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ABSTRACT

In this paper we give a new wavefront estimation technique that overcomes the main disadvantages of the phase
diversity (PD) algorithms, namely the large computational complexity and the fact that the solutions can get
stuck in a local minima. Our approach gives a good starting point for an iterative algorithm based on solving a
linear system, but it can also be used as a new wavefront estimation method. The method is based on the Born
approximation of the wavefront for small phase aberrations which leads to a quadratic point-spread function
(PSF), and it requires two diversity images. First we take the differences between the focal plane image and each
of the two diversity images, and then we eliminate the constant object, element-wise, from the two equations.
The result is an overdetermined set of linear equations for which we give three solutions using linear least squares
(LS), truncated total least squares (TTLS) and bounded data uncertainty (BDU). The last two approaches are
suited when considering measurements affected by noise. Simulation results show that the estimation is faster
than conventional PD algorithms.
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1. INTRODUCTION

Phase diversity is a wavefront sensing (WFS) and image reconstruction technique used mostly in post-processing.
Due to the fact that this method uses intensity information, it is possibly sensitive to all phase aberrations, as
opposed to the conventional Shack-Hartamnn wavefront sensing technique. A serious drawback of the phase
diversity method is the long computational time, which is considerable compared to the evolution time of the
turbulence. Because of this, efforts have been made to make it faster. Some demonstrations of real-time correction
using PD have been obtained for very few corrected aberrations in Refs.1,2 PD consists of collecting two or more
images. One of them is the focal plane image that has been degraded by unknown aberrations. Additional images
are obtained by introducing known aberrations into the system. This method was first proposed by Gonsalves3

for two diversity images and it was based on the minimization of a LS criterion. Since the paper of Gonsalves,
the method has been extended and improved in numerous papers.4–7 Attempts to make PD faster have been
made by better numerical algorithms,8,9 by using object independent error metrics to estimate the aberrations
from the data10 or by different linearization techniques.11–13

In this paper we give a new method of real-time wavefront reconstruction using PD. Our approach is based
on the Born approximation of the wavefront when the aberrations are small. We give an analytic formula for
the PSF which is quadratic in the aberration parameters, using an implicit regularization by the finite series
of Zernike polynomials. We subtract from two diversity images (with quadratic PSFs) the focal plane image in
order to end up with linear expressions in both the aberration parameters and the object. Further, we eliminate
the constant object and end up with an overdetermined linear system in the aberration parameters only. In the
noise free case, the system can be solved by linear least squares. A characterization of the diversities which can
be used in order for the system matrix to be full column rank is given such that the obtained solution is unique.
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We also analyse the case where the images are affected by Gaussian white noise and show that we also have
to solve a linear system. The difference is that with this system, we have uncertainties both in the A matrix
and in the b vector of the linear system Ax = b. For this case, we present in Section 4 two additional methods,
truncated total least squares14 (TTLS) and bounded data uncertainty15 (BDU), which assumes that a-priori
bounds on the uncertain data are available.

This paper is structured as follows. Section 2 starts with the quadratic analytical expression of the PSF in
terms of the unknown aberration parameters. Section 3 resumes shortly the conventional PD algorithm following
Ref.5 Section 4 is divided into three subsections: in Subsection 4.1 we define the estimation problem formulated
as a linear system of equations in the noise free case, in Subsection 4.2 we consider white Gaussian noise and
in Subsection 4.3 we give details for the last two solutions to the problem mentioned above, namely TTLS and
BDU. Section 5 is dedicated to numerical simulations. Concluding comments are placed in Section 6.

2. ANALYTICAL FORMULA FOR THE PSF

In this section we briefly revise the analytical formulas for the intensity PSF,16 which will be the starting point
of our method. For the derivations we have used the Nijboer-Zernike theory of diffraction integrals containing
small aberrations (for more details see Chapter 9 in17), which apply to optical systems where the pupil is large
compared with the wavelength of the light used. In order to be able to analytically model the PSF we use the
Zernike polynomials for the representation of the wavefront.18 We assume here that the optical system introduces
a wavefront aberration only and that the amplitude distribution over the wavefront is uniform. The aberration
function Φ is expanded as a Zernike series

Φ (ρ, θ) =
∑

n,m

Zm
n (ρ, θ) αm

n + Z−m
n (ρ, θ) α−m

n =
∑

n,m

Rm
n (ρ)

(
αm

n cos mθ + α−m
n sin mθ

)
, (1)

where Zm
n (ρ, θ) = Rm

n (ρ) cos mθ,Z−m
n (ρ, θ) = Rm

n (ρ) sinmθ are the even and odd Zernike polynomials which
form an orthonormal basis on the unit disk, Rm

n (ρ) are called radial polynomials, n ≥ 0 is the radial degree of
the corresponding Zernike polynomial, m ≥ 0 is the azimuthal frequency, and n − m ≥ 0 and even.

Under the assumption that Φ is sufficiently small, we can linearize the wavefront

exp (iΦ(ρ, θ)) ≈ 1 + iΦ(ρ, θ) . (2)

It is easily seen that the Born approximation is a Taylor approximation of the wavefront in 0. We could also
use another expansion point resulting in a slightly different linear expression, but we do not go into details here.
With Eq. (1) we obtain

exp (iΦ(ρ, θ)) ≈ 1 + i
∑

n,m

Rm
n (ρ)

(
αm

n cos mθ + α−m
n sinmθ

)
. (3)

After some derivations, the intesity PSF can be written as

j (r, ϕ) = c0 + c1
T
α + α

T Qα, (4)

where α ∈ R
Nα , α =

[
α0

0 α−1
1 α1

1 α0
2 α−2

2 α2
2 . . .

]T
is the unknown aberration and c0 ∈ R, c1 ∈ R

Nα ,

Q ∈ R
Nα×Nα16 are quantities derived from the first principles. These coefficients can also be computed from

input and output data through an identification procedure.

Eq. (4) gives a way to compute the intensities in the focal planes as functions of the Zernike coefficients α

corresponding to the aberration function Φ. Given a grid of size M ×N and using Eq. (4) for each point of this
grid, the intensity PSF can be written as

t0 (α) =








j (r11, ϕ11) j (r12, ϕ12) . . . j (r1N , ϕ1N )
j (r21, ϕ21) j (r22, ϕ22) . . . j (r2N , ϕ2N )

...
...

...
...

j (rM1, ϕM1) j (rM2, ϕM2) . . . j (rMN , ϕMN )








. (5)
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The PSF in Eq. (5) can be rewritten as a quadratic function of α

t0 (α) = C0 + C1 (IN ⊗ α) + Qt (IN ⊗ α ⊗ α) , (6)

where ⊗ denotes the Kronecker product19 , IN is the identity matrix of order N , and the coefficients C0 ∈ R
M×N ,

C1 ∈ R
M×(NαN), Qt ∈ R

M×(Nα

2N) are given below

C0 :=








c0 (r11) c0 (r12) . . . c0 (r1N )
c0 (r21) c0 (r22) . . . c0 (r2N )

...
...

. . .
...

c0 (rM1) c0 (rM2) · · · c0 (rMN )








,

C1 :=








c1
T (r11, ϕ11) c1

T (r12, ϕ12) . . . c1
T (r1N , ϕ1N )

c1
T (r21, ϕ21) c1

T (r22, ϕ22) . . . c1
T (r2N , ϕ2N )

...
...

. . .
...

c1
T (rM1, ϕM1) c1

T (rM2, ϕM2) · · · c1
T (rMN , ϕMN )








,

Qt :=








Q̃ (r11, ϕ11)
T

Q̃ (r12, ϕ12)
T

. . . Q̃ (r1N , ϕ1N )
T

Q̃ (r21, ϕ21)
T

Q̃ (r22, ϕ22)
T

. . . Q̃ (r21, ϕ21)
T

...
...

. . .
...

Q̃ (rM1, ϕM1)
T

Q̃ (rM1, ϕM1)
T

. . . Q̃ (rMN , ϕMN )
T








.

(7)

Here Q̃ := vec (Q) is a vector obtained by stacking together all the columns of the matrix Q from left to right.
The coefficients in Eq. (7) do not have to be compute in real-time, but are precomputed.

3. PHASE DIVERSITY

Phase diversity consists of recording one focal plane image and one or more additional images using a known
diversity (unusually defocus). If d0 and d1 are the observed focused and defocused images and t0 and t1 are the
corresponding PSFs at the moment of exposure, then their relations with the object f are

d0 = t0 (α) ∗ f + n0

d1 = t1 (α) ∗ f + n1,
(8)

where ∗ denotes convolution, t0 is given by Eq. (6), t1 is given by

t1 (α) = t0 (α + αd1) , (9)

αd1 is a known quantity and n0, n1 represent measurement noise. The minimized error metric in the PD algorithm
(see for example Refs.3–5) measures the sum of the square errors in the difference between the observed images
and the ones obtained from the reconstructions

L =
∑

u,v

|D0 − F̂ T̂0|
2 + |D1 − F̂ T̂1|

2, (10)

where ·̂ denotes an estimate value, u and v spatial frequencies and F,D0,D1, T0, T1 are the Fourier transforms
of f, d0, d1, t0, t1. The optimum restored object, FM , is found by minimizing L considering known aberrations

FM =
(

|T̂0|
2 + |T̂1|

2
)−1 (

D0T̂
∗
0 + D1T̂

∗
1

)

(11)

Substituting the object from Eq. (11) in Eq. (10) we obtain the modified error metric

LM =
∑

u,v

(

|T̂0|
2 + |T̂1|

2
)−1 (

D1T̂0 − D0T̂1

)

. (12)
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4. LINEAR PROBLEM

In this section we formulate our estimation problem as a linear system of equations and give the three solutions
mentioned in the introduction. We start the presentation with the noise free case and then we incorporate the
noise following the same steps.

4.1 The noise free case

For this part, we assume we have obtained three images, one focus plane image d0, and diversity images d1 and
d2, with PSFs t0 in Eq. (6) and tk, k = 1 . . . 2, such that

tk (α) = t0 (α + αdk) , k = 1, 2, (13)

where αdk are known quantities. As stated in the previous section, the images are obtained as a convolution of
the PSF with the object f

d0 = t0 (α) ∗ f

dk = tk (α) ∗ f, k = 1, 2.
(14)

The approach we use here is to subtract from each diversity image the focus plane image

ddk = dk − d0 = [tk (α) − t0 (α)] ∗ f = [t0 (α + αdk) − t0 (α)] ∗ f, k = 1, 2. (15)

We use further Eq. (6) to write down expressions for the two PSFs in Eq. (15) and obtain

ddk = [C1 (IN ⊗ αdk) + Qt (IN ⊗ αdk ⊗ αdk + IN ⊗ α ⊗ αdk + IN ⊗ αdk ⊗ α)] ∗ f

=

[

C1 (IN ⊗ αdk) + Qt (IN ⊗ αdk ⊗ αdk) + 2
Nα∑

i=1

αivki

]

∗ f, k = 1, 2,

(16)

where
vki = Qt (IN ⊗ ei ⊗ αdk) , i = 1 . . . Nα (17)

and ei =
[

. . . 0 1i 0 . . .
]T

. With

pk := C1 (IN ⊗ αdk) + Qt (IN ⊗ αdk ⊗ αdk) , k = 1, 2, (18)

we get

ddk =

(

pk + 2

Nα∑

i=1

αivki

)

∗ f, k = 1, 2. (19)

We take the Fourier transform in Eq. (19) and using the notations Ddk := F {ddk} , Pk := F {pk} , Vki :=
F {vki} , F := F {f} (of dimension MF × NF ), we get

Ddk =

(

Pk + 2

Nα∑

i=1

αiVki

)

⊙ F, k = 1, 2, (20)

where ⊙ denotes point-wise multiplication.

Next we show that the unknown aberration parameters can be determined by solving a linear system. To
this end, we can write

Dd1 =

(

P1 + 2
Nα∑

i=1

αiV1i

)

⊙ F,

Dd2 =

(

P2 + 2
Nα∑

i=1

αiV2i

)

⊙ F.

(21)
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Because the object is the same we can divide the two equations element by element and cross multiply the terms
to obtain

Dd1 ⊙

(

P2 + 2

Nα∑

i=1

αiV2i

)

= Dd2 ⊙

(

P1 + 2

Nα∑

i=1

αiV1i

)

, (22)

or

Dd1 ⊙ P2 − Dd2 ⊙ P1 = 2

Nα∑

i=1

αi (Dd2 ⊙ V1i − Dd1 ⊙ V2i) . (23)

Using the notation X̃ = vec (X) for the vectorized variants of the terms of Eq. (23), we can write it as

Aα = b, (24)

where A ∈ C
MFNF×Nα , b ∈ C

MFNF and

b = D̃d1 ⊙ P̃2 − D̃d2 ⊙ P̃1,

A =
[

D̃d2 ⊙ Ṽ11 D̃d2 ⊙ Ṽ12 . . . D̃d2 ⊙ Ṽ1Nα

]
−

[

D̃d1 ⊙ Ṽ21 D̃d1 ⊙ Ṽ22 . . . D̃d1 ⊙ Ṽ2Nα

]
.

The least squares solution to Eq. (24) is α = (A∗A)
−1

A∗b.

We have to make a remark with respect to the two diversities used in the algorithm. If αd1 and αd2 both
correspond to diversities of Zernike modes with odd radial degree n (we will call this an odd diversity) or with
even radial degree n (we will call this an even diversity), respectively, then ker (A) 6= ∅ and the solution of Eq.
(24) is not unique.

We can prove this statement by considering two odd diversities αd1 and αd2. The matrices v1i, i = 1 : Nα

and v2i, i = 1 : Nα in Eq. (17) will have only zero elements for even i. This translates, after vectorization, in
zero even columns of the A matrix. Because A has a non-empty kernel, only the unknowns corresponding to odd
n can be computed uniquely. The same type of reasoning holds true for two even diversities.

4.2 The white Gaussian noise case

Let us consider that the measuremets d0, d1, d2 are affected by Gaussian white noise.

d0 = t0 (α) ∗ f + n0

dk = tk (α) ∗ f + nk, k = 1, 2.
(25)

The corresponding Eqs. (21) will then be

Dd1 =

(

P1 + 2
Nα∑

i=1

αiV1i

)

⊙ F + N10,

Dd2 =

(

P2 + 2
Nα∑

i=1

αiV2i

)

⊙ F + N20,

(26)

where Nk0 = F {nk − n0} , k = 1, 2. Assuming that the quantities in the brackets in Eq. (26) are not zero we
obtain

Dd1 ⊘

(

P1 + 2
Nα∑

i=1

αiV1i

)

= F + N10 ⊘

(

P1 + 2
Nα∑

i=1

αiV1i

)

,

Dd2 ⊘

(

P2 + 2
Nα∑

i=1

αiV2i

)

= F + N20 ⊘

(

P2 + 2
Nα∑

i=1

αiV2i

)

,

(27)

where ⊘ denotes point-wise divison. Eliminating the object, we end up with

Dd2⊘

(

P2 + 2

Nα∑

i=1

αiV2i

)

−Dd1⊘

(

P1 + 2

Nα∑

i=1

αiV1i

)

= N20⊘

(

P2 + 2

Nα∑

i=1

αiV2i

)

−N10⊘

(

P1 + 2

Nα∑

i=1

αiV1i

)

, (28)
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or

Dd2⊙

(

P1 + 2

Nα∑

i=1

αiV1i

)

−Dd1⊙

(

P2 + 2

Nα∑

i=1

αiV2i

)

= N20⊙

(

P1 + 2

Nα∑

i=1

αiV1i

)

−N10⊙

(

P2 + 2

Nα∑

i=1

αiV2i

)

. (29)

With

δb = Ñ10 ⊙ P̃2 − Ñ20 ⊙ P̃1

δA =
[

Ñ20 ⊙ Ṽ11 Ñ20 ⊙ Ṽ12 . . . Ñ20 ⊙ Ṽ1Nα

]
−

[

Ñ10 ⊙ Ṽ21 Ñ10 ⊙ Ṽ22 . . . Ñ10 ⊙ Ṽ2Nα

]
.

we obtain
(A + δA) α = b + δb. (30)

4.3 Solving the linear system

Both the coefficient matrix and the right-hand side of the overdetermined system of linear equations in Eq.
(30) are subject to errors. Additionally to the LS solution, we propose here two other methods to compute the
solution of this system, TTLS14 and BDU15 , respectively.

Total least squares (TLS)20 is a method of fitting which was developed to deal with linear models Ax ≈ b

with both sides affected by errors, exactly as in the case of Eq. (30). In the TLS method one allows a residual
matrix as well as a residual vector, and the computational problem becomes

min
δA,δb

∥
∥
[

δA δb
]∥
∥

F
subject to (A + δA) x = b + δb. (31)

The TLS technique has been traditionally applied to problems that are numerically rank deficient. The idea is
to simply treat the small singular values of

[
A b

]
as zeros. This technique is called truncated TLS (TTLS).

The almost redundant information in
[

A b
]
, associated with the small singular values, is discarded and the

original ill-conditioned problem is replaced with another nearby and more well-conditioned problem. The TTLS
algorithm, given in14 , can be summarized as follows:

Algorithm TTLS

1. Compute the SVD of the augmented matrix
[

A b
]
:

[
A b

]
= UΣV ∗ =

Nα+1∑

i=1

uiσiv
∗
i , σ1 ≥ . . . ≥ σNα+1. (32)

2. Choose a truncation parameter k ≤ min
(
Nα, rank

[
A b

])
such that

σk > σk+1 and V22 ≡
[

vNα+1,k+1 . . . vNα+1,Nα+1

]
6= 0. (33)

3. Partition the matrix V such that (with q = Nα − k + 1)

V =

[
V11 V12

V21 V22

] }
Nα}
1.

︸︷︷︸ ︸︷︷︸

k q

(34)

4. Compute the minimum-norm TLS solution xk as

xk = −V12V
†
22 = −V12V

∗
22‖V22‖

−2
2 . (35)
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In step 2 of the algorithm, the regularization parameter k has to be choosen. A possible stopping criterion can
be based on the L-curve21 . The idea in this method is to plot in a log-log scale the solution norm, ‖xk‖2 versus
the residual norm, ‖

[
A b

]
−

[
Ak bk

]
‖F , and choose as the optimal k the truncation parameter at which

this curve has an L-shaped corner. Essentially, the corner is defined by locating the point with greatest curvature
in the log-log scale. For the implementation functions from the Regularization Tools software package22 can be
used.

The second solution that we analyse is a method of parameter estimation in the presence of bounded data
uncertainties. In Eq. (30) we assume we can determine an upper bound on the 2-induced norm of the perturbation
δA and on the Euclidean norm of δb

‖δA‖2 ≤ η, ‖δb‖2 ≤ ηb. (36)

Then, we solve the following problem

min
x̂

max{‖ (A + δA) x̂ − (b + δb) ‖2 : ‖δA‖2 ≤ η, ‖δb‖2 ≤ ηb}. (37)

The BDU algorithm can be resumed as follows (following Section 3.4 in15):

Algorithm BDU

1. Compute the SVD of A

A = U

[
Σ
0

]

V ∗ =
[

U1 U2

]
[

Σ
0

]

V ∗ = U1ΣV ∗, σ1 ≥ . . . ≥ σNα
. (38)

2. Partition the vector U∗b into [
b1

b2

]

= U∗b. (39)

3. Introduce the secular function

f (α) = b∗1
(
Σ2 − η2I

) (
Σ2 + βI

)−2
b1 −

η2

β2
‖b2‖

2
2. (40)

4. Define

τ1 =
‖Σ−1b1‖2

‖Σ−2b1‖2
and τ2 =

‖A∗b‖2

‖b‖2
(41)

5-I. If b does not belong to the column span of A

a) If η ≥ τ2 then the unique solution is x̂ = 0.

b) If η < τ2 then the unique solution is x̂ =
(

AA∗ + β̂I
)−1

A∗b, where β̂ is the unique positive root of

the secular equation f (β) = 0.

5-II. If b belongs to the column span of A

a) If η ≥ τ2 then the unique solution is x̂ = 0.

b) If τ1 < η < τ2 then the unique solution is x̂ =
(

AA∗ + β̂I
)−1

A∗b, where β̂ is the unique positive root

of the secular equation f (β) = 0.

c) If η < τ1 then the unique solution is x̂ = V Σ−1b1 = A†b.

d) If η = τ1 = τ2 then there are infinitely many solutions that are given by x̂ = βV Σ−1b1 = βA†b, for
any 0 ≤ β ≤ 1.
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The solution of the secular equation is feasible using the above formula, when the entire SVD of the matrix
A can be computed. For large, sparse matrices, β̂ can be computed recursively as it is shown in23 . We choose a
random initial value β0 and perform the following recursion until the change in variables reaches a given tolerance

βk = η
‖A (A∗A + βkI)

−1
A∗b − b‖2

‖ (A∗A + βkI)
−1 ‖2

. (42)

For the computation of η we assume a normal distribution for the SNR in an interval (lb, ub). Accordingly, η

is computed in the probabilistic sense using the Randomized Algorithm (RA)24 . In general, the condition η < τ2

can be assured by the choice of the values of the diversities.

5. SIMULATIONS

We have assumed that the atmospheric turbulence distorts only the phase of the wavefront. We further assume
that the statistics of the turbulence are described by the Kolmogorov turbulence model with the outer scale of
the turbulence L0 = 42 m, the Fried parameter r0 = 0.5 m. The wavefronts have rms values of 0.3 rad and
are written as the series from Eq. (1) with 14 Zernike coefficients. The simulations presented here consider
isoplanatic image formation, namely the PSF is considered space invariant on the entire field of view. Due to
the fact that in our simulations, TTLS and BDU have not shown improvements with respect to the LS, we only
present simulations in the no noise case and give the LS solution.

As stated in Section 2, the coefficients in Eq. (7) of the PSF in Eq. (6) are precomputed using a grid of
128 × 128 points over a pupil of diameter D = 1 m. The pupil is sampled on a 64 × 64 grid and the observed
scene is a standard image from the Image Processing Toolbox of Matlab of 128 pixels.

We have simulated 50 wavefronts with rms values of 0.3 rad. The diversities used are αd1(6, 1), αd2(8, 1)
(where the order of the Zernike coefficients is given in the definition of α in (4)), with values which give a
diversity shape of 0.3 rad rms. To show the gain in computational time of our algorithm, we compare the results
of PD stopped after 10 iterations or a residual tolerance in the cost function and the estimated coefficients of
1e − 3 with the LS solution. In Fig. 1 we plot the mean and variance of the absolute values of the differences
between estimated and real parameter values for each Zernike coefficient (on the left) and the computational
times and the ratios of computational times between PD and LS, respectively for the 50 runs of the simulation
(on the right).
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Figure 1: Simulation of PD and the linear algorithm with 50 experiments
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We also validate the possible usage of our approach as a starting point for PD in Fig. 2. To this end we give
two plots, showing the aberration parameters obtained by initializing the PD with zero, the other obtained by
initializing PD with the LS solution, and the real Zernike coefficients. The PD algorithm was stopped when the
residual error reached a tolerance of 1e − 3.

0 2 4 6 8 10 12 14
−100

−50

0

50

100

150

 

 
PD from zero
PD from LS
real

(a) Real and estimated Zernike coefficients (in radians)
(I);

0 2 4 6 8 10 12 14
−200

−150

−100

−50

0

50

100

 

 
PD from zero
PD from LS
real

(b) Real and estimated Zernike coefficients (in radians)
(II);

Figure 2: Simulation of PD with different initial points

6. CONCLUSIONS

We have developed a new method for phase aberration estimation in case of imaging through turbulence using
phase diversity. This method is based on the linearization of the wavefront for small values of the aberrations.
Using two diversity images we are able to reformulate the problem as an overdetermined system of linear equa-
tions. In the noise-free case, this system is solved with the linear least squares algorithm and in the presence of
Gaussian white noise three solution methods were presented. Results show that this approach is faster than the
PD algorithm. This proves that our method has real potential to be used in a real-time adaptive optics system.
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