devices, where one-to-one communication between all
nodes in a synchronization group is no longer efficient.

7 ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the EC Seventh Framework Programme (FP7/2007-
2013) under Grant Agreement n°287848 (HBB-Next) and
Grant Agreement no. 248138 (FascinatE).

References

[1] ETSITS 102 796: “Hybrid Broadcast Broadband TV 1.5”, v1.2.1,
November 2012

[2] Khiem, Ravindra, Carlier and Ooi, “Supporting zoomable video
streams with dynamic region-of-interest cropping”, Proceedings of the
first annual ACM SIGMM conference on Multimedia systems

(MMSys ’10). 2010.

[3] Mavlankar, Agrawal, Pang, Halawa, Cheung and Girod. “An
interactive region-of-interest video streaming system for online lecture
viewing”, Proceedings of 2010 IEEE 18th International Packet Video
Workshop. 2010.

[4] Alface, Macq and Verzijp. “Interactive omnidirectional video
delivery: a bandwidth-effective approach”, Bell Labs Technical Journal,
March 2012.

[5] Brandenburg, Niamut, Prins and Stokking, “Spatial segmentation
for immersive media delivery”, Proceedings of the 15" International
Conference on Intelligence in Next Generation Networks (ICIN), 2011.
[6] Howson, Gautier, Gilberton, Laurent and Legallais. “Second
screen TV synchronisation”, Proceedings of the 2011 IEEE International
Conference on Consumer Electronics. 2011.

MediaSync 2013

[7] Civolution website, http://www.civolution.com/home/, last
accessed August 6 2013.

[8] Never.no website, http://never.no/platform/, last accessed August
6" 2013.

[9] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
February 2013.

[10] Cheshire, S. and M. Krochmal, "DNS-Based Service Discovery",
RFC 6763, February 2013.

[11] ETSITS 102 809: “Digital Video Broadcasting (DVB); Signalling
and Carriage of Interactive Applications and Services in Hybrid
Broadcast/broadband Environments”, version 1.1.1, January 2010.

[12] ETSITS 102 823, “Digital Video Broadcasting (DVB);
Specification for the Carriage of Synchronized Auxiliary Data in DVB
Transport Streams”, version 1.1.1, Nov 2005.

[13] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch, "Network
Time Protocol Version 4: Protocol and Algorithms Specification", RFC
5905, June 2010.

[14] Fette, 1. and A. Melnikov, "The WebSocket Protocol”, RFC 6455,
December 2011.

[15] IEEE 1588-2008: “IEEE Standard for a Precision Clock
Synchronization Protocol for Networked Measurement and Control
Systems”, 2008.

[16] Vimeo, ‘TNO iCombine’, http://vimeo.com/67199886, May 2013,
last accessed August 7™ 2013.

[17] Veenhuizen, van Brandenburg, “Frame accurate media
synchronization of heterogeneous media sources in an HBB context.”,
Proceedings of the Media Synchronization Workshop 2012.

[18] GStreamer website, http://www.gstreamer.net, last accessed
August 7" 2013.

[19] SAVANT website, http://dea.brunel.ac.uk/project/savant, last
accessed August 7™ 2013

[20] Matsumura, Evans, Shishikui and McParland, “Personalization of
broadcast programs using synchronized internet content”, IEEE
International Conference on Consumer Electronics, January 2010.

[21] M. Armstrong, J. Barrett and M. Evans, “Enabling and enriching
broadcast services by combining IP and broadcast delivery”, BBC
Research White Paper WHP 185, Sep 2010.

[22] Leroux, Verstraete, De Turck and Demeester, “Synchronized
Interactive Services for Mobile Devices over IPDC/DVB-H and UMTS”,
2" [EEE/IFIP International Workshop on Broadband Convergence
Networks. 2007

[23]

ISBN/EAN — 978-90-5986-439-9

