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ABSTRACT

In this paper the performance of a combined Constant False
Alarm Rate (CFAR) Compressive Sensing (CS) radar detector
is investigated. Using the properties of the Complex Approxi-
mate Message Passing (CAMP) algorithm, it is demonstrated
that the behavior of the CFAR processor can be separated
from that of the non-linear /;-norm recovery, thus allowing
the use of standard radar equations to evaluate detection per-
formance. The CS CFAR processor has been evaluated under
different interference scenarios using both the Cell Averaging
(CA) and Order Statistic (OS) CFAR detectors. The perfor-
mance of the CS CFAR processor is also compared to that of
an /1-norm detector using both simulations and experimental
data.

Index Terms— Compressive Sensing, Complex Approx-
imate Message Passing, Radar, Detection, CFAR.

1. INTRODUCTION

Compressive Sensing (CS) is a novel data acquisition scheme,
which enables reconstruction of sparse signals from under-
sampled measurements. Sparsity of the signals can reason-
ably be assumed in many radar applications where the number
of resolution cells is much higher than the number of targets
present in the scene. Examples of CS applied to radar can be
found in [1-5].

To perform adaptive target detection, classical radar ar-
chitectures use well-established processing methods, such
as Matched Filtering (MF) and Constant False Alarm Rate
(CFAR) processors. In CS instead, the reconstruction of the
target scene involves the use of highly nonlinear algorithms
based on ¢1-norm minimization. Such algorithms have a
number of free parameters (or thresholds) that must be tuned
properly to achieve good performance and whose values de-
pend on both the underlying noise power and the number of
targets. Therefore, in a practical scenario, with neither the
disturbance variance nor the number of targets known a pri-
ori, it is not evident how to tune these parameters to achieve
the desired detection/false alarm performance.

To deal with the uncertainties about the background noise
and interference, CFAR processors are used in most oper-
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ational radars for adaptive target detection [6, 7]. In such
schemes, some assumptions are made about the underlying
noise (and clutter) distribution in order to set the appro-
priate threshold to achieve the desired detection and False
Alarm Probabilities (FAP). Instead, the design of CFAR-like
schemes in combination with CS recovery is not straightfor-
ward, due to the non-linearity of CS recovery algorithms and
the unknown relations between the noise statistics and the pa-
rameters involved in the ¢ -norm reconstruction. However, in
a series of recent publications [5, 8], the authors demonstrate
that by exploiting the properties of the Complex Approximate
Message Passing (CAMP) algorithm, classical CFAR pro-
cessing can be successfully combined with ¢;-minimization
to obtain a fully adaptive detection scheme.

In this paper, the performance of the joint CS CFAR de-
tector, in combination with both the Cell Averaging (CA) and
the Order Statistic (OS) CFAR processors, are investigated
under different interference scenarios using simulated as well
as experimental CS radar measurements.

2. COMPLEX APPROXIMATE MESSAGE PASSING
(CAMP)

CS deals with the problem of recovering a k-sparse signal
xo € CY from an undersampled set of linear measurements
y € C", withn < N, of the form

y = Axg + n. (D)

Here, A € C™*¥ is the sensing matrix, and n is complex
white Gaussian noise with variance o2,.

Since in the CS framework the number of measurements
n is smaller than the number of signal samples NV, the prob-
lem of recovering xg is ill-posed. However, under certain
conditions on A, n, and k the following convex optimization
problem, known as the LASSO [9] or Basis Pursuit Denoising
(BPDN) [10], recovers a close approximation of x¢ [11]:
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Here, )\ is a regularization parameter that controls the trade
off between the sparsity of the solution and the ¢5-norm of



the residual. A major practical problem when dealing with CS
reconstruction algorithms is finding the “optimal” value of \.
In particular, for radar applications the relations between the
parameter A and the detection and false alarm probabilities
are unknown.

The Complex Approximate Message Passing (CAMP) is
an iterative algorithm for solving (2) for signals in the com-
plex domain [5, 12]. The CAMP algorithm has a number of
properties which can be used to solve both the problem of op-
timal tuning and adaptive target detection. These properties
are summarized in P1-P3 [12]:

P1: Under an appropriate tuning of the regularization pa-
rameter used in CAMP and the parameter A\ in (2),
CAMP solves LASSO exactly. See Section 3.4 in [12].

P2: At every iteration, X’ can be considered as xg + W',
where the distribution of w! converges to complex
Gaussian with zero mean and variance o7. See Section
3.4in[12].

P3: The performance of CAMP can be predicted theoreti-
cally by the so-called state evolution equation. See Sec-
tion 3.1 in [12].

An important relation derived from the analytical frame-
work used in CAMP is that the variance of the total noise o7
present in the signal x at each iteration ¢ is expressed as a lin-
ear combination of the input noise variance and the MSE of

the solution: MSEFM. In CAMP an estimate 67 of
the noise variance is computed at each iteration by means of
median filtering.

With the use of the signal-plus-noise model described
in P2, the tuning of the regularization parameter in CAMP,
which we refer to as 7, can be easily solved. The optimal
threshold 7, in CAMP is the one that achieves the minimum
MSE or, equivalently, the minimum Jgo. The Adaptive CAMP
algorithm described in [8] can be used to obtain a good es-
timate 7, of the optimal threshold multiplier 7, when signal
and noise statistics are unknown. The optimum estimated
threshold 7, minimizes the estimated CAMP output noise
variance thus maximizing the recovery SNR of CAMP (and
therefore the P; of any detector that may follow the recovery
stage).

3. CS TARGET DETECTION USING CAMP

In radar, the detection problem is to determine the presence
or absence of a target in a given range/Doppler bin in the
presence of noise, clutter and interference. In practice, the
background is unknown a priori, and therefore an adaptive de-
tection scheme must be applied. Also, it is desirable that the
detector has the CFAR property, which can be achieved by us-
ing CFAR detection on the signal x. Two different CS CAMP
based architectures are considered here and their block dia-
grams are shown in Figure 1.
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Fig. 1. Detection schemes based on CAMP. Note that in Ar-
chitecture 2 the output of CAMP is the noisy version of the
estimated signal X.

In the first system, the CS reconstruction itself is con-
sidered to act as a detector, and the non-zero coefficients in
the estimated signal X(7,,) represents detections. Therefore,
the threshold 7, in CAMP is set to achieve the desired FAP
a. In [5] it is shown that for x¢o = 0, setting the threshold
Te = vV — Ina yields a FAP equal to a.. This detection strat-
egy is referred to as Architecture 1; see Figure 1(a).

Theoretical and empirical results in [8] show that better
performance can be achieved in terms of detection probabil-
ity (P;) when the CS recovery is followed by a separate de-
tector. This means that, similar to conventional radar pro-
cessing, the recovery stage - a Matched Filter (MF) in classi-
cal architectures- is used to maximize the recovery SNR (i.e.,
maximize detection for a given FAP), and later the detector is
used to control the FAP. In this case the CAMP threshold is
selected to achieve the minimum MSE at the output of CAMP
by choosing 7 = 7, with 7, estimated using Adaptive CAMP.
This scheme is referred to as Architecture 2; see Figure 1(b).
In this architecture, the input to the separate detector is the
non-sparse, noisy signal x.

4. CFAR DETECTORS

If the noise statistics were homogeneous, stationary and
known, the detector threshold in both architectures could be
set once and would remain fixed. This represents the ideal
case of a fixed threshold (FT) detector. These conditions are
never satisfied in practice and CFAR processors are employed
to adaptively estimate the detector threshold x(«) when the
background statistics are not known in advance. In CFAR
schemes the cell under test (CUT) is tested for the presence
of a target against a threshold derived from the estimated
clutter-plus-noise power. The M cells surrounding the CUT
(CFAR window) are used to derive an estimate of the back-
ground power and they are assumed to be target free. CFAR
schemes try to maintain a constant false alarm rate via adap-
tation of the threshold to a changing environment. It is known
that for the case of homogeneous Gaussian background, the
optimum CFAR processor is the well-known Cell Average



CFAR (CA-CFAR) detector [6]. However, in situations in
which the clutter changes rapidly or in the presence of in-
terfering targets in the CFAR window, or when the clutter
and noise distribution are not Gaussian, the CA-CFAR de-
tector performance degrades severely. For this reason many
alternative CFAR schemes have been developed in the past,
such as the Order Statistic (OS) CFAR detector [7]. In OS-
CFAR processing, the power received from the cells in the
CFAR window is rearranged in increasing order and the kth
ordered cell (order statistic) is used as an estimate of the en-
vironment. OS-CFAR processing has the advantage of being
robust against interfering targets in the CFAR window and
clutter power transitions, while preserving reasonably good
performance in homogenous background.

5. SIMULATION

A stepped frequency (SF) waveform is considered for sim-
ulations and the TX signal consisted of a number of discrete
frequencies f,,. In the CS case, the number of TX frequencies
is reduced from N to n (n < N). The subset of transmitted
frequencies is chosen uniformly at random within the total
transmitted bandwidth, with the constraints that the first and
last frequencies in the bandwidth are used (to span the same
total bandwidth to preserve range resolution), and that at least
two of the transmitted frequencies are separated by the nomi-
nal frequency separation A f, to guarantee that the unambigu-
ous range AR is preserved. After reception and demodulation
each range bin maps to n phases proportional to the n trans-

mitted frequencies, and the n samples 4,,,, m = 1,--- ,n, of
the compressed measurement vector y are given by
1N
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where r; = 19 + ¢t AR/N,and ¢ = 1,..., N is the range bin
index.

5.1. Simulation results

The simulation results are shown in Figure 2, where the de-
tection performance are shown for both Architecture 1 and for
Architecture 2 using a Fixed Threshold (FT) detector and a
CFAR processor, either a CA or OS one. The detection prob-
ability (Py) is estimated using 500 Monte Carlo simulations
for a target with a recovery SNR of about 9 dB. The design
FAP on the x-axis (Py,) is used to set the threshold multiplier
for each architecture and detector type. In the simulations, the
case N = 1000, 6 = 0.5 and p = 0.1 is considered, where
0 = n/N indicates the number of CS measurements wrt the
number of Nyquist samples and p = k/n represents the rela-
tive signal sparsity, being k the number of targets. The targets
are distributed in range such that, depending on the CFAR
window length M, the target of interest (for which the Py is
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(b) CFAR window length M = 40

Fig. 2. ROC curves for a target with a recovery SNR of about
9 dB using Architecture 1 (blue), and Architecture 2 in com-
bination with FT detector (black), CA-CFAR (red), and OS-
CFAR (magenta) processors. For the OS-CFAR processor,
kos = 0.6. In these simulations, N = 1000, § = 0.5 and
p=0.1.

shown) has either no interfering targets (M = 20) or 2 inter-
ferers (M = 40) in its CFAR window.

From Figure 2 it can be seen that, in agreement with tra-
ditional CFAR processing, the CA CFAR processor outper-
forms the OS one for the case of homogeneous background
in the CFAR window (2(a)). Instead, when interferers are
present in the CFAR window, the CA processor encounters a
significant loss in P; compared to the OS processor, whose
performance is almost unaffected by in the presence of inter-
fering targets in the CFAR window.

Also note that for all detector cases (adaptive and non-
adaptive), the CAMP reconstruction threshold 7, of Archi-
tecture 2 is always adaptive, whereas in Architecture 1 the
threshold 7, is non-adaptive and fixed. Furthermore, the
performance of the two architectures are upper bounded by
the performance of Architecture 2 that uses an ideal (non-
adaptive) fixed threshold (FT) detector that does not suffer
from estimation loss instead of a CFAR one. Furthermore,
because the threshold 7,, in Architecture 1 is estimated using
a median estimator, the performance of this architecture is
similar to those of the Architecture 2 combined with the OS



CFAR processor.

6. EXPERIMENTAL DATA

In the this section, the performance of the proposed detection
schemes under different interference scenarios is evaluated
using a set of experimental CS radar measurements. In the
experiments, a one dimensional radar is considered operating
in the range domain.

The measurements were carried out at Fraunhofer FHR,
in Germany, using the LabRadOr experimental radar system
described in [5]. In the Nyquist case (that represents unam-
biguous mapping of ranges to phases over the whole band-
width) N = 200 frequencies are transmitted using a SF wave-
form over a bandwidth of 800 MHz which yields a maxi-
mum range resolution of p = 18.75 cm. Each frequency
is transmitted over 0.512 us, corresponding to a bandwidth
of By = 1.95 MHz. The sequential frequencies are sepa-
rated by A f = 4 MHz, resulting in an unambiguous range of
AR = 37.5 m. Five stationary corner reflectors with differ-
ent Radar Cross Sections (RCS) are used as targets. For each
transmitted waveform 300 measurements (with the same set-
up) were performed.

6.1. Results

In this section, ROC curves are used to analyze the per-
formance of the the two architectures for both interfering
and non-interfering target scenarios, which were obtained
by changing the CFAR window size. For Architecture 2, we
combine the CAMP recovery with both the CA and OS CFAR
processors.

Figure 3 exhibits the signals reconstructed by using the
two CAMP based architectures introduced in Section 3 in ad-
dition to the MF, which represent the reference case. For the
CS measurements § = 0.5 is used and N = 200 frequen-
cies measurements for the MF. There are five corner reflec-
tors (T1-T5) at ranges from 20m to 36m. For Architecture 1,
T, Was set using & = 10~%. Notice that the signal from Ar-
chitecture 2 is a noisy version of the estimated sparse signal
before soft thresholding is applied, whereas the signal esti-
mated from Architecture 1 is the sparse signal, where each
non-zero coefficient represents a detection.

In the interest of space, only the ROC curves for target
T3 are reported. For the other targets, the behavior of the
detectors is the same, although the actual values of P; are
different due to the different SNRs of both the desired target
and the interferers. For estimating Py, the detection at the
location of the highest target peak was used. For Architecture
2 both the CA and OS CFAR processors were used, preceded
by a Square Law (SL) detector. For the CFAR processors, we
use four guard cells and CFAR windows of length 20 and 40
respectively. For the OS CFAR, the selected order statistic is
chosen as kpg = 0.6.
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Fig. 3. Reconstructed range profile using CAMP Architec-
tures 1 and 2, and the MF. For the ME, N = 200 (i.e., no
subsampling); for all other schemes n = 100 and 6 = 0.5.
The y-axis is in log scale and arbitrary units [au].

Figure 4(a) shows the ROC curve for T3 with a CFAR
window of length M = 20. For this choice of M, none of the
other targets fall in the CFAR window of T3, and therefore the
CA-CFAR processor performs better than the OS one. Fur-
thermore, it can be seen that Architecture 2 combined with the
CA-CFAR processor also outperforms Architecture 1, where
the noise variance is estimated inside the CAMP algorithm
using the median estimator. Therefore, Architecture 1 is sim-
ilar to an OS CFAR processor that uses the entire range re-
sponse as the CFAR window and kpg = 0.5. Clearly, in this
case the CA CFAR performs better than both the OS CFAR
and Architecture 1, since it excludes the other targets from
the (local) estimation of the noise level, resulting in an unbi-
ased estimate. For this window size, CA CFAR is the best
choice since there are no noise/clutter power transitions, and
the targets are never in the reference window of one another.

Figure 4(b) shows the results for the same data set but for a
CFAR window of size 40, which result in 2 interfering targets
in the CFAR window of the target of interest. It can be ob-
served that, in accordance with conventional CFAR process-
ing, Architecture 2 with OS CFAR outperforms Architecture
2 with CA CFAR but performs very similarly to Architecture
1. In fact, the performance of the CA-CFAR processor de-
grades as the number of interfering targets in the reference
window increases. Note that the ROC curve of Architecture
1 (and also Architecture 2 with FT detector) is unchanged
for different CFAR window sizes. In fact, for Architecture
1 no CFAR processor is used and the CAMP reconstruction
is independent of the locations of the targets, as it uses the
whole range response. It is clear that, in cases where there
might be multiple interfering targets either an OS-CFAR pro-
cessor should be used after Architecture 2 or otherwise the
theoretically suboptimum Architecture 1 can represent a sim-
ple, effective alternative to CFAR processing. However, the
disadvantage of Architecture 1 is that it lacks the local adap-
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Fig. 4. ROC curves for T3 using Architecture 1 (blue), and
Architecture 2 in combination with FT detector (black), CA-
CFAR (red), and OS-CFAR (magenta) processors. For the
OS-CFAR processor, kog = 0.6. § = 0.5.

tivity provided by CFAR processing. Clearly, there is a trade
off between the number of range bins used for the noise power
estimation and the bias in the estimate that occurs if interfer-
ing targets are included in the reference window. Of course,
this trade off is identical to the trade off for classical radar
systems using Nyquist sampling.

7. CONCLUSIONS

In this paper the results of different CS based radar detection
architectures were compared. It is shown that using a separate
detector following the CS reconstruction improves detection
performance. Moreover, if the detector is a CFAR one, its
behavior is unaltered and, in the presence of interfering tar-
gets in the CFAR window, as expected, OS is better than CA-
CFAR processing. Furthermore, although the performance of
Architectures 1 and Architecture 2 plus OS-CFAR are similar,
Architecture 2 is preferable as it leaves the user the freedom
to chose the most appropriate processing parameters and it al-
lows to perform a local adaptation of the threshold, which is
critical for radar applications. With the combined CS CFAR
architecture, the CFAR loss can be controlled by changing
both the type of CFAR processor and the window length.

Acknowledgment

The authors would like to thank Prof. J. Ender and T. Mathy
from Fraunhofer FHR, Wachtberg, Germany, for making
available the radar system and for technical support during
the experiments.

8. REFERENCES

[1] R.G.Baraniuk and T. P. H. Steeghs, “Compressive radar
imaging,” in Proc. IEEE Radar Conf., 2007.

[2] M. A. Herman and T. Strohmer, “High-resolution radar
via compressed sensing,” IEEE Trans. Signal Process.,
vol. 57, no. 6, pp. 2275-2284, 2009.

[3] J. H. G. Ender, “On compressive sensing applied to
radar,” Elsevier J. Signal Process., vol. 90, no. 5, pp.
1402-1414, May 2010.

[4] L. C. Potter, E. Ertin, J. T. Parker, and M. Cetin, “Spar-
sity and compressed sensing in radar imaging,” Proc.
IEEE, vol. 98, no. 6, pp. 1006-1020, Jun. 2010.

[5] L. Anitori, A. Maleki, M. Otten, R. G. Baraniuk, and
P. Hoogeboom, “Design and analysis of compressive
sensing radar detectors,” IEEE Trans. Signal Process.,
vol. 61, no. 4, pp. 813-827, Feb. 2013.

[6] P. P. Gandhi and S.A. Kassam, “Analysis of CFAR
processors in homogeneous background,” IEEE Trans.
Aerosp. Electron. Syst., vol. 24, no. 4, pp. 427-445, Jul.
1988.

[7] H. Rohling, “Radar CFAR thresholding in clutter and
multiple target situations,” IEEE Trans. Aerosp. Elec-
tron. Syst., vol. 19, no. 4, pp. 608-621, Jul. 1983.

[8] L. Anitori, A. Maleki, W. van Rossum, R. Baraniuk, and
M. Otten, “Compressive CFAR radar detection,” in
Proc. IEEE Radar Conf., 2012.

[9] Robert Tibshirani, “Regression shrinkage and selection
via the LASSO,” J. Roy. Stat. Soc., Series B, vol. 58, no.
1, pp. pp. 267-288, 1996.

[10] S.S. Chen, D.L. Donoho, and M.A. Saunders, “Atomic
decomposition by basis pursuit,” SIAM J. on Sci. Com-
puting, vol. 20, pp. 33-61, 1998.

[11] E. Candes and T. Tao, “Near optimal signal recovery
from random projections: Universal encoding strate-
gies?,” IEEE Trans. Inf. Theory, vol. 52, no. 12, pp.
5406-5425, Dec. 2006.

[12] A. Maleki, L. Anitori, Y. Zai, and R. G. Baraniuk,
“Asymptotic analysis of complex LASSO via complex
approximate message passing (CAMP),” [EEE Trans.
Inf. Theory, vol. 59, no. 7, pp. 4290—4308, Jul. 2013.



