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ABSTRACT

When bright moving objects are viewed with an electro-optical system at very long range, they will appear as
small slightly blurred moving points in the recorded image sequence. Detection of point targets is seriously
hampered by structure in the background, temporal noise and aliasing artifacts due to undersampling by the
infrared (IR) sensor.

Usually, the first step of point target detection is to suppress the clutter of the stationary background in the
image. This clutter suppression step should remove the information of the static background while preserving
the target signal energy. Recently we proposed to use super-resolution reconstruction (SR) in the background
suppression step. This has three advantages: a better prediction of the aliasing contribution allows a better
clutter reduction, the resulting temporal noise is lower and the point target energy is better preserved.

In this paper the performance of the point target detection based on super-resolution reconstruction (SR)
is evaluated. We compare the use of robust versus non robust SR reconstruction and evaluate the effect of
regularization. Both of these effects are influenced by the number of frames used for the SR reconstruction and
the apparent motion of the point target. We found that SR improves the detection efficiency, that robust SR
outperforms non-robust SR, and that regularization decreases the detection performance. Therefore, for point
target detection one can best use a robust SR algorithm with little or no regularization.
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1. INTRODUCTION

In surveillance applications moving targets need to be detected early. Electro-optical surveillance systems
observe distant missiles or other incoming threats as moving point targets. At maximum detection range
these point targets will have a low signal-to-noise ratio with respect to the background. Detection is further
hampered by high contrast structure (clutter) in the background. In addition to this, the sensor further
complicates detection by undersampling of the signal and adding temporal noise.

Usually, the first step of point target detection is to suppress the clutter of the stationary background in
the image. A clutter suppression step should remove the information of the static background while preserving
the target signal energy. A standard background suppression technique is to align and subtract subsequent
frames (AS).

Recently1 we proposed to use super-resolution reconstruction (SR) in the background suppression step.
This has the advantage that 1) a better prediction of the aliasing contribution substantially reduces the clutter
related error in the difference image, 2) the temporal noise in the difference image is reduced, and 3) the
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point target amplitude in the difference image is higher. These advantages are explained in more detail in the
next section. In this paper we evaluate the effect of different super-resolution reconstruction techniques on the
performance of point target detection. SR can be done in a robust or non-robust way. We expect that robust
SR performs better for data sets with less frames. This is caused by the fact that the point target is more
likely to be seen as an outlier, and will therefore be removed from the background using a robust method.
SR reconstruction techniques often employ regularization. This will produce a smoother background image,
and therefore reduces artefacts. However, it also removes frequency content and therefore fails to suppress the
aliasing noise in the current frame by background subtraction.

This paper is organized as follows. In section 2 the theory of the point target detection using SR recon-
struction algorithms is described. In section 3 experiments are described in which the effects of the different
settings are shown. Finally, conclusions are presented.

2. THEORY

Super-Resolution (SR) reconstruction is a well-known technique to increase the resolution of a sequence of
aliased Low-Resolution (LR) images. The Zoom Factor (ZF) of a SR reconstruction method is the ratio of
the size of the resulting High-Resolution (HR) image with respect to the size of the LR images. Note that
the resolution gain is usually less than ZF.2 Generally, SR reconstruction can be split up in two parts:2 1)
registration, 2) fusion and deblurring. The fusion and deblurring is described in more detail in the next
subsection.

2.1 Registration

Registration aims to align all LR frames that are used for SR reconstruction. A variety of image registration
techniques have been reported in the literature.3 In our experiments the registration is done with a precise iter-
ative gradient-based shift estimator.4 This gradient-based shift estimator5 finds the displacement (dxk1, dyk1)
between two shifted images, Ik−1(x, y) and Ik(x, y), as a least-squares solution:

it.1 : min
dxk1,dyk1

1
P

∑

x,y

(
Ik − Ik−1 − dxk1

∂Ik−1

∂x
− dyk1

∂Ik−1

∂y

)2

. (1)

Here, image Ik is approximated with a Taylor expansion of image Ik−1, (x, y) are the pixel positions and
P is the number of pixels in image Ik. The solution of equation 1, (dxk1, dyk1), is biased by a fraction of the
displacement. Due to the relative aspect, the bias can be corrected in an iterative way:

it.n : min
dxkn,dykn

1
P

∑

x,y

(
Ik(x + dxk(n−1), y + dyk(n−1)) − Ik−1 − dxkn

∂Ik−1

∂x
− dykn

∂Ik−1

∂y

)2

. (2)

In iteration n (n > 1), Ik is translated by interpolation with the estimated subpixel displacement
(dxk(n−1), dyk(n−1)) with respect to the original image Ik estimated in the previous iteration. This schema
is iterated until convergence and results in a very precise (σdisp ≈ 0.01 pixel for noise free data) unbiased
registration.4

Note that this registration method, due to its iterative character, can also cope with multiple-pixel image
shifts. In such a case, the registration will not be accurate after the first iteration because the Taylor expansion
is not accurate for large shifts. However, after a few iterations the remaining shift will be small and hence the
Taylor expansion becomes accurate. This will only work if the result is the global minimum instead of a local
minimum. Therefore, in the first steps often a coarse scale is applied, whereas in the last steps a finer scale is
used.
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2.2 Robust versus non-robust fusion and deblurring

The fusion and deblurring steps of SR reconstruction algorithms are used to fuse the aligned data and deblur
the data on a HR grid. The resulting HR model of the background is free of aliasing. Super-resolution
reconstruction can be done using fusion and deblurring methods that are robust or not robust with respect to
outliers. If enough frames are available and the apparent motion of the point target w.r.t. the background is
significant, a robust SR algorithm will see the point target as an outlier. A non-robust method will average
the point target with the background and will therefore always place some target energy into the background.

A well performing non-robust method6 is the method proposed by Hardie et al.7 Zomet proposed a robust
version of this algorithm.8 In this paper we compare these two methods for point target detection.

Like many other SR reconstruction methods Hardie and Zomet use an observation model of the form:

Ik(x, y) = HkZ + θk(x, y) (3)

where Ik is the kth LR frame, Z is the HR image scene and θk denotes additive noise. The transfer matrix
Hk describes 1) the model of the camera, 2) the estimated motion between Z and Ik and 3) the Zoom Factor
(ZF). For simplicity, Hk represents the relation between Z and LR frame Ik in one matrix.

To obtain the solution, the total squared error L between the LR frames and the results of the resampling
of the estimate of the HR scene Z̃ is minimized:

L(Z̃) =
1
2

N∑

k=1

(
Ik − HkZ̃

)2

(4)

with N the total number of LR frames. Taking the derivative of L with respect to Z̃ results in:

∇L(Z̃) =
N∑

k=1

HT
k (HkZ̃ − Ik) =

N∑

k=1

Gk (5)

with HT
k the transposed of Hk. A new estimate of the background Z̃ is obtained by

Z̃n+1 = Z̃n + ε∇L(Z̃) (6)

with ε the step size in the direction of the gradient. The robustness of Zomet’s method is introduced by
replacing the sum of back-projected images Gk in equation 5 by a scaled pixel-wise median :

∇L(Z̃) ≈ N · median (Gk)N
k=1 . (7)

2.3 Regularization

Adding a regularization term to the functional of equation 4 allows incorporation of a priori knowledge about
the solution. To avoid artifacts in the background due to noise enhancement we generally add a term that
favours a smooth solution as shown below.

L(Z̃) =
1
2

N∑

k=1

(
Ik − HkZ̃

)2

+ λ

H∑

i=1

||∇2Z̃||2 (8)

with H the number of HR grid points, and

∇2Z̃ =

⎛

⎝
0 −1/4 0

−1/4 1 −1/4
0 −1/4 0

⎞

⎠ ∗ Z̃ (9)
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2.4 Point target detection

After background subtraction, the point targets need to be detected in the difference image. The difference
images show the amplitude difference between an image frame containing a moving target and background and
an estimation of the background. A standard method to estimate the background is to use another frame as
background estimate. With this so-called Align-and-Subtract (AS) method, the difference image is based on
two aligned frames:

ΔDAS
k ((x, y) = Ik(x, y) − Ik−1,aligned(x, y) (10)

In Ik(x, y) and Ik−1,aligned(x, y) noise and aliasing artefacts are present, as well as the target.

For the super-resolution case, the difference image DSR
k of frame k is calculated based on by:

ΔDSR
k (x, y) = Ik(x, y) − HkZ̃, (11)

in which HkZ̃ is the background estimate based on the super-reconstruction result.

Using SR reconstruction for background suppression has the following advantages. The improvement de-
pends on the apparent motion of the point target, the SR reconstruction algorithm, the amount of regularization
and the number of frames used.

Preservation of the point target energy
For point targets with small apparent motion w.r.t. the background, subtracting subsequent frames will
suppress the point target in ΔDAS

k , which hampers detection. Ideally ΔDSR
k , i.e. with SR reconstruction

for background estimation, the point target is fully preserved. However, in practice, some of the point
target’s energy will be present in the background image, which causes a slight reduction of the point
target in the difference image.

Reduction of aliasing artifacts
By applying SR reconstruction a better (aliasing free) estimate Z̃ of the background can be obtained.
This HR estimate can be used to obtain an LR image of the background with the same aliasing artifacts
as the original LR images. Therefore, the difference image will contain less aliasing artifacts. In other
words, ΔDSR

k is free from clutter due to aliasing, because HkZ̃ now suffers from aliasing in exactly the
same way as Ik,

Suppresion of temporal noise
As HkZ̃ is based on a number of N recorded frames, the noise in this image will be lower than in the
original camera image. This means that the noise level in ΔDSR

k will also be lower than the noise level
in ΔDAS

k .

In the difference images the point targets will be detected. A simple detection technique is to threshold
the magnitude of the difference image. All pixels with a value above a certain threshold value are detected as
targets.

3. EXPERIMENTS

For the experiments camera images were simulated using a camera model. A super-scale input image is
downscaled a factor 15 in both directions using a camera model, in which the subpixel motion, the lens blur
(σpsf = 0.35 LR pixel) and fill-factor (81% area) of the camera are modeled. For the SR reconstruction
methods, a camera model with only lens blur (σpsf = 0.4) is taken. The amplitude of an inserted point target
is defined as the average maximum intensity of the point target in the LR images.

In Figure 1 point targets are shown which are added to real camera images. Adding the point target to
the background instead of replacing the background introduces an error. In this simulation the error is small
because of two reasons. First, the point target is placed in a superscale image and downscaled as described
above, instead of placing it directly into the low resolution image. In this way, the point target will suffer from
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(a) frame 1 (b) frame 24 (c) frame 48
Figure 1. Three frames (256× 128) of a constructed point target sequence. The position of the point target can be seen
in Figure 2. The amplitude of the point target is 56 grey values. The point target is moving with an apparent velocity
of 2 LR pixel/frame w.r.t. the background.

(a) AS (b) Zomet 1 (c) Zomet 2
Figure 2. Difference images for the different background suppression methods displayed with intensity range [-6, 6].
The positions of the point target are indicated with a circle. The difference image is shown for the 24th frame in the
sequence. The amplitude of the point target is 12 grey values and its apparent motion w.r.t. the background is 2 LR
pixel/frame.

aliasing in a similar way as the background. Second, the target is a point target and has therefore a small
footprint. It can be shown1 that the maximum error that is made is 100 times smaller than the temporal noise.

In Figure 1 it is hard to see the location of the point targets. In Figure 2 the different images for the
AS and Zomet background suppression methods are shown. Without the background the point targets are
detected more easily. It can be seen that the difference image resulting after background suppression with
Zomet’s SR reconstruction method with zoom factor 2 contains much less background contributions than the
other methods. This effect is best seen in the center part of the image where the structure of the buildings
is hardly visible in comparison with the other two difference images. Furthermore it can be seen that both
difference images based on Zomet’s method contain less noise than the difference image based on AS.

3.1 Point target intensity

Ideally the point target is not present in the projection of the HR background image, i.e. the point target
intensity in the difference image is the same as the amplitude of the point target. In practice, the point target
can be visible in the projection of the HR image. We evaluate the point target intensity in the difference
image for the (almost) noise-free case. For these experiments, point targets with amplitude 1 were inserted in
a constant background with very little noise (σn = 0.002). The registration was assumed to be perfect.

The maximum of the absolute difference image is used as measure for the point target intensity. The point
target intensity as a function of the point target velocity for 16 and 80 frames are shown in Figure 3. As
expected, the robust Zomet method performs better for SR reconstruction with a smaller number of frames
and for point targets with a smaller velocity. The number of frames needed to obtain the original point target
amplitude for slow point targets is higher than for fast point targets. There is no significant effect between the
different Zoom Factors. For different regularization factors no effects were found. These results are not shown
here.

3.2 Temporal noise

We assume that temporal noise in the different camera frames is independent. For the Hardie method without
regularization the estimated LR frame HkZ̃ is based on N recorded frames, which reduces the noise standard
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Figure 3. The maximum point target energy in the difference image for the Align-and- (AS) and SR reconstruction
with the Hardie method (H) and the Zomet method (Z), for Zoom Factor 1 and 2, with 16 frames (left) and 80 frames
(right).
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Figure 4. The maximum error in the difference images plotted against the number of frames used. Four methods are
used: super-resolution reconstruction with the Hardie method and the Zomet method (lower row), for ZF 1 and 2,
respectively. The input image contains only noise.

deviation with factor
√

N/2F , where F is the zoom factor. Therefore, the resulting noise in a difference image

after SR reconstruction is: σΔhardie
n =

√
N+(2F )2

N σn, which is for a large number of frames only slightly higher
than the temporal noise of one frame σn. This is low compared to the Align-and-Subtract method, where the
noise in the difference image is

√
2σn.

For the Zomet methods such a formula is not straightforward. Here, we also assume that the noise in the
difference image is lower than for Align-and-Subtract.

These effects of the SR methods are tested with a simulation. The test images contain only temporal noise
with σn = 1. The resulting noise for all SR reconstruction algorithms is around 1. The resulting noise of the
difference image is plotted as function of the number of frames for the Hardie and Zomet method in figure 4.
The noise is higher for higher Zoom Factors. The resulting noise is somewhat higher for Zomet than for Hardie,
which shows that the mean is more effective in suppressing the noise than the median.
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Figure 5. One of the input images for the aliasing experiments.

3.3 Aliasing noise

If the SR reconstruction algorithms are tuned correctly, the resolved aliasing contribution and noise should be
similar for the robust and the non-robust case. A higher Zoom Factor should give a better aliasing prediction
and therefore smaller values in the difference images. Regularization will increase the aliasing noise in the
resulting difference image, as it favors smooth solutions.

To test these assumptions, experiments were done in which SR reconstruction was performed on sequences
of an image containing a natural scene (see Figure 5). These images were constructed from an image from the
Ikonos database, and contain no point target. The regularization parameters were varied in this simulation.

The maximum of the absolute value of the difference images is plotted in Figure 6 for the Align-and-Subtract
method, the Hardie method and the Zomet method. The SR reconstruction methods are plotted with Zoom
Factor 1 and 2, and with (λ=0.01) and without (λ=0) regularization. The largest improvement is found for
Zoom Factor 2 instead of 1. Hardie and Zomet perform both better than Align-and-Subtract. Regularization
will degrade the result. Note that this degradation is not seen for λ smaller than 0.001. Registration errors
(not shown here) also increase the aliasing noise error.

4. CONCLUSIONS AND DISCUSSION

Super-resolution reconstruction techniques can be used to improve the detection of point targets in imagery.
In this paper we show that for this purpose one can best use a robust SR algorithm instead of a non-robust
algorithm. Also the effects of regularization are shown.

In experiments, we show that the remaining point target in the background image is smaller for the robust
SR algorithm than for the non-robust algorithm, which improves the detection efficiency. This effect is highest
for objects with a small velocity with respect to the scene and for SR reconstruction with a small number
of frames. The robust and non-robust algorithm perform similar in suppressing temporal noise and aliasing
artifacts in the difference image. The effect of regularization is highest for the aliasing noise. Here, a higher
regularization factor will increase the aliasing noise and hence decrease the detection performance. The effect
of regularization on point target amplitude and temporal noise is not significant. Therefore, for point target
detection one can best use a robust SR algorithm with little or no regularization.
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Figure 6. The maximum error in the difference images plotted against the number of frames used. The methods evaluated
are Align + Subtract (AS), Hardie (H) and Zomet (Z), for Zoom Factor 1 and 2. The settings for regularization are: λ
= 0 and λ = 0.01.
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