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ABSTRACT

In this paper the performance of a combined Constant False

Alarm Rate (CFAR) Compressive Sensing (CS) radar detector

is investigated. Using the properties of the Complex Approxi-

mate Message Passing (CAMP) algorithm, it is demonstrated

that the behavior of the CFAR processor can be separated

from that of the non-linear �1-norm recovery, thus allowing

the use of standard radar equations to evaluate detection per-

formance. The CS CFAR processor has been evaluated under

different interference scenarios using both the Cell Averaging

(CA) and Order Statistic (OS) CFAR detectors. The perfor-

mance of the CS CFAR processor is also compared to that of

an �1-norm detector using both simulations and experimental

data.

Index Terms— Compressive Sensing, Complex Approx-

imate Message Passing, Radar, Detection, CFAR.

1. INTRODUCTION

Compressive Sensing (CS) is a novel data acquisition scheme,

which enables reconstruction of sparse signals from under-

sampled measurements. Sparsity of the signals can reason-

ably be assumed in many radar applications where the number

of resolution cells is much higher than the number of targets

present in the scene. Examples of CS applied to radar can be

found in [1–5].

To perform adaptive target detection, classical radar ar-

chitectures use well-established processing methods, such

as Matched Filtering (MF) and Constant False Alarm Rate

(CFAR) processors. In CS instead, the reconstruction of the

target scene involves the use of highly nonlinear algorithms

based on �1-norm minimization. Such algorithms have a

number of free parameters (or thresholds) that must be tuned

properly to achieve good performance and whose values de-

pend on both the underlying noise power and the number of

targets. Therefore, in a practical scenario, with neither the

disturbance variance nor the number of targets known a pri-

ori, it is not evident how to tune these parameters to achieve

the desired detection/false alarm performance.

To deal with the uncertainties about the background noise

and interference, CFAR processors are used in most oper-

ational radars for adaptive target detection [6, 7]. In such

schemes, some assumptions are made about the underlying

noise (and clutter) distribution in order to set the appro-

priate threshold to achieve the desired detection and False

Alarm Probabilities (FAP). Instead, the design of CFAR-like

schemes in combination with CS recovery is not straightfor-

ward, due to the non-linearity of CS recovery algorithms and

the unknown relations between the noise statistics and the pa-

rameters involved in the �1-norm reconstruction. However, in

a series of recent publications [5, 8], the authors demonstrate

that by exploiting the properties of the Complex Approximate

Message Passing (CAMP) algorithm, classical CFAR pro-

cessing can be successfully combined with �1-minimization

to obtain a fully adaptive detection scheme.

In this paper, the performance of the joint CS CFAR de-

tector, in combination with both the Cell Averaging (CA) and

the Order Statistic (OS) CFAR processors, are investigated

under different interference scenarios using simulated as well

as experimental CS radar measurements.

2. COMPLEX APPROXIMATE MESSAGE PASSING
(CAMP)

CS deals with the problem of recovering a k-sparse signal

x0 ∈ CN from an undersampled set of linear measurements

y ∈ Cn, with n < N , of the form

y = Ax0 + n. (1)

Here, A ∈ Cn×N is the sensing matrix, and n is complex

white Gaussian noise with variance σ2
in.

Since in the CS framework the number of measurements

n is smaller than the number of signal samples N , the prob-

lem of recovering x0 is ill-posed. However, under certain

conditions on A, n, and k the following convex optimization

problem, known as the LASSO [9] or Basis Pursuit Denoising

(BPDN) [10], recovers a close approximation of x0 [11]:

x̂ = min
x

1

2
‖y −Ax‖22 + λ ‖x‖1. (2)

Here, λ is a regularization parameter that controls the trade

off between the sparsity of the solution and the �2-norm of

EUSIPCO 2013 1569741827

1



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

the residual. A major practical problem when dealing with CS

reconstruction algorithms is finding the “optimal” value of λ.

In particular, for radar applications the relations between the

parameter λ and the detection and false alarm probabilities

are unknown.

The Complex Approximate Message Passing (CAMP) is

an iterative algorithm for solving (2) for signals in the com-

plex domain [5, 12]. The CAMP algorithm has a number of

properties which can be used to solve both the problem of op-

timal tuning and adaptive target detection. These properties

are summarized in P1–P3 [12]:

P1: Under an appropriate tuning of the regularization pa-

rameter used in CAMP and the parameter λ in (2),

CAMP solves LASSO exactly. See Section 3.4 in [12].

P2: At every iteration, x̃t can be considered as x0 + wt,

where the distribution of wt converges to complex

Gaussian with zero mean and variance σ2
t . See Section

3.4 in [12].

P3: The performance of CAMP can be predicted theoreti-

cally by the so-called state evolution equation. See Sec-

tion 3.1 in [12].

An important relation derived from the analytical frame-

work used in CAMP is that the variance of the total noise σ2
t

present in the signal x̃ at each iteration t is expressed as a lin-

ear combination of the input noise variance and the MSE of

the solution: MSEt=
‖x̂t−x0‖2

N . In CAMP an estimate σ̂2
t of

the noise variance is computed at each iteration by means of

median filtering.

With the use of the signal-plus-noise model described

in P2, the tuning of the regularization parameter in CAMP,

which we refer to as τ , can be easily solved. The optimal

threshold τo in CAMP is the one that achieves the minimum

MSE or, equivalently, the minimum σ2
∞. The Adaptive CAMP

algorithm described in [8] can be used to obtain a good es-

timate τ̂o of the optimal threshold multiplier τo when signal

and noise statistics are unknown. The optimum estimated

threshold τ̂o minimizes the estimated CAMP output noise

variance thus maximizing the recovery SNR of CAMP (and

therefore the Pd of any detector that may follow the recovery

stage).

3. CS TARGET DETECTION USING CAMP

In radar, the detection problem is to determine the presence

or absence of a target in a given range/Doppler bin in the

presence of noise, clutter and interference. In practice, the

background is unknown a priori, and therefore an adaptive de-

tection scheme must be applied. Also, it is desirable that the

detector has the CFAR property, which can be achieved by us-

ing CFAR detection on the signal x̃. Two different CS CAMP

based architectures are considered here and their block dia-

grams are shown in Figure 1.

(a) Architecture 1

(b) Architecture 2

Fig. 1. Detection schemes based on CAMP. Note that in Ar-

chitecture 2 the output of CAMP is the noisy version of the

estimated signal x̃.

In the first system, the CS reconstruction itself is con-

sidered to act as a detector, and the non-zero coefficients in

the estimated signal x̂(τα) represents detections. Therefore,

the threshold τα in CAMP is set to achieve the desired FAP

α. In [5] it is shown that for x0 = 0, setting the threshold

τα =
√− lnα yields a FAP equal to α. This detection strat-

egy is referred to as Architecture 1; see Figure 1(a).

Theoretical and empirical results in [8] show that better

performance can be achieved in terms of detection probabil-

ity (Pd) when the CS recovery is followed by a separate de-

tector. This means that, similar to conventional radar pro-

cessing, the recovery stage - a Matched Filter (MF) in classi-

cal architectures- is used to maximize the recovery SNR (i.e.,

maximize detection for a given FAP), and later the detector is

used to control the FAP. In this case the CAMP threshold is

selected to achieve the minimum MSE at the output of CAMP

by choosing τ = τo, with τo estimated using Adaptive CAMP.

This scheme is referred to as Architecture 2; see Figure 1(b).

In this architecture, the input to the separate detector is the

non-sparse, noisy signal x̃.

4. CFAR DETECTORS

If the noise statistics were homogeneous, stationary and

known, the detector threshold in both architectures could be

set once and would remain fixed. This represents the ideal

case of a fixed threshold (FT) detector. These conditions are

never satisfied in practice and CFAR processors are employed

to adaptively estimate the detector threshold κ(α) when the

background statistics are not known in advance. In CFAR

schemes the cell under test (CUT) is tested for the presence

of a target against a threshold derived from the estimated

clutter-plus-noise power. The M cells surrounding the CUT

(CFAR window) are used to derive an estimate of the back-

ground power and they are assumed to be target free. CFAR

schemes try to maintain a constant false alarm rate via adap-

tation of the threshold to a changing environment. It is known

that for the case of homogeneous Gaussian background, the

optimum CFAR processor is the well-known Cell Average

2
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CFAR (CA-CFAR) detector [6]. However, in situations in

which the clutter changes rapidly or in the presence of in-

terfering targets in the CFAR window, or when the clutter

and noise distribution are not Gaussian, the CA-CFAR de-

tector performance degrades severely. For this reason many

alternative CFAR schemes have been developed in the past,

such as the Order Statistic (OS) CFAR detector [7]. In OS-

CFAR processing, the power received from the cells in the

CFAR window is rearranged in increasing order and the kth

ordered cell (order statistic) is used as an estimate of the en-

vironment. OS-CFAR processing has the advantage of being

robust against interfering targets in the CFAR window and

clutter power transitions, while preserving reasonably good

performance in homogenous background.

5. SIMULATION

A stepped frequency (SF) waveform is considered for sim-

ulations and the TX signal consisted of a number of discrete

frequencies fm. In the CS case, the number of TX frequencies

is reduced from N to n (n < N ). The subset of transmitted

frequencies is chosen uniformly at random within the total

transmitted bandwidth, with the constraints that the first and

last frequencies in the bandwidth are used (to span the same

total bandwidth to preserve range resolution), and that at least

two of the transmitted frequencies are separated by the nomi-

nal frequency separation Δf , to guarantee that the unambigu-

ous range ΔR is preserved. After reception and demodulation

each range bin maps to n phases proportional to the n trans-

mitted frequencies, and the n samples ym, m = 1, · · · , n, of

the compressed measurement vector y are given by

ym =
1√
n

N∑
i=1

e−j4πfmri/cx0,i, (3)

where ri = r0 + iΔR/N , and i = 1, . . . , N is the range bin

index.

5.1. Simulation results

The simulation results are shown in Figure 2, where the de-

tection performance are shown for both Architecture 1 and for

Architecture 2 using a Fixed Threshold (FT) detector and a

CFAR processor, either a CA or OS one. The detection prob-

ability (Pd) is estimated using 500 Monte Carlo simulations

for a target with a recovery SNR of about 9 dB. The design

FAP on the x-axis (Pfa) is used to set the threshold multiplier

for each architecture and detector type. In the simulations, the

case N = 1000, δ = 0.5 and ρ = 0.1 is considered, where

δ = n/N indicates the number of CS measurements wrt the

number of Nyquist samples and ρ = k/n represents the rela-

tive signal sparsity, being k the number of targets. The targets

are distributed in range such that, depending on the CFAR

window length M , the target of interest (for which the Pd is
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(a) CFAR window length M = 20
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(b) CFAR window length M = 40

Fig. 2. ROC curves for a target with a recovery SNR of about

9 dB using Architecture 1 (blue), and Architecture 2 in com-

bination with FT detector (black), CA-CFAR (red), and OS-

CFAR (magenta) processors. For the OS-CFAR processor,

kOS = 0.6. In these simulations, N = 1000, δ = 0.5 and

ρ = 0.1.

shown) has either no interfering targets (M = 20) or 2 inter-

ferers (M = 40) in its CFAR window.

From Figure 2 it can be seen that, in agreement with tra-

ditional CFAR processing, the CA CFAR processor outper-

forms the OS one for the case of homogeneous background

in the CFAR window (2(a)). Instead, when interferers are

present in the CFAR window, the CA processor encounters a

significant loss in Pd compared to the OS processor, whose

performance is almost unaffected by in the presence of inter-

fering targets in the CFAR window.

Also note that for all detector cases (adaptive and non-

adaptive), the CAMP reconstruction threshold τo of Archi-

tecture 2 is always adaptive, whereas in Architecture 1 the

threshold τα is non-adaptive and fixed. Furthermore, the

performance of the two architectures are upper bounded by

the performance of Architecture 2 that uses an ideal (non-

adaptive) fixed threshold (FT) detector that does not suffer

from estimation loss instead of a CFAR one. Furthermore,

because the threshold τα in Architecture 1 is estimated using

a median estimator, the performance of this architecture is

similar to those of the Architecture 2 combined with the OS

3
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CFAR processor.

6. EXPERIMENTAL DATA

In the this section, the performance of the proposed detection

schemes under different interference scenarios is evaluated

using a set of experimental CS radar measurements. In the

experiments, a one dimensional radar is considered operating

in the range domain.

The measurements were carried out at Fraunhofer FHR,

in Germany, using the LabRadOr experimental radar system

described in [5]. In the Nyquist case (that represents unam-

biguous mapping of ranges to phases over the whole band-

width) N = 200 frequencies are transmitted using a SF wave-

form over a bandwidth of 800 MHz which yields a maxi-

mum range resolution of δR = 18.75 cm. Each frequency

is transmitted over 0.512 μs, corresponding to a bandwidth

of Bf = 1.95 MHz. The sequential frequencies are sepa-

rated by Δf = 4 MHz, resulting in an unambiguous range of

ΔR = 37.5 m. Five stationary corner reflectors with differ-

ent Radar Cross Sections (RCS) are used as targets. For each

transmitted waveform 300 measurements (with the same set-

up) were performed.

6.1. Results

In this section, ROC curves are used to analyze the per-

formance of the the two architectures for both interfering

and non-interfering target scenarios, which were obtained

by changing the CFAR window size. For Architecture 2, we

combine the CAMP recovery with both the CA and OS CFAR

processors.

Figure 3 exhibits the signals reconstructed by using the

two CAMP based architectures introduced in Section 3 in ad-

dition to the MF, which represent the reference case. For the

CS measurements δ = 0.5 is used and N = 200 frequen-

cies measurements for the MF. There are five corner reflec-

tors (T1–T5) at ranges from 20m to 36m. For Architecture 1,

τα was set using α = 10−4. Notice that the signal from Ar-

chitecture 2 is a noisy version of the estimated sparse signal

before soft thresholding is applied, whereas the signal esti-

mated from Architecture 1 is the sparse signal, where each

non-zero coefficient represents a detection.

In the interest of space, only the ROC curves for target

T3 are reported. For the other targets, the behavior of the

detectors is the same, although the actual values of Pd are

different due to the different SNRs of both the desired target

and the interferers. For estimating Pd, the detection at the

location of the highest target peak was used. For Architecture

2 both the CA and OS CFAR processors were used, preceded

by a Square Law (SL) detector. For the CFAR processors, we

use four guard cells and CFAR windows of length 20 and 40

respectively. For the OS CFAR, the selected order statistic is

chosen as kOS = 0.6.

0 5 10 15 20 25 30 35
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104

Range [m]

lo
g(

am
pl

itu
de
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CAMP Arch. 1
CAMP Arch. 2
MF

T1
T2

T3
T4

T5

Fig. 3. Reconstructed range profile using CAMP Architec-

tures 1 and 2, and the MF. For the MF, N = 200 (i.e., no

subsampling); for all other schemes n = 100 and δ = 0.5.

The y-axis is in log scale and arbitrary units [au].

Figure 4(a) shows the ROC curve for T3 with a CFAR

window of length M = 20. For this choice of M , none of the

other targets fall in the CFAR window of T3, and therefore the

CA-CFAR processor performs better than the OS one. Fur-

thermore, it can be seen that Architecture 2 combined with the

CA-CFAR processor also outperforms Architecture 1, where

the noise variance is estimated inside the CAMP algorithm

using the median estimator. Therefore, Architecture 1 is sim-

ilar to an OS CFAR processor that uses the entire range re-

sponse as the CFAR window and kOS = 0.5. Clearly, in this

case the CA CFAR performs better than both the OS CFAR

and Architecture 1, since it excludes the other targets from

the (local) estimation of the noise level, resulting in an unbi-

ased estimate. For this window size, CA CFAR is the best

choice since there are no noise/clutter power transitions, and

the targets are never in the reference window of one another.

Figure 4(b) shows the results for the same data set but for a

CFAR window of size 40, which result in 2 interfering targets

in the CFAR window of the target of interest. It can be ob-

served that, in accordance with conventional CFAR process-

ing, Architecture 2 with OS CFAR outperforms Architecture

2 with CA CFAR but performs very similarly to Architecture

1. In fact, the performance of the CA-CFAR processor de-

grades as the number of interfering targets in the reference

window increases. Note that the ROC curve of Architecture

1 (and also Architecture 2 with FT detector) is unchanged

for different CFAR window sizes. In fact, for Architecture

1 no CFAR processor is used and the CAMP reconstruction

is independent of the locations of the targets, as it uses the

whole range response. It is clear that, in cases where there

might be multiple interfering targets either an OS-CFAR pro-

cessor should be used after Architecture 2 or otherwise the

theoretically suboptimum Architecture 1 can represent a sim-

ple, effective alternative to CFAR processing. However, the

disadvantage of Architecture 1 is that it lacks the local adap-
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(a) CFAR window length M = 20
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(b) CFAR window length M = 40

Fig. 4. ROC curves for T3 using Architecture 1 (blue), and

Architecture 2 in combination with FT detector (black), CA-

CFAR (red), and OS-CFAR (magenta) processors. For the

OS-CFAR processor, kOS = 0.6. δ = 0.5.

tivity provided by CFAR processing. Clearly, there is a trade

off between the number of range bins used for the noise power

estimation and the bias in the estimate that occurs if interfer-

ing targets are included in the reference window. Of course,

this trade off is identical to the trade off for classical radar

systems using Nyquist sampling.

7. CONCLUSIONS

In this paper the results of different CS based radar detection

architectures were compared. It is shown that using a separate

detector following the CS reconstruction improves detection

performance. Moreover, if the detector is a CFAR one, its

behavior is unaltered and, in the presence of interfering tar-

gets in the CFAR window, as expected, OS is better than CA-

CFAR processing. Furthermore, although the performance of

Architectures 1 and Architecture 2 plus OS-CFAR are similar,

Architecture 2 is preferable as it leaves the user the freedom

to chose the most appropriate processing parameters and it al-

lows to perform a local adaptation of the threshold, which is

critical for radar applications. With the combined CS CFAR

architecture, the CFAR loss can be controlled by changing

both the type of CFAR processor and the window length.
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