
Intelligent Assistants in Crisis Management:
from PDA to TDA

Jurriaan van Diggelena, Robbert-Jan Beunb, Peter J. Werkhovenb

a TNO Defense, Security and Safety
Soesterberg, the Netherlands

b Institute of Information and Computing Sciences
Utrecht University, the Netherlands

Abstract

This paper discusses a variety of potential applications of intelligent assistants, from personal digital
assistant (PDA) to team digital assistant (TDA). We identify two challenges that arise when developing
intelligent assistants in crisis management and give an overview of the different technologies that could be
used to address these challenges. In particular we will focus on ontologies and policies. For both of these
technologies, we present a simulation prototype and discuss insights, obstacles and opportunities.

1 Introduction
Suppose that, on a busy weekday, a collision occurs deep within a major tunnel in the Netherlands. An
effective first response in such a situation demands the utmost in human performance as limited time is
available, the situation may change unexpectedly and human failure is potentially hazardous. We believe
that electronic intelligent assistants will, and should, play an important role in assisting first responders in
crisis management.

This paper discusses a variety of potential applications of intelligent assistants, from personal digital
assistant (PDA) to team digital assistant (TDA). The PDA could offer individual support by allowing the
crisis workers to have wireless access to the measurements of the sensors in the environment, e.g. smoke
sensors, thermometers, movement detectors. This application offers a gateway to ubiquitous information. A
TDA could support a whole team by taking over some of the notifications which are necessary to maintain
a coherent team. For example, it could ensure that all team members are aware of the plan laid out by the
leader. This application can be seen as a teamwork fortifier.

Over the last decade, advances in wireless networks have enabled the technological infrastructure which
is required for such applications, i.e. mobile devices can exchange bits and bytes in a relatively secure and
consistent way. However, many challenges in artificial intelligence remain to be solved to allow different
sensors and mobile devices to exchange meaningful messages, for example to communicate the current state
of affairs or the planned course of action. Furthermore, the computer must be able to determine the right
time and form to share a certain piece of information.

The purpose of this paper is to identify two challenges that arise as we move from PDA to TDA, and to
give an overview of the work we have done towards their solutions. We follow a simulation to implementa-
tion approach [2]. This means that we start by simulating a scenario. This allows us to generate simulation
data, which can be used for validation early in the development phase, and which helps to generate further
ideas about the prototype. Later in the development phase, the technology used for the simulation artifact,
can be used to implement the system itself.

Particular to our methodology is the explicit use of technology input [19]. This is important as the
envisioned technology helps to shape the ideas about novel applications. Furthermore, the interplay between
technology and human factors becomes an explicit and integrated part of the development process. In this
paper, we will discuss two different technologies. We will focus on ontologies, and the role they play in
representing and sharing information about actions and circumstances. Furthermore, we will investigate the
use of computational policies to model the teamwork aspects of crisis management support.

1

Diggelen, J. van, Beun, R.J. & Werkhoven, P.J. (2009). Intelligent Assistants in Crisis 
Management: From PDA to TDA. In 21st Benelux Conference on Artificial Intelligence, 
(Belgian/Netherlands Artificial Intelligence Conference) BNAIC 2009, 29 October 2009 
through 30 October 2009, Eindhoven (pp. 401-402). 



The paper is organized as follows. Section 2 describes the two challenges we will be concerned with in
this paper. In Sections 3 and 4, we address both of these challenges by discussing the proposed technological
solution, the envisioned applications, and by presenting simulation results. Section 6 concludes the paper
and presents directions for future research.

2 Two Challenges for Intelligent Assistants
The most basic form of electronic assistance is a software agent1 supporting a human in performing his or
her task [12]. This approach focuses on the specific tasks that an individual must accomplish as part of the
team, regardless of what the team as a whole must accomplish. An example of such an approach is described
in [11], where an intelligent agent runs on a PDA to notify a mobile police officer about nearby accidents.

We call this PDA application a gateway to ubiquitous information. The ubiquitous computing paradigm
implies [20] that an environment contains hundreds of networked computing devices and sensors which
could assist people in performing their tasks. In this way, the situation awareness of crisis workers can be
improved by allowing them to have access via their PDA’s to the information possessed by the sensors in
their environment.

Designing the information infrastructure for these kind of systems is far from straightforward. Because
different devices may be developed by different manufacturers, they are likely to represent their informa-
tion heterogeneously, complicating the sharing of information. Furthermore, the system is open, i.e. it is
not known beforehand which sensors, PDA’s and other devices will constitute the system. This makes it
impossible to fix the communication infrastructure in advance.

The different components in the system communicate via a high level communication language. This
means that we can view the communication mechanism as a way to exchange meaningful messages. This
requires a shared understanding on the meanings of terms, i.e. the agents must be semantically interoperable.
Whereas more basic forms of interoperability are also required for successful agent communication (for
example, to establish a network connection between two agents), this paper focusses on the semantic issues
of interoperability.

Not only enabling information exchange is a challenge, but also doing it efficiently. We will give three
reasons for this claim. Firstly, when vast amounts of data are available, information overload becomes a
serious issue due to limited storage and computing resources. Secondly, because the system often consists
of mobile devices with limited energy supply, mobile communications, which are heavy on power consump-
tion, should be minimized [6]. Thirdly, the system may also contain humans which are even more easily
prone to information overload than computers.

The first technological challenge can be summarized as follows:

Challenge 1 To allow an intelligent assistant to efficiently exchange semantic information in ubiquitous
computing environments

Things are even more challenging as we move towards the application of a TDA as a teamwork fortifier.
In this approach, agents do not focus on the specific tasks performed by humans, but they assist the team as
a whole [12]. They facilitate teamwork between humans by aiding communication, coordination, and focus
of attention [8]. This approach requires a model of how a team works, in terms of general team objectives,
roles and strategies. The teamwork model must be computational, allowing it to be processed by agents and
to be useful as a basis for running computer simulations. Summarizing, we can phrase the second challenge
as follows:

Challenge 2 To make an intelligent assistant aware of teamwork processes

The two challenges outlined above are ordered in increasing complexity, in the sense that the solution
for the first challenge is also required for the second challenge. For this reason, we will start our discussion
with the most elementary challenge.

3 Individual Support
This section addresses challenge 1, which we will discuss in the context of a PDA offering a gateway to
ubiquitous information. As an example, we will consider a crisis management application where information

1In this paper, we will refer to computers, PDA’s, sensors and other computing devices as agents



from different sensors in a tunnel must be combined to inform a crisis worker via a PDA about the potential
risks of fire and traffic accidents. In the following subsections, we will discuss ontologies, techniques
for communication efficiency, and a simulation environment for agent-agent communication in ubiquitous
computing.

3.1 Ontologies
A common ontology has been advocated as the key to achieve mutual understanding between agents as it
guarantees that every agent uses the same terms to represent the same meanings [5]. In ubiquitous comput-
ing, however, different components typically represent their information at different levels of abstraction, i.e.
they view the world differently. These different world-views lead to heterogeneous ontologies which could
cause misunderstandings [13]. To deal with this problem, we propose a system with layered ontologies [14]
where the agents only have parts of their ontologies in common. In this way, every agent maintains its own
ontology tailored to its task, and use the common parts of their ontologies for communication.

For example, consider a system used in a tunnel consisting of six sensors (numbered 0 to 5), two com-
puters (numbered 6 and 7) capable of gathering and combining sensor information (which we will call
interpreters), and one PDA (numbered 8) informing a crisis worker about the current state of the situation.
The situation, as we modelled it in our prototyping tool, is depicted in Figure 1. The sensors use simple on-

Figure 1: Example setup

tologies allowing them to represent and reason with concrete and measurable information such as infrared
intensity, smoke, temperature, carbon dioxide, amount of incoming traffic, amount of outgoing traffic. The
two interpreters also possess these ontologies, which allow them to understand the information contained
in the sensors. In addition to these, they also possess ontologies containing more abstract terms, such as
fire and traffic-accident. The ontologies of different levels of abstraction are related by mappings, i.e. rules
which translate between the different levels. For example, infrared intensity (which indicates the presence of
flames), smoke, temperature, and carbon dioxide are used to derive a potential fire. The amount of incoming
traffic combined with the amount of outgoing traffic is used to derive a traffic jam inside the tunnel (which
could be the sign of a traffic accident). The PDA can process the information produced by the interpreters
and raises the level of abstraction in order to present it to the user. For example, it possesses a concept
crisis-level to indicate the severity of the crisis. For a more in depth discussion on these issues, the reader is
referred to [16].

3.2 Communication and Efficiency
Although none of these agents has exactly the same set of ontologies as another agent, they are still capable
of communicating with each other. Communication in the system is initiated by an agent aiming to resolve
its information needs. Suppose, for example, that the PDA has information need crisis-level. It starts by



looking for other agents that can provide valuable information for this concept. Because no other agent in
the system has the concept crisis-level defined in its ontology, the agent translates this concept to a more
concrete concept, such as fire and traffic-accident and queries it to the interpreters. This query raises an
information need for the interpreters, which they try to resolve using the same strategy, i.e. by translating it
to the lower-level concepts infrared intensity, smoke, temperature, carbon dioxide in order to pass the query
on to the sensors. Because the sensors can obtain their information directly from the world, the chain of
queries ends there.

Besides enabling information exchange, we also strive for efficiency. In total, we implemented four
mechanisms to minimize the information flow between agents. For example, we have ensured that our
agents always obtain their information in a way which is most efficient, i.e. by making the right choice be-
tween Query and Publish/Subscribe mechanisms. For an extensive and formal treatment of these efficiency
measures, the reader is referred to [15].

3.3 Simulation environment
We have implemented a test environment, called Ubismart, which allows developers to easily prototype a
ubiquitous computing system corresponding to the architecture discussed above. Figure 1 shows a screen
shot. By clicking on one of the icons, a window is opened which can be used to configure the agent. Most
importantly, the ontology of the agent is selected here. The ontologies are specified in the OWL language
[10], a language for specifying ontologies developed by the semantic web community. Whereas OWL nicely
conforms to all kinds of syntactic standards, the language is not very well readable for humans. Therefore,
we have used Protégé [7], which is a graphical ontology editor containing an open source Java library for
OWL. To understand complex ubiquitous systems involving multiple ontologies, proper visualization of
ontologies is crucial. For sensors, also the location of its sensory input must be specified. For PDA’s, also
the information needs must be specified, i.e. which information the PDA is supposed to present to the user.

Using this tool, the developer can easily obtain hands-on experience with the ontology design of these
systems. Furthermore, simulation experiments can be performed to study the information flow between
the different components. For example, we used the tool to validate the different communication efficiency
measures. Our simulation experiments revealed that, in a typical ubiquitous computing setting, these benefits
can be substantial.

4 Teamwork
This section describes the challenge that arises as we move towards the application of a TDA as a teamwork
fortifier (challenge 2). Similar to the PDA application discussed in the previous section, this application also
involves agent-agent and human-agent communication. In the TDA application, however, communication
is not about the current status of the user’s physical environment, but is about the status of the user’s team
members. To realize this, we require a computational teamwork model.

Our approach to teamwork is based on three observations. The first observation is that collaboration
almost always entails a reduction in autonomy. We call an actor2 autonomous if it has control over its own
actions and internal state. For the purpose of achieving joint team objectives, we are willing to give up some
degree of autonomy. In this way, the agents’ activities are constrained towards collaborative activities.

The second observation underlying our approach, is that the behavioral constraints which are applicable
to an actor, are dependent on the role an actor enacts in the team. For example, a leader has different
obligations and authorizations than its subordinates.

The third observation is that some common goal exists which binds the team together. The pioneering
research of Cohen and Levesque [3] introduced the notion of a joint persistent goal as the ultimate driving
force behind teamwork. In our framework, we adopt the idea of a collective obligation [4] for a similar
purpose. Whereas an individual obligation describes which actions must be performed by an individual, a
collective obligation describes which actions must be performed by a group of agents, regardless of which
agent does what. Because a collective obligation usually does not direct activity at the level of the single
agent’s behavior, we must find a way to translate the collective obligation to the individual level. Specifying
this translation forms the core of our teamwork research.

2We use the term actor to indiscriminately refer to agents or humans



4.1 KAoS Teamwork Policies
The KAoS policy and services framework [1] possesses useful characteristics for implementing team be-
havior. It allows the specification of different roles, together with behavioral constraints applying to those
roles. We have extended KAoS so it can handle collective obligations, making it an ideal environment for
teamwork modelling.

A behavioral constraint in KAoS is specified by a policy which is defined as ”an enforceable, well-
specified constraint on the performance of a machine-executable action by a subject in a given situation” [1].
There are two main types of polices; authorizations and obligations. Authorization policies specify which
actions are permitted (positive authorizations) or forbidden (negative authorizations) in a given situation.
Obligation policies specify which actions are required (positive obligations) or waived (negative obligations)
in a given situation. Policies are represented in OWL. To hide the complexity of OWL, a dedicated tool called
KPAT allows human users to create, modify and manage policies in a very natural hypertext interface.

Below, we list the intuitive meanings behind the teamwork policies we have implemented in KPAT
to translate collective obligations (CO’s) to the individual level. For a more complete description of the
underlying teamwork model as well as for implementation details, the reader is referred to [18].

1. The leader of a team should adopt the collective obligations of its team as its own individual obliga-
tions

2. Team members should notify their leader when the collective obligation of their team is triggered

3. The leader of a team may request members of its team to perform actions

4. The leader of a team may create plans

5. An agent should notify the requester after it has performed a requested action

6. If the agent knows who will perform the subsequent action, it should notify that agent after it finishes
performing its own action

7. If the agent knows who will conduct the subsequent action, it is not required to notify the requester
after it finishes performing its action

8. When no leader is present, the CO is triggered, and the agent knows it can fulfill the CO, it should
assume the leader role

9. When no leader is present, the CO is triggered, but the agent cannot fulfill the CO, it should notify the
whole team of the CO trigger

10. An agent should not notify its team about a CO trigger, when it has been notified itself by another
team member about that CO trigger

If there is a team leader, it has a special responsibility and must be treated by the other agents in a special
way. The purpose of the first four policies is to lay down these responsibilities. The purpose of policies 5 to
7 is to describes how actions in a plan should be coordinated, i.e. to ensure that the actions in the plan are
executed in the appropriate order. The purpose of policies 8 to 10 is to guide the behavior of agents that find
themselves in a leaderless team. This may happen either because nobody has been appointed as a leader or
else the leader is (temporarily) unavailable.

Our policy-based approach to teamwork has several benefits for developers of agent teams. The first
concerns reusability. Because the policies describe near-universal teamwork aspects, they are domain in-
dependent and can apply to many kinds of applications, thus saving development time. The second benefit
concerns sharedness. Because teamwork requires maintaining common ground among the participants [15],
agents benefit when the code that generates team behavior can be shared by all agents. By introducing a
shared collection of teamwork policies for the whole system, in conjunction with KAoS monitoring and en-
forcement capabilities, newly added agents fit easily into the team, no matter who developed them or which
language they are programmed in. Next, there is the benefit of separation of concerns. By using KAoS
policies, the code that implements teamwork is cleanly segregated from the rest of the agent code. Finally,
KAoS policies are very straightforward to read and understand, making them more suitable to implement
this kind of behavior than generic rule languages or more low-level programming languages.



In addition to the benefits for agent developers, we also believe that this approach is more conducive
to scientific progress towards the much more ambitious goal of human and machine joint activity [18][8].
Although the policies described in this paper are relatively simple, they are fundamental in normal human
teamwork. Hence, when agents adopt important aspects of human teamwork, people may find them more
predictable and understandable.

4.2 Teamwork Simulation
We tested the policies using a Mars mission scenario developed in the Mission Execution Crew Assistant
(MECA) project [9]. This long-term project aims at enhancing the cognitive capacities of human-machine
teams during planetary exploration missions by means of an electronic partner. The e-partner helps the
crew to assess a situation and determine a suitable course of actions when problems arise. A large part of
the project is devoted to developing a requirements baseline, taking into account human factors knowledge,
operational demands, and envisioned technology. Developing new prototypes using emerging technologies,
such as this one, is a continuous activity in the project.

One of the use-cases that has driven the development of MECA’s requirements baseline concerns an
astronaut suffering from hypothermia. The initial situation is depicted in Figure 2. Herman is in the Habitat;
Anne, Albert and two rovers are in team A; Benny and Brenda are in team B. Benny and Brenda are on a
rock-collecting procedure. Suddenly, Benny’s space suit fails. Brenda and the MECA system diagnose the
problem together and predict hypothermia. Immediate action is required. A rover from team B comes to
pick Benny up and brings him to the habitat. Someone with surgery skills and someone with nursing skills
await him there and take care of Benny, after which he safely recovers.

Figure 2: MECA scenario

The seven agents in the example (five astronauts and two rovers) are implemented in Java. Because most
of the agent behavior in this demonstration is implemented by the policies, the Java implementation could
remain very simple. The agents have the collective obligation to ensure safety after a safety critical event
has occurred. The most important aspect of this demonstration is the unfolding of the scenario after the
spacesuit failure is observed. This is driven exclusively by KAoS policies. An event trace of the teamwork
is shown below.

Brenda performs ObserveSpaceSuitFails
Brenda is obliged to perform SendNotificationOfTrigger

Brenda to Herman: SendNotificationOfTrigger
Herman is obliged to perform EnsureSafety

Herman is authorized to perform CreatePlan

Herman performs CreatePlan
Herman is not authorized to perform RequestCoordinatedAction



Herman is authorized to perform RequestAction

Herman to Rover1: request BringToHabitat
Rover1 performs BringToHabitat
Rover1 is obliged to perform SendNotificationOfRequestedActionFinished

Rover1 to Herman: SendNotificationOfRequestedActionFinished
Herman to Albert: request PerformSurgery
Albert performs PerformSurgery
Albert is obliged to perform SendNotificationOfRequestedActionFinished

Albert to Herman: SendNotificationOfRequestedActionFinished
Herman to Anne: request Nurse
Anne performs Nurse
Anne is obliged to perform SendNotificationOfRequestedActionFinished

Anne to Herman: SendNotificationOfRequestedActionFinished

The events printed in bold are actions; the underlined events are communication actions; the italicized
events represent policies that were triggered. In this event trace, some important teamwork properties can
be observed, such as maintaining common ground, planning, leadership, etc. Whereas this team is strongly
centered around a leader, i.e. it is a centralized team, we have also implemented more decentralized types
of teams, such as leaderless teams, or self-coordinating teams. A detailed discussion about these teams and
their pros and cons is provided in [17].

Besides obtaining simulation results, we believe that the teamwork policies are also useful for imple-
menting the MECA system itself. The teamwork policies could strengthen teamwork between astronauts by
aiding communication, coordination, and focus of attention. Because most of the policies we have discussed
in this paper are obligations to notify other agents, we could easily let MECA take over these notification
tasks. Furthermore, they could help to make robots more predictable and understandable to humans. A good
example of an agent enacting the role of an equal team member is the Rover in the hypothermic astronaut
scenario.

5 Conclusion
In this paper, we have identified various ways in which intelligent assistants could support humans in cri-
sis management. We have discussed two challenges for developing these assistants and proposed various
technological solutions to these challenges. We have demonstrated the use of these technologies using sim-
ulations. The next step would be to use the technology in a real prototype, and use that as a way to perform
human in the loop evaluations. These are left as topics for future research.

References
[1] J. Bradshaw and et al. Representation and reasoning for daml-based policy and domain services in

kaos and nomads. In Proceedings of the Autonomous Agents and Multi-Agent Systems Conference
(AAMAS). ACM Press, 2003.

[2] W. J. Clancey, M. Sierhuis, C. Seah, C. Buckley, F. Reynolds, T. Hall, and M. Scott. Multi-agent
simulation to implementation: A practical engineering methodology for designing space flight oper-
ations. In Engineering Societies in the Agents World VIII: 8th International Workshop, ESAW 2007,
Athens, Greece, October 22-24, 2007, Revised Selected Papers, pages 108–123, Berlin, Heidelberg,
2008. Springer-Verlag.

[3] P. Cohen and H. Levesque. Teamwork. In SRI International., Menlo Park,CA, 1991.

[4] F. Dignum and L. Royakkers. Collective obligation and commitment. In Proceedings of 5th Int.
conference on Law in the Information Society, Florence, 1998.

[5] T. R. Gruber. A translation approach to portable ontology specifications. Knowledge Acquisition,
5:199–220, 1993.



[6] S. Gurun, P. Nagpurkar, and B. Y. Zhao. Energy consumption and conservation in mobile peer-to-peer
systems. In MobiShare, pages 18–23, New York, NY, USA, 2006. ACM Press.

[7] H. Knublauch, R. Fergerson, N. Noy, and M. Musen. The protégé OWL plugin: An open development
environment for semantic web applications. In 3rd Int. Semantic Web Conference. Springer, 2004.

[8] T. L. Lenox. Supporting teamwork using software agents in human-agent teams. PhD thesis, Pitts-
burgh, PA, USA, 2000. Adviser- Michael Lewis.

[9] M. Neerincx, A. Bos, A. Olmedo-Soler, U. Brauer, L. Breebaart, N. Smets, J. Lindenberg, T. Grant,
and M. Wolff. The mission execution crew assistant: Improving human-machine team resilience for
long duration missions. In Proc. of the 59th International Astronautical Congress (IAC), 2008.

[10] M. Smith, C. Welty, and D. McGuinness. OWL Web Ontology Language Guide.
http://www.w3.org/TR/owl-guide/.

[11] J. W. Streefkerk, M. van Esch-Bussemakers, and M. Neerincx. Designing personal attentive user
interfaces in the mobile public safety domain. Computers in Human Behavior, 22(4):749–770, 2006.

[12] K. Sycara and M. Lewis. Integrating agents into human teams. Team Cognition: Understanding the
Factors that Drive Process and Performance., 2004.

[13] J. van Diggelen, R. J. Beun, F. Dignum, R. M. van Eijk, and J. J. C. Meyer. Ontology negotiation:
Goals, requirements and implementation. International Journal of Agent-Oriented Software Engineer-
ing (IJAOSE), 2007.

[14] J. van Diggelen, R. J. Beun, R. M. van Eijk, and P. J. Werkhoven. Modeling decentralized information
flow in ambient environments. In Proceedings of ambient intelligence developments (AmI.D ’07),
2007.

[15] J. van Diggelen, R. J. Beun, R. M. van Eijk, and P. J. Werkhoven. Agent communication in ubiqui-
tous computing: the ubismart approach. In Proceedings of the Seventh International Conference on
Autonomous Agents and Multi-agent Systems (AAMAS08), pages pp. 813–820. ACM Press, 2008.

[16] J. van Diggelen, R.-J. Beun, R. M. van Eijk, and P. J. Werkhoven. Efficient semantic information
exchange for ambient intelligence. The Computer Journal, 2009.

[17] J. van Diggelen, J. Bradshaw, T. Grant, M. Johnson, and M. Neerincx. Policy-based design of human-
machine collaboration in manned space missions. In Proceedings of Space Mission challenges for
Information Technology (SMC-IT), 2009.

[18] J. van Diggelen, J. M. Bradshaw, M. Johnson, A. Uszok, and P. J. Feltovich. Implementing collective
obligations in human-agent teams using kaos policies. In Proceedings of International Workshop on
Coordination, Organizations, Institutions, and Norms (COIN), 2009.

[19] P. van Maanen, J. Lindenberg, and M. Neerincx. Integrating human factors and artificial intelligence
in the development of human-machine cooperation. In Proc. of the 2005 International Conference on
Artificial Intelligence (ICAI’05), Las Vegas, NV, 2005. CSREA Press.

[20] M. Weiser. The computer for the 21st century. Scientific American, 265(3):66–75, 1991.


