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Summary

Hydro-elastic response of ship structures to slamming
induced whipping

by Johan Tuitman

Slamming induced whipping can significantly increase the structural load-
ing of ships. Although this is well-known, the whipping contribution to the
structural loading is rarely taken into account when computing the structural
loading. An exception are the “dynamic loading” factors found in Classification
Societies rules. Currently there are no commercial tools available to compute
the seakeeping response including slamming induced whipping. This is the
main reason for not accounting for the effects of whipping. Extensive research
has been done on the subject of slamming impact and whipping response but
an integral and computationally efficient method is not yet available for ship
structure designers.

This is the starting point for this research presented in this thesis. The ob-
jective of this thesis is: “The development of a practical method to calculate the
global and local response of the ship structure due to the seakeeping loading in-
cluding the slamming loading. This method should contain the full hydro-elastic
coupling.” This method is developed by combining well-known components and
new tools.

The concept of generalised modes is used to solve the hydro-elastic seakeep-
ing problem. All degrees of freedom of the ship structure are described by mode
shapes using this approach, even the rigid-body modes. The number of degrees
of freedom may be arbitrary selected by the user. The flexible mode shapes of
the structure are obtained from either a 3D-FEM analysis or a 1D-FEM anal-
ysis using a beam model of the ship structure. The seakeeping response of all
modes, rigid and flexible, is solved simultaneously which ensures a full account
for the hydro-elastic coupling.

The seakeeping response is solved in the time domain using a 3D surface
integration method. The time domain allows one to include non-linear load
components and to calculate the transient response with relative ease. The non-
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linear Froude-Krylov and non-linear hydrostatic loads are taken into account
to improve the seakeeping and internal load predictions. The diffraction and
radiation loads are kept linear to allow for reasonably fast computations. The
linear diffraction and radiation coefficients are solved in the frequency domain
using a 3D boundary element method. This hydro-elastic approach allows one
to compute the transient whipping response. The springing response can only
be partially predicted because springing is often caused by additional non-linear
load components which are not included in the presented theory.

Since fast and robust, non-empirical 3D methods are not yet available for
the calculation of the slamming loads, the slamming loads are solved using 2D
methods. The first of the two used methods is the Generalised Wagner Model
(GWM). This is the most accurate of the two methods. The second method is
the Modified Logvinovich Model (MLM) which is much faster compared to the
GWM. The drawback of using these 2D methods is that the slamming loading
can only be computed accurately for head seas and near head sea conditions.
The computation of the slamming loads is directly integrated into the time
domain seakeeping calculation. At every time step the slamming loads are
computed based on the actual relative motions, and the computed slamming
loads are taken into account for the solution of the resulting motions.

Insight into the global response of the ship structure is obtained by us-
ing the modal approach for computing the seakeeping response. However, it
is difficult to compute the local structural response of a ship structure using
the modal method. Therefore, the local structural response is computed by
transferring the seakeeping loads to the 3D-FEM model of the structure and
solving the response using the FEM method. The method used ensures that
the hydrodynamic loads at the structural model are well balanced by the ap-
plied nodal acceleration loads, thus ensuring a consistent FEM solution. These
nodal acceleration loads allow one to include the effect of whipping even when
a quasi-static FEM approach is used.

The developed methodology is verified and validated using different ships,
results of model experiments and the results of one full-scale sea trial. All
verifications show that the developed approach gives the expected results and
that the presented theory is consistent. The slamming forces are verified using
model experiments of a container ship and an aluminium model. This validation
shows that it is necessary to take into account the static bow wave generated
by the blunt bow of the container ship when computing the slamming loads to
a reasonable accuracy. The validations using experiments with the aluminium
model show that the contribution of the added mass on the natural frequency
is well predicted, even for conditions with forward speed. The calculated slam-
ming loads and resulting whipping response compare well with the experimental
results of the aluminium model. Stresses measured during a sea trial of the M-
Frigate of the Royal Netherlands Navy are also used to validate the developed
methodology. The computed spectral energy of the wave frequency and the
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whipping response are close to the spectra measured. The Weibull fits of the
extremes of the calculated and measured stresses shows very good agreement,
the hog/sag ratio is also well predicted. The stresses are slightly overpredicted
for the highest speed.

Two ultra large container ships are used for a case study. Design values such
as the expected ultimate bending moment and fatigue loading are calculated
based on the computed bending moment or stress history. It is shown that
the seakeeping response should be calculated for at least 750 wave encounters
in order to accurately compute the design values. The developed seakeeping
method is fast and robust enough to compute the design values for all cells of a
scatter diagram. The expected ultimate bending moment and fatigue damage
are calculated based on a life-time of thirty years with both North Atlantic and
World wide scatter diagrams. It is shown that the slamming induced whipping
and the computed springing response reduce the predicted fatigue lifetime by
about forty percent and increase the expected ultimate bending moment by
about twenty percent. This shows the importance of accounting for these effects
when computing the design values for such flexible ships.

It can be concluded that a practical method to calculate the global and
local response of the ship structure due to the seakeeping loading including
the slamming loading and whipping has been developed. It is shown that the
developed method can be applied to calculate the design values for a complete
scatter diagram. The validations shows that the predictions are reasonably
accurate.





Samenvatting

Hydro-elastische responsie van scheepsconstructies door
slamming gëındiceerde whipping

(Hydro-elastic response of ship structures to slamming induced
whipping)

door Johan Tuitman

Whipping responsie ten gevolge van slammingsimpact, ook wel paaltjes pikken
genoemd, kan de belasting van scheepsconstructies aanzienlijk vergroten.
Hoewel dit algemeen bekend is, wordt de door slamming gëındiceerde whipping
bijna nooit meegenomen tijdens het berekenen van de structurele belasting,
behalve dan middels de “dynamische belasting” factoren die de regels van de
klassebureaus voorschrijven. De belangrijkste reden om de slammingsimpact
en whipping responsie niet te berekenen is dat commerciële beschikbare pro-
gramma’s voor zeegangsberekening dit niet kunnen. Er is uitgebreid onderzoek
gedaan op het gebied van slammingsbelasting en whipping responsie maar er
is nog geen integrale methode beschikbaar die efficiënte berekeningen toelaat
voor de ontwerper van scheepsconstructies.

Het doel van het onderzoek dat in dit proefschrift is beschreven is “Het
ontwikkelen van een praktische methode voor het berekenen van de globale en
locale responsie van scheepsconstructies door zeegangsbelasting waar ook slam-
ming belasting voorkomt. De methode moet de volle hydro-elastische koppeling
bevatten.”. Deze methode is ontwikkeld door het combineren van verschillende
bekende componenten en een aantal nieuwe componenten.

Het concept van gegeneraliseerde vrijheidsgraden wordt gebruikt om het
hydro-elastische zeegangsprobleem op te lossen. Volgens dit concept worden alle
vrijheidsgraden beschreven door trilvormen, zelfs de starre lichaamsbewegingen.
Het aantal vrijheidsgraden kan arbitrair door de gebruiker gekozen worden.
De flexibele trilvormen worden verkregen van een berekening met de Eindige
Elementen Methode (EEM) middels een 3D-model of een 1D-balk-model van
de scheepsconstructies. De zeegangsresponsie van alle vrijheidsgraden, flexibel
en star, wordt gelijktijdig opgelost zodat een volle hydro-elastische koppeling
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wordt verkregen.
De zeegangsresponsie wordt berekend in het tijddomein gebruikmakend

van een 3D-oppervlakte-integratiemethode. In de tijddomein kunnen de niet-
lineaire belastingen en transiënte responsie relatief eenvoudig berekend worden.
De Froude-Krylov en hydrostatische krachten worden niet-lineair berekend om
de voorspelling van bewegingen en interne krachten te verbeteren. De diffrac-
tie en radiatiekrachten worden lineair berekend om de rekentijd beperkt te
houden. De coëfficiënten voor de lineaire diffractie en radiatie krachten worden
opgelost in het frequentiedomein met een 3D-boundary-elementen-methode. De
hydro-elastische aanpak maakt het mogelijk om transiënte whipping te bepalen.
De springing responsie kan maar gedeeltelijk bepaald worden omdat springing
vaak veroorzaakt wordt door niet-lineaire belastingscomponenten welke niet in
rekening worden gebracht in de gepresenteerde theorie.

Omdat hiervoor nog geen snelle, betrouwbare en niet-empirische 3D-
methode beschikbaar is, worden 2D-methodes gebruikt voor het berekenen van
slammingskrachten. De eerste van de twee gebruikte methodes is de Generalised
Wagner Model (GWM). Deze methode is de meest nauwkeurige die gebruikt
wordt. De andere is de Modified Logvinovich Model (MLM) welke veel sneller
en iets stabieler is in vergelijking met de GWM methode. Het gebruik van deze
2D-methode heeft als nadeel dat slammingskrachten alleen voor kopgolven of
bijna kopgolven nauwkeurig bepaald kunnen worden. De berekening van slam-
mingskrachten is gëıntegreerd in de zeegangsberekening. De slammingskrachten
worden op elke tijdstap berekend op basis van de actuele relatieve snelheid en
de slammingskrachten worden in rekening genomen bij het oplossen van de
bewegingen.

De gebruikte modale aanpak voor de zeegangsberekening geeft inzicht in
de globale responsie van de scheepsconstructies. Het is echter lastig om met
de modale aanpak inzicht te krijgen in de lokale responsie van de constructie.
De lokale responsie wordt daarom berekend door de zeegangskrachten over te
zetten op het 3D-EEM-model van de constructie en vervolgens de responsie
op te lossen met de EEM-methode. De gebruikte methode zorgt dat de zee-
gangskrachten gebalanceerd worden door de versnellingskrachten werkend in de
knooppunten van het EEM-mesh. Dit zorgt dat de EEM oplossing consistent is.
De knooppuntsversnellingskrachten zorgen dat de effecten van whipping worden
meegenomen, zelfs bij het gebruiken van een quasi-statische EEM-oplossing.

De ontwikkelde methodiek is geverifieerd en gevalideerd met verschillende
schepen, resultaten van modelproeven en het resultaat van één ware grootte
meting. Alle verificaties laten zien dat de gebruikte aanpak de verwachte
resultaten geeft en dat de gepresenteerde theorie consistent is. De slam-
mingskrachten zijn gevalideerd met resultaten van de modelexperimenten met
een containerschip en met een model van aluminium. Deze validatie met
het containerschip laat zien dat het voor de volle boeg van het containership
noodzakelijk is om rekening te houden met de statische boeggolf om de slam-
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mingskrachten redelijk te voorspellen. De validatie met een aluminiummodel
laat zien dat invloed van toegevoegde massa op de eigenfrequentie van het schip
juist berekend wordt, zelfs met voorwaartse snelheid. Voor het aluminiummodel
komen de berekende slammingbelasting en de geresulteerde whippingresponsie
goed overeen met de experimentele resultaten. De spanning gemeten tijdens
een ware grootte meting met het M-fregat van de Koninklijke Marine is ook
gebruikt voor validatie van de ontwikkelde methodiek. De berekende spectrale
energie voor de golffrequentie en whippingresponsie komen goed overeen met
de gemeten spectra’s. De Weibull fits van de extremen van de berekening en
de metingen komen goed overeen, de hog/sag ratio wordt goed voorspeld. Voor
de hoogste snelheid zijn de voorspelde spanningen wat hoger dan wat blijkt uit
de metingen.

Twee zeer grote containerschepen zijn gebruikt voor casestudies. Ontwerp-
waarden als het maximaal verwachte buigendmoment en de vermoeiingsschade
worden berekend op basis van het berekend buigendmoment- of spanningshis-
torie. Het blijkt dat de signalen voor minstens 750 golfontmoetingen berekend
moeten worden om de ontwerpwaarden nauwkeurig te kunnen berekenen. De
ontwikkelde zeegangsberekeningsmethode is snel en betrouwbaar genoeg om de
ontwerpwaarden voor alle cellen van een wave scatter diagram te berekenen. Het
verwachte maximale buigendmoment en vermoeiingsschade is berekend voor een
levensduur van dertig jaar gebruik makend van het Noord-Atlantisch en wereld-
wijd scatter diagram. Deze casestudies laten zien dat de slamming gëındiceerde
whipping en springing de voorspelde vermoeiingslevensduur met ongeveer veer-
tig procent reduceert en het maximaal verwachte buigendmoment met ongeveer
twintig procent vergroot. Dit laat zien hoe belangrijk het is deze effecten mee te
nemen voor berekeningen van de ontwerpwaarden voor zulke flexibele schepen.

Het kan geconcludeerd worden dat een praktische methode voor de bereken-
ing van de globale en lokale responsie van de scheepsconstructies door zeegangs-
belasting met slammingbelasting ontwikkeld is. De ontwikkelde methode kan
gebruikt worden voor het berekenen van de ontwerpwaarden voor een com-
pleet scatterdiagram. De validatie laat zien dat voorspellingen redelijk accuraat
zijn.
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SPH Smooth Particle Hydrodynamics

SWBM Still Water Bending Moment

VOF Volume of Fluid method



xx Nomenclature

General notation

a Scalar

a⃗ Vector

a Matrix
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Chapter 1

Introduction

Slamming is an impulsive hydrodynamic impact load, working on the ship struc-
ture, as the ship impacts with the waves. The ship structure can start to vibrate
due to this slamming impact. Such transient vibration of the ship structure is
called whipping. A measurement of a typical slamming induced whipping event
is presented in Figure 1.1. This figure shows the measured stress at the weather
deck during a full scale sea trial of the M-frigate of the Royal Netherlands Navy.
The response of the ship structure to the non-impulsive wave loads is, in gen-
eral, quasi-static. These are the low frequency (or wave frequency oscillations)
in the stress shown in Figure 1.1. At time step 1357 [s], the ship undergoes a
slamming impact. As can be noted, the ship structure starts to vibrate due to
this impact resulting in high frequency oscillations in the stress signal.

The whipping response clearly increases the stress at the first minimum of
the wave frequency stress after the slamming impact. Due to the low structural
and hydrodynamic damping, following wave related extrema are also increased
by the whipping response. Slamming and the resulting whipping response was
shown to occur regularly during these measurements. It is clear that the slam-
ming induced whipping causes a significant increase in the loading of the ship
structure. The slamming loading does not only increase the global loads, but
the resulting pressure will also increase the loads at the local shell structure.

The whipping response, as shown in Figure 1.1, is well known for many ship
types [3, 1]. Part of the structural damage of ships is attributed to slamming
loading and whipping response [40]. An example is the accident of the MSC
Napoli in the English Channel on 18 January 2007 [6]. This ship experienced
a structural failure because the actual loading of the structure exceeded the
design load. It is assumed that the whipping response played a role in the
accident by significantly increasing the structural loading [6].

Although it is well known that slamming can have a significant contribution
to the structural loading, it is rarely taken into account in the design of the
ships. The Classification Societies rules give some “dynamic loading” factors,
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Figure 1.1: Measured stress during full scale trials of the M-frigate of the Royal
Netherlands Navy.

but these factors are empirical ones and their domain of validity is not yet fully
understood.

When performing seakeeping computations to calculate the structural load-
ing, these slamming and whipping effects are rarely included. The main reason
for not including the slamming and whipping in seakeeping loads and response
calculations is the difficulty to do this correctly. Currently there is, to the
author’s knowledge, no commercial tool available which allows to include slam-
ming and whipping in seakeeping calculations in a computationally efficient
way such that the results can be used to calculate design values and predict the
performance of the ship structure during its life-time.

This is the starting point for the research presented in this thesis. The
objective of this thesis is “The development of a practical method to calculate
the global and local response of the ship structure due to the seakeeping loading
including the slamming loading. This method should contain the full hydro-
elastic coupling”. The development of such a method will be explained in this
thesis. In addition, verification, validations and case studies, based on the
developed theory will be presented.

The calculation of the loading and response of a ship in a sea remains a
difficult subject. It is necessary to simplify some of the physics to be able to
develop a method which is practical whilst maintaining a reasonable accuracy.
The presented method is a combination of some well known components which
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were already developed and some new tools. The presented method is set up
such that the different components of the calculations are coupled in a consistent
manner.

The method starts with the calculation of the natural modes of the ship
structure. Next, the seakeeping problem is solved in the time domain. The
response of both the rigid and flexible mode shapes are solved simultaneously.
This is a hydro-elastic calculation. A separate module calculates the impulsive
slamming loading during the seakeeping calculation. The motions of the rigid
and flexible modes and the internal loads are the main result of the seakeeping
calculations.

This hydro-elastic approach will also compute some springing response of
the ship structure. Springing is the structural vibration which is caused by
the non-impulsive hydrodynamic loading. The computation of the springing
response is not the goal of this thesis but it cannot be “turned off” when per-
forming a hydro-elastic analyse. Springing due to linear excitation is expected
to be computed correctly. However, the springing response is often attributed
to non-linear wave excitation components which are not be correctly computed
using the presented method.

Design values like maximum expected bending moment and fatigue dam-
age can be obtained by performing a Weibull extrapolation and undertaking a
Rainflow count of the calculated bending moment or stress history. The design
values can only be calculated with reasonable accuracy if the computed signal
contains enough extrema. As will be shown in this thesis, the signal should
be computed for about two hours to obtain accurate predictions. Knowing the
design values for a single sea state is not enough to know the design loads of a
ship, that is at least the values for a complete scatter diagram are needed. The
method to calculate the seakeeping response should be reasonably fast and ro-
bust to be able to perform these two hour simulations for every cell of a scatter
diagram. Only head waves and a single loading condition will be considered
in this thesis. Much more computations are needed if allowing for different
headings and/or loading conditions.

The local response of the ship structure due to the seakeeping and slamming
loads can be investigated by transferring the calculated loads to a 3D Finite Ele-
ment (FE) model and solving the structural response within the Finite Element
Method (FEM) package. As the FEM analysis requires significant computing
time, the local response can currently only be investigated for a limited number
of slamming events.

The remainder of this chapter gives a more detailed introduction in the ap-
proach used in this thesis. The approach to compute the seakeeping response
is explained in the first section. The seakeeping problem is solved using gener-
alised modes. This concept is presented in the second section. The third section
gives an introduction about the coupling between the seakeeping and structural
calculations. The different meshes used to solve the seakeeping response are
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explained in the fourth section. The fifth section gives an introduction to the
computation of the internal loads. The computation of the slamming loads is
presented in the sixth section. The seventh gives an introduction on how the
design values are computed. An outline of this thesis is given in the last section
of this chapter.

1.1 Seakeeping method

There are many different approaches available to calculate the seakeeping re-
sponse of a ship. This response can be calculated using a 2D strip theory
method, a 3D Boundary Element Method (BEM) or even a full 3D volume of
fluid (VOF) or smooth particle hydrodynamics (SPH) method. Only the strip
theory and BEM methods are robust and fast enough to be useful for the goal
of this thesis.

One of the goals is to create a coupling with a 3D structural FE-model.
For this purpose, it is necessary to be able to calculate the seakeeping response
for complex 3D natural modes and to calculate the pressure at every wetted
element of the 3D-FE model. This will be difficult to achieve when using 2D
strip theory. The 3D-BEM is much more suitable to be coupled to a 3D-FEM.
The 3D-BEM is also more accurate than 2D strip theory methods for zero speed
problems. It is difficult to tell which of the two methods will be more accurate
for forward speed problems. Both the 2D strip theory and the 3D-BEM have
different corrections for forward velocity but currently neither can solve the
forward speed problem exactly in a reasonable calculation time. The 3D-BEM
is therefore selected for the computation of the seakeeping response. A 3D-BEM
method using pulsating Green’s sources is used.

The seakeeping calculation can be performed in both the frequency domain
and the time domain. The frequency domain allows for fast calculation of lin-
ear seakeeping problems. However, when non-linear loads and/or impulsive
loads are introduced it is more convenient, or even necessary, to perform the
calculations in the time domain. Furthermore, it is also possible to account
for large displacements in the time domain. Slamming is clearly a non-linear
and impulsive load which makes calculations in the time domain necessary. It
is generally known that at least the non-linear hydrostatics and Froude-Krylov
forces should be included in the calculation to be able to predict the internal
loading correctly for severe sea states. It would be best to also include the
non-linear radiation and diffraction loads, but this is currently too complex
and expensive to compute. Therefore, the linear radiation and diffraction coef-
ficients computed in the frequency domain are used to compute these forces in
the time domain.
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1.2 Generalised modes

The seakeeping response of a ship is the combination of the rigid-body motion
and the flexible response of the structure. The structural deformations remain
very small in most seakeeping problems. This allows to exclude the (flexible)
structural response for normal seakeeping calculations. The structural response
can be computed after the rigid-body seakeeping calculation. This separate
calculation results in some parts of the calculations being done twice. It also
results in a lot of bookkeeping and the uncoupled approach will not fully account
for all hydro-elastic effects. Therefore, in this thesis the calculation of the
structural response will be directly incorporated into the seakeeping calculation
using the modal approach.

The modal approach is a common way of calculating the dynamic response
of structures. A number of pre-calculated elastic modes are used to described
the structural response. The natural modes of the ship structure are often used
but artificial mode shapes may also be used.

For an unconstrained structure in air, one can solve the rigid-body response
and the dynamic response of the structure separately as long as the flexible
response does not influence the loading at the structure. This separation is
not valid for seakeeping problems. The hydrodynamics couple the rigid and
flexible modes which may make it necessary to solve the response using both
the rigid and flexible modes simultaneously. This coupled calculation is called
a hydro-elastic calculation. It is necessary to use the hydro-elastic approach
when the motions of the flexible modes influence the loading at the structure.

The concept of generalised modes is a convenient methodology to formulate
the hydro-elastic problem. All degrees of freedom are described by mode shapes
by this concept, even the rigid-body modes. Those generalised modes can have
any shape and can be used to describe both rigid-body modes and flexible
modes. For normal single rigid-body seakeeping calculations, six modes are used
with mode shapes that represent surge, sway, heave, roll, pitch and yaw. The
flexible modes are added to the set of rigid modes for hydro-elastic calculations.
This is illustrated in Figure 1.2.

The concept of generalised modes is not limited to hydro-elastic calculations
for single ships. For example, the concept can also be used for multi-body
calculations. The six rigid modes are added for every ship, for example, for
ship A and B shown in Figure 1.3.

Bishop and Price[4] introduced the use of additional modes to describe the
flexibility of the ship hull in seakeeping calculations when they developed the
theory of hydroelasticity for ships. Their methodology was based on strip the-
ory for the seakeeping and a beam model to calculate the flexible response.
This methodology has been adapted by many other authors for hydro-elastic
calculations. The methodology has been extended to compute the seakeeping
using a 3D-BEM by other authors.
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Figure 1.2: Generalised modes for a ship with two flexible modes.

Heave ship A

Pitch ship A

Heave ship B

Pitch ship B

Figure 1.3: Generalised modes for a multi-body problem.

Newman [37] introduced the concept of generalised modes and showed that
a wide variety of hydrodynamic problems can be handled using the generalised
modes concept. A linear frequency domain 3D-BEM method was utilised for
the hydrodynamic calculations. Results for flexible body, multi-bodies and
connected bodies were presented.

For this thesis, the concept of generalised modes will also be used for the
time domain where large amplitude of motions are allowed. Some additions
to the original concept of generalised modes, which was developed for the fre-
quency domain, will be necessary to be able to account for the large amplitude
of motions.



1.3. Structural response 7

1.3 Structural response

A direct coupling between the seakeeping code and the structural solver is
avoided by using the modal approach. The dry mode shapes are calculated by
a structural solver and these mode shapes are transfered to the hydrodynamic
mesh. The modal response is calculated by the seakeeping program, which
includes the effect of added mass on the modal response and can be used to
obtain resulting motions, bending moments, stresses, etc.

The natural modes of the ship structure are calculated using the FE method.
Two methods are implemented for the presented theory: The first method
uses a 1D beam model of the ship structure. It is relatively easy to create a
beam model of the ship structure. The beam model allows for calculation of
the global bending moment. However, the beam model will not be accurate
for complex mode shapes like torsion of a large container ship. The second
method is a coupling with commercial 3D-FEM codes. The 3D model allows
for computation of complex mode shapes. However, the creation of a 3D model
of the ship structure requires much more effort than is needed for a beam model.

Only the global structural response can be calculated by the modal approach
because only a limited number of modes are used. For calculation of the local
response it is necessary to transfer the seakeeping loads to the structural model
and calculate the structural response within the structural program.

The local structural response can only be calculated using the 3D-FE
method. For this purpose, the seakeeping, slamming and inertial loads of a
selected event are transfered to the FEM program. The FEM program solves
the structural response.

1.4 Meshes

The developed method requires various meshes to model the geometry of the
ship. The first mesh is the hydrodynamic mesh. This is the BEM mesh used
to solve the linear Boundary Value Problem (BVP). The hydrodynamic mesh
models the wetted part of the ship hull in still water. The mesh might con-
tain panels at the inner free surface (i.e. the surface lid) to suppress so-called
irregular frequencies. The hydrodynamic mesh must be created such that the
mesh size does not vary much in order to ensure a stable solution of the BVP.
There are no connectivity requirements between the elements of the hydrody-
namic mesh. The hydrodynamic mesh should also model the part above the
still water line of the hull if the mesh is used for the time domain seakeeping
calculation.

The second mesh is the structural mesh, this is the 3D-FEM mesh of the
outer hull and weather deck. Although the structural mesh describes the same
geometry as the hydrodynamic mesh, the two meshes are usually very different
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from each other due to the different requirements for the BEM and FEM cal-
culation. There is usually a larger difference in element size and shape as the
structural mesh has connectivity requirements and the FEM solution is less sen-
sitive to local size and shape differences. The structural mesh does usually not
have a separation for the parts below and above the still water line in contrast
to the hydrodynamic mesh.

The last mesh is the integration mesh. This mesh is used to integrate the
pressures within the seakeeping programs for calculation of the modal loading
and response. By default the hydrodynamic mesh will be used as the integration
mesh. When internal loads are calculated the panels of the integration mesh
will be cut at the cross section for the internal loads calculation before it is used.
This ensures that the hydrodynamic coefficients are integrated exactly up to the
location of the cross section. The structural mesh will be used as the integration
mesh when the seakeeping forces are to be transferred to the 3D-FEM model.
This avoids mapping problems between the results of the seakeeping calculation
and the FEM program. It also ensures that the total load in both calculations
is equal. The integration mesh may also be cut at the still water plane in order
to ensure correct integration of the linear hydrodynamic coefficients.

1.5 Internal loads

The internal loads in the ship structure are calculated to be able to judge
whether or not the structure can withstand the seakeeping loads. The internal
loads can be calculated using two approaches. The first approach is integrating
the difference between the internal and the external forces up to the plane for
which the internal loads are to be calculated. The second approach is using
modal participation factors to compute the internal loads. The first approach
is the most accurate approach, it can also be used for rigid bodies and it pro-
vides all six load components. The second approach is less accurate, it can only
be used if elastic modes are included in the calculation and this approach as
provided within the presented implementation only provides the horizontal and
vertical internal loadings. The results of the modal approach will converge to
the correct results, which are also obtained when using the direct integration
approach, if many elastic modes are included in the calculation. Both meth-
ods are implemented to allow one to verify the calculated internal loads by
comparing the results of both methods.

The modal approach for computation of the internal loads is a post-
processing step of the calculated modal amplitudes. The implementation of
the direct integration method is more complicated and this approach is there-
fore explained in more detail. Figure 1.4 illustrates the approach to calculate
the internal loads at two transversal cuts using the direct integration method.
The ship is divided into three sections using the defined cuts. The difference be-
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tween the internal and external forces are integrated over the section length for
every section separately. The internal loads at the cuts are obtained by adding
the resulting loading at all sections before or after the cut. Both integration
directions should result in the same internal load.

?

A
B

Figure 1.4: Approach used to compute the internal loads at sections A and B.

The calculation of the external force at the sections requires that all force
components are also calculated for every section separately. The internal forces
in the sections are due to acceleration of the mass. This should also include the
accelerations of the elastic mode shapes. The internal forces of a section are
calculated by computing the mass matrix for the section and multipling this
sectional mass matrix with the acceleration vector. By including the elastic
modes, the whipping contribution on the internal loads will be included.

1.6 Slamming loads

Different types of slamming can be defined [9]:

Bow-flare slamming occurs with relative high velocity between the bow-flare
and the water surface.

Bottom slamming occurs when an emerged part of the bottom re-enters the
water surface.

Breaking wave impact occurs when the ship sails into a breaking wave.

Wet-deck slamming occurs when the waves hit the wet deck of for example
a catamaran or an offshore structure.
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The focus of this thesis is on mono-hull ships. Therefore, wet-deck slamming
is not considered here. The breaking wave impact is also not considered. Thus,
only the bow-flare and bottom slamming are considered.

The research on slamming impact was started in 1929 by von Karman [58].
He investigated the loading at landing of seaplanes and proposed to model the
impact as a collision with the added mass of the structure. Wagner [59] showed
a few years later that one should also account for the pile-up of the fluid surface
during the slamming event.

Research on slamming impacts is still ongoing. Many methods have been
developed. Starting from 2D empirical methods to full 3D VOF and SPH
methods. An overview of the available methods can be found in [9, 40]. The
2D and 3D empirical methods are not used as the range of validity of these
methods is not fully clear. Most of the empirical methods can also not compute
the local pressure which is needed to compute the loading at the structural
model.

To the author’s knowledge, there is currently no non-empirical 3D method
available which can calculate the slamming loads for an arbitrary bow shape,
fast and robust enough to be used for the goals of this thesis. Therefore, the
slamming forces are calculated using 2D methods in this thesis. The 2D strip
approach is illustrated in Figure 1.5. The bow of the ship is divided into multiple
sections. A 2D section is located at the center of every section as shown by the
thick line in the figure. The user controls the location and orientation of these
sections.

Figure 1.5: 2D sections for a slamming calculation.

Two 2D methods for calculation of the slamming force are coupled to the
seakeeping program. The first is the Generalised Wagner Model (GWM) [62],
which uses a BEM approach to solve the weakly nonlinear Wagner impact
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problem. The other method is the Modified Logvinovich Model (MLM) [23].
This method is based on the Wagner theory of impact of a flat-disc but ap-
proximately accounts for both the body shape and the nonlinear terms in the
Bernoulli equation for the hydrodynamic pressure.

The GWM method has a wider domain of validity and calculates the pres-
sure loading along the whole section. The MLM method is much faster and
more robust.

These 2D methods can handle a large range of bow shapes and are fast
and robust enough to perform long term simulations. However, the methods
will never be able to calculate the 3D problem fully correctly. A partial 3D
correction is made by integrating the slamming pressure calculated by the 2D
methods over the 3D geometry. The main disadvantages of the used 2D methods
is that they seem to be only valid for head seas and near head sea conditions.

1.7 Design values

Being able to calculate the seakeeping and whipping response in a single sea
state does not give the information needed to design a ship. Information like
expected maximum bending moment and fatigue loading for different sea states
and operation conditions should be known.

Linear frequency domain theory allows for relatively fast calculation of these
design values for a complete scatter diagram. This is because the solution for
the different cells of the scatter diagram are basically a summation of the same
frequency domain solution. For the approach used in this thesis, the non-
linearities require the use of time domain calculations which require one to
compute the design values for every cell of the scatter diagram separately.

Also the calculation of the design values for a single sea state is much more
computationally intensive when using time domain calculations compared to the
frequency domain. The expected extreme bending moment can be calculated
using a Rayleigh distribution based on the calculated response spectrum when
using the frequency domain. For the time domain it is necessary to generate a
time trace that is long enough to be able to compute a Weibull extrapolation
with reasonable accuracy.

It will be shown how the design values can be calculated using the results
of the time domain calculations with sufficient accuracy and in an acceptable
calculation time.

1.8 Outline of this thesis

The theory of the developed methodology is explained in part I of this thesis.
The verifications, validations and case studies using the developed theory are
presented in part II of this thesis.
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Specifically, the formulation of the hydro-elastic problem is explained in the
second chapter. It is explained how the input required for solving the hydro-
elastic seakeeping problem is created. The mesh, mode shapes, the mass and
stiffness matrices, and the hydrostatic restoring matrix are examples of the
input needed to solve the hydro-elastic problem.

The third chapter explains the computation of the seakeeping response,
internal loads and natural frequencies in the frequency domain. The linear
added mass, damping and diffraction forces computed in the frequency domain
are used to solve the seakeeping problem in the time domain. The approach for
solving the seakeeping problem in the time domain is explained in the fourth
chapter. Identification of the motions and internal loads are the main results
of the seakeeping calculation. The slamming computation is directly integrated
into the seakeeping calculation to be able to compute whipping responses.

The fifth chapter presents the backgrounds of the two 2D methods which are
used to compute the slamming loading. The coupling between the slamming
calculation and the seakeeping computation is also explained in this chapter.
The approach to transfer the seakeeping and slamming loads to a 3D FEM
model is presented in the sixth chapter. This allows one to evaluate the local
structural response using the loads predicted by the seakeeping and slamming
calculation. The computation of the design values using the results of the
time domain seakeeping calculation is explained in the seventh chapter. In this
chapter it is investigated how the design values can be computed accurately
while minimising the computational effort.

The last five chapters, part II, present verification, validation and case stud-
ies of the presented theory. Specifically, the eighth chapter presents verification
and case studies for two ultra large container ships. The hydro-elastic response
and multi-body results are verified and validated in chapter nine. Barges or
floaters with flexible connections are considered for this verification and val-
idation. Chapter ten presents a validation of the computed wet natural fre-
quencies, slamming impact and whipping response using experimental results
for an aluminium ship model. The computed slamming loading is validated in
the eleventh chapter using measured slamming forces during model experiments
with a container ship. The last validation is presented in chapter twelve. The
measured stresses during a full scale trial of a frigate in severe sea conditions
with the occurrence of slamming and whipping is used in this chapter to val-
idate the presented method. This chapter also verifies the calculation of the
load cases for a 3D FEM computation in order to obtain the local structural
response of the ship.



Part I

Theory





Chapter 2

Formulating the hydro-elastic
problem

The first step in performing a hydro-elastic calculation is the preparation of
all the input required to solve the hydro-elastic seakeeping problem in the fre-
quency and/or the time domain. The meshes, mode shapes, the mass and stiff-
ness matrices, hydrostatic restoring matrix, 2D slamming sections are examples
of the information created in this pre-processing phase. This chapter describes
the approach used to prepare all the input and formulates the hydro-elastic
problem.

2.1 Overview of approach

The hydro-elastic problem is formulated by a number of programs each with
their own specific tasks. Figure 2.1(a) illustrates the approach used to formulate
a seakeeping problem for a single rigid-body. The hydrodynamic mesh is created
by an existing external program, the pre-processor adds the rigid-body mode
shapes and other information needed to solve the seakeeping problem. The
pre-processor is capable of combining the input of multiple bodies to formulate
a multi-body problem, see Figure 2.1(b).

The structural flexibility is taken into account by adding the natural mode
shapes of the structure to the rigid-body modes. These natural modes are calcu-
lated using the FE method based on either a beam model or a 3D model of the
ship structure. This approach is shown in Figure 2.2. Figure 2.2(a) illustrates
the beam approach: a dedicated program solves the structural FEM problem
and calculates the elastic mode shapes. Figures 2.2(b) and (c) illustrate the
coupling with the 3D-FEM: the results from a computation using commercial
FEM code are read by a program which projects the mode shapes onto the
seakeeping meshes. It is also possible to extract the hull lines from the 3D-
FEM model, see Figure 2.2(c). This can be used when the hydrodynamic hull
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Figure 2.1: Creating rigid-body (a) and multi-body (b) input.

lines are not available or when the seakeeping loads are to be transferred to the
3D-FEM model. This ensures that the hydrodynamic mesh and the structural
mesh describe the same geometry which is essential when one wants to transfer
the seakeeping loads to the 3D-FEM model.

hull lines
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pre-processor
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beam FEM
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3D-FEM model
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(c)

Figure 2.2: Creating input for flexible body.

The ship can also be balanced in still water. The reason for balancing is
explained first. Figure 2.3 shows the calculated midship bending of a 360 [m]
container ship in still water. This time domain calculation includes the non-
linear hydrostatic and gravity forces. The hydro-elastic problem is defined using
the approach as illustrated in Figure 2.2(a). The bending moment is set such
that zero is equal to the still water bending moment (SWBM) at the initial,
undeformed, condition. The still water condition results in excitation of the
modes, the ship starts to whip due to this loading. The whipping response
is slowly damped and the ship finds its static, deformed, condition where the
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moment due to the structural deformation compensates the SWBM.
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Figure 2.3: Midship bending moment of a 360 [m] container ship in still water
when using an unbalanced model.

The initial whipping response is significant for this very large flexible ship.
The amplitude of displacement at the bow is about one metre. One has to wait
until this initial whipping response has been damped out before the intended
time domain analysis can start. Note also that the bending moment signal does
not approach zero (the SWBM at the start) at the end of the calculation in
Figure 2.2. The deformation in still water results in a slightly different SWBM
than that found for the undeformed ship. This difference makes the post-
processing more difficult. This initial whipping problem is solved by balancing
the ship in still water before doing the hydro-elastic computation.

Figure 2.4 illustrates the approach for balancing the ship and for the com-
putation of 2D-slamming sections. The “elastic modes” program can be either
the beam program or the 3D-FEM interface. It is also possible to only balance
the ship or only add the slamming sections. Both programs can also be used
for rigid ships.

The balancing program calculates the displacements of all degrees of free-
dom such that all the modes are in equilibrium in still water. A new, balanced,
mesh is created using these modal displacements. This approach ensures a
correct draught and trim and it ensures that the flexible modes are balanced.

The 2D slamming sections are created by cutting through the 3D integration
mesh. These sections will be used by the slamming module in the time domain
program. Both the slamming sections and the balanced mesh result in new
points for which the modal displacements are not yet known. Note that adding
new points does not change the natural mode shapes, but the program for
computing (2D beam) or projecting (3D-FEM) the flexible mode shapes has to
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Figure 2.4: Creating input for a balanced flexible body with slamming sections.

be rerun in order to obtain the mode shapes for the new points.
A number of commercial programs are used in the pre-processing phase.

amg [26] is used to create the hydrodynamic mesh and trident [34] or nas-
tran are used to solve the 3D-FEM problem. These programs are used as
black boxes and the approach used by these programs will not be explained
it this thesis. As the current version of amg is not capable of creating the
hydrodynamic mesh for vessels built from only flat plates, like FPSO’s, an
additional program has been developed to create the hydrodynamic mesh for
such ships. This program is not explained in this thesis as the method used is
straightforward.

The next sections of this chapter explain the different steps and programs
used in more detail. The creation of the 2D-slamming sections will be explained
in Chapter 5.

2.2 Coordinate system and mode shapes

The coordinate system and the description of the mode shapes are introduced
first. Figure 2.5 illustrates the coordinate system used. Unit vector i⃗ points in
the surge direction, j⃗ in the sway direction and k⃗ in the heave direction. Vectors
l⃗, m⃗ and n⃗ are the unit vectors in the roll, pitch and yaw directions, respectively.
The origin of the coordinate system is denoted by O and the location of the
center of gravity by G⃗.

For every location on the body, the matrix h(x, y, z) provides the transfor-
mation between the Cartesian system and the modal system which is based on
the generalised modes

h(x, y, x) =
[
h⃗T1 , h⃗

T
2 , . . . , h⃗

T
ndof

]
, (2.1)

with

h⃗i(x, y, z) =
[
hi,x · i⃗, hi,y · j⃗, hi,z · k⃗, hi,ϕ · l⃗, hi,θ · m⃗, hi,ψ · n⃗

]
, (2.2)
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Figure 2.5: The axis system used.

where subscript i denotes the mode number. Note that h(x, y, z) is a collection
of all mode shapes.

The displacement of a point on a body is, for small displacements, given as

H⃗(x, y, z) = h(x, y, z) · ξ⃗, (2.3)

where ξ⃗ is the vector of the modal displacements.
The gradient of the mode shape vector is needed to calculate the hydrostatic

restoring and the so-called mj-terms for the calculation of the hydrodynamic
coefficients. Only the modal translations and rotations are obtained from the
structural model but the derivatives needed to calculate the gradient are not
available for the structural model. Therefore, the spatial derivatives of the
mode shapes, which indicate local rotations are estimated by the rotation angle.
The strains are assumed to have negligible influence on the hydrostatics and
hydrodynamics, so they are set to zero. The resulting estimation of the gradient
of a mode shape is

∇h⃗i =


∂hi,x

∂x
∂hi,y

∂x
∂hi,z

∂x
∂hi,x

∂y
∂hi,y

∂y
∂hi,z

∂y
∂hi,x

∂z
∂hi,y

∂z
∂hi,z

∂z

 ≈

 0 −hi,θ hi,ψ
hi,θ 0 −hi,ϕ
−hi,ψ hi,ϕ 0

 . (2.4)

2.3 Extracting cross sections

The first step in formulating the hydro-elastic problem could be the extraction
of the geometry of the 3D-FEM model. The extracted cross sections are used
to create the hydrodynamic mesh.

Figure 2.6 shows an example of the extraction of the cross sections from
a 3D-FEM model of a container ship. The thick black lines are the extracted
cross sections. The cross sections are translated and/or rotated when the FEM
model does not have the desired position and/or orientation for the seakeeping
calculation.
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Figure 2.6: Cross sections created from a 3D-FEM model.

Figure 2.7 illustrates how a single cross-section is created by cutting through
a 3D-FEM model of a different ship. Points are created at every element bound-
ary encountered. Only the FEM panels of the outer hull are considered. These
panels are identified by their module or part number. The points found in
this way are interconnected by a line resulting in a piecewise 2D curve. The
knuckle points are identified using a threshold angle for this curve. The curve
is smoothed between the endpoints and the knuckle points using a smoothed
spline1. The cross-section is made by creating a new curve which follows these
smoothed splines.

2.4 Creating 3D sections and Gauss points

The calculation of the flexible mode shapes and the projection of the mode
shapes onto the hydrodynamic and integration mesh is the next step of the
pre-processing when a flexible ship is considered. Prior to projecting the mode
shapes, the complete integration mesh must be available. The integration mesh
is therefore created before projecting the mode shapes.

The user can select whether the hydrodynamic or the structural mesh is
used as a basis for the integration mesh. The integration mesh is divided into
3D sections to allow for internal and external load calculations. The second
step is the creation of the Gauss points at the panels of the integration mesh.
These Gauss points will be used to integrate the pressure to modal forces during
the seakeeping calculations. This can be done only if the modal displacements
and rotations at each of the Gauss points are known. Therefore, these Gauss

1Routine smooth.f from www.netlib.org is used for this smoothing.
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Figure 2.7: Create cross section

points are also created before projecting the mode shapes.

2.4.1 3D ship sections

The ship is divided into 3D sections by cutting through the integration mesh
using planes. A cutting plane is defined by a point and a normal vector which
allows any orientation and location of the cutting plane. An example of 3D
sections created using two transversal cuts and one longitudinal cut is shown
in Figure 2.8. These 3D sections can, for example, be used to calculate the
internal load at amidships and the external force at the upper part of the bow
section.

Figure 2.8: Example of 3D sections.

The 3D sections can be created at three stages of the pre-processing phase.
The integration mesh will change due to the cuts through the mesh. The pro-
grams for projecting the flexible mode shapes will create the 3D sections before
projecting the flexible mode shapes by default. This ensures that the projected
mode shapes are valid for the “cut” integration mesh. The disadvantage of cre-
ating the 3D sections by the mode shape programs is that the horizontal cuts
will be slightly bent after the mesh is balanced. This can be avoided by creat-
ing the 3D sections after the balanced integration mesh is created. Note that
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the mode shapes have to be projected again after the mesh is balanced, so the
mode shapes will also be valid for the integration mesh with 3D sections when
created after the balancing. The last possibility is to create the 3D sections in
the last pre-processing program. This can be used for rigid bodies which are
not balanced.

A cut through the mesh is made for all cut-planes defined by the user. Figure
2.9 shows the different possibilities for cutting through panels. These new panels
should have a reasonable aspect ratio to allow for accurate integration over the
new panels.

cut plane original cut

Figure 2.9: Different cuts through panels.

The 3D sections created are numbered automatically. This numbering is
not straightforward since any number of arbitrary cut-planes can be defined.
The approach for numbering the 3D sections is illustrated in Figure 2.10. The
total ship has section number zero at the start. The first division into 3D
sections is made in (a). The section number is increased by one at one side of
the section. The section number is increased by two at the other side. Two and
four are added to the section numbers for the next cut (b). This continues until
all 3D sections are created (c). The section numbers are compressed after all
3D sections have been created (d). This ensures that the section numbering is
continuous and always starts from one. A list with the contributing 3D sections
for the internal loads at the cuts is also created. For example, sections 1, 2,
4 and 5 will contribute to the loading at the midship section when integrating
from the forward direction. Sections 3 and 6 will contribute to the loading at
midship when integrating from the aft.
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Figure 2.10: Section numbering.

2.4.2 Gauss points

All integrals over the surface are numerically solved using the Gauss quadrature.
The mathematical background of the integration using Gauss points can be
found in Appendix A. Using the Gauss integration allows the user to control
the accuracy of the integration by changing the number of Gauss points per
panel instead of changing the mesh. This is important when the structural
mesh is used as integration mesh because it is usually difficult to change this
3D-FE mesh.

The number of Gauss points per panel is based on the panel size. The
number of Gauss points for a panel is chosen such that the associated area of
one Gauss point does not exceed the user defined threshold. An example of
the resulting distribution of Gauss points can be found in Figure 2.11. The
larger panels have more Gauss points than the smaller panels which results in a
more uniform accuracy of the integration over the surface compared to using a
fixed number of Gauss points per panel. The pressure distribution is not taken
into account for choosing for the number of Gauss points because the pressure
distribution is unknown a priori and changes constantly during the time domain
calculations.

The integration with Gauss points will not be accurate if there are disconti-
nuities in the pressure distribution. Discontinuities in pressure the distribution
will occur at the still water line for the linear calculations. For example, the
pressure of the incoming wave will have the highest amplitude just below the
still water line and is zero above the still water line according to the linear
theory. This discontinuity will usually not affect the integration as the hy-
drodynamic mesh does not have any panel that crosses the still water line.
However, when a structural mesh is used as the integration mesh, the integra-
tion becomes inaccurate as the structural mesh usually does not account for
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the location of the still water line. A solution is to cut the mesh at the still
water line if the structural mesh is used as the integration mesh.

This is illustrated using the structural mesh shown in Figure 2.11. The
original panel distribution (a) does not account for the still water line. The cut
at the still water line (b) ensures that none of the panels cross the still water
line. The resulting heave force of a artificial pressure distribution is calculated
using a different number of Gauss points per panel. The resulting force and the
pressure distribution are equal to

Fz =
∫∫

Sb

pt(z)nz ds, (2.5)

with

pt(z) =

{
1 z ≤ 0
0 z > 0

. (2.6)

The resulting heave force can be found in Figure 2.12. The resulting force
changes with the number of Gauss points for the original mesh and hardly
converges to the final value. The number of used Gauss points has much less
influence on the calculated force if a cut at the still water line is applied. This
shows that the structural mesh can be used as the integration mesh only if a
cut is made at the still water line. It will be explained in Chapter 6 how the
nodal force at the original FE mesh can be calculated if the integration mesh
has been cut.

(a) (b)

Figure 2.11: Original FE mesh (a) and the same mesh with a cut at the still
water line (b).

2.5 Obtaining mode shapes from 3D-FEM

The dry natural mode shapes of the ship structure may be calculated using
an 3D-FE method. Commercial FEM programs are used to calculate the dry
flexible mode shapes of the structural model. These mode shapes have to be



2.5. Obtaining mode shapes from 3D-FEM 25

1218

1220

1222

1224

1226

1228

1230

1232

0 2 4 6 8 10 12 14 16

F
z
[N

]

#Gauss points/#panels

Orginal mesh
Cutted mesh

Figure 2.12: Resulting heave force when integrating with different numbers of
Gauss points.

transfered to the hydrodynamic and structural meshes used for the seakeeping
calculation. In addition, the accompanying mass and structural stiffness ma-
trices and the gravity contribution to the hydrostatic restoring also needs to be
computed.

The elastic modes shapes are mass normalised by the FEM program. The
modal mass matrix is equal to the identity matrix after this normalisation.
Using these mode shapes can give some accuracy problems in the time domain
calculation. The rigid-body translations and rotations are added to the flexible
mode shapes for the seakeeping calculations. The unit rigid-body translations
are one metre and the unit rotations are one radian. For very large ships, the
associated mass for these rigid rotations can be in the order of 1013[kg] while
the modal mass for the flexible modes is 1[kg]. Such large differences in mass
of the rigid-body modes and the mass of the elastic modes can lead to an ill-
conditioned system of equations used to solve the seakeeping response2. This
is avoided by scaling the elastic mode shapes such that the modal mass has the
same order of magnitude as the modal mass of the rigid-body modes.

The solution of the FEM program usually contains not only the elastic
mode shapes but also rigid-body mode shapes. It is essential for the time
domain calculation that these rigid-body modes shapes are not transfered to the
seakeeping program. The rigid-body modes from the FEM solution will usually
be a combination of the rigid modes like surge, sway, etc. The seakeeping
program cannot account for large amplitude motions if those mixed FEM rigid
modes are provided. The internal loads can also not be computed using these
mixed modes when using the direct integration method as the rigid-body modes

2The same difference in order of magnitude will also be found in the calculated forces and
the stiffness matrix. This will also introduce inaccuracies.
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are used to obtain the loading in the Cartesian system.
Some FEM programs allow to include the infinite frequency added mass

in the FEM calculation when solving the vibrational eigenvalue problem. A
BEM method for the computation of the full added mass is included in these
FEM programs. This full added mass matrix is added to the structural mass
before solving for the eigenvalues. Including the added mass makes it easier
to find the relevant mode shapes. The mode shapes are found starting from
the lowest frequency. The first few modes are the global and relevant modes.
However, at a certain frequency local modes, which are not relevant for the
seakeeping problem, will be found. It is difficult to obtain global modes with a
higher frequency than the first local modes as there are many more local modes
than global modes. In general, the inclusion of the added mass will lower the
frequency of the global modes more than the frequency of the local modes. This
makes it easier to find the global modes which are the most relevant for the
hydro-elastic seakeeping problem.

Including the added mass to the FEM calculation will result in elastic mode
shapes which contain rigid-body components. These modes are no longer or-
thogonal to the rigid-body mode shapes. Orthogonality between the rigid and
elastic modes is assumed for the theory used of the time domain calculation.
This requires one to remove the rigid-body components from the elastic mode
shapes if they are computed with the inclusion of the added mass. The rigid-
body component is simply the translation or rotation of the total mass by the
modal displacement.

Note that the inclusion of the added mass in the FEM computation is not
used in this thesis. The above discussion is only to explain what should be done
when the added mass would be included in the FEM computation.

2.5.1 Projection of the mode shapes

An example of the projection of the mode shapes for a container ship is shown
in Figure 2.13. Figure 2.13(a) shows the undeformed structural mesh and (b)
the hydrodynamic mesh. Figure 2.13(c) shows the displacements of the first
torsional mode for both the FEM mesh and the projected mode shape at the
hydrodynamic mesh. The FEM mesh is visualised using a wire frame, the
hydrodynamic mesh is the gray colored mesh. The projected mode shape of
the hydrodynamic mesh is very close to the original mode shape of the structural
mesh. This indicates that the projection procedure as will be explained below
gives correct results.

The methodology described in [30] is used to project the mode shapes. This
methodology has been enhanced to make the method more robust. All quads
(four node elements) of the FEM mesh are divided into triangles to simplify
the projection of the mode shapes. This is shown in Figure 2.14(a) and (b).
The mode shapes are projected to all points describing the geometry of the
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(a) (b) (c)

Figure 2.13: Transfer of mode shapes from the FEM mesh to the hydrodynamic
mesh.

ship. The first step in projecting the mode shapes at a single point is to find
the closest FEM panel. All FEM panels attached to the fifteen nearest nodes
and panel centers are selected. This selection is shown in Figure 2.14(c), the
cross indicates the location for the mode shape projection. A smaller number
of panels could be selected in this case, but for very curved parts, like the bulb,
this amount appeared to be necessary to ensure that the closest panel is always
included in the selection.

(a) (b) (c)

Figure 2.14: Preparing and selecting FEM panels.

The location p to transfer the mode shapes to is projected onto all selected
elements. The approach for this projection is shown in Figure 2.15, where p′

indicates the projection point. First, it is tried to project the point onto the
panel by moving the point along the panel normal (a). If this projection falls
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outside the element, it is tried to project the point onto one of the panel edges
(b). The closest node is used as the projection point if this is also not possible
(c). This projection is repeated for all selected elements. The projection point
which is closest to the original point is used to transfer the mode shapes. The
mode shape displacements of all three nodes are interpolated if the projection
point is located at the element. An interpolation between the two nodes is used
if the projection point is located at the element edge. When the projection
point is a node, the mode shape displacement of this node will be used without
any interpolation.

p
p′

p

p′

pp′

(a) (b) (c)

Figure 2.15: Finding the projection point.

The procedure described above will become inaccurate when the projection
point is not close to the original point. This will be the case for the deck
panels of the hydrodynamic mesh shown in Figure 2.13(b). Another mapping
procedure is applied for the points for which the distance to the projection point
is larger than the average element diagonal of the structural mesh. The mode
shapes of the 3D-FEM results are first simplified to beam-like deformations
using a virtual beam. The simplified mode shape will only depend on the
longitudinal coordinate. This beam-like mode shape allows one to calculate
the mode shape at every location at the ship. It should be noted that this
approach is only valid if the global modal displacements are “beam-like”, but
this is usually the case for ship structures.

Figure 2.16 illustrates the calculation of the simplified mode shapes using a
virtual beam. The ship and “beam” are divided into 30 longitudinal sections (a).
The average rotations of the nodal FEM mode shapes are calculated for every
section. A smoothed spline is created using these averaged sectional values for
all three rotations (b). The next step is to calculate the average translations.
The beam translation of a node is the translation of the original FEM mode
shape minus the translation due to the beam rotation. A smoothed spline is
created for the translation using the average translation for each section. The
mode shape can now be calculated for every point. Figure 2.14 shows that the
mode shape of the deck panels is continuous and connects well to the sides of
the ship. This shows that this beam-wise projection approach gives reasonable
mode shapes.

Only the nodes attached to the outer hull are considered for calculating the
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(a)

(c)

(b)

Figure 2.16: Simplified mode shapes.

simplified mode shapes. This is because some of the 3D-FEM mode shapes can
be very localised. These local displacements should not be mapped onto the
virtual beam model as this model should only describe the global displacements
by the mode shapes. The outer hull is normally stronger and stiffer than the
internal structure. Therefore, the local modes are usually not present at the
outer hull.

2.5.2 Mass and stiffness matrix

The mode shapes calculated by the 3D-FEM program are mass normalised. If
the FE model does not conform to the SI units, the factor du should be used
to convert the results to SI units. The mode shapes are scaled by ds to obtain
the same magnitude as the rigid-body modes, see Section 2.5.

The modal genuine mass matrix me and stiffness matrix ce matrices for the
flexible modes are equal to
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me = d2
s · d2

u ·



1

1 0
. . .

0 1
1

 , (2.7)

ce = d2
s · d2

u ·



ω2
n(1)

ω2
n(2) 0

. . .

0 ω2
n(n−1)

ω2
n(n)


, (2.8)

where ωn are the (dry) modal frequencies. Equation (2.7) is only valid if a
FE model without the added mass is used. Equation (2.11) could be used to
compute the modal genuine mass matrix when the added mass is included in
the FEM calculation.

The total mass and stiffness matrices for the body can be created by sim-
ply combining the rigid-body and flexible contributions because the modes are
assumed to be orthogonal. The calculation of internal loads will require the
mass matrices for the different sections. There will be a coupling between the
rigid-body and elastic modes in the mass matrix of these individual sections.
Therefore, the mass matrices for the sections have to be computed using the
mass distribution and mode shapes of the FE model. First, the rigid-body
mode shapes are added to the elastic FEM modes

h = [hr,he], (2.9)

with hr the rigid-body mode shapes for location r⃗ = (x, y, z) and he the elastic
mode shapes from the FEM results defined by

h⃗x = i⃗,

h⃗y = j⃗,

h⃗z = k⃗,

h⃗ϕ = i⃗× (r⃗ − G⃗) + l⃗,

h⃗θ = j⃗ × (r⃗ − G⃗) + m⃗,

h⃗ψ = k⃗ × (r⃗ − G⃗) + n⃗.

(2.10)
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The modal mass matrix for the total body and individual sections is calcu-
lated using

mis =
Nnodesis∑
i=1

hi · Mi · hTi , (2.11)

where Mi is the mass matrix for the FEM node i, is is the number of the
section3 and Nnodes is the number of nodes at which masses are defined. The
nodal mass is often lumped to a scalar mass Mi in the FEM method. The nodal
mass matrix can be written in that case as

Mi =



Mi 0 0 0 0 0
0 Mi 0 0 0 0
0 0 Mi 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (2.12)

The values of Mi or Mi are read from the mass matrix created by the FEM
program.

The modal displacement causes a displacement of the structural mass in the
gravity field. This displacement gives a contribution to the hydrostatic stiffness
matrix of [28]

Cm,ij = g

∫∫∫
V
m(∇h⃗j)hiz dv, (2.13)

where g is gravity acceleration, V the volume of the body and m the mass. The
mass distribution and mode shapes from the FE model are used to compute this
contribution. Equation (2.13) is simplified using equation (2.4) and the integral
over the body is substituted by a summation of the nodal mass contributions.
This results in

Cm,ij,is ≈ g

Nnodesis∑
i=1

Miz,z

(
hiθ · hjx + ·hiϕ · hjy

)
, (2.14)

where Miz,z is the (z, z) or (3, 3) component of the Mi mass matrix.

2.6 Calculating mode shapes using a beam model

The natural modes of the ship structure can be calculated using an 1D-beam
model when a 3D-FE model is not available. The program dyana [25] is mod-
ified to fit the approach used in this thesis. This program is a predecessor of
the 1D-FEM program described in [44].

3is = 0 is used to obtain the result for the total body.
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The beam is divided into elements in the longitudinal direction, see Figure
2.17. The beam is located at the y and z-coordinate of the center of gravity. The
element distribution is modified to better account for internal load calculations.
More specifically, it is ensured that an element center is located exactly at the
locations for internal load calculations in the longitudinal direction. This allows
to calculate the modal participation factors for bending moments and shears
force, at the desired locations, as these are only available at the element center.
It also ensures that the correct mass is associated with the different sections for
the internal load calculation.

Only the approach to compute vertical bending mode shapes is presented
in this section. The horizontal bending modes can also be computed using
the same approach but changing all vertical components to horizontal compo-
nents. Torsion modes are not computed by this beam approach. Note that the
programs presented in [25] and [44] do compute torsional modes using beam
theory.

θb,nvb,n θb,n+1

lb,n

vb,n+1

Abz,n, Iby,n
mb,n, Ibmy,n

Figure 2.17: Beam model.

The degrees of freedom of one beam element is shown in Figure 2.17. Every
node, indicated with subscript n, has one translation vb in the z-direction and
a rotation θb around the y-axis. Note the sign difference for the θb rotation
compared to the coordinate system defined in Section 2.2.

The elasticity modulus E and shear modulus G are assumed to be constant
for the whole beam. The following beam properties are interpolated for every
beam element using the user defined distribution:
Abz effective shear area in the z-direction,
Iby moment of inertia of the cross section,
mb mass per unit length,
Ibmy mass moment of inertia of the cross section.

The mass and stiffness matrices have to be calculated to solve the eigenvalue
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problem. Two auxiliary variables are used to compute these matrices

βb,n =
EIby,n

GAbz,nl
2
b,n

, (2.15)

γb,n =
Ibmy,n
mb,nl

2
b,n

. (2.16)

The stiffness matrix for a single element is equal to

Cb,n =
2EIby,n

1 + 12βb,nl3b,n


6 3lb,n −6 3lb,n

3lb,n 2(1 + 3βb,n)l2b,n −3lb,n (1 − 6βb,n)l2b,n
−6 −3lb,n 6 −3lb,n
3lb,n (1 − 6βb,n)l2b,n −3lb,n 2(1 + 3βb,n)l2b,n

 .
(2.17)

The mass matrix for the element is

Mb,n =
Mb,nlb,n

(1 + 12βb,n)
2


Mb,n1,1 Mb,n1,2 Mb,n1,3 Mb,n1,4

Mb,n1,2 Mb,n2,2 Mb,n2,3 Mb,n2,4

Mb,n1,3 Mb,n2,3 Mb,n1,1 −Mb,n1,2

Mb,n1,4 Mb,n2,4 −Mb,n1,2 Mb,n2,2

 , (2.18)

with

Mb,n1,1 = 13
35 + 42

5 βb,n + 48β2
b,n + 6

5γb,n, (2.19)

Mb,n1,2 =
(

11
210 + 11

10βb,n + 6β2
b,n

)
lb,n + γb,n

(
1
10 − 6βb,n

)
lb,n, (2.20)

Mb,n1,3 = 9
70 + 18

5 βb,n + 24β2
b,n −

6
5γb,n, (2.21)

Mb,n1,4 = −
(

13
420 + 9

10βb,n + 6β2
b,n

)
lb,n + γb,n

(
1
10 − 6βb,n

)
lb,n, (2.22)

Mb,n2,2 =
(

1
105 + 1

5βb,n + 6
5β

2
b,n

)
l2b,n + 2γb,n

(
1
15 + βb,n + 24β2

b,n

)
l2b,n, (2.23)

Mb,n2,3 =
(

13
420 + 9

10βb,n + 6β2
b,n

)
lb,n − γb,n

(
1
10 − 6βb,n

)
lb,n, (2.24)

Mb,n2,4 = −
(

1
140 + 1

5βb,n + 6
5β

2
b,n

)
l2b,n − γb,n

(
1
30 + 2βb,n − 24β2

b,n

)
l2b,n. (2.25)

The total mass matrix Mb and stiffness matrix Cb can be composed by
adding the contributions of all the beam elements. The natural dry mode
shapes are found by solving the eigenvalue problem(

Cb − ω2Mb

)
h⃗b = 0⃗ (2.26)

where ω is the angular frequency and h⃗b the corresponding mode shape. Note
that the vector h⃗b only contains the degrees of freedom of the beam. The mode
shapes are scaled such that the maximum displacement of the nodes is 1[m].
This ensures that the flexible mode shapes have the same order of displacement
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as the rigid-body mode shapes, see Section 2.5. The modal stiffness matrix is
equal to

Ce =
Nelements∑
n=1

hb,n · Cb,n · hTb,n. (2.27)

The modal mass matrix should also include the contribution of the rigid-
body mode shapes because of the coupling between the rigid-body modes and
elastic modes for the mass matrices of the 3D ship sections. The first step is to
change the elastic mode shapes at the nodes of the beam elements to account
for all six degrees of freedom

h⃗ib,n,R6 = [0, 0, vib,n, 0,−θib,n, 0]T . (2.28)

The rigid-body mode shapes (2.10) are added to the elastic mode shapes using
(2.9). The mass matrices for the total body and the sections are calculated using
equation (2.11). The mass contribution to the hydrostatic stiffness matrix is
calculated using (2.14).

The flexible modal displacement field has to be calculated for all points
describing the geometry of the body. The beam mode shapes hb are only
known for the nodes of the beam model. This mode shape is interpolated in
the x-direction to calculate the mode shape at the same x-location as point p
but still on the y and z-coordinate of the center of gravity. The interpolated
mode shape is denoted by [vib,intp , θ

i
b,intp

]. The resulting mode shape for location
xp, yp, zp is

h⃗ip = [−θib,intp · (zp −Gz) , 0, vib,intp , 0,−θ
i
b,intp , 0]T . (2.29)

The last step is to calculate the modal participation factors for the bending
moment, M⃗b,n and shear force, Q⃗b,n of the centers of the beam elements

M i
b,n =

EIby,n
lb,n

(
θib,n+1 − θib,n

)
, (2.30)

Qib,n =
6βb,nGAbz,n

(1 + 12βb,n)lb,n

[
2
(
vib,n − vib,n+1

)
+ lb,n

(
θib,n+1 + θib,n

)]
. (2.31)

2.7 Balancing

The next step is to balance the ship for the still water condition. Most ships
have a SWBM which is in the same order as the wave bending moment. The
SWBM will cause displacements of the elastic modes in the still water. The
selected draft and trim may also be unbalanced with respect to the actual
structural weight and the center of gravity, these motions are also balanced. It
should be noted that it is assumed that the displacements needed to balance
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the model remain small. Therefore, the initial draft and trim should be close
to the correct values.

All panels will be displaced by the balancing procedure. This causes some
complications for the hydrodynamic mesh. To solve the BVP accurately, it is
necessary that none of the panels cross the still water plane. This is the case
for the original hydrodynamic mesh but, due to the displacements caused by
the balancing, the balanced mesh will have panels that cross the still water
line. This problem is solved by creating a new hydrodynamic mesh based on
the balanced geometry.

As an external program is used to create the hydrodynamic mesh, the dis-
placements by balancing can only be applied by displacing the ship sections
which are used to created the hydrodynamic mesh. Therefore, the hydrody-
namic mesh can only be deformed with a beam-like shape. To ensure that the
final balanced shape of the different meshes are equal, the whole balancing is
done using shapes of a virtual beam. Only the displacements in the z-direction
are considered, as this is the only direction in which the hydrostatic pressure
changes.

2.7.1 Restoring matrix

The Newton-Raphson method is used to find the balanced displacements. The
total restoring stiffness should be known to apply this method. The total restor-
ing is the summation of the hydrostatic restoring and the structural stiffness.
The total structural stiffness matrix is equal to

Cte =
[

06×6 06×nflex

0nflex×6 Ce

]
. (2.32)

The hydrostatic restoring matrix can be calculated using the formulas pre-
sented in [37] and [28]. The formulations presented in these papers are equiv-
alent but they are difficult to evaluate for the geometry of a real ship. The
calculation of the restoring matrix is simplified by first calculating the contri-
bution for every panel in its local axis system and then calculating the modal
contribution using

Ch = Cm +
Npanels∑
n=1

hn · ch,n · hTn . (2.33)

When applying the same simplifications for the gradient of the mode shape as
described in Section 2.2, the contribution for a panel in its local axis system
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can be written as

ch,n = an·ρ·g·



0 0 −nx 0 −z · nz z · ny
0 0 −ny z · nz 0 −z · nx
0 0 −nz −z · ny z · nx 0
0 −z · nz z · ny 0 0 0

z · nz 0 −z · nx 0 0 0
−z · ny z · nx 0 0 0 0

 , (2.34)

where an is the area of the panel and n⃗ the normal.
The gravity contribution of the mass to the hydrostatic matrix Cm is calcu-

lated by the programs which calculate the structural mode shapes, see Sections
2.5 and 2.6. The matrix Cm can also be calculated using equation (2.14) for
rigid bodies. The total mass matrix and the mode shapes at the center of
gravity should be used in this case.

2.7.2 Balancing iteration

The balancing iteration is illustrated in Figure 2.18. Vector ξ⃗sw is the modal
displacement needed to obtain an equilibrium of the forces in still water. This
vector is set to zero at the start of the iterations.

Deform integration mesh using beam deformations

Modal deformations to beam

Calculate still water loading

Estimate new still water displacements, ξ⃗sw

ξ⃗sw = 0

Converged? No

Yes

Figure 2.18: Finding balanced displacements.

The first step is to map the modal displacement to a virtual beam model.
The same procedure to create a beam-like model of the mode shapes as ex-
plained in Section 2.5 is applied in this case. A deformed mesh is created in the
second step by displacing all nodes of the integration mesh in the z-direction
using the displacement of the virtual beam.
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The resulting still water force is calculated in the third step. The still water
hydrostatic force is equal to

f ihs =
∫∫

Sb

ρgzh⃗in⃗ ds, (2.35)

where Sb is the wetted surface of the body. The gravity force f⃗grav is calculated
using equation (4.58). The total still water force is equal to

f⃗sw = f⃗hs + f⃗grav + Cteξ⃗sw. (2.36)

The resulting still water force will cause an additional modal displacement
of

∆ξ⃗sw = − (Cte + Ch)
−1 f⃗sw. (2.37)

This gives a new estimation of the still water deformation

ξ⃗sw = ξ⃗sw + ∆ξ⃗sw. (2.38)

All degrees of freedom which do not have a positive restoring value on the main
diagonal, e.g. surge and sway, are excluded from equation (2.37). The still water
deformation of these modes is set to zero.

The iteration is stopped when the norm of the vector ∆ξ⃗sw is at least one
million times smaller than the norm of the same vector at the first iteration
step. It should be noted that the hydrostatic restoring matrix is only calculated
using the original undeformed mesh. It would be more consistent to recompute
this matrix every iteration step, however, this requires a lot more computational
effort. As the static displacements should remain small, it is assumed that the
hydrostatic restoring matrix will not change significantly and will give a good
estimation for all iteration steps. The restoring matrix is only used to make
an estimation for the next iteration, therefore, it is not essential to recompute
this matrix for every iteration. The robustness of the iteration procedure is
increased by scaling down the vector ∆ξ⃗sw if the norm of vector ∆ξ⃗sw is larger
than the norm of the same vector in the previous iteration step.

2.7.3 New meshes

The new hydrodynamic mesh and integration mesh are created after the bal-
anced deformations are found. The integration mesh is created by displacing
all the nodes using the beam deformation. The hydrodynamic mesh has to be
recreated to correctly account for the still water plane. All hull lines and defi-
nition points (e.g. bulb definition) are displaced using the beam deformations
and the mesh program is run to create the new, deformed mesh.

The elastic mode shapes were projected onto the original hydrodynamic
mesh and they should be projected again onto the new hydrodynamic mesh.
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This is done by rerunning the program that projects the elastic mode shapes.
Projecting the elastic mode shapes onto a deformed mesh is inconsistent as the
structural model does not contain the still water deformations. The still water
deformation is stored and read by the program that projects the elastic mode
shapes. The program subtracts the still water deformation from the shape of
the deformed mesh for every point before projecting the mode shapes. This
ensures a consistent projection of the mode shapes.

The final still water displacement vector ξ⃗sw is stored as the internal loads by
these displacements should be taken into account in the time domain seakeeping
calculation.

The procedure described above can only be applied if it is possible to create
a new deformed hydrodynamic mesh. This is not the case for ships that are
built using only flat plates like FPSO’s and barges. A different program has
been developed for creating the hydrodynamic meshes for these ships. As this
program can only create flat planes, it is not possible to create a deformed
hydrodynamic mesh. For this case, the deformation vector is still calculated to
get a compensating internal moment to avoid the whipping and deformation due
to the SWBM during the time domain seakeeping calculation. This deformation
vector is equal to

ξ⃗sw = C−1
te f⃗sw. (2.39)

2.8 Pre-processor

The pre-processor formulates the final hydro-elastic problem. The first step is
collecting the data from the previous programs and completing the input for
each body. The second step is to put the information of all bodies present in
the calculation into a final hydro-elastic problem definition.

2.8.1 Single body

The calculation of the elastic modes as explained in Sections 2.5 and 2.6 does
not only provide the mode shapes, but also the mass matrix, structural stiffness
matrix and the gravity contribution to the hydrostatics. This information must
also be calculated for rigid bodies.

The rigid-body mode shapes are defined by equation (2.10). The structural
stiffness matrix is equal to zero for rigid bodies. The mass matrix is

m =



M 0 0 0 0 0
0 M 0 0 0 0
0 0 M 0 0 0
0 0 0 MIx 0 0
0 0 0 0 MIy 0
0 0 0 0 0 MIz

 , (2.40)
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with M the mass, and MIx ,MIy and MIz the mass moment of inertia around
the x, y and z-axis. The gravity contribution to the hydrostatics matrix is cal-
culated using equation (2.14) based on matrix (2.40) and the mode shape at
the center of gravity.

Note that this approach to calculate the values of rigid bodies does not
allow one to calculate the internal loads because the mass distribution is not
included. This mass distribution for rigid bodies can be obtained by running
the programs to calculate the elastic modes but requesting to compute zero
elastic modes.

The hydrostatic matrix has to be calculated for both rigid and flexible bod-
ies. The calculation of the hydrostatic restoring matrix was already briefly
introduced in Section 2.7.1. The presented approach is now extended to be
able to calculate the hydrostatic restoring matrix for the different 3D sections
needed to calculate the internal loads. It should be noted that the calculation
of the hydrostatic matrix for generalised modes is still an open discussion in the
literature, see [29]. The approach presented here shows, in general, good results
and is validated for the rigid-body modes. However, it is difficult to validate
the method for elastic modes and internal load calculations. Comparison be-
tween the internal loads calculated using the restoring matrix created with the
presented method and well accepted methods for rigid bodies shows some small
differences. It is not clear what causes these differences. The hydrostatic restor-
ing matrix is not investigated further in this thesis as the hydrostatic restoring
force will be calculated by integrating the hydrostatic pressure using the actual
location of the body in the time domain. For this, the linear restoring matrix
is not used.

The hydrostatic restoring matrix is defined in the Earth system. It is likely
that there is an internal load at the boundaries of the 3D ship sections. The
translation of this internal load due to the modal displacement will contribute
to the restoring matrix. The internal load at the boundaries of a section is
equal to

f⃗int,is = −
∫∫

Sb,is
ρgzn⃗ dS − g

∫∫∫
V,is

m dv. (2.41)

The contribution of the internal force to the restoring is equal to

Cint,ij,is = f⃗int,is(∇h⃗jint,is)⃗h
i
int,is, (2.42)

where h⃗int,is is the “mode shape” of the internal load. As it is difficult to
calculate this mode shape, the contribution of the internal loads is estimated by
integrating the contribution defined by (2.42) over the surface where the mode
shapes are known. The integral over the surface will result in an internal load
which is equal to the buoyancy. The gravity force should then be subtracted.
In other words, to integrate the correct amount of internal force, a gravity
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reduction factor is introduced

g⃗ris =
−
∫∫

Sb,is
ρgzn⃗ dS − g

∫∫∫
V,is

m dv

−g
∫∫∫

V,is
m dv

. (2.43)

The contribution of the internal load is estimated as

Cint,ij,is ≈
∑
x,y,z

−g⃗risρg
∫∫

Sb

zn⃗(∇h⃗j )⃗hi dS. (2.44)

The hydrostatic restoring matrix for a section is equal to

Ch,is = Cm,is + Cint,is +
Npanelsis∑
n=1

hn · ch,n · hTn , (2.45)

with Cm,is as defined in (2.14) and Ch,n equal to (2.34).
The next step is the creation of a set of dummy Gauss points. These dummy

points will be used to evaluate the pressure from the calculated potential. The
location of the original Gauss points cannot always be used to evaluate the
pressure as these points may fall inside the hydrodynamic mesh. The hydro-
dynamic pressure will also depend on the gradient of the potential for forward
speed problems. The gradient of the potential is discontinuous across the hy-
drodynamic mesh. The pressure can only be evaluated at or outside the hy-
drodynamic mesh due to this discontinuity. The Gauss points can fall inside
the hydrodynamic mesh because the Gauss points are defined for the integra-
tion mesh. The integration mesh can be the structural (3D-FEM) mesh which
should describe the same geometry but has usually a very different mesh com-
pared to the hydrodynamic mesh. This difference between the meshes usually
results that a part of the Gauss points will fall inside the hydrodynamic (BEM)
mesh. This is illustrated in Figure 2.19

Figure 2.19 also shows the approach used to ensure that the dummy Gauss
points are outside the hydrodynamic mesh but still close to the original posi-
tion. The dummy points are first located at the location of the original Gauss
point. The same projection procedure as described in Section 2.5.1 is used to
make a projection of the dummy Gauss point onto the hydrodynamic mesh.
This projection point is used to judge if the dummy point falls inside the hy-
drodynamic mesh. The dummy point will be moved slightly further than the
projection point if the dummy point is inside the hydrodynamic mesh. This
ensures that all dummy Gauss points are located outside the hydrodynamic
mesh and can be used to evaluate the pressure.

The dummy Gauss points that are outside the hydrodynamic mesh are also
moved to a position just outside the hydrodynamic mesh to ensure that the
pressure is evaluated very close to the body surface.
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� BEM mesh

� FEM mesh

� Gauss point�
Translation

Figure 2.19: Translation of dummy Gauss points.

As a final note, it is assumed for the previous calculations that all bodies
have at least the rigid-body modes. However, it is also possible to add bodies
without any degree of freedom. This can be used to model fixed objects like the
sides of a towing tank. The size of all matrices and vectors are zero for these
bodies except for the meshes describing the geometry of the body.

2.8.2 Final hydro-elastic problem

The next step is to combine the separate bodies into one hydro-elastic problem.
This step is also performed for single body problems.

The first step is to translate the bodies in the x and y-direction and rotate
them around the z-axis to put each body in the correct relative position. Only
the meshes have to be translated and rotated, the mode shapes only have to be
rotated and all other matrices remain the same because they describe properties
in the body system.

A single hydrodynamic and integration mesh is created from the meshes of
the different bodies. It should be noted that, in general, a multi-body config-
uration has no axis of symmetry. The symmetric parts of the different bodies
are also added to the final hydrodynamic mesh if the final problem has no sym-
metry. The final integration mesh will always contain the total geometry of
the body or bodies, as using symmetry for the integration of the hydrodynamic
forces hardly increases the calculation performance of the seakeeping programs.

The degrees of freedom of the different bodies are simply stacked on top of
each other. For example, the final number of degrees of freedom will be twelve
for a multi-body problem with two rigid ships. The first six modes will be the
rigid-body modes of ship one and the second six are the rigid-body modes of
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the second ship, recall Figure 1.3.
The final mode shapes are defined for all degrees of freedom and the total

geometry of all bodies. These mode shapes are created by stacking the original
mode shapes for the different bodies and setting the modal displacements vector
to zero for all points of the other bodies.

Matrix S is introduced to distinguish between the different modes. This
matrix is a collection of Sib matrices which are defined for every body in the
calculation

S = [S1,S2, . . . ,SNbodies
] , (2.46)

where ib is the body number and Nbodies the total number of bodies.
The number of rows of the matrices is equal to the number of modes used.

The number of columns of the Sib matrix is equal to six, because it represent
the six rigid-body modes. The matrix S will have the number of bodies times
six columns. A one in the matrices maps the mode used to the rigid-body mode
which it represents. All other elements of the matrix are zero. The row for a
flexible mode will consist of only zeroes. This property of the S matrix is used
to identify the flexible modes.

For calculations with only one rigid-body, the S matrix will be equal to S1

and has a size of six by six with ones on the main diagonal and all other elements
are zero (the 6x6 identity matrix). For every flexible mode that is added to this
ship, a row of zeroes is added to the S matrix, this matrix is illustrated in
Figure 2.20(a). For a calculation with two rigid ships the S matrix has a size
of twelve by twelve and the S1 and S2 twelve by six. This S matrix has ones at
the main diagonal and all other elements are zero (the 12x12 identity matrix),
see Figure 2.20(b).
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Figure 2.20: Examples of the S matrix.
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Let y⃗ be a vector which contains values in terms of all modal coordinates.
The values for the rigid-body modes of body ib, y⃗ib, are obtained by

y⃗ib = STib · y⃗. (2.47)

The vector in the modal coordinates can be created using values that are
known for the rigid-body modes and values for the flexible modes y⃗f by

y⃗ = y⃗f +
Nbody∑
ib=1

{Sib · y⃗ib} . (2.48)

Note that the vector y⃗f has the same size as the vector y⃗ and should have values
equal to zero for the rigid modes. The rigid-body values usually correspond to
the values in the Cartesian system.

The mass, structural stiffness and hydrostatic restoring matrices of the dif-
ferent bodies are also stacked into matrices for the complete problem. As there
is no influence between the bodies for these matrices, these matrices are stacked
like

Pt =
[
P1 0
0 P2

]
. (2.49)

The stacking of the matrices of the different sections is done as

Pt,is =



[
P1,is1 0

0 0

]
if is ∈ body 1

[
0 0
0 P2,is2

]
if is ∈ body 2

, (2.50)

where is1 and is2 represent the original section numbering of the two bodies
and is the section number for the total problem. The approach described by
the previous two equations is applicable for any number of bodies.

Additional information necessary for solving the total hydro-elastic problem,
like locations for internal loads calculations, modal participation factors for
bending moments, shear forces or stresses, still water displacements vectors,
center of gravity locations, etc. is also created by combining the values of the
different bodies in this way.

Note that the different bodies are not coupled yet. The added mass and
damping will create the hydrodynamic coupling between the bodies. In Chapter
4 it is explained how the bodies can be coupled mechanically in the time domain
calculations. There are no mechanical couplings between the bodies in the
frequency domain. However, the user can force a coupling by using an user
defined stiffness matrix.





Chapter 3

Frequency domain

The frequency domain approach is convenient for solving a linear seakeeping
response calculation. Knowing the response to waves with different frequencies
allows one to calculate the response for different sea states using superposition.
The frequency domain approach also allows for a direct spectral analysis which
avoids long calculations in order to obtain statistics with sufficient accuracy.
This makes a frequency domain analysis usually much faster compared to a
time domain analysis for linear problems.

However, it is difficult to add non-linearities to the frequency domain cal-
culation. The computation of transient responses, like slamming induced whip-
ping, are also difficult to compute using the frequency domain approach. In
this thesis, the non-linear seakeeping and whipping analysis will, therefore, be
performed in the time domain where it is more convenient to account for the
non-linearities and transient responses. Nevertheless, the approach used to
solve the seakeeping response in the time domain requires the linear coefficients
for the added mass, damping and diffraction force which are calculated in the
frequency domain.

This chapter explains the calculation of these hydrodynamic coefficients and
addresses the calculation of the ship motions, internal loads and wet natural
frequencies in the frequency domain. The incoming waves are defined in the
first section of this chapter. The approach to compute the hydrodynamic co-
efficients by solving the Boundary Value Problem (BVP) is explained in the
second section. The third section explains the calculation of the response and
internal loads. The approach for computing the wet natural modes is presented
in the last section.

3.1 Incoming waves

The waves are assumed to be linear sinusoidal waves in deep water. Figure 3.1
shows the definition of the heading of the body µ towards the waves. A heading
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Figure 3.1: Wave definition.

of zero degrees results in following waves and 180 degrees results in head waves.
The total distance in the wave direction is

xw = x cosµ+ y sinµ, (3.1)

and U is the mean forward speed of the ship.
The wave elevation ζ of a single wave component is equal to

ζ(xw, t) = ζa cos (ωt− xwk + ε) , (3.2)

with ζa the wave amplitude, ε the phase angle and k the wave number, such
that,

k = ω2/g. (3.3)

The body will encounter the waves at a different frequency ωe due to its
forward velocity, this is defined by

ωe = ω − kU cosµ. (3.4)

3.2 Hydrodynamic coefficients

The fluid motion around the body or bodies should be known in order to cal-
culate the pressure at the hull and the resulting hydrodynamic coefficients. A
few assumptions are made to be able to solve the fluid motions using a BVP:

• The fluid is assumed to be incompressible, inviscid, non-rotational and
without surface tension.

• Body motions remain small.

• An infinite depth of the fluid is assumed.

• The fluid and body motions are harmonic.

The fluid motion is determined by solving a BVP using potential flow. This
BVP is first formulated for the zero speed case. This zero speed solution is
partly adapted to account for forward speed.
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3.2.1 Zero speed problem

The total velocity potential in the fluid Φ is both time and space dependent
[53, 21]. This potential can be split in a space and time dependent part

Φ(x, y, z, t) = ℜ{φ(x, y, z)e−iωt}, (3.5)

as the fluid motions are assumed to be harmonic in time.
The total velocity potential is decomposed into the incident, diffracted and

for every degree of freedom the radiated components

φ = φI + φD − iω

Ndof∑
j=1

ξ⃗j · φRj , (3.6)

where
φI incident potential,
φD diffraction potential,
φRj j-th radiation potential,
Ndof number of degrees of freedom.

The space dependent part of the incident wave potential is equal to

φI =
−iζag
ω

ek(z−ixw). (3.7)

The diffraction and radiation velocity potentials are solved using the follow-
ing BVP 

∆φ = 0 in the fluid,

−kφ+
∂φ

∂z
= 0 z = 0,

∂φ

∂n⃗
= Vn on Sb,

lim
[√

kR

(
∂φ

∂R
− ikφ

)]
= 0 R→ ∞,

(3.8)

where Vn denotes the normal velocity which depends on the considered potential

∂φD
∂n⃗

= −∂φI
∂n⃗

,
∂φRj
∂n⃗

= h⃗jn⃗. (3.9)

The first equation of the BVP (3.8) ensures the conservation of mass. The
second equation is the linearised free surface boundary condition. This condi-
tion ensures that the fluid velocity at the free surface is equal to the velocity
of the free surface itself and that the pressure is equal to the ambient pressure
which is set to zero. This surface boundary condition is linearised around z = 0.
The third equation of (3.8) ensures that no fluid will cross the body boundary
by setting the velocity of the fluid equal to the velocity of the body boundary
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in the normal direction of the body surface. The last equation is the radiation
condition which ensures that the diffracted and radiated potentials approach
zero far away from the body.

This BVP is solved numerically by using constant source distributions over
the hydrodynamic mesh panels. Pulsating Green’s source functions are used.
These fulfill the linearised free surface boundary condition and the radiation
condition. The source strengths are solved by satisfying the body boundary
condition at the centers of the hydrodynamic panels.

The Green’s sources used will also satisfy the surface boundary condition at
the “free surface” inside the body which can cause a kind of artificial resonance
of the wave system inside the body. The frequencies where the resonances
appear are so-called irregular frequencies. This resonance problem is alleviated
by placing additional panels at the free surface inside the body.

The different pressure components are calculated from the potentials after
solving the BVP by using the linearised Bernoulli equation p = −ρΦt which
leads to

pI = iωρφI , (3.10)
pD = iωρφD, (3.11)
pRj = iωρφRj , (3.12)

where pI , pD and pRj are the pressure by the incident wave, the diffraction
pressure and the radiation pressure due to motions of the jth mode, respectively.

The BVP (3.8) is solved for a range of frequencies which are relevant for the
seakeeping problem. It is difficult to solve the BVP for very high frequencies
due to the small wave lengths. The hydrodynamic mesh has to be very fine in
order to solve the BVP at high frequencies, requiring a lot of computational
effort and a significant amount of memory. The wet natural frequencies of
the ship structure occur in the frequency range for which the BVP cannot be
solved in a computationally efficient manner. Fortunately, the small wave length
corresponding to such high frequencies results in a negligible hydrodynamic
damping compared to the structural damping. This allows the use of the infinite
frequency solution for these high frequencies. The surface boundary condition
is set to φ = 0 to solve the BVP for the infinite frequency.

3.2.2 Adjustments for forward velocity

The above equations are only valid for zero speed problems. It is still very
difficult to consistently solve the BVP for forward speed seakeeping problems,
even for purely rigid-body problems. A few adjustments are made to the above
equations to better account for the forward velocity. However, the presented
approach does not fully account for the forward speed.
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The first adjustment is to include the effort of forward speed via the en-
counter frequency (3.4). The second adjustment is to account for the contri-
bution of the velocity in the body boundary condition. The still water fluid
flow around the body due to the forward velocity has to be solved first. This
potential φ̄ is usually solved using a double body approach.

The velocity vector of the steady flow relative to the moving reference frame
is [36]

W⃗ = U∇ (φ̄− x) . (3.13)

This steady flow velocity can also be approximated by a uniform flow W⃗ = −Ui⃗
if the double body approximation is not available.

Due to the forward velocity the body boundary condition of equation (3.8)
becomes [36]

∂φRj
∂n⃗

= h⃗jn⃗+
i

ωe

{
(∇W⃗ )i⃗hj − (∇h⃗j)W⃗

}
(3.14)

Accounting for the forward velocity when evaluating of the pressure is the
last adjustment of the zero speed equations

p = iωeρφ− ρW⃗∇φ. (3.15)

The surface boundary condition remains equal to the zero speed condition.
Two commercial programs, hydrostar and precal, are used to solve the
double body flow, the BVP and to calculate the pressures. Unfortunately,
both programs could not yet include the forward speed corrections of the body
boundary condition and the pressure for the flexible modes at the time the
calculations which are presented in this thesis were performed. Therefore, the
forward velocity is only included via the encounter frequency for the results
presented in this thesis.

3.2.3 Coefficients

The hydrodynamic coefficients for the total body and the sections are obtained
by an integration of the pressure over the wetted surface, using the integration
mesh. As explained in Section 2.8.1, the dummy Gauss points are used as the
locations to evaluate the pressure. The pressure is integrated using the original
Gauss points. The hydrodynamic coefficients are equal to

Fi,I,is =
∫∫

sB ,is
pI h⃗in⃗ dS, (3.16)

Fi,D,is =
∫∫

sB ,is
pDh⃗in⃗ dS, (3.17)

ωeAij,is + iωeBij,is =
∫∫

sB ,is
pRj h⃗in⃗ dS, (3.18)
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with
F⃗I incident wave force,
F⃗D diffraction force,
A hydrodynamic added mass,
B hydrodynamic damping.

3.3 Response

The motion response is calculated for each frequency for which the hydrody-
namic coefficients are obtained. The internal loads due to the external loads
and motions of the ship are also computed. The last part of the calculation
of the response in the frequency domain is the investigation of the effect of
hydro-elasticity.

3.3.1 Motions

The motions are solved using the Newton equation. When assuming harmonic
motion the Newton equation can be written as

(m + A(ωe))
¨⃗
ξ + (B (ωe) + Bu)

˙⃗
ξ + (Cte + Ch + Cu) ξ⃗ =(

F⃗I(ωe) + F⃗D(ωe)
)
ℜ{e−iωet},

(3.19)

where Bu is the additional damping matrix and Cu is the additional stiffness
matrix defined by the user. These matrices can, for example, be used to add
structural damping and/or connect the separate bodies through springs.

A solution is found by writing the resulting harmonic motion as

ξ⃗ = ξ⃗a · ℜ{e−iωet}, (3.20)

where ξ⃗a is the complex response amplitude operator (RAO). The RAO for
the modal motions is found by solving the following system of equations{

−ω2
e (m + A(ωe)) − iωe (B (ωe) + Bu) + (Cte + Ch + Cu)

}
ξ⃗a =

F⃗I(ωe) + F⃗D(ωe).
(3.21)

3.3.2 Internal loads

As discussed in Section 1.5, the internal loads can be calculated using two
methods. The first method consist of integrating the internal and external forces
up to the internal load plane. The second method uses the modal participation
factors which are calculated if a beam model is used to model the structure,
see Section 2.6.
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The first method starts with computing the difference between the internal
and external forces for every 3D ship section separately, see Section 2.4.1. The
resulting force Fres at a 3D section is equal to

F⃗res,is =
{
− ω2

e (mis + Ais(ωe)) − iωe (Bis (ωe) + Bu,is)

+ (Cte,is + Ch,is + Cu,is)
}
ξ⃗a − F⃗I,is(ωe) − F⃗D,is(ωe).

(3.22)

The internal load at the plane F⃗int,ic is the summation of the resulting forces
at all associated sections, see Section 2.4.1

F⃗int,ic =
Nsections∑
is=1

F⃗res,is for is associated to ic. (3.23)

This internal load vector is defined in the modal coordinate, see equation
(2.1). However, the internal loads should be calculated in the Cartesian system.
The load vector in the Cartesian system are the modal forces and moments of
the rigid-body modes of the body ib for which the internal loads are calculated.
These can be extracted using the matrix S, see Section 2.8.2,

F⃗int,ic,R6 = STib · F⃗int,ic, (3.24)

where R6 indicates a vector in the Cartesian system.
The hydrodynamic forces, and thereby the internal loads, are defined with

respect to the center of gravity. The moments of the internal loads at the
location of the cut p⃗ic are

F⃗int,ic,R6,(4:6),pic
= F⃗int,ic,R6,(4:6) + (G⃗− p⃗ic) × F⃗int,ic,R6,(1:3). (3.25)

The other method to obtain the internal loads uses the modal participa-
tion factors. Using (2.30) as modal participation factors will give the bending
moment and (2.31) the shear force. The total force or moment is obtained by

F jint,ic =
Ndof∑
i=1

pjf,ic,iξi, (3.26)

with pjf,ic the modal participation factors for an internal load and where j indi-
cates the different load components for the same location. Since this approach
gives an estimation of the internal loads, the results will converge to the correct
internal load if many flexible modes are included in the calculation.

3.3.3 Contribution of elastic modes

The effect of hydro-elasticity can be investigated by separating the contribu-
tions of the rigid and elastic modes. The method described in [31] is used for
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this separation. The quasi-static and dynamic structural responses are also
separated in this method. The quasi-static assumption is often used when the
seakeeping loads are transferred to a 3D-FEM method. The dynamic effects will
usually not be accounted for in the 3D-FEM results by using the quasi-static
assumptions.

The modes are divided into rigid-body and elastic modes, the motions are
also separated into the structural quasi-static and the dynamic parts

ξ⃗ =

{
ξ⃗R

ξ⃗E

}
=

{
ξ⃗R0 + ξ⃗Rd
ξ⃗E0 + ξ⃗Ed

}
. (3.27)

The motion equation (3.21) is rewritten as([
RR RE
ER EE

]
+
[
0 0
0 Ce

]){
ξ⃗R

ξ⃗E

}
=

{
F⃗R

F⃗E

}
. (3.28)

Matrix R indicates the rigid-body components of the left hand side of equation
(3.21). The elastic components are in the matrix E except for the structural
stiffness matrix Ce. The structural quasi-static response is

RR · ξ⃗R0 = FR, (3.29)

Ce · ξ⃗E0 = FE − ER · ξ⃗R0 . (3.30)

The structural dynamic part of the motion is solved by inserting equations
(3.27), (3.29) and (3.30) into equation (3.28)([

RR RE
ER EE

]
+
[
0 0
0 Ce

]){
ξ⃗Rd
ξ⃗Ed

}
= −

{
RE · ξ⃗R0
EE · ξ⃗E0

}
. (3.31)

The procedure is applied for the calculation of the internal loads for an
ultra large container ship with a length of about 360 [m]. The midship bending
moment is calculated based on the total, the quasi-static and the dynamic
response. This is shown in Figure 3.2. Only the amplitudes are presented, the
phase between the quasi-static and dynamic response causes the amplitude of
the total response to be lower than the summation of the amplitude of the two
contributions.

The bending moment at the first wet natural frequency at 2.8 [rad/s] is
clearly underestimated if the structural dynamics are not included in the cal-
culation. However, the figure also shows that there is a minor dynamic ampli-
fication of the bending moment at 0.7 [rad/s]. A larger dynamic amplification
at low frequency is found in [31] for a different ship. This amplification will
be missed if the elastic modes are not included or when a quasi-static FEM
solution is used. This shows the importance of performing a full hydro-elastic
analysis for such flexible ships.
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Figure 3.2: Dynamic amplification.

3.4 Wet natural modes

The wet natural frequencies and corresponding mode shapes can be obtained
by solving the eigenvalue problem{

−λ2 (m + A(ℑ(λ))) − iλ (B (ℑ(λ)) + Bu) + (Cte + Ch + Cu)
}
ξ⃗u = 0⃗,

(3.32)
with λ the complex eigenvalue and ξ⃗u the complex mode shape. It should be
noted that the eigenvalue solution will always be a combination of the original,
dry mode shapes. These will converge to the real wet mode shapes by using
enough elastic mode shapes to solve this eigenvalue problem. The real wet natu-
ral mode shapes can be calculated directly if the hydrodynamic matrices would
be added to the calculation of the structural or elastic modes. This method is
not applied in this thesis due to the complexity and required calculation effort
for this direct method.

The eigenvalue problem (3.32) cannot be solved directly as the hydrody-
namic added mass and damping depend on the frequency. A numerical iteration
scheme is used to find the eigenvalues. In the first iteration step the eigenval-
ues are solved using the hydrodynamic coefficients of the lowest frequency for
which they have been solved. This solution reveals a set of eigenvalues whose
size is equal to the number of used degrees of freedom. The added mass and
damping corresponding to the first eigenvalue are inserted into equation (3.32)
and the eigenvalues are solved again. This is continued until the first eigenvalue
has converged, which is the case if the frequency for the used hydrodynamic
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coefficients is found to be equal to the eigenvalue frequency. The same iteration
is applied for the other eigenvalues that have been found in the first iteration
step. These iterations are also redone using the eigenvalues based on the hy-
drodynamic coefficients for the other calculated frequencies as starting point of
the iterations. The change of starting point for the iterations normally gives
the same results, but due to the frequency dependent hydrodynamic coefficients
there might be more eigenvalues than degrees of freedom in the system. Those
might be missed if only one starting point would be used. Only the unique
eigenvalues are kept after all iterations are finished.

The iteration procedure requires the hydrodynamic coefficients for a large
range of frequencies. An interpolation is used if the required frequency falls
between two calculated frequencies. The lowest frequency values are used if
the requested frequency is lower than the lowest calculated frequency. The
infinite frequency values are used when the requested frequency is higher than
the highest calculated frequency.

The eigenvalue problem is solved using the first order routines from the
eispack library. For this purpose, the second order eigenvalue problem (3.32)
is changed to a first order problem by writing[

0 I
−At(ω)−1Ct −At(ω)−1Bt(ω)

]{
ξ⃗u
λξ⃗u

}
= 0⃗, (3.33)

where subscript t indicates the summation of the different contributions to the
mass, damping and stiffness matrices. All eigenvalues are found as complex
conjugate pairs when solving this first order eigenvalue problem: one of the
pairs is the eigenvalue for the displacements and the other one for the velocities.
Only the eigenvalues for the displacements are kept.
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Time domain

The prediction of the structural response of a ship sailing in a sea with the
occurrence of slamming is the main objective of this thesis. The slamming
loading is non-linear and the resulting whipping is a transient response. Solving
the seakeeping problem in the time domain allows one to account relatively
easily for non-linear loading and to calculate transient responses. This chapter
explains the computation of the seakeeping response in the time domain.

The slamming loading often occurs in a severe sea state. The linear assump-
tion that all seakeeping forces can be calculated using the still water condition
may not hold for these conditions. It would be best to calculate all hydrody-
namic force components using the actual position of the body in the waves.
However, a different approach is used as it is too complex and too computa-
tionally intensive to compute all hydrodynamic forces using non-linear theory.
Both the Froude-Krylov and the hydrostatic forces can be calculated relatively
easily for the actual position of the body in the waves. The linear hydrody-
namic coefficients computed in the frequency domain are used to calculate the
other hydrodynamic force components. Fortunately, accounting only for the
non-linearities in the Froude-Krylov and the hydrostatic loads already gives
a reasonable estimation of the wave frequency non-linear structural loading.
As will be shown in Chapter 12, the measured hog-sag ratio in the structural
stresses during a full scale trail are well predicted using the presented approach.

The first section of this chapter explains the creation of the wave-train
for the time domain calculation. The time domain calculation accounts for
large amplitudes of motion. This requires different reference frames which
make transformations between the different systems necessary. These refer-
ence frames and transformations are explained in the second section. The ap-
proach used to solve the equations of motion is discussed in the third section.
The last section of this chapter describes the calculation of the different load
components.
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4.1 Waves

In contrast to the frequency domain calculation, the sea state is an input for the
time domain calculation as the non-linearities prevent the use of superposition of
the calculated response. The sea state is represented by a combination of single
wave components. Only long crested seas are considered: all wave components
have the same direction. The definition of a single wave component is given
by equation (3.2). The total wave elevation ζtot of a wave-train, consisting of
Nwave waves, is equal to

ζtot(t, xw) =
Nwave∑
i=1

ζa(i) cos
(
ω(i)t− xwk(i) + ε(i)

)
. (4.1)

The different wave components can be based on a sea spectrum or on measured
wave elevations.

The frequencies of the wave components are distributed such that the en-
counter frequencies are equidistant (i.e. ∆ωe = (ωe(Nwave) − ωe(1))/Nwave).
The return period of the wave-train treturn is equal to

treturn =
2π

∆ωe
. (4.2)

4.1.1 Wave components from spectrum

Only one wave spectrum type is used, the JONSWAP spectrum [21]. The
spectrum is defined by

Sζ(ω) =
A · g2

ω5
· exp

(
−5

4

(ωp
ω

)4
)
· γr, (4.3)

where

r = exp

−
(

(ω−ωp)
ωp

)2

(2 · s2)

, (4.4)

and

s =

{
0.07 ω ≤ ωp

0.09 ω > ωp
, (4.5)

with
Sζ(ω) spectral value,
ωp angular peak frequency,
s spectral width parameter,
γ peakedness factor (3.3),
A normalization factor calculated as

5.061 ·H2
1/3/T

4
p · (1 − 0.287 · log(γ)).
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The Bretschneider wave spectrum [21] can be obtained by setting the γ factor
to 1.0.

The amplitude of the different wave components are calculated using the
spectral value. The spectral value is used to define the range of frequencies
that are used to generate the wave-train. The wave components are distributed
between the frequencies where the spectrum value is equal to one thousandth of
the maximum value. Although the threshold of one thousandth is arbitrary, it
ensures that the wave components that contain only very little energy are not
used in the computation. The frequency distribution is shifted by a random
number between [−1

2∆ωe, 1
2∆ωe] to add additional randomness of the result-

ing wave train by ensuring that the different wave realisations are built using
components with slightly different frequencies.

The wave amplitude ζa is

ζa(ω) =
√

2 · Sζ(ω) · ∆ω. (4.6)

A uniform random distribution between 0 and 2π is used for the phase shift
of the wave components ε.

4.1.2 Measured wave elevation

The wave components can also be based on a measurement of the wave eleva-
tions during a certain time-span. This is especially useful to reproduce towing
tank experiments.

When the wave probe is at a fixed position the amplitude and phase of the
different wave components can be obtained by a Fourier transform

[ζa(ω), εp(ω)] = F
[
ζp(t)

]
, (4.7)

Using a wave probe attached to the towing carriage gives

[ζa(ωe), εp(ωe)] = F
[
ζp(t)

]
. (4.8)

The wave components with frequencies which are too high or too low to con-
tribute significantly to the seakeeping response are usually removed from the
Fourier results.

If the wave probe was attached to a moving towing carriage the encounter
frequency is measured. The wave frequency in that case is equal to

ω =
−1 +

√
1 − 4ωeU cosµ

g

−2U cosµ
g

, (4.9)

under the assumption of deep water, no following waves and linear waves.
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Furthermore, the phases of the wave components have to be corrected for
the location of the wave probe

ε(ωe) = εp(ωe) + k(ωe)xwp , (4.10)

where xwp is the location of the wave probe, measured positively in the wave
direction, and with respect to the origin of the coordinate system used for
the seakeeping calculations. Deep water and sinusoidal wave are assumed for
equation (4.10)

4.2 Reference frames and transformations

To be able to calculate the actual position of the ship accurately, it is necessary
to account for large amplitudes of the motions. The large amplitudes of the
motions result in different reference frames which introduce transformations of
variables between the different systems. These different reference frames and
the transformations are explained in this section. The theory for single body
seakeeping described in [56] and [12] has been extended for the multi-body case
to obtain these reference frames and transformations.

4.2.1 Reference frames

A number of different reference frames are used to solve the seakeeping problem
with account for large amplitude motions and possible multiple bodies. Figure
4.1 illustrates, as example, the different reference frames used for a seakeeping
problem with two bodies.

zh1
yh1 xh1

zh2

xh2

yh2

ye xe

ze

U · t · i⃗

G⃗1

G⃗2

z
y

x
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yb2
zb1yb1

zb2

ξ⃗t,ib2

Figure 4.1: Reference frames.
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The different reference frames are:

Fixed Earth system, xyz This system was defined in Section 2.2. The fixed
Earth system points with the x-direction into the initial heading of the
bodies. The origin of the system is located in the still water plane. The
waves are defined with respect to this system, see Section 3.1.

Steady moving Earth system, xeyeze The orientation of this system is
equal to the fixed Earth system, however the system translates with the
mean velocity of the ship(s) in the x-direction. This system is used to in-
tegrate the motions of the ship(s) over time. The rigid-body translations
of the bodies ξt,ibn are defined with respect to this reference frame but
with an offset due to the original location of the center of gravity G⃗n.

Hydrodynamic systems, xhib
yhib

zhib
The “hydro system” is defined for ev-

ery body. The origin of the system is the origin of the steady moving
Earth system but with an offset equal to the original location of the cen-
ter of gravity. The orientation of the hydro system is such that the z-axis
remains upright but the system yaws with the ship. This system is used
to compute the linear hydrodynamic forces. All quantities in this system
are indicated by a superscript ⋄.

Body systems, xbibybibzbib A body system is defined for every body. The
origin of the system is at the location of the center of gravity of the body.
The x-axis is pointing to the bow, the y-axis to the port side and the
z-axis is pointing upwards. The superscript ⋆ indicates quantities in this
system.

All reference frames still exist when solving a single body problem. However,
in that case, only one hydrodynamic and one body frame is defined.

4.2.2 Euler transformations

The differences in orientation of the reference frames requires several quantities
to be transformed between the different systems. For this purpose, transfor-
mation matrices between the different reference frames are created. The trans-
formation matrices for a single rigid-body are derived in this subsection. The
results are generalised to the modal coordinate system in the next subsection.

The orthogonal transformation matrices can be created using either Euler
angles or Euler parameters [16]. The Euler parameters are not expressed in
quantities like roll, pitch and yaw. This makes it difficult to define the trans-
formations to the hydro system. The Euler angles are expressed in the three
rotations and will be used. The disadvantage of using Euler angles is that
the transformations will become singular if one of the rotations is equal to 90
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degrees. The degree of freedom for which the transformations will become sin-
gular if the rotation approaches 90 degrees depends on the sequence of the Euler
angle rotations. The pitch rotation will cause a singularity for the sequence of
rotations used in this thesis, but a pitch rotation of 90 degrees is not expected
in normal seakeeping calculations.

Figure 4.2 shows the sequence of Euler rotations used. At the start the
body reference frame has the same orientation as the Earth reference frame.
The body frame is first rotated using the yaw angle, then the resulting frame
is rotated with the pitch angle around the new y-axis. The last rotation is that
of roll around the new x-axis of the resulting frame after the pitch rotation.
It should be noted that the sequence of rotations is important as any other
sequence of rotations will result in a different orientation of the body.

Yaw RollPitch

θ
ϕ

ψ

ze xb

zb

G⃗

p

yb

r⃗⋆p

r⃗ p

xe

ξ⃗t

ye

Figure 4.2: Euler transformation.

The location in the Earth reference frame of point p in Figure 4.2 is calcu-
lated using

r⃗p = ξt + TeR3 · r⃗⋆p, (4.11)

where r⃗⋆p is the vector from the center of gravity to point p, defined in the body
system and TeR3 is the transformation matrix from the body system to the
Earth system. According to [24], the transformation matrix is equal to

TeR3 =



cos(ψ) cos(θ) − sin(ψ) cos(ϕ)+ sin(ψ) sin(ϕ)+
cos(ψ) sin(θ) sin(ϕ) cos(ψ) sin(θ) cos(ϕ)

sin(ψ) cos(θ) cos(ψ) cos(ϕ)+ − cos(ψ) sin(ϕ)+
sin(ψ) sin(θ) sin(ϕ) sin(ψ) sin(θ) cos(ϕ)

− sin(θ) cos(θ) sin(ϕ) cos(θ) cos(ϕ)

 . (4.12)

The matrix TeR3 is orthogonal, therefore the transformation from the Earth
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system to the body system can be written as

TbR3 = TT
eR3. (4.13)

Let y⃗R3 be a vector of a quantity defined in the Earth system. Vectors
y⃗⋆R3 and y⃗⋄R3 are the vectors corresponding to the same quantity but defined in
the body system and hydro systems, respectively. Using the definitions of the
reference frames given in the previous section, the following transformations are
defined

y⃗R3 = TeR3(ϕ, θ, ψ) · y⃗⋆R3, y⃗⋆R3 = TbR3(ϕ, θ, ψ) · y⃗R3, (4.14)
y⃗R3 = TeR3(0, 0, ψ) · y⃗⋄R3, y⃗⋄R3 = TbR3(0, 0, ψ) · y⃗R3, (4.15)
y⃗⋄R3 = TeR3(ϕ, θ, 0) · y⃗⋆R3, y⃗⋆R3 = TbR3(ϕ, θ, 0) · y⃗⋄R3. (4.16)

Matrices are transformed in a similar fashion

yR3 = TeR3(ϕ, θ, ψ) · y⋆R3 · TT
eR3(ϕ, θ, ψ), (4.17)

yR3 = TeR3(0, 0, ψ) · y⋄
R3 · TT

eR3(0, 0, ψ), (4.18)

y⋄
R3 = TeR3(ϕ, θ, 0) · y⋆R3 · TT

eR3(ϕ, θ, 0), (4.19)

y⋆R3 = TbR3(ϕ, θ, ψ) · yR3 · TT
bR3(ϕ, θ, ψ), (4.20)

y⋄
R3 = TbR3(0, 0, ψ) · yR3 · TT

bR3(0, 0, ψ), (4.21)

y⋆R3 = TbR3(ϕ, θ, 0) · y⋄
R3 · TT

bR3(ϕ, θ, 0). (4.22)

The rotation axis for the Euler angles are not orthogonal because they are
taken during a rotation process as shown in Figure 4.2. The same is true for
their time derivatives. The transformation between the derivatives of the Euler
angles (ϕ̇, θ̇, ψ̇) and the angular velocities in the body reference frame (p, q, r)
is [24] pq

r

 = TbrR3(ϕ, θ, ψ) ·

ϕ̇θ̇
ψ̇

 , (4.23)

with

TbrR3(ϕ, θ, ψ) =

1 0 − sin(θ)
0 cos(ϕ) sin(ϕ) cos(θ)
0 − sin(ϕ) cos(θ) cos(ϕ)

 . (4.24)

Because this transformation is not orthogonal, the transformation matrix
has to be inverted to obtain the inverse relation [24]ϕ̇θ̇

ψ̇

 = TerR3(ϕ, θ, ψ) ·

pq
r

 , (4.25)
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with

TerR3(ϕ, θ, ψ) =

1 sin(ϕ) tan(θ) cos(ϕ) tan(θ)
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ)/ cos(θ) cos(ϕ)/ cos(θ)

 . (4.26)

This is the matrix which causes the singularity for a pitch angle equal to ±π
2

which is unlikely to happen during normal seakeeping calculations.

4.2.3 Transformation in modal coordinates

The Euler transformations are defined for the Cartesian system but most vec-
tors and matrices are defined in the modal coordinates. Figure 4.3 illustrates
the approach used to create a transformation matrix for vectors in modal co-
ordinates. As an example, the modal vector y⃗ for two bodies both with elastic
modes is transformed to the body system. The values corresponding to the
elastic modes are not transformed as the elastic deformations are assumed to
remain small. The values corresponding to the rigid-body modes are trans-
formed using the Euler transformation with the rotation angles of the body.

Elastic
Elastic modes
both ships

Rigid modes
Ship 2Ship 1

Earth system

y⃗

S dofs Ship 2

y⃗⋆

Tb
TbR6 TbR6

(ϕ2, θ2, ψ2) Body system

Rigid modes

ST

(ϕ1, θ1, ψ1)

dofs Ship 1

Figure 4.3: Example of the transformation of a vector to a different system.

The creation of the modal transformation matrix is the same for the matrix
from the Earth system to the body system or the other way around. Therefore,
the approach to create a general modal transformation matrix T is presented
here. This matrix can be either Te or Tb.

The rigid-body vector has six components: three rotations and three trans-
lations. The transformation matrix for the six degrees of freedom corresponding
to rigid-body modes of a single rigid-body is

TR6 =
[
TR3 0
0 TR3

]
, (4.27)
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or

TrR6 =
[
TR3 0
0 TrR3

]
. (4.28)

The degrees of freedom corresponding to elastic modes are not transformed,
this results in a modal transformation matrix for the elastic modes{

T eij = 1 if i is elastic and i = j,

T eij = 0 otherwise.
(4.29)

The rigid-body modes are extracted using the matrix S defined in Section 2.8.2.
The total transformation matrix is equal to

T = Te +
Nbody∑
ib=1

Sib · TR6,ib · ST
ib, (4.30)

or

Tr = Te +
Nbody∑
ib=1

Sib · TrR6,ib · ST
ib, (4.31)

when derivatives to the Euler angles are concerned.

4.2.4 Hydro reference frame

The diffraction and radiation forces are calculated using the linear hydrody-
namic coefficients from the frequency domain calculation. Adding these forces
to a calculation with large amplitudes of motion raises the question in which
reference frame should these forces act? In the presented theory it is assumed
that they act in the hydro system. The same assumption is made by [12] and
[10]. This assumption seems to be the most consistent, but the full consistent
solution would be to calculate those forces based on the actual position of the
body in the water.

The idea behind the assumption that the linear hydrodynamic forces act
in the hydro reference frame is illustrated in Figure 4.4. The ship is in the
still water position in Figure 4.4(a). There is no difference between the body,
hydro and Earth reference frame in that position. The ship has a severe roll
angle in Figure 4.4(b). The body reference frame will roll with the ship, the
hydro and Earth frames keep upright. The motion indicated by the dotted
line is a combination of heave and sway when seen from the body reference
frame and pure heave when observed from the hydro frame. Assuming that the
hydrodynamic coefficients act in the body system would result in a combination
of heave and sway induced added mass and damping for this motion. If the
ship would be rolled 90 degrees, only the sway hydrodynamic coefficients would
be used when using the body system. As the hydro frame keeps upright, this
motion is pure heave and only the heave hydrodynamics contribute to the forces
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Figure 4.4: Orientation of linear hydrodynamic forces.

for this motion. This seems to be closer to the real hydrodynamics force than
if one were to consider this motion to be partly sway.

The ship has a large yaw angle in Figure 4.4(d), the hydro frame is rotated
with the yaw motion of the ship. Therefore, the indicated motion is still surge
in the hydro frame. This would be a combination of surge and sway if the
Earth system would be used. It should be noted that the diffraction force is
still incorrect regardless of which frame is used as the diffraction force should
depend on the actual heading of the ship. This could be corrected by calculating
the diffraction force for a range of headings and by using the closest heading
calculated or an interpolation between the calculated headings. This approach
is not used in this thesis as mainly head sea conditions will be considered where
the yaw motions are expected to remain small.

4.3 Equations of motion

In the time domain the equation of motion is the Cummins equation [8]

(A(∞) + m) · ¨⃗ξ+B(∞) · ˙⃗
ξ+
∫ t

−∞
K (t− τ) · ˙⃗

ξ(τ) dτ+Cte · ξ⃗ = f⃗h(t, ξ⃗)+ f⃗q(t, ξ⃗),

(4.32)
where K(t−τ) are retardation functions which account for the frequency depen-
dent part of the hydrodynamic radiation force. The two force vectors f⃗h and f⃗q
contain the remaining non-impulsive hydrodynamic forces and the impulsive
hydrodynamic forces, respectively.

Equation (4.32) is the basic equation which is solved in the time domain, but
the equation is not solved as presented here. Figure 4.5 illustrates the approach
used to solve the seakeeping motions. The contribution of all components,
except the inertia terms, are transfered to the right-hand side of the equation of
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motion. The different force components are calculated in the most convenient
reference frame, transferred to the body frame and added to the total force
vector f⃗⋆t . The calculation of the different force components is discussed in the
next section.

Briefly, the accelerations are solved in the body system. Kinematic con-
straints, see Appendix B, are included in the calculation of the accelerations
if they are defined. The forces and accelerations in the body system are used
to calculate the internal loads. The accelerations are transformed to the Earth
system where they are integrated to obtain velocities and displacements. In-
tegration of the motion in the Earth system avoids the need to account for
additional terms like centrifugal forces which will occur when the motions are
integrated in the body system. The velocities and displacements are corrected
for the kinematic constraints when defined. The motions are transformed to the
different systems to allow for calculation of the forces for the next calculation
step.

Tb

Tb

Body systemEarth system

Ter

Hydro system

Calculation of forces

∫ loads
f⃗⋆t ¨⃗

ξ⋆(m⋆ + A⋆(∞))−1

+ Internal

Tbr
Tbr

ξ⃗,
˙⃗
ξ

Kinematic
constraints

Kinematic constraints

¨⃗
ξ⋆

ξ⃗,
˙⃗
ξ

˙⃗
ξ

Figure 4.5: Computation scheme for solving the equations of motion.

4.3.1 Solving accelerations

The following system of equations is solved to obtain the accelerations in the
body system [

A⋆(∞) + m⋆ Φ⋆T
ξ

Φ⋆
ξ 0

]
·

[
¨⃗
ξ⋆

λ⃗

]
=
[
f⃗⋆t
γ⃗

]
. (4.33)

The λ⃗,Φ⋆
ξ and γ⃗ are sets of Lagrange multipliers which account for kinematic

constraints. The calculation of these Lagrange multipliers is explained in detail
in Appendix B.
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Note that both the added mass and the genuine mass in the above equation
are defined in the body reference frame. The genuine mass is already defined
in the body reference frame since it is attached to the body. The added mass
is a linear hydrodynamic coefficient and is assumed to be defined in the hydro
system. This matrix has to be transformed to the body system using equation
(4.22).

4.3.2 Numerical time integration

The accelerations and velocities are integrated over time using a fourth-order
Runge-Kutta scheme with a constant time step. This integration scheme is used
because it requires a minimal number of function evaluations needed to obtain
an accurate solution. The Runge-Kutta scheme is explained in detail as the
coupling between the seakeeping and the slamming calculation depends on this
integration scheme. This coupling with the slamming calculation is explained
in Chapter 5.

The Runge-Kutta scheme is used to integrate both accelerations to velocities
and velocities to displacements

{ ˙⃗
ξ, ξ⃗}n+1 = { ˙⃗

ξ, ξ⃗}n +
1
6
· ∆t ·

(
k⃗1 + 2k⃗2 + 2k⃗3 + k⃗4

)
+O(∆t5), (4.34)

with

k⃗1 = { ˙⃗
ξ,

¨⃗
ξ}({ ˙⃗

ξ, ξ⃗}n, t), (4.35)

k⃗2 = { ˙⃗
ξ,

¨⃗
ξ}({ ˙⃗

ξ, ξ⃗}n +
1
2
· k⃗1, t+

1
2
· ∆t), (4.36)

k⃗3 = { ˙⃗
ξ,

¨⃗
ξ}({ ˙⃗

ξ, ξ⃗}n +
1
2
· k⃗2, t+

1
2
· ∆t), (4.37)

k⃗4 = { ˙⃗
ξ,

¨⃗
ξ}({ ˙⃗

ξ, ξ⃗}n + k⃗3, t+ ∆t). (4.38)

Figure 4.6 illustrates this Runge-Kutta scheme. Only the first step of the
Runge-Kutta scheme (4.35) calculates the derivatives based on the real veloci-
ties and displacements. The scheme uses an estimation of the motions for the
calculation of the derivatives at the second (4.36), third (4.37) and fourth (4.38)
step. The velocities and displacements at the next time step are calculated using
equation (4.34) which is based on the estimations of the four steps.

The velocities and displacements are different for every function evaluation
of the Runge-Kutta integration. Therefore, the transformation matrices are
recomputed and the velocities and displacements are corrected for the kinematic
constraints (when defined) for every function evaluation.

Although there are four function evaluations, only the first step of the
Runge-Kutta integration is based on the real motion of the ship. The solid
black line in Figure 4.6 indicates the real motion of the ship. It is important
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Figure 4.6: Fourth-order Runge-Kutta integration scheme.

that whenever the motion history is used in the calculation of a force com-
ponent, for example the evaluation of the retardation functions, only the real
velocities and displacements are used and not the intermediate estimations.

The motions are integrated using the Runge-Kutta scheme because this
scheme gives the highest possible accuracy when using a fixed number of func-
tion evaluations. It could be argued that the Runge-Kutta scheme might not be
good for transient responses, like whipping, because this scheme might slightly
smooth the initial response to the slamming loading. However, the subsequent
whipping response will not be smoothed. The main interest here is to evaluate
the whipping response because the whipping will cause the loading of the global
ship structure.1 Therefore, the Runge-Kutta scheme is used to integrate the
motions.

As an explicit integration scheme is used, the integration will become un-
stable when a too large time step is used. The maximum time step for a stable
integration depends on the highest frequency in the system and the amount of
damping. The stable time step is not computed and choice of the integration
time step is left to the user. As the stable time step is mainly driven by the
highest frequency, adding more flexible modes will reduce the stable time step
and therefore increasing the required computation time.

4.3.3 Local motions

The calculation of the location of a point at a rigid-body in the Earth system is
explained in Section 4.2.2. This approach is extended in this section to account
for the generalised mode approach including flexible deformations.

Figure 4.7 illustrates how the location of a point in the Earth reference frame
is obtained. Vector r⃗⋆f is the displacement vector due to the elastic deformation.

1The initial response would be interesting when looking at the local structural response.
The local structural response cannot be calculated accurately using the presented theory as
the modal approach does not have enough spatial resolution. The slamming loading should
be transferred to a full 3D FEM-model in that case.
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This vector is defined in the body frame as

r⃗⋆f =
Ndof∑
i=1

hip,t · ξ⃗i when ξ⃗i is a flexible mode, (4.39)

where subscript t indicates the translation components of matrix h. The rigid-
body translations ξ⃗t,ib and rotations ξ⃗r,ib are obtained by equation (2.47). The
location of a point p in the Earth reference frame is

r⃗p = ξ⃗t,ib + TeR3(ξ⃗r,ib) ·
(
r⃗⋆p + r⃗⋆f

)
. (4.40)

The Euler rotations to obtain the orientation of point p⃗ are

r⃗pr = ξ⃗r,ib +
Ndof∑
i=1

hip,r · ξ⃗i when ξ⃗i is a flexible mode, (4.41)

where subscript r indicates the rotation components of matrix h.

xe

ze ξ⃗t,ib

p

r⃗⋆f

r⃗⋆p

r⃗p

Figure 4.7: Location of point p.

The velocity of point p in the earth system is

˙⃗rp = ˙⃗
ξt,ib + TeR3(ξ⃗r,ib)

{(
TerR3(ξ⃗r,ib) ·

˙⃗
ξr,ib

)
×
(
r⃗⋆p + r⃗⋆f

)
+ ˙⃗r⋆f

}
, (4.42)

with

˙⃗r⋆f =
Ndof∑
i=1

hip,t ·
˙⃗
ξi when ξ⃗i is a flexible mode. (4.43)

Note that the vector ˙⃗
ξr,ib contains the time derivatives of the Euler angles.

These cannot be used to calculate the rotational velocity of the body. This is
the reason for first transforming this vector to the body system, then computing
the rotation velocity in the body system and finally transforming it back to the
Earth system in equation (4.42).

The acceleration in the Earth system is

¨⃗rp = ¨⃗
ξt,ib + TeR3(ξ⃗r,ib)

{ ˙⃗
ξ⋆r,ib ×

( ˙⃗
ξ⋆r,ib × r⃗⋆p

)
+ ¨⃗
ξ⋆r,ib × r⃗⋆p + ¨⃗r⋆f

}
, (4.44)
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with

¨⃗r⋆f =
Ndof∑
i=1

hip,t ·
¨⃗
ξi when ξ⃗i is a flexible mode, (4.45)

and

˙⃗
ξ⋆r,ib = TerR3(ξ⃗r,ib) ·

˙⃗
ξr,ib,

¨⃗
ξ⋆r,ib = TerR3(ξ⃗r,ib) ·

¨⃗
ξr,ib. (4.46)

The above equation gives the acceleration in the Earth system. The acceleration
experienced by an observer at the point p is obtained by adding the gravity
acceleration vector [0, 0,−g] to the point acceleration and transforming the
resulting acceleration back to the body system.

4.4 Loads

The total force vector used to solve the accelerations (4.33) is equal to

f⃗⋆t = f⃗⋆fkhs + f⃗⋆grav + f⃗⋆sd + f⃗⋆beam + f⃗⋆slam + f⃗⋆cor+

Tb(ϕ, θ, 0)
(
−B(∞) · ˙⃗

ξ⋄ − f⃗⋄rad + f⃗⋄diff

)
+

Tb(ϕ, θ, ψ)
(
−Bu ·

˙⃗
ξ − Cu · ξ⃗ − Ce · ξ⃗sw

)
,

(4.47)

where
f⃗fkhs Froude-Krylov and hydrostatic force,
f⃗grav gravity force,
f⃗sd force by spring/damper element(s),
f⃗beam force by beam element(s),
f⃗slam slamming loading,
f⃗cor Coriolis forces [16],
f⃗rad frequency dependent part of radiation force,
f⃗diff diffraction force,
ξ⃗sw still water deformation (2.38).

Note that the beam elements of f⃗beam are used to connect the different bodies.
These have nothing to do with the beam model described in Section 2.6 used
for the computation of the elastic modes.

The calculation of the slamming force is explained in the next chapter. The
computation of the other force components is explained in this section. The
last part of this section deals with the calculation of the internal loads.
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4.4.1 Radiation force

The frequency dependent part of the radiation force is calculated using the
equation presented by Cummins [8]

f⃗⋄rad,is = B⋄
is(∞) · ξ̇(t) +

∫ t

−∞
K⋄
is(t− τ) · ˙⃗

ξ⋄ dτ, (4.48)

where is indicates the different 3D ship sections, see Section 2.4.1.
It has been shown by [39] that the retardation functions, or memory func-

tions, can be calculated using the frequency domain damping

K⋄
is(t) =

2
π

∫ ∞

0
(B⋄

is(ωe) − B⋄
is(∞)) · cos(ωe · t) dωe. (4.49)

The damping curve is integrated up to the infinite frequency in equation
(4.49). To be able to calculate the damping at high frequencies one needs very
small panels and consequently a large amount of computational power to solve
the hydrodynamic BVP in the frequency domain. Therefore, it is not feasible
to calculate the damping curve up to the point where the damping becomes
equal to its infinite value. The damping curve is extrapolated using a curve
in the form of a

ωb
e

+ c, before the retardation functions are calculated. This
extrapolation is explained in detail in Appendix C.

Equation (4.49) is a so-called Filon quadrature. There are toolboxes avail-
able to solve this equation for an arbitrary damping function. These toolboxes
are not used as the semi-analytical method described below requires less com-
putationally effort.

The damping values are only calculated for a range of frequencies. An
estimation for the curve between the calculated frequencies has to be made.
The damping curve is linearly interpolated between the calculated frequencies.
This allows to solve equation (4.49) partly analytically which saves computation
time. The retardation function is equal to

K(t) =
2
π

Nfreq−1∑
i=1

∫ ωe(i+1)

ωe(i)
(ai · ωe + bi) cos (ωet) dωe, (4.50)

where {
ai · ωe(i) + bi = B

(
ωe(i)

)
− B (∞)

ai · ωe(i+1) + bi = B
(
ωe(i+1)

)
− B (∞)

. (4.51)
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The integral in equation (4.50) is solved analytically for each increment in ωe∫ ωe(i+1)

ωe(i)

[ai · ωe + bi] cos (ωet) dωe =

1
t2

(
−ai cos(ωe(i)t) − aiωe(i)t sin(ωe(i)t) − bit sin(ωe(i)t)

+ ai cos(ωe(i+1)t) + aiωe(i+1)t sin(ωe(i+1)t) + bit sin(ωe(i+1)t)
)
. (4.52)

If t is equal to zero, the integral is simplified to

1
2
aiω

2
e,(i+1) −

1
2
aiω

2
e,(i) + biωe,(i+1) − biωe,(i). (4.53)

The computed radiation force will only depend on a limited time span of the
motion history to reduce the computation effort. This assumption is supported
by the fact that waves generated by the motions much earlier in time are already
far away from the ship and will not contribute significantly to the loading at
the ship.

4.4.2 Froude-Krylov and non-linear hydrostatics

The pressures by the incoming waves and by the hydrostatics are calculated
using the actual position of the body. The position of a point at the body
is calculated using equation (4.40) which includes the deflection by both the
rigid-body and flexible modes. The incoming waves are defined in Section 4.1.

Figure 4.8 illustrates the approximation used to describe the pressure in the
incoming waves [56]2. This is equal to

pfk =
Nfreq∑
i=1

ρgζi(t, xw, ω)ek(ωi)z z < min
(
0, ζtot(t, xw)

)
,

pfk = ρgζtot(t, xw)
(

1 − z

ζtot(t, xw)

)
z ≥ 0 and z < ζtot(t, xw),

pfk = 0 z ≥ ζtot(t, xw),

(4.54)

with ζtot(t, xw) the total wave height, see equation (4.1). This equation is
evaluated in the Earth reference frame. The pressure is set to zero above the
wave surface. The pressure following from the incident wave potential (3.7) is
used below the still water line. A linear interpolation is used above the still
water line as the wave potential is not defined there.

2Many different approximations for the Froude-Krylov pressure can be found in the liter-
ature. This simple approximation is used as there is no general agreement on which approxi-
mation is the most accurate.
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Froude Krylov

Total pressure

Hydrostatic

Wave profile
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Figure 4.8: Froude-Krylov pressure.

The hydrostatic pressure is equal to{
phs = −ρgz z < min

(
0, ζtot(t, xw)

)
,

phs = 0 z ≥ 0 or z ≥ ζtot(t, xw).
(4.55)

Both the Froude-Krylov and hydrostatic pressure are integrated over the surface
using the integration mesh with the Gauss points. The pressure is multiplied
with the mode shape, the normal and the area associated with the Gauss points
to obtain the modal force vector for the total body and the different 3D ship
sections

f i⋆fkhs,is =
∫∫

Sb,is
(pfk + phs) h⃗in⃗ dS. (4.56)

Computation effort is reduced by first calculating the wave height around the
body. All panels which are not wetted are excluded from the above calculations.

4.4.3 Diffraction force

The diffraction force is calculated using the complex RAO for the diffraction
force F⃗D calculated in the frequency domain by equation (3.17). The diffraction
force depends on the actual wave elevation around the body. The location of
the body into the wave direction is equal to xw,ib. The diffraction force in the
time domain is equal to

f⃗⋄diff,is =
Nfreq∑
i=1

ζa(ωi) ·
(
ℜ(F⃗ ⋄

D,is(i)) · cos (ωi · t+ εζ(ωi) − xw,ib · k(ωi)) +

ℑ(F⃗ ⋄
D,is(i)) · sin (ωi · t+ εζ(ωi) − xw,ib · k(ωi))

)
. (4.57)
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Note that xw,ib will be different for every body. Therefore, the above equation
is evaluated for every degree of freedom separately and the xw,ib value of the
corresponding body is used.

The frequencies of the wave components are usually different from the fre-
quencies at which the hydrodynamic coefficients are calculated. The coefficients
of the diffraction force at the wave frequencies are obtained by a linear inter-
polation of the calculated diffraction coefficients.

4.4.4 Gravitation force

The acceleration due to the gravity field is −g in the heave direction, in the
Earth reference frame. A gravity vector g⃗g for all modes is created using equa-
tion (2.48) with a rigid-body vector of [0, 0,−g, 0, 0, 0]T for all bodies. The
modal force due to the gravity acceleration is equal to

f⃗⋆grav,is = m⋆
is · Tb · g⃗g. (4.58)

4.4.5 Coriolis force

The Coriolis force, due to rotation of the body, are calculated for every body
and section separately [16]

f⃗⋆cor,ib,is = − ˙⃗
ξ⋆r,ib × m⋆

(ϕ,θ,ψ,is) ·
˙⃗
ξ⋆r,ib. (4.59)

The force vector is changed to a modal vector using equation (2.48).

4.4.6 Spring-damper element

A spring-damper element can be defined between two bodies or between one
body and a point in the moving Earth frame. This is useful to model, for
example, mooring lines between the bodies or for station-keeping.

p⃗⋆1 cs

ks

p⃗⋆2

Figure 4.9: Spring-damper element.

Figure 4.9 shows a spring-damper element between two bodies. The element
is attached at points p⃗⋆1 and p⃗⋆2. The position and velocity of these points in the



74 Chapter 4. Time domain

moving Earth frame can be calculated using equations (4.40) and (4.42). The
force in the spring-damper element is equal to

fsd0 = ks (||p⃗1 − p⃗2|| − ls0) + bs||
(

˙⃗p1 − ˙⃗p2

)
· s⃗n||, (4.60)

with ls0 is the original length of the spring and s⃗n a unit vector in the direction
of the element

s⃗n =
p⃗1 − p⃗2

||p⃗1 − p⃗2||
. (4.61)

The force in the element may be set to zero for compression when the element
is used to model mooring lines.

This results in a modal force of
f i⋆sd,is = −Tb,R3,ib1 · fsd0 · s⃗n · h⃗ip1 for is body or section of p1,

f i⋆sd,is = Tb,R3,ib2 · fsd0 · s⃗n · h⃗ip2 for is body or section of p2,

f i⋆sd,is = 0 otherwise.

(4.62)

The spring-damper element can also be connected to the moving Earth
frame. In this case, vector p⃗2 will be equal to the connection point in the
steady moving Earth frame and ˙⃗p2 will be zero in that case.

4.4.7 Beam element

Two bodies can be connected with a linear beam element. Note that this is not
the beam model to compute the flexible modes. The user has to provide the
stiffness matrix of the beam Cb which is a twelve by six matrix. The stiffness
matrix provides the forces and moments at the connecting nodes based on the
relative displacement and rotations between the two nodes. Using the Cb matrix
as input allows the user to add any type of linear beam. A description of the
stiffness matrix for a 3D-Euler beam can be found in [7].

As the beam element is designed to connect different floating bodies, it
is assumed that the z-direction of the beam is located in the z-direction of
the body frames and the x-direction of the beam is the line between the two
connection points.

Figure 4.10 shows the beam in a deformed situation. It is necessary to define
a local reference frame zmymzm to compute the beam forces. The bodies may
have also elastic deformations. This causes the orientation of the connecting
node to be different from the body reference frame. Additional local reference
systems are defined at the connecting nodes. The orientation of these points
is calculated using (4.41) and the position of the connection points is obtained
from (4.40).

The xm-axis is located in the direction of the vector from p1 to p2. The
ym-axis is defined by the cross product with the average of vectors z⃗p1 and z⃗p1 .
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xb1

yb1
zb1

xb2
yb2

zb2

p⃗2

xe

yeze

ym

zp1

xp1

yp1

zp2yp2
xp2

p⃗1

δ⃗b

l⃗b0

zm

xm

Figure 4.10: Connection via a deformed beam element.

This gives the beam reference frame the average roll of the two connection
points. The zm-axis is created using the cross product between the x⃗m and y⃗m
unit vectors.

The deformation of the beam in the beam frame is

δ⃗b
m

t = Tm,R3

(
p⃗2 − p⃗1 + TT

p2,R3 · l⃗b0
)
, (4.63)

δ⃗b
m

r = Tm,R3 (p⃗2,r − p⃗1,r) . (4.64)

The resulting force in the beam frame is equal to{
f⃗mbeam,p1

f⃗mbeam,p2

}
= Cb ·

{
δ⃗b
m

t

δ⃗b
m

r

}
. (4.65)

This results in a modal force of
f i⋆beam,is = Tb,R6,ib1 · TT

m,R6 · f⃗mbeam,p1
· h⃗ip1 for is body or section of p1,

f i⋆beam,is = Tb,R6,ib2 · TT
m,R6 · f⃗mbeam,p2

· h⃗ip2 for is body or section of p2,

f i⋆beam,is = 0 otherwise.
(4.66)

4.4.8 Internal loads

The approach to calculate the internal loads in the time domain is almost equal
to the approach used in the frequency domain, see Section 3.3.2.

The internal loads are calculated in the body system. The resultant force
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at a 3D ship section is equal to

f⃗⋆res,is = f⃗⋆fkhs,is + f⃗⋆grav,is + f⃗⋆sd,is + f⃗⋆beam,is + f⃗⋆slam,is + f⃗⋆cor,is+

Tb(ϕ, θ, 0)
(
−Bis(∞) · ˙⃗

ξ⋄ − f⃗⋄rad,is + f⃗⋄diff,is

)
+

Tb(ϕ, θ, ψ)
(
−Bu,is ·

˙⃗
ξ − Cu,is · ξ⃗ − Ce,is · ξ⃗sw

)
−

(m⋆
is + A⋆

is(∞)) ¨⃗
ξ⋆.

(4.67)

The internal load in the plane for the internal load calculation can be obtained
using equations (3.24), (3.25) and resultant force (4.67) at the 3D ship sections.

The modal participation factors can also be used to calculate the internal
loads in the time domain. In this case, equation (3.26) is used to compute the
internal loads using the participation factors calculated for the structural beam
model.



Chapter 5

Slamming loads

The slamming loads are calculated using two 2D methods because these meth-
ods are reasonable fast, robust and can calculate the slamming loads with rea-
sonable accuracy.1 The main focus of this chapter is the approach used to
obtain a direct coupling between the seakeeping and the slamming calculation.
The methodology for solving both problems is quite different. The seakeeping
problem is fully solved as 3D but the slamming is solved using a 2D approach
designed for drop test conditions. In general, the time scale of the slamming
is much shorter than the time scale of the seakeeping problem. This makes it
challenging to couple the calculation of both problems consistently. Note that
the coupling is required to be able to solve hydro-elastic problems accurately.

The developed coupling allows one to account for relative roll motion. The
relative roll motion usually occurs in oblique seas. Only one of the considered
slamming prediction methods is able to account for these roll motions. However,
after the coupling was implemented, it was found that the results obtained
using this approach seem to be only accurate for near head sea cases. Numerical
problems can occur during slamming calculations for headings larger than about
thirty degrees from the head sea condition. In addition, the 2D approach used
has not been validated against experimental data of drop tests which includes
significant roll and sway velocity. In oblique seas, a relative roll and sway
velocity will occur and without validation using drop tests or other experiments
it cannot be judged if the slamming loading obtained by the 2D approach used
is accurate. The author considers, therefore, the 2D approach used to be not
suitable to calculate the slamming loads in real oblique seas.

There is not enough experimental data available in the open literature for
a validation of the 2D slamming loads calculated in near head sea conditions.
Therefore, the validations presented in this thesis are only for head sea condi-
tions.

1The accuracy of the methods and their practical application is shown in the validations
presented in chapters eight, ten, eleven and twelve.
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The first section of this chapter gives more background about the two slam-
ming calculation methods used. The second section gives an introduction of the
approach used to couple the seakeeping program with the slamming calculation
program and explains the creation of the two dimensional sections. The last
section explains the coupling between the seakeeping and slamming calculation
in detail.

5.1 Two dimensional slamming calculation

Two 2D methods for the calculation of the slamming loads are directly coupled
to the seakeeping program. The first method is the Generalised Wagner Model
(GWM) [62] which uses the BEM to solve the weakly nonlinear Wagner impact
problem. The other method is the Modified Logvinovich Model (MLM) [23].
This method is based on the Wagner theory of impact of a flat-disc but ap-
proximately accounts for both the body shape and the nonlinear terms in the
Bernoulli equation for hydrodynamic pressure.

Both methods are developed to calculate the slamming loads for a two
dimensional section entering, or rather falling into, initial still water. Figure
5.1 shows a wedge shaped section with deadrise angle α entering still water.
The dotted line indicates the still water line. The immersion of the section
causes the nearby fluid surface to rise. Jet flows appear at the intersection
between the fluid surface and the body. The resulting pressure distribution is
sketched along the left-hand side of the wedge shown in Figure 5.1. A pressure
peak is observed close to the intersection point c for low deadrise angles. The
intersection point is located at the start of the jet flow where the pressure is
equal to the ambient pressure. The challenging part of the slamming calculation
is computing the uprise of the fluid surface, finding the intersection points and
the computation of the pressure. An approximation can be used for the jet flow
as it does not contribute significantly to the loading of the section.

α

Pslam

c z
y

Jet flow

Figure 5.1: Slamming as a wedge shaped section enters still water.

Both methods allow only of sectional shapes which are monotonically in-
creasing in width, for increasing draught. The section geometry may be asym-
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metric, for example due to relative roll displacement. Both methods use a
prescribed velocity profile. The velocity perpendicular to the still water line
is the main input for the methods. The GWM also allows for roll and sway
velocity. The methods can only handle the entry problem. The exit problem
is not handled at all in this thesis. The slamming force is assumed to be zero
during the exit phase.

Both methods assume the fluid to be incompressible, with non-rotational
flow and with a velocity potential satisfying the Laplace equation

∂2φ

∂y2
+
∂2φ

∂z2
= 0. (5.1)

The effect of gravity is not included in the calculation. There will be no gener-
ation of waves due to the lack of gravity. It is also not possible to account for
possible air entrapment in the slamming calculation.

Both methods cannot handle impact of flat bottom sections. The slamming
force at flat bottom sections is estimated by using section shapes with a small
curvature of the bottom part.

The GWM is very well validated by analytical solutions, experimental re-
sults of drop tests and comparison with CFD results in a number of reports and
papers, examples are [62, 63, 47, 22]. The MLM method is also validated using
experimental results and by using GWM results, see [23, 27]. The validations
are mainly done for symmetric sections, some validation is available for asym-
metric sections or symmetric sections with constant roll angle. However, to
the author’s knowledge, there is no validation work done for sections entering
the water with roll and/or sway velocity. Only the calculated slamming force
occurring during seakeeping in head seas will be validated in this thesis. The
calculated 2D slamming force during drop tests is assumed to be already well
validated and to be sufficiently accurate.

The main advantage of the MLM method is that the method is much faster
compared to the GWM method. The MLM method is also more robust. How-
ever, the GWM method has a wider domain of validity. Where the MLM
method can only be used for blunt section shapes, the GWM has been vali-
dated for wedge shaped sections with a deadrise angle up to 81 degrees. The
approach used in this thesis to handle bulbous bows, changing them to be
monotonically increasing in width, will result in relatively slender sections and
the slamming loads at those sections can only be calculated accurately using
the GWM model. It is advised to compare results using MLM and GWM for
a few slamming events to judge if the MLM approach can be used for bows
without a bulb.
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5.1.1 Generalised Wagner Model

The program described in [46] is used to calculate the slamming pressure and
resulting forces using the GWM method. This program is partly used as “black
box”. Therefore, the used theory and the numerical implementation is not fully
explained here. These details can be found in [62].

A BEM is used by the GWM method to solve the velocity potential. The
kinematic free-surface condition requires that the fluid particles remain at the
free surface. This is automatically satisfied as the elevation of the free surface
is obtained by integrating the fluid velocity at the free surface. The dynamic
free-surface condition is applied at the exact free surface and is equal to

Dφ

Dt
=

1
2

[(
∂φ

∂y

)2

+
(
∂φ

∂y

)2
]
. (5.2)

The body boundary condition on the wetted body surface is equal to

∂φ

∂n⃗
= v⃗ · n⃗, (5.3)

where n⃗ is the normal of the surface and v⃗ is the velocity of the body surface.
Boundary elements are placed at both the wetted surface and the free sur-

face. The element distribution for a symmetric problem is shown for some time
steps of the calculation in Figure 5.2. The free surface elements are located at
the still water surface at the first time step. This is because the initial potential,
free surface velocity and displacement is set to zero for the first time step. The
panel distribution at the body and at the free surface is refined near the inter-
section point. This allows to better account for large gradients of the pressure
at the body and for the large curvature of the free surface. The total length
of the free surface mesh is proportional to the wetted surface length to ensure
that the fluid velocity at the endpoints of the free surface mesh is negligible.

t = 0s t = 0.2s t = 0.4s t = 0.6s t = 0.8s

Figure 5.2: A GWM slamming calculation.

The BVP is solved for each time step of the slamming computation. The
pressure at the body surface is calculated using the Bernoulli equation. The
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forces are obtained by integration of the pressure. The velocity of the free
surface is integrated to obtain the new position of the free surface. A new mesh
is created using the updated position of the body and the free surface and the
BVP is solved for the next time step. The size of the time step is based on the
geometry at the intersection point and is different for every step.

5.1.2 Modified Logvinovich Model

The theory of the MLM method is described in [23] and [27]. The MLM method
calculates the location of the contact or intersection points by solving the Wag-
ner condition for the real shape of the section. The pressure is calculated using
a flat plate assumption between the contact points and using also the non-linear
terms in the Bernoulli equation.

The absence of the gravity contribution makes the uprise of the fluid surface
only dependent on the immersion of the section and not the velocity history.
This allows to a priori calculate the location of the contact points for a range
of draughts before calculating the slamming loads.

f(y) − ξr(t)
z

τ = −1

−b
2A

B
ya

τ = 1

Figure 5.3: The definitions for the MLM method.

The location of the contact points b(t) and a(t) are shown in Figure 5.3.
Both contact points are located at z = 0. The actual shape of the section is
described by the function

z(y, t) = f(y) − ξr(t), (5.4)

where f(y) describes the section in the initial position and ξr(t) is the relative
displacement of the section in time. The wetted part lies between the contact
points. The half width and the asymmetry characterization of the wetted part
are

A(t) =
1
2
(a+ b), B(t) =

1
2
(a− b). (5.5)
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The location of the contact points can be found by solving the Wagner
condition. A path over the wetted surface of the section is defined first. The
actual shape of the section using a path from τ = −1 to τ = 1 is

G(τ, t) = f
(
y(τ, t)

)
− ξr(t), y(τ, t) = A(t)τ +B(t). (5.6)

This is used to write the Wagner condition

1∫
−1

G(τ, t)
[1 + τ

1 − τ

] 1
2
dτ = 0, (5.7)

1∫
−1

G(τ, t)
[1 − τ

1 + τ

] 1
2
dτ = 0. (5.8)

These last equations can be written as

1∫
−1

f
(
y(τ, t)

)
dτ

√
1 − τ2

= πh(t),

1∫
−1

f
(
y(τ, t)

)
τdτ

√
1 − τ2

= 0. (5.9)

Differentiating these equations in time and taking A as a new time-like variable
results in a system of Ordinary Differential Equations (ODE)

dh
dA

=
1
π

[
S1 − S0

S2

S1

]
,

dB
dA

= −S2

S1
, (5.10)

where

Sn(A,B) =

1∫
−1

fy
(
y(τ, t)

)
τndτ

√
1 − τ2

, (5.11)

and fy is the directional derivative of the section shape.
This system is solved by integrating h and B using a fourth order Runge-

Kutta scheme, see Section 4.3.2, with equidistant steps of the variableA. As A is
the half width of the wetted length, the maximum possible value of A is known in
advance. The integration of variables h and B is done using a step size ∆A equal
to one thousands of the length of A to ensure that the location of the contact
points can be calculated accurately for all possible relative displacements of the
section.

The initial values of h, B and A for solving equation (5.10) are zero if the
section was fully emerged before the start of the slamming event. If the section
did not fully emerge from the water, the initial values are calculated using the
still water line at the time the relative velocity starts to point downwards.

The integral in equation (5.11) is solved using the points describing the
geometry of the slamming section. The section shape is assumed to be linear
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between the points defining the slamming section which makes the derivative
of the function f(y) constant for each segment of the section. This allows to
calculate the integrals of equation (5.11) using the functions

β∫
α

dτ√
1 − τ2

= arcsinβ − arcsinα, (5.12)

β∫
α

τ dτ√
1 − τ2

= −
√

1 − β2 +
√

1 − α2, (5.13)

β∫
α

τ2 dτ√
1 − τ2

=
1
2
[arcsinβ − arcsinα] − 1

2
[β
√

1 − β2 − α
√

1 − α2]. (5.14)

The slamming pressure is solved for equidistant time steps. The relative
displacement of the section at the time steps is known by integrating the pro-
vided velocity curve. The location of the contact points is known for a range of
relative displacements. Linear interpolation based on the relative displacement
is used to obtain the location of the contact points at the time step for which
the slamming pressure is calculated.

The slamming pressure depends on the velocity of the contact points. These
are

ȧ = ξ̇r
π(S1 − S2)
S2

1 − S0 · S2
, (5.15)

ḃ = ξ̇r
π(S1 + S2)
S2

1 − S0 · S2
. (5.16)

The pressure at the contact region is found by solving, or rather approx-
imating, the potential around the flat plate analytically and using non-linear
terms in the Bernoulli equation. This derivation can be found in [23]. The
resulting pressure distribution is

Pslam(y, t) =
1
2
ρξ̇rȧ

√
b+ y

a− y
+

1
2
ρξ̇r ḃ

√
a− y

b+ y
− 1

8
ρξ̇2r

(a− b− 2x)2

(a− y)(b+ y)(1 + f2
y (y))

−1
2
ρξ̇2r + ρξ̈r[

√
(a− y)(b+ y) + f(y) − ξr(t)].

(5.17)

This pressure becomes negative near the contact points. Only the positive
pressure is considered

Pslam(y, t)(+) =

{
Pslam(y, t) Pslam(y, t) ≥ 0
0 Pslam(y, t) < 0

. (5.18)
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The vertical slamming force is

fslam,z =

a(t)∫
−b(t)

Pslam(y, t)(+) dy. (5.19)

5.2 Creation of slamming sections

The 2D slamming sections are created during the pre-processing phase described
in Section 2.1. The creation of the 2D geometry of the slamming sections is
explained in the first part of this section. Normals to the slamming sections
scaled with the length of the sections are used to integrate the slamming pres-
sure. The reasons for using these scaled normals and the calculation of the
scaled normals are explained in the last two parts of this section.

5.2.1 Slamming section geometry

The 2D slamming sections are defined by the user by creating planes defined by
reference points and normals to the planes. This allows to tilt, i.e. pitch, the
sections to account better for the relative velocity at the bow. It also allows
to give the section a yaw angle which can be used to define slamming sections
perpendicular to the wave for oblique seas.

The transformation matrix between the body system and the orientation of
a slamming section is defined as

p⃗s = Ts · p⃗⋆ + O⃗s, (5.20)

where point p⃗s is defined in the slamming section reference frame and p⃗⋆ is the
same point observed in the body frame, see Figure 5.4. The transformation
matrix consists of the three unit vectors of the slamming frame observed in
the body frame, Ts = [e⃗1, e⃗2, e⃗3] where e⃗1 is the unit vector along the defined
normal and e⃗2 is a unit vector in direction [−e1,y, e1,x, 0]. The last vector is
obtained by the cross product between the previous two, e⃗3 = e⃗1 × e⃗2.

z⃗b
y⃗b

z⃗s

x⃗b

x⃗sy⃗s

O⃗sG⃗

Figure 5.4: Slamming section reference frame.

Next, the integration mesh is transformed to the slamming section reference
frame. The same approach as described in Section 2.3 is used to create the
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geometry of the 2D slamming section. The section is defined in the plane xs = 0
because the slamming section reference frame is used. The section geometry is
smoothed. This smoothing is required as the slamming calculation is sensitive
to distortions in the geometry which are usually present because of the meshed
geometry used to create the sections.

Both slamming calculation methods can only handle sections that are mono-
tonically increasing in width for an increasing draught. This will not be the case
for bulbous bows. Figure 5.5 illustrates the modifications made for a bulbous
bow. For further clarification, see also Figure 1.5. Some section cuts contain
a part of the bulb which is detached from the bow part of the section. These
separate bulb parts are removed. All inward inclined parts of the section will
be removed when the bulb is attached to the bow part of the section. Removing
the inclined parts of the section may not be such a crude approximation as the
fluid flow will separate from the section at the inclined parts. This causes the
actual fluid flow to follow the monotonically increasing section more than the
original inclined section.

original modified

Figure 5.5: Removing the bulb and the inclining parts of the sections.

5.2.2 Pressure integration

After the slamming pressures are calculated using one of the 2D methods, the
excitation of the 3D ship structure due to the slamming needs to be computed.
A common approach is to calculate the slamming load as a single force vector
acting in the section plane, multiply the force with the length of the section
and calculate the response of the ship to this force. A different approach is
used in this thesis. The excitation of all modes, including the flexible modes, is
calculated by integrating the slamming pressure multiplied by the mode shape
over the part of the 3D mesh which is associated with the 2D section. Figure
1.5 shows these sections of the 3D mesh used for the pressure integration. The
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method has several advantages over the more traditional method:

• The orientation of the 2D slamming sections is defined by the user and is
constant during the calculation. When the slamming loading is calculated
as a single force in the plane of the section, the orientation of this force is
also prescribed by the user when choosing the orientation of the slamming
sections. By integrating the pressure over the 3D mesh, the orientation
of the resulting slamming force depends on the 3D geometry of the ship
and not on the orientation of the 2D sections. The verification in Section
8.2.4 will show that the calculated slamming force is not very sensitive to
the selected orientation of the slamming section when using the pressure
integration method. This is a favourable property since the direction of
the relative velocity is not known in advance and will be different for every
slamming event.

• The mode shape obtained from a beam model of a ship is reasonably
constant over the 2D sections. This makes the traditional approach valid.
The modal response to the single section force will be correct. Mode
shapes from a 3D FEM model are usually not constant over the section.
As the pressure distribution found for slamming is very variable in time
and location, the modal excitation will also be variable. Projecting the
pressure onto the mode shape is the only correct way to calculate the
excitation of flexible modes obtained from a 3D-FEM computation.

• The loads at specific parts of the ship, e.g. a bow door, can only be
obtained using the pressure integration method. This is not possible when
a single force is used for every section except if the slamming sections
exactly fits the part where the slamming force is required.

The modal excitation force by the slamming pressure integrated on the 3D
mesh is equal to

f⃗ is =
Nslam∑
is=1

∫∫
Ss

ps · h⃗i · n⃗ dSs, (5.21)

where
Nslam number of slamming sections,
ps slamming pressure,
Ss surface of a slamming section,
n⃗ normal of 3D slamming section geometry.

Equation (5.21) is transformed into a line integral for every section to allow
for fast and robust calculations of the modal slamming excitation

f⃗ is =
Nslam∑
is=1

∫
Ls

ps · h⃗is(l) dl, (5.22)
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where Ls defines the contour of the section, and where

hs(l) dl = h
∫
n⃗ dw. (5.23)

The integral on the right-hand side of equation (5.23) is performed over the
length of the section. Note that it is assumed that the mode shape is constant
over the section length. The value of hs(l) does not change during the slamming
calculation and is calculated in the pre-processing phase.

5.2.3 Slamming section scaled normal

The geometry of the 2D slamming sections is created in the pre-processing
stage, see Figure 2.4. The program used does not only create the geometry,
but it also generates the scaled normals. The mode shapes for the points of the
slamming section will be generated by other programs during the pre-processing
stage. The mode shapes and scaled normals will be combined by the seakeeping
program using equation (5.23) to hs(l), which is needed in equation (5.22).

Two methods are implemented to calculate the scaled normal vector
R

n⃗ dw
dl .

The first method is fast but is not always accurate and robust. The second
method is more accurate and robust but requires more computational effort.

For the first, fast method, are not only the 2D slamming sections created
but also are intermediate sections at boundaries of the 2D sections, as is shown
in Figure 5.6. These intermediate sections will be used to compute the scaled
normal vector. However, this computation can only be accurate if the difference
in geometry between the main and the intermediate sections remains small.
This will not be the case if a section would include the upper intersection point
of the bow with the bulb. This “bulb point” is indicated in Figure 5.6.

The first step of avoiding the “bulb point” to be at a section is to change
the distance between the slamming sections before and after this point such
that the boundary between two sections is located exactly at the “bulb point”.
Two intermediate sections are created at this “bulb point”. One includes the
bulb, which is used for creating the scaled normal for the section aft of the bulb
point, and so the bulb is excluded for the other intermediate section used for
the forward section. This ensures that the geometric differences between the
main and the intermediate sections remain small.

The scaled normal vector is calculated for every point along the 2D sec-
tion. Figure 5.7 illustrates how this vector is created. The section and the two
intermediate sections are divided using an equal number of equidistant points
(a). The width per length for every point of the section is calculated using the
“panels” which are created by the points at the intermediate sections (b). The
area of one panel is equal to 1

2 · ||v⃗s2 × v⃗s3|| (c). The direction of the normal is
obtained by the cross product of vectors v⃗s2 and v⃗s3. The width per length is
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fore of “bulb point”
“bulb point”
aft of “bulb point”

Figure 5.6: Intermediate sections.

equal to the area of the panel divided by the length of vector v⃗s1. This gives
the following formula for the scaled normal vector

∫
n⃗ dw
dl

=
1
2
· v⃗s2 × v⃗s3

||v⃗s1||
. (5.24)
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Figure 5.7: Creation of scaled normal vector with the fast method.

The second, accurate but intensive calculation method is illustrated in Fig-
ure 5.8. Every section is actually cut out of the 3D mesh. Then, for every point
at the slamming section, the associated part of the section is cut out and the
area times the normal is integrated over the resulting geometry and divided by
the vector v⃗s1 shown Figure 5.7. The associated part of one point of the 2D
section is indicated with a darker gray color in Figure 5.8.
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Figure 5.8: Creation of a scaled normal vector with the cutting method.

5.3 Coupling between seakeeping and slamming

The next step is the coupling between the seakeeping and the slamming pro-
gram. An overview of the approach used is given in the first part of this section.
The calculation of the relative velocity is explained in the second part. The
third part explains when and how a slamming calculation is initialised. The
coupling between the slamming calculation in the time integration scheme of
the seakeeping program is the subject of the fourth part of this section. The
last part explains the changes to the original slamming calculation programs
which are necessary to be able to couple them to the seakeeping program.

5.3.1 Approach

Figure 5.9 illustrates the coupling between the seakeeping program and the
slamming calculation program. The shapes of the 2D slamming sections, the
mode shapes, the scaled normals and user settings are read at the initialisation
at the start of the time domain seakeeping calculation. The box with the
integral sign indicates the calculation of the accelerations and integration of the
motions by the seakeeping program as explained in the previous chapter. The
seakeeping program uses a time step ∆tsk. The slamming forces are computed
using a much smaller time step ∆tsl which can be variable. This requires an
additional integration within the slamming computation module.

It is checked if the conditions are met, to start a slamming calculation, at
the start of every new time step in the seakeeping calculation. A slamming
calculation is started if the relative velocity is above the user defined threshold
and the slamming section should also have a minimum immersion which is
also defined by the user. This minimum immersion is necessary to be able to
start the GWM slamming computation. This check is performed for all defined
slamming sections which are not active. The slamming calculation is initialised
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check start slam event

initialise slam event

check end slam event

MLM or GWM State
Store

t = t+ ∆tsk
∫ Relative motions

t = 0

Modal slamming forces

t = t+ ∆tsl

initialisation

Figure 5.9: Approach for coupling between the seakeeping and the slamming
calculations.

if the starting conditions are met.
The relative motions are calculated for the active slamming sections by the

seakeeping program during the calculation of the load vector. The relative mo-
tion is the input for the slamming programs to calculate the modal slamming
force for the current time step. Since, the slamming force depends on the his-
tory, i.e. uprise of the free-surface, the state of the different slamming sections
is stored and used for the next time step.

When the calculations for the seakeeping time step are finished, it is checked
if a slamming event should be ended. This will be the case if the relative velocity
is lower than the user defined threshold. A too low relative velocity will cause
instabilities of the GWM slamming computation.

Coupling the seakeeping and the slamming program will result in the fact
that the effect of the added mass acceleration at the slamming sections is ac-
counted for twice. It is included in a linear fashion in the radiation force and
in a non-linear fashion in the slamming force. This double counting is not cor-
rected as the non-linear slamming force is usually much higher than the linear
radiation contribution.

5.3.2 Calculation of relative motion

The relative motion is calculated in the plane of the slamming sections as shown
in Figure 5.10. The relative motion between the section and the undisturbed
wave profile observed in the z-direction of the slamming section reference frame
is used.

Due to the possibility of oblique seas, the relative motion may vary along
the width of the section. This is illustrated in Figure 5.10, the intersection
between the wave surface and the plane of the section is not a straight line.
This effect cannot be taken into account for the slamming calculation as an
initial still free surface is assumed for the slamming calculation. The relative
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Figure 5.10: Relative displacement.

motion is calculated at three points and a linear interpolation function over
the section is used to estimate the relative motion distribution over the section.
One calculation point ps1 is located at the lowest point of the section and the
other two calculation points are located at the end points of the section, as
shown in Figure 5.10. The interpolation function of the relative displacement
at the section is 

ad · ys1 + bd · zs1 + cd = ξsr,1

ad · ys2 + bd · zs2 + cd = ξsr,2

ad · ys3 + bd · zs3 + cd = ξsr,3

, (5.25)

where y and z are the coordinates of the three points, superscript s indicates
the slamming section reference frame and ξr the relative displacement. Solving
this system of equations allows the calculation the of relative displacement at
every point of the section using

ξsr(y
s, zs) = ad · ys + bd · zs + cd. (5.26)

The relative velocity distribution over the section is obtained by using the same
approach.

The 2D slamming calculation methods can only handle motions of rigid
sections. Therefore, a single velocity vector for the whole section is used as input
for the slamming calculation. Note that the result of a slamming calculation
is the pressure distribution which allows one to calculate the excitation for
all modes even when a rigid section is assumed by the slamming calculation
program. To obtain an average or rigid-body motion of the sections the average
mode shape of the section with respect to the calculation points is calculated.
Using this average mode shape and the calculation point coordinate in equations
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(4.40) and (4.42) results in the average displacement and velocity for the section
at the calculation points.

A numerical approach is used to calculate the relative motions. This is
because the relative motions should be calculated in the plane of the slamming
sections which may be tilted in the pitch direction and rotated in the yaw
direction. The plane is also defined at a moving ship. The author is not aware
of any analytical solution to compute the relative motions for this problem.

The relative displacement ξsr,i is the distance between the calculation points
at the slamming section psi and the intersection with the surface of the waves,
see Figure 5.10. This intersection is found using a numerical iteration scheme.
Figure 5.11 illustrates the numerical approach used to calculate the relative
velocity. The relative displacement is calculated for a time step before and after
the actual time step. The wave elevation is known for every time step, but the
displacements of the ship are not known for the next time step. Therefore, the
velocities of the ship are used to make an estimation of the displacement of the
ship at the previous and next time steps. The relative velocity is equal to

ξ̇r(t) =
ξr(t+ ∆t) − ξr(t− ∆t)

2∆t
, (5.27)

with
ξ⃗(t± ∆t) = ξ⃗(t) ± ˙⃗

ξ(t) · ∆t. (5.28)

Note that the time step ∆t used for computing this derivative is not necessarily
the time step of the seakeeping computation. Therefore, the displacement at
the previous time step is not necessarily known and is therefore also estimated.

ξr(t)

ξ⃗(t)

ξr(t− ∆t)

ξ⃗ = ξ⃗(t) − ˙⃗
ξ(t)∆t

ξr(t+ ∆t)

ξ⃗ = ξ⃗(t) + ˙⃗
ξ(t)∆t

Figure 5.11: Calculation of relative velocity.

The relative velocity calculated by equation (5.27) is used for the decision
to start a slamming calculation. The relative velocity is the main input for the
slamming calculation and a higher order differentiation scheme is used to obtain
a smoother velocity input for the slamming calculation. This is important to
obtain a stable slamming calculation. This higher order scheme is equal to

ξ̇r(t) =
−ξr(t+ 2∆t) + 8ξr(t+ ∆t) − 8ξr(t− ∆t) + ξr(t− 2∆t)

12∆t
, (5.29)

again using the estimated displacements (5.28).
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The MLM slamming calculation requires also the relative acceleration. The
same approach as used to calculate the relative velocity is employed to calculate
the relative accelerations. The displacement of the ship is estimated in this case
by

ξ⃗(t± ∆t) = ξ⃗(t) ± ˙⃗
ξ(t) · ∆t± ¨⃗

ξ(t) · ∆t2, (5.30)

and the relative acceleration is equal to

ξ̈r(t) =
ξr(t+ ∆t) − 2ξr(t) + ξr(t− ∆t)

2∆t
. (5.31)

The relative motion is calculated in the slamming section reference system
using the previous formulae. These relative motions cannot be used directly as
the slamming calculation requires the motions in a different reference system
which has a fixed orientation towards the water line. These differences in ref-
erence frames are illustrated in Figure 5.12. The origins of both systems are
aligned.

ys
zs zs∗

ys∗

θs

Figure 5.12: Difference between the slamming section system and the slamming
calculation reference frame.

These differences in reference frames will only appear for calculations in
conditions where relative roll motion occur. The systems will be aligned without
relative roll displacement. The calculation as described below will be ignored
for head sea calculations to reduce the computational effort.

The GWM slamming calculation is the only method which allows for relative
roll motion. It was first tried to calculate the relative velocity in both the
downward and sidewards direction. The combined sway, yaw and roll motions
of the ship can cause a significant velocity in the sidewards direction at the
intersection with the still water line. It appeared that the GWM is very sensitive
to this sidewards velocity. The method fails to keep the intersection points at
the correct position when the sidewards velocity is included. This problem
causes the computed slamming force to be incorrect and resulted sometimes in
numerical instabilities. This problem is avoided by not transferring the actual
relative sidewards motions of the section but transferring instead a sidewards
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velocity that compensates the roll induced sidewards motion at the still water
line.

The intersection with the waterline is calculated using the linear interpola-
tion function of equation (5.26)

ξsr(y
s) = 0 =

−cd − ad · ys

bd
. (5.32)

This allows to calculate the relative roll angle as

θs = arctan
(
−ad
bd

)
. (5.33)

The relative velocity at the waterline is used as input for the slamming
calculation. The relative velocity distribution at the waterline is found by
substituting equation (5.32) into the interpolation function (5.25)

ξ̇sr(y
s) = av · ys + bv · zs + cv, (5.34)

ξ̇sr(y
s) = av · ys + bv ·

(
−cd − ad · yp

bd

)
+ cv, (5.35)

ξ̇sr(y
s) =

(
av −

bv · ad
bd

)
ys − bv ·

cd
bd

+ cv, (5.36)

where av, bv and cv are the interpolation constants for the relative velocity
distribution over the section. This allows one to calculate the relative velocity
at the water line at ys = 0 in both the zs and θs direction

ξ̇sr,z = −bv ·
cd
bd

+ cv, (5.37)

ξ̇sr,θ = av −
bv · ad
bd

. (5.38)

The velocity ys in the direction ξ̇sy is computed such that is cancels the sidewards
velocity that is induced by the roll motion. This makes the slamming calculation
more stable for oblique seas. The relative velocity in the slamming calculation
system is equal to

ξ̇s
∗
y = −θs · ξs

∗
z , (5.39)

ξ̇s
∗
z = ξ̇sr,z · cos(θ) + ξ̇sy · sin(θ), (5.40)

where the displacement in the z-direction of the slamming calculation frame
equals

ξzs∗ =
cd√
a2
d + b2d

. (5.41)



5.3. Coupling between seakeeping and slamming 95

5.3.3 Initialisation slamming calculation

A slamming calculation is initialised when the relative velocity is above a user
defined threshold and the immersion of the section is larger than the user defined
threshold. The slamming calculation is stopped as soon as the relative velocity
drops below an user defined threshold, this can be a different value than used
for starting the slamming calculation.

The choice of these thresholds has a large influence on the stability of the
GWM slamming calculation. For low relative velocity, lower than [1m/s] for
normal ships, the calculation can become instable. The BEM problem of the
GWM-method can only be formulated if the section has some initial immersion
at the start of the calculation. Otherwise it would not be possible to create
BEM-elements at the wetted geometry. If the initial immersion is very small,
the GWM calculation will require much more computational effort in the initial
stage of the slamming impact due to the small panel size resulting in a very
small time step. Using a large initial immersion will neglect a part of the initial
slamming impulse and a part of the uprise of the free surface for the remaining
slamming calculation. The MLM calculation is stable as long as the relative
velocity is directed downwards. MLM does not need any initial immersion to
start the calculation.

The time step of the seakeeping calculation is usually quite large compared
to the time scale of the slamming event. Figure 5.13 illustrates the approach
for starting the slamming calculation. The top pictures show the relative dis-
placement of the section for two successive time steps and the time step where
the slamming calculation is started. The same relative displacement is plotted
in the three graphs at the bottom. The small line in the section and the dashed
line in the graphs indicated the user defined minimum immersion. At time step
tn the section is above the water so the slamming calculation is not started. At
the next time step tn+1 the section is already in the water and the immersion
is larger than the threshold. As shown in the figures on the right-hand side
in Figure 5.13, an interpolation is made backwards in time until the relative
displacement is equal to the threshold. The slamming calculation is started
from that point.

The relative velocity also is a conditional for the start of a slamming calcu-
lation. The slamming section may have already enough relative displacement
during a few seakeeping time steps before the relative velocity criteria is met.
The slamming calculation will be initialised at the first interpolated time step
where either the minimum immersion threshold is exactly met or at the time
step where the relative velocity becomes larger than the minimum relative ve-
locity threshold set by the user which is also used for stopping the slamming
calculation. This initialisation may span multiple time steps of the seakeep-
ing calculation. Only the slamming force of the last seakeeping time step will
be transfered to the seakeeping program. The slamming forces obtained for



96 Chapter 5. Slamming loads

ξ r

t

tn

ξ r

t

tn+1

ξ r

t

start slam

Figure 5.13: Moment of initialisation of slamming calculation.

previous time steps during initialisation are neglected for this case.
There are two reasons for starting the slamming calculation at the inter-

polated time step and not at the time step of the seakeeping calculation. The
first reason is that otherwise the first part of the slamming impulse would be
lost. The other reason is only applicable to the GWM. The GWM calculates
the uprise of the free surface by integrating the velocity of the free surface dur-
ing the slamming event. A correct prediction of the uprise is important for
a correct calculation of the slamming force. A part of the uprise will be ne-
glected by starting the calculation at a large immersion, lowering the calculated
slamming force for the whole slamming event. The MLM model uses a semi-
analytical solution for the uprise which is not affected by the starting point of
the calculation.

5.3.4 Coupling the integration scheme

The coupling between the seakeeping calculation and the slamming calculation
depends on the Runge-Kutta integration method used in the seakeeping cal-
culation as described in Section 4.3.2. The time-scale of the slamming event
is usually much smaller compared to the time-scale of the seakeeping problem.
The duration of the slamming event is usually only a few time steps of the
seakeeping calculations. In order to obtain the correct whipping amplitude, the
impulse of the slamming should be integrated correctly.

Figure 5.14 shows the approach to integrate the slamming force. In this case
the conditions for a slam event are satisfied at time step tn+1. The slamming
calculation is initialised at a time before time step tn+1 where the slamming
conditions are exactly met, as explained in the previous section. The slamming
calculation is continued until tn+1 after initialisation. There are many time
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steps of the slamming calculation between the initialisation and tn+1. The
slam force f11 is the average slamming force between time steps tn and tn+1

and is used to calculate the acceleration in the first Runge-Kutta step.

t
tn tn+1 tn+2

f11

f12

f13
f14

f21

f s

2

3
4

1

1

Figure 5.14: Integration of slamming force.

For the second Runge-Kutta step an estimation for the motions at tn+1+1
2∆t

is made and the average slamming force from tn+1 until tn+1+ 1
2∆t is calculated,

f12. In the third Runge-Kutta step another estimation is made for the motions
at tn+1+ 1

2∆t. To calculate the slamming force associated with this new motion
estimation, the slamming calculation is restarted in the state at tn+1 and re-run
until tn+1 + 1

2∆t using the new estimation of the motions. f13 is the average
slam force of this last calculation and is used to calculate the accelerations for
the third Runge-Kutta step. For calculation of the average slamming force for
the fourth Runge-Kutta step f14 and the first Runge-Kutta step for the next
time step f21 the slamming calculation is run from the tn+1 until tn+2.

The slamming calculation is started from the state at time step tn+2 for all
Runge-Kutta steps to calculate the motions at tn+3. The slamming calculation
continues until the relative velocity drops below the user defined threshold.

This approach ensures that the slamming force is correctly integrated in
time. The resulting impulse and whipping response should be independent of
the selected time step of the seakeeping calculation when using a time step
which is a few times smaller than the duration of the slamming events. This
will not be the case if simply the actual force of the slam at the seakeeping
time steps would be used. Using a time step which is in the same order as the
slamming events will cause inaccuracies because the relative velocity curve will
not be well described and/or the slamming events might be missed completely.

5.3.5 Coupling the slamming calculation method

All input necessary for the calculation of the slamming loads has been derived
in the previous sections. This section describes the changes to the two methods
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for calculation of the slamming loads to be able to couple them directly with
the seakeeping calculation.

The modifications to the GWM, described in Section 5.1.1, are explained
first. The coupling with the seakeeping integration scheme requires one to cal-
culate the slamming loads between the time steps of the seakeeping calculation.
The time step of the GWM is driven by the relative geometry between the sec-
tion and the free surface. This results in the time step being different for every
step of the slamming calculation. Figure 5.15 illustrates the actual coupling
with the seakeeping calculation. This figure is an enlargement of Figure 5.14
with the lines of the intermediate Runge-Kutta steps removed. The small dots
indicate the time steps of the GWM slamming calculation. In general, the
time steps are much smaller compared to the average seakeeping time step.
This allows one to run the GWM calculation until the first time step which is
larger then the required time. This time step will also be the starting point for
the next calculation. The average slamming load for a seakeeping time step is
calculated using an integration of the slamming load with the trapezium rule
between the first and last time step of the GWM calculation and dividing the
result by the total time of the GWM calculation.

f s

tn+2tn+1

f21

t

1

1

Figure 5.15: Integration of slamming force for GWM.

Equation (5.22) allows to calculate the modal force by a line integral. The
mode shapes hs(l) are available for all points describing the slamming section,
see Section 5.2. However, the pressure is calculated for the GWM panels which
have a different geometry for every time step. The approach to calculate the
modal force is illustrated in Figure 5.16. The slamming section segments are
divided into two segments and are associated to the nearest point. The average
pressure at these new segments is calculated assuming a constant pressure at the
GWM panels. The integral in equation (5.22) is computed by a summation of
these average pressures multiplied by hs(l) and the length of the new segments.
Not only should the modal slamming forces for the body be calculated, but
the modal forces at the different sections of the body are also required. The
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summation of the slamming force is repeated for all 3D sections of the body
for internal load calculation. Only the slamming section points present at the
3D sections are taken into account in order to calculate the sectional forces in
order to compute the internal loads.

Panels of GWM
calculation,

Section segments,
mode shapes known

pressure known

Figure 5.16: Calculation of modal force using GWM pressure.

The other slamming calculation method is the MLM method. The slamming
pressure and resulting force can be calculated for every relative displacement
and therefore every time step using the MLM method. This allows one to
full compatibility with the time steps of the seakeeping calculation. The av-
erage slamming force during a seakeeping time step is calculated using twenty
equidistant time steps in MLM.

Figure 5.17 illustrates the calculation of the modal force. The same ap-
proach as for the GWM is used. The average pressure is also calculated, but
the MLM pressure is only defined at the flat plate at the still water line. This
pressure is integrated as if it would act on the geometry of the slamming sec-
tion. The MLM pressure is a continuous function and ten equidistant points
for every segment of the slamming section are used to calculate the average
pressure at a segment.

A part of the MLM pressure, see equation (5.18), is proportional to the
relative accelerations. This part is usually referred to as added mass and nor-
mally all added mass contributions should be added to the left-hand side of
the equation of motion. This approach is not followed for this MLM added
mass as the equation of motion is only solved for the seakeeping time steps.
These time steps are usually too large for an accurate integration of the con-
tribution of this added mass. Another problem is that this added mass is in
the slamming section reference frame and is defined relative to waves where
the motions are solved in the Earth system. The accelerations found for the
previous Runge-Kutta (prediction) step are used to calculate the contribution
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Figure 5.17: Calculation of modal force using MLM pressure.

of the added mass.



Chapter 6

Time domain seakeeping load
to 3D-FEM

The seakeeping loads and responses are solved in the time domain using the
theory presented in the fourth chapter. The response of the elastic modes is
known from this computation and therefore the global structural response can
be reconstructed. The local response of the ship structure to the sea loads,
which can include slamming loading, cannot be derived accurately using the
modal approach except when many relevant mode shapes are included in the
seakeeping calculation.

The local structural response can be calculated by transferring the time
history of the seakeeping loads to a 3D-FEM model and by solving the structural
response within the FEM program. This chapter describes the transfer of all the
hydro-elastic seakeeping loads, which contribute significantly to the structural
response, to the FE model of the structure.

An introduction about the approach used is given in the first part of this
chapter. A few geometric issues are discussed in the second part. The third
part explains the calculation of the loading on the structural model.

6.1 Approach

The loads at the structural model are calculated by post-processing the compute
seakeeping motions of both the rigid-body and flexible modes. The calculation
of the loading at the structural model is quite similar to the calculation of the
seakeeping loads as described in the fourth chapter. It would be possible to
compute the structural loads directly during the seakeeping calculations, but
there are two major disadvantages using that approach:

• The retardation function has to be evaluated for every wetted node of the
structural mesh. This will be very computationally intensive.
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• Usually, only a small part of the time domain calculation is selected to
perform a structural analysis. This is usually the interval where the most
extreme loading occurs. Using a post-processor allows to select only these
events.

The hydrodynamic loads will be applied to the structural model as nodal
forces instead of pressures at the panels. The main reason for using this ap-
proach is that the seakeeping theory accounts for large amplitude motions. As
the linear hydrodynamic components are assumed to act in the hydro system,
these force contributions should be transfered to the body system to be used in
the structural calculation. This is illustrated in Figure 4.4. This cannot be done
when pressure loading would be used as pressure loading cannot be transformed
to a different reference frames. Another reason is that the different pressure
integration routines of the FEM packages are avoided by using forces. These
different routines might result in a slightly different total loading which will
disturb the balance of forces at the structural model.

Only the main load components are transfered to the structural model.
These are the Foude Krylov, hydrostatic, radiation, diffraction, slamming and
acceleration components of the loading. Other force components like springs,
damping, kinematic constraints, etc. are not transfered to the structural model
as it is very difficult to know at which part of the ship these, mostly artificial,
forces should act. Normally, these forces are relatively small compared to the
main loads and the absence of these contributions will hardly influence the
resulting (local) structural response. An exception is the roll damping. This
damping can have significant influence on the roll motion in oblique seas and
therefore the structural response. Thus, the calculation of structural loading as
presented in this chapter should only be used for head sea cases and for cases
where the contribution of the roll damping is negligible.

The structural response is solved by the FE program using a quasi-static
approach. The whipping and springing response is taken into account by calcu-
lating the acceleration force at every structural node and by transferring these
forces to the FEM load case. The dynamics of the local structure are not taken
into account in the FEM calculation using this approach.

A quasi-static calculation using a FEM requires the addition of supports
or constraints at some nodes. All six degrees of rigid-body motion should be
suppressed by these supports without influencing the structural response.

Reaction forces will appear at the supports if the applied loading is not fully
balanced. These reaction forces can influence the structural response. Most FE
programs allow one to use “relief accelerations” to avoid these reaction forces.
In that case, the FE program calculates rigid-body accelerations such that the
model is fully balanced. The motions and thereby the accelerations are also a
part of the seakeeping solution. Changing the resulting accelerations by using
the “relief accelerations” will also change the structural response.
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The presented approach ensures that the loading is well balanced and that
the resulting accelerations are close to the original seakeeping accelerations,
without using the relief accelerations. An important step for this is the use of
the structural mesh to compute the seakeeping motion which is explained in
the previous chapters. Interpolation between the hydrodynamic and structural
mesh is avoided by using the structural mesh in the seakeeping calculation.
Balanced loads are ensured by first computing the loading at the structural
model and then recomputing the resulting accelerations when calculating the
FE loading. There will be small differences between these accelerations and
the original seakeeping accelerations since not all force components will be
transfered. There will also be some differences in the radiation force because a
different approach is used to calculate these forces for the structural loading in
order to reduce the computation effort. This will be explained in Section 6.3.

The transfer of seakeeping loads to the structural model as presented in this
chapter is only applicable to single body problems.

6.2 Nodal hydrodynamic coefficients

The hydrodynamic coefficients have to be calculated for every node at the
structural mesh to be able to compute the nodal forces at the structural model.
The calculation of these nodal values using the Gauss points integration is
explained in Appendix A. This approach can directly be used if there are no
sections defined. However, as explained in Section 2.4.1, panels will be cut if
sections are defined. The hydrodynamic pressure is calculated and stored for
every Gauss point of this mesh with cut panels after solving the BVP, see the
third chapter. The modal displacements are also known for the Gauss points
of the mesh with cut panels. Both the hydrodynamic coefficients and mode
shapes have to be recomputed if the original structural mesh would be used to
generate the Gauss points to compute the nodal values. This would also create
a small difference between the coefficients used in the seakeeping calculation in
for the calculation of the structural loading.

This re-computation is avoided by using the Gauss points of the cut panels
to compute the coefficients at the nodes of the original or structural panels.
The weight factors and Jacobian of the Gauss points of the cut panels are used
in equation (A.10). However, the shape function in this equation are computed
for the location of the Gauss points at the original panels. This is illustrated in
Figure 6.1. A numerical procedure is used to calculate the local coordinates of
the Gauss points at the original mesh to be able to compute the shape function
at these points.
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Figure 6.1: Gauss points at a cut panel and the original panel.

6.3 Loads

The computation of the total load case at the structural model is explained
in the first part of this section. The other parts explain the calculation of the
individual components of the total load vector.

6.3.1 Load case

As stated before, the total load vector which is exported to the FEM package
is slightly different from the seakeeping load vector. The equation of motion
is again solved to ensure balance between the hydrodynamic loading and ac-
celeration forces at the structural model. The nodal contribution of all hydro-
dynamic force components are calculated first. These forces are based on the
displacements and velocities calculated by the seakeeping program. The new
acceleration is solved using

(A⋆(∞) + m⋆) · ¨⃗
ξ⋆ = f⃗⋆grav +

Nnodes∑
n=1

f⃗⋆,nfkhs + f⃗⋆,nslam − f⃗⋆,nrad + f⃗⋆,ndiff . (6.1)

This equation is similar to equations (4.33) and (4.47). The superscript n
indicates the force at the nodes of the structural mesh. The infinite added
mass is still on the left-hand side to ensure that the hydrodynamic loading at
the structural model is consistent with the accelerations.

The total hydrodynamic loading at the structural model is calculated after
solving the motion equation

f⃗⋆,ntot = f⃗⋆,nfkhs + f⃗⋆,nslam − f⃗⋆,nrad − f⃗⋆,nA(∞) + f⃗⋆,ndiff . (6.2)

The hydrodynamic loading is balanced by nodal acceleration forces

f⃗⋆,nacc = m⋆,n (⃗a⋆,n + g⃗⋆) , (6.3)

where
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m⋆,n nodal mass,
a⃗⋆,n accelerations in the body system at the node.

The acceleration at the nodes is calculated using equation (4.44) and trans-
formed to the body reference frame.

The hydrodynamic and acceleration forces are combined and used as load
case for the quasi-static FEM calculations.

6.3.2 Radiation force

The radiation force is the most difficult force component of the structural load-
ing to compute. An approach could be to create and evaluate the retardation
function for every structural node. This approach will result in exactly the
same total radiation force as computed by the seakeeping program. However,
the computation effort required for this approach is huge. Another approach
could be to use the frequency domain RAO values. This will not be correct if it
is based on the motion calculated in the frequency domain. Therefore, a Fourier
transform on the calculated seakeeping velocity is used to obtain the amplitude
and phases of the different frequencies in the time domain calculation. This
approach results in a total radiation force which is very close to the radiation
force calculated by the seakeeping program. There will be some differences be-
cause it is assumed that the linear hydrodynamic coefficients fully comply to
the Kramers-Kronig relations for the creation of the retardation function (4.49),
which is not always the case when forward speed is included. Also, the length
and discretization of the retardation function may cause some differences. The
discretized Fourier transform is the last source of possible differences between
the results of the radiation force calculated using retardation functions or this
frequency reconstruction.

The frequency content of the velocity in the hydro-reference frame is equal
to

˙⃗
ξf⋄(ω) = F

( ˙⃗
ξ⋄(t)

)
. (6.4)

The nodal force in the body reference frame due to radiation, with the contri-
bution of the infinite frequency added mass subtracted, is

f⃗⋆,nrad = Tb,R3(ϕ, θ, 0) ·
N freq∑
j=1

{
ℜ
(
F⃗ ⋄,n
R (j) − F⃗ ⋄,n

R (∞)
)
· ℜ
( ˙⃗
ξf⋄(j) · e−iωjt

)
+ ℑ

(
F⃗ ⋄,n
R (j)

)
· ℑ
( ˙⃗
ξf⋄(j) · e−iωjt

)}
. (6.5)

Force vector F⃗ ⋄,n
R is the frequency domain nodal radiation force. Note that the

contribution if the infinite damping is already included in equation (6.1). The
nodal force due to the acceleration of the infinite frequency added mass is

f⃗⋆,nA(∞) = Tb,R3(ϕ, θ, 0) · ℜ
(
F⃗ ⋄,n
R (∞)

)
· ¨⃗
ξ⋄. (6.6)
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6.3.3 Diffraction force

The diffraction force is only based on the actual position of the ship, see Section
4.4.3. The nodal diffraction force is computed using the same approach as used
for the time domain calculation, see equation (4.57),

f⃗⋆,ndiff = Tb,R3(ϕ, θ, 0) ·
N freq∑
j=1

ζa(ω(j))
{
ℜ(F⃗ ⋄,n

D (j)) cos
(
ωjt+ εζ(ωj) + xwk(ωj)

)
+ ℑ(F⃗ ⋄,n

D (j)) sin
(
ωjt+ εζ(ωj) + xwk(ωj)

)}
, (6.7)

with F⃗ ⋄,n
D the nodal frequency domain diffraction coefficient.

6.3.4 Froude Krylov and hydrostatic force

The non-linear Froude Krylov and hydrostatic pressures are directly calculated
in the body reference frame for the time domain calculation. The calculation of
these pressures is explained in Section 4.4.2. The pressure is re-calculated using
the same approach but equation (A.10) is used to compute the nodal forces.

6.3.5 Slamming force

The calculation of the slamming pressure is done exactly the same as described
in the previous chapter. The average pressure at the slamming section nodes is
multiplied with the scaled normals. This results in the forces at the slamming
section nodes. These forces are multiplied with the shape functions at the
location of the slamming section nodes to obtain the slamming force at the
nodes of the structural mesh. The computed slamming force is already in the
body system.



Chapter 7

Design values from non-linear
calculations

Two important design values for ship structures are the maximum expected
bending moment and the fatigue loading of the structure. Whipping induced
by slamming and springing may have a significant contribution to the max-
imum bending moment and the fatigue load. The whipping response of the
ship is calculated using non-linear time domain calculations which include the
slamming loads. Although computing the springing response is not a goal of
this thesis, it will be (partly) computed using the hydro-elastic approach. The
design values should be computed for at least a part of the wave scatter diagram
to get insight in the loading of the ship during its life. This requires to compute
bending moment time traces for many different sea states.

Preforming these non-linear calculations for many conditions requires sig-
nificant computational effort. It is investigated how the calculations can be
performed and how the data can be analysed in order to minimise the calcu-
lation time needed to obtain accurate results for the design values. Only the
“brute force” method is investigated. Using this method, the statistical values
are obtained by only using the time traces. The results can only be accurate
when using time traces of sufficient length. There are statistical methods avail-
able which combine the linear and non-linear results to reduce the calculation
time significantly and still obtain the design values within a reasonable accu-
racy [20, 41]. These methods show good results but are not investigated or used
within this thesis.

The first section of this chapter explains how the total fatigue damage and
expected maximum bending moment are derived from the computed bending
moment or stress history using the brute force method. How the design values
can be computed in the most optimal way using the brute force method is
investigated in the second section of this chapter.
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7.1 Data analysis

Both the fatigue damage and the maximum expected bending moment are de-
termined based on the bending moment signal. The fatigue analysis is explained
in the first part of this section. The maximum moment analysis is explained in
the second part. The last part of this section explains how one signal is created
from multiple computations using different wave realisations for a single sea
state.

7.1.1 Fatigue analysis

The total fatigue damage Df is calculated based on the Palmgren-Miner linear
damage hypothesis

Df =
k∑
i=1

nci
Nci

, (7.1)

where nci is the number of cycles with amplitude range i that have occurred
and Nci the number of cycles with amplitude range i that are allowed. The
allowed number of cycles can be obtained by given Wöhler- or SN-curves pre-
sented as

N(σ) =

{
K−1
s σ−βs σ > σmin

∞ σ < σmin

. (7.2)

This is a two segment curve where σ is the stress and Ks and βs are the SN
parameters. One- and three-segmented curves are also commonly used. For
all the analyses presented in this thesis, a one segment curve is used. The one
segment curve is obtained by setting σmin to zero in equation (7.2).

The oscillations in the stress signal are counted using the rainflow count
method. The algorithm proposed by Rychlik [14] is used to perform the rainflow
count. This algorithm is equivalent to the original algorithm by Endo but is
easier to implement. Figure 7.1 illustrates the definition of a rainflow cycle by
Rychlik:

Rainflow cycle From each local maximum M one shall try to reach above
the same level, in the backward and forward directions, with a as small
downward excursion as possible. The minima, m− and m+, on each side
are identified. That minimum which represents the smallest deviation
from the maximum M is defined as the corresponding rainflow minimum
mrfc.

All min-max and max-min cycles are counted using the rainflow count. One
full cycle is counted as the amplitude occurs both in the min-max and max-min
count. It is normal that, when all full cycles are grouped together, some half-
cycles are left over. The relative number of half cycles is reduced by mirroring
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M

m− m+=mrfc

Figure 7.1: Rainflow count algorithm.

the data when the number of extremes is lower than one thousand. This makes
the counting method more stable for a low number of cycles. As (almost) all
cycles have a different amplitude, the nci in the Miner rule (7.1) will be 1 and
k will be equal to the number of oscillations.

For the examples in this chapter, the stress at the deck is obtained using

σdeck = Scons ·
My · zdeck

Iyy
, (7.3)

where Scons is the stress concentration factor, zdeck the distance between the
neutral axis and the deck, and Iyy the section modulus. The stress in the deck
can also be obtained by using the modal participation factors calculated for the
stress at a point using a 3D-FEM, when available.

7.1.2 Maximum expected bending moment

The maximum expected bending moment is obtained by extrapolating the re-
alisation of extremes using a Weibull extrapolation [24, 21]. The Weibull ex-
trapolation is commonly used to obtain the extreme values in a seakeeping
analysis, although there is no solid theoretical foundation to do so. The use
of the Weibull method may be more questionable in this case as the bending
moment contains both the wave frequency and whipping response which cause
the resulting stress spectra to be wide banded where the stress signal of linear
seakeeping is narrow banded. For this thesis, it is assumed that the Weibull
extrapolation still holds, even with the presence of whipping response. Further
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research on which extrapolation method can be used best for a ship experiencing
whipping is definitely needed.

The probability that the bending moment My will be larger than M is,
according to the Weibull distribution, equal to

P (My > M) = 1 − exp

{(
−M −M0

Mc −M0

)kw
}
, (7.4)

where Mc is the scale parameter, kw the shape parameter and M0 is the
mean value. When the mean value is subtracted from the bending moment
signal, M0 will be zero and the Weibull distribution will be a straight line on
Weibull paper (ln(− ln(P (x > My))) vs ln(My)). Be aware that the mean value
is generally not the still water bending moment due to the non-linear loads and
response of the ship. For all analysis presented here, the mean value will be
subtracted from the signal before making the Weibull extrapolation and M0

will be set to zero. The subtracted mean value is added to the result of the
Weibull extrapolation. For a linear small banded process the bending moment
probability will have a Rayleigh distribution, which is a Weibull distribution
with a shape parameter kw equal to 2.

The peaks in the bending moment signal obtained for a rigid ship are usu-
ally counted by identifying one peaks per crossing of the mean value. This is
illustrated in the signal shown in Figure 7.2. Counting the peaks of a signal ob-
tained from a ship modelled with both rigid and flexible modes, which contains
whipping and/or springing responses can be done in several ways1:

mean-crossing The same approach as used for the rigid ship can be used,
counting one peak per mean crossing. One could argue that this is not a
good count, as some whipping oscillations are counted because they cross
the mean value and others, which do not cross the mean value are not
counted.

rigid-body Another counting method is to count one peak of the flexible body
signal between the mean crossings of the rigid-body signal. This is the
rigid-body count as shown in Figure 7.2. To apply this method of counting
an additional calculation run for a rigid ship has to be done using the same
wave-train. The signal for the rigid-body ship can also be obtained by
applying a low-pass filter on the signal of the flexible ship as long as the
whipping frequency is much higher than the wave frequency.

full count The last counting method which is investigated is counting all pos-
itive maxima and negative minima.

1Even more counting methods are possible. For example counting the “out crossing rate”
is another approach. These other counting methods are not investigated in this thesis.
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Rigid body Flexible body, mean-crossing counting

Flexible body, rigid body counting

flexible
rigid

mean value
maxima
minima

Figure 7.2: Counting methods for extremes.

To compare the counting methods both the rigid-body and flexible body
signal are calculated for a container ship in a severe sea state for more than 50
hours. The rigid-body signal has more than 18,000 extremes. The probability
of exceeding a bending moment and the fitted Weibull distribution are shown
in Figure 7.3 both on Weibull paper and in a normal log graph. The Weibull
extrapolation is based on the highest 1

3 -th values, as the lower extremes clearly
have a different distribution. The mean-crossing count and the full count show
a two-segmented line. The two segments are caused by counting a broad banded
spectrum signal. The rigid-body count results in a small banded spectrum signal
and the distribution is closer to a Rayleigh distribution which results in a one-
segmented line. The distributions obtained by the different counting methods
are almost equal for the higher extremes, only the associated probabilities differ.

The maximum sagging moment, which has a probability to occur once every
ten hours, is calculated using the different counting methods. Each of the
counting methods count a different number of extremes, which results in a
different average period of the extremes, which gives a different probability to
be used for the Weibull extrapolation. The parameters and resulting ten hour
extreme bending moments are presented in Table 7.1.

Although the counting methods are quite different, the resulting maximum
bending moments are quite close. The most suitable counting method can be
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Figure 7.3: Weibull extrapolation of bending moment probability presented on
Weibull paper (top) and normal log graph (bottom).

chosen as there is little difference in the results when the 10 hours extreme
is considered. The goal in this thesis is to examine the influence of whipping
response on the maximum expected bending moment. The rigid-body count
will ensure that the same number of extremes are counted both for the signals
with and without the presence of whipping response. This ensures that the
differences in the results are only due to the whipping contribution and not due
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Count method average
period

10 hour
probability

wb
shape

wb scale 10 hour
extreme

mean-crossing 9.87 s 2.74 · 10−4 1.67 8.77 · 105 3101 [MNm]
rigid-body 10.75 s 2.97 · 10−4 1.72 9.16 · 105 3083 [MNm]
full count 5.55 s 1.54 · 10−4 1.68 8.26 · 105 3021 [MNm]

Table 7.1: Resulting Weibull extrapolation using different counting methods.

to the differences in the counting of extremes. Therefore, the rigid-body count
method will be used. Another advantage is that this counting method results
in a one segmented line for the Weibull fit. This makes the fitting less sensitive
to the threshold value above which data points are included in the Weibull fit.

7.1.3 Creating signals

There will be some initialisation effects at the start of the time domain cal-
culation. Sixty seconds are added to the total calculation time and the first
sixty seconds of the signal is ignored in the analysis to ensure that the analysed
signals do not contain any initialisation effects.

The uncertainty in the results can be reduced by combining different runs
for the same sea state. One time trace is created from the different runs and
that single time trace is analysed. The different calculation results are combined
using the following approach:

1. Calculate the mean value of the signal of the first calculation run.

2. Identify the last mean crossing at the right-hand side and remove the
remaining signal from this point.

3. The first mean crossing of the signal of the next calculation with the same
direction as the last mean crossing found in 2 is identified and the signal
up until this point is removed.

4. The signals are combined and steps 2, 3 and 4 are repeated for all calcu-
lation results.

Note that only the mean value of the first calculation is used for combining the
signals to ensure a continuous signal. The mean value of the total, combined
signal is used for the Weibull extrapolation.

7.2 Calculation approach

The goal is to minimise the computational effort required for the time domain
seakeeping calculations in order to obtain results within a reasonable uncer-
tainty range. The variables that are investigated are: the number of wave
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components; the length of one calculation; and the number of calculations that
are combined.

To be able to investigate the uncertainty in the results of the fatigue and
extreme bending moment analysis, many seakeeping calculations have been
performed to create a database of time traces of the bending moment. This
database is used to analyse the effect of different approaches to compute the
design values.

The presented investigation is basically a variation around the already found
optimum. This starting point has been found through analyses of the wave-
trains and frequency reconstructed signals. Neither the computations nor the
results for obtaining this starting point are presented in this thesis. These initial
computations did show a faster convergence using equidistant wave components
to represent the spectrum rather than using non-equidistant wave components.
The Weibull fit on Weibull paper showed less scatter than using the significant
values of the bending moment. At the end of this section, these conclusions will
be confirmed with analyses performed using the bending moment database.

7.2.1 Bending moment database

A large database of bending moment signals is created to be able to calculate the
uncertainty in the computation of the design values. Calculations are performed
for two container ships with zero speed in head waves. These are the same
ships that will be presented in Chapter 8. For both ships, twelve sea states are
considered. A JONSWAP spectrum is used with Tp = [6, 8, 10, 12][s] andH1/3 =
[6, 8, 10][m]. Calculations are made for the ships with flexible modes (with
slamming loading) and for the ships considered to be rigid (without slamming).
The same wave-trains are used for both calculations to allow for the rigid-body
count method.

The spectrum is represented by equidistant wave components. This allows
one to calculate the return period of the wave using equation (4.2). The total
calculation time of a single calculation is set to three return periods. The wave
and the resulting response should repeat after one return period. Therefore,
computing more than the wave return period more than once should not provide
additional information. The computations for the database are done for three
return periods to be able to show if this is indeed the case. New calculations for
the same sea state are made until 18 hours of bending moment signal is available
for that sea state. For every calculation, a new wave realisation is created using
different random phase angles for the wave components and a random offset for
all wave frequencies. The range of the random offset is [−1

2∆ω, 1
2∆ω].

To be able to investigate the effect of the number of wave components,
all calculations are performed using 60, 75, 100, 125, 150, 175, 200 and 250
wave components. This gives a database with 2 (ships) × 12 (sea states) ×
8 (wave components) × 18 hours = 3456 hours of bending moment signal for
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both a flexible ship with slamming and a rigid ship without slamming. The
wave excitation and hydrostatics are kept linear in the calculations to save on
computation time.

It is assumed that the whipping response will result in more scatter in the
computed design values than the non-linear wave excitation and hydrostatics
will cause. Therefore, these computations using linear wave excitation and
hydrostatics can be used to find the optimum way of computing the design
values. The results found in this chapter will be verified for computations using
non-linear wave excitation and hydrostatics in Section 8.4.

Additional calculations are performed in order to obtain a converged value.
These calculations are performed for both ships, all sea sates and using 500
wave components. In total, 10 hour time traces are created using one wave
return period as calculation time. It should be noted that it is not verified if
this calculation really results in converged values. However, as the results will
show that using less wave components and less time already results in quite
well converged values, these results are assumed to be converged.

The 125, 200 and 250 wave component calculations are also redone using
non-equidistant wave components. In this case the distance between the wave
components is also randomly chosen. Due to the non-equidistant wave com-
ponents there will be no well defined wave return period. The return period
calculated for equidistant wave components is used in order to have compara-
ble results. The findings of these calculations will determine whether equal or
non-equal distance wave components give the best results.

7.2.2 Analysis

The uncertainty in the results of the calculated design values is investigated
by analysing as many unique bending moment signals from the database as
possible.

The extreme bending moment which is expected to occur every 10 hours at
amidships is computed using equation (7.4). The fatigue damage of the deck
structure at amidships is computed using (7.1). Both the fatigue damage and
extreme bending moments are normalised by dividing by the converged design
values from the 500 wave components computation. The mean value and the
standard deviation is calculated based on all normalized values.

The variation of these two design values are computed for the different num-
ber of wave components, computation times, etc., using the bending moment
database, in order to find the most optimum way of computing the design val-
ues. The approach used to compute the variation, or uncertainty in the results,
is explained next.

For every condition all calculations that are available in the database are
analysed. Be aware that the number of calculations for a single sea state will
vary for the different sea states as the width of the spectrum differs and thereby



116 Chapter 7. Design values from non-linear calculations

the return time of the waves. For every calculation, only the first part up until
the required return time is analysed. The remaining part is neglected. For
example, when computing the variation over a single wave return time, the
second and third part of every computation is neglected. A separate analyse
could be done on the second and third part of a single calculation, but this is
not done as the signal will be very comparable to the first part.

The number of normalised values available for calculating the variation in
the computed design values reduces significantly when multiple calculations are
combined. When, for example, six computations are available and the variation
for combining three computations is investigated only two fully unique time
traces can be created. This is not enough to compute the variation in the
results. In order to obtain enough points for the statistics, calculations 1, 2 and
3 are combined and 2, 3 and 4, etc. which gives five normalized values for the
six available calculations.

The normalisation of the fatigue damage and extreme bending moment,
using the 500 wave component results, allows one to compute a single value for
the variation and bias for the two ships and the twelve sea states, which are 24
conditions. These results are given for every number of the wave components
separately as the number of wave components is a variable to find the optimum
way of computing the design values.

7.2.3 Calculation time and number of wave components

The number of wave components is an important parameter. The more wave
components, the longer the wave return period will be. However, on the other
hand, as more components have to be evaluated in the seakeeping program, the
computation time needed for the same simulated time will increase.

The effect of the wave return period is investigated first. The bending
moment database is analysed using different lengths of each calculation. The
results are shown in Figure 7.4. Note that not all numbers of wave components
are shown in the graph, as the graph will be very difficult to interpret if they
would all been shown. The design values are not calculated for the short signals
with a small number of wave components because these signals do not have
enough peaks.

The standard deviation only reduces significantly up until the calculation
time is equal to the wave return period. After the wave return period is reached,
the variation of the extrapolated extreme bending is stationary but the variation
of the calculated fatigue damage increases again. The variation of the fatigue
damage has a clear minima at a calculation time equal to the wave return period.
After the wave return period the wave signal repeats itself. By analysing a signal
which is a bit larger than one wave return period the first part of the signal is
counted twice and the remaining signal only once. These first peaks are weighed
twice in the analysis but without any justification to do so. It is not surprising
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that the result of the analysis does not improve when signals of more than one
wave return period are used when this unequal weighing is considered.

The standard deviation of the results are also shown in Figure 7.5, but in this
case with respect to the average simulation time. An average simulation time
is used because due to the difference in spectrum width, the wave return period
differs slightly when using the same number of wave components for different
sea states. The variation of the extreme bending moment is comparable for the
different number of wave components used, until the wave return period has
been reached. The differences in variation after one wave return period between
the different wave components is smaller for the fatigue results. Due to this
small difference, there are only local minima for calculations with a number
of wave components that give a n-times return period at the time step for the
fatigue results.

The result of a single calculation shows clearly that the best result can be
obtained by a calculation over exactly one wave return period. Calculating over
two or three times the wave return period hardly decreases the variation in the
results, as could be expected.

The variation of the results can also be reduced by combining multiple cal-
culations for one sea state. Figure 7.6 shows the mean value and the standard
deviation of the results when multiple calculations of exactly one wave return
period are combined. The plots are with respect to the average number of pos-
itive peaks of the rigid-body signal. The number of peaks are more important
for the accuracy of the calculated extreme bending moment and fatigue dam-
age, rather than the total simulation time. As for this zero speed condition the
average zero crossing time is about ten seconds, the plot with respect to the
total simulation time will be about the same only with the x-values multiplied
by ten. When doing calculations with forward velocity, the average zero cross-
ing period will change and it is better to keep the number of extremes constant
rather than the simulation time in order to obtain the same accuracy in the
results. Therefore, the presented plots are with respect to the average number
of positive peaks of the rigid-body signal.

The first points at the left side of Figure 7.6 are the results when two
calculations are combined, for the second point three calculations are combined.
More calculations are added until the average number of positive peaks is equal
to 1200 (about a 3.3 hour simulation time).

The results now show a bias when less wave components are used. The
results for the single calculations did not show this bias. An explanation could
be that using a smaller number of wave components does indeed give a bias to
the results, but using very short time traces also results in a bias. Consequently,
the extreme bending moment and fatigue damage are reduced when less wave
components are used, but these values are increased when the analysed time
trace is very short. For the single calculation, the analysed time traces are
shorter for the calculations with less wave components, so both effects can
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cancel each other out and no bias is visible. The bias visible in the combined
calculations is still small: the mean value obtained using sixty wave components
is still 95 percent of the values for the converged calculation.

The variation of the results does not show much difference for the number
of wave components used when the calculations are combined and the same
amount of time is analysed. Therefore, the number of wave components should
be selected based only on the cpu time needed for the calculation. This will
not have a large influence on the accuracy of the calculation. The standard
deviation is about five percent of the mean value after 750 extremes for the
analysis, which equals about two hours of simulation for this case. This is
considered accurate enough for the computation of the design values. Also, the
variation of the results hardly decreases when more than 750 extremes are used
to estimate the design values.

The duration of one hour of seakeeping calculations, including slamming,
for two flexible container ships using a different number of wave components are
measured. These measurements are indicated with points in Figure 7.7. There
is a clear linear correlation between the cpu time and the number of wave
components used. The solid lines are “linear fits” through the measurements
using f(nwc) = 3600 ·wt · nwc+ 3600 · ct. Where nwc are the number of wave
components, wt the wave component depending time and ct the remaining
calculation time.

For each wave component the wave return period is increased by about 3
seconds. The number of calculations needed to obtain one hour of simulation
time using calculations of one wave return period is equal to

ncal = int(3600/(3 · nwc)) + 1. (7.5)

The total calculation time needed for one hour of simulation using multiple runs
is the time for the one hour calculation itself plus the time needed to start the
multiple calculations. For every calculation an additional 60 seconds seakeeping
is computed to avoid a initialisation effect. For the startup of the program and
the additional post processing 30 seconds are estimated. This results in a total
cpu-time of

tcpu = (wt · nwc+ ct) · 3600 + (30 + 60 · (wt · nwc+ ct)) · ncal. (7.6)

The number of computations and the total computation time needed for a
one hour simulation using multiple computations are also shown in Figure 7.7.
Note that the resulting calculation time will differ for other spectra and ships,
however, changing some constants in formula (7.6) shows that the minimum
computation time required is quite stable. The minimum calculation time is
obtained if 80 wave components are used. To remove some bias in the results,
and to be more on the “safe side”, 125 wave components will be used for
the calculations. Moving from 80 to 125 wave components gives only a small
increase in computation time.
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7.2.4 Wave components

The wave spectrum is represented by a number of wave components for the
time domain calculation. These wave components can be chosen such that
the (encountered) frequency has an equidistant distribution. In that case, the
waves will have a clearly defined return period. To avoid this repetition of the
wave-train, a random frequency distance between the wave components is often
used.

Figure 7.8 compares the variation of the calculated design values of a single
calculation using either equally or non-equally distanced wave components. The
variation of the extreme sagging moment is equal until the wave return period
of the equidistant calculation. After one return period the variation of the
non-equidistant calculation is less. The variation in the fatigue damage results
shows another trend. The variation using equidistant wave components has a
clear minimum for exactly one time the wave return period.

By using exactly one time the wave return time, and equidistant wave com-
ponents, there is clearly less variation in the fatigue damage. At that point there
is no difference between the variation in the extreme bending moment. Figure
7.9 shows the difference in variation between equally and non-equidistant wave
components when multiple calculations of one wave return period are combined.
Again the variation for the extreme bending moment is almost equal, but the
variation of the calculated fatigue damage is less when using equidistant waves.
On the other hand, using non-equidistant waves reduces the bias in the results a
little. As the bias is small compared to the variation in the results, equidistant
waves will be used for the calculations.

Figure 7.8 shows that the variation of the extreme bending moment still
reduces after the wave return period when using non-equidistant wave compo-
nents. It is investigated if less variation in the results could be obtained by
combining calculations with a different length rather than a single wave return
period. Figure 7.10 shows that the total variation in the results when combining
multiple calculations using non-equidistant wave components with a calculation
time of 0.8 until 1.5 times the wave return period does show almost no differ-
ence. The variation in the results by using equidistant wave components is a
little less than for all non-equidistant wave component results.

7.2.5 Weibull extrapolation

The distribution of extremes in the bending moment can be fitted using the
Weibull distribution in several ways. The first way is fitting a line on Weibull
paper as shown in Figure 7.3. The lower extremes have a different distribu-
tion than the higher extremes. To obtain a better distribution for the higher
extremes, the lower extremes should be excluded from the fit. The standard
deviation and the mean value of the 10 hour sagging extreme calculated when
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a different percentage of the highest extremes is taken into account are shown
in Figure 7.11.

The highest variation in the results is found when all extremes are included
in the fit. The smallest variation is obtained when including 90 percent of the
extremes, but this will give a larger bias in the results. When including 70
percent of the highest extremes, the variation is a little higher but the bias is
about half of the bias when 90 percent of the extremes are included in the fit.
The variation in the results increases significantly when a smaller percentage of
the highest extremes are included in the fit.

Another way of obtaining the Weibull distribution is by calculating the
Weibull coefficients from the A 1

2
and A 1

3
or A 1

3
and A 1

10
values of the bending

moment. These results are also shown in Figure 7.11. Both the mean value and
the standard deviation is worse than using a fit with 70 percent of the extremes.
Therefore, a fit with 70 percent of the extremes is used to obtain the Weibull
distribution.

7.2.6 Implementation

As shown in the previous sections, the non-linear calculation for the design
values can best be computed using calculations with 125 equidistant wave com-
ponents. Calculations of one wave return period for the same condition are
repeated until at least 750 extremes are counted and the signal is combined
into one signal. This signal is analysed using a rainflow count and the SN-cure
to compute the fatigue damage. The maximum expected bending moment is
computed using the Weibull distribution which is obtained by a fit on Weibull
paper using 70 percent of the highest extremes.

The calculations of the design values for a complete scatter diagram have
been fully automated. This automatisation required some changes to the pro-
cedure. As the calculations are distributed over several cpu’s, starting of a
new calculation takes more time. Therefore, the number of wave components
is increased to 150 to reduce the number of calculations by increasing the wave
return period. The second change is the number of calculated cycles. The total
number of cycles is only known after the different calculation for a single sea
state is combined. Some cycles will be lost when combining the signals. Al-
though it is very rare, sometimes the calculation crashes and the results contain
less cycles than expected. The automated procedure starts for every single sea
state enough calculations such that the summation of the frequency domain
cycles is at least 1000. This ensures that the final, combined, signal contains
at least 750 cycles.
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Chapter 8

Container ships

This is the first of five chapters presenting verifications, validations and case
studies of the theory presented in the previous chapters.

In this chapter two (ultra) large container ships with respective lengths of
270 and 360 metre are used to verify and to illustrate the presented theory. The
first section of this chapter presents the modeling of the ships and the approach
used for the seakeeping calculations. Verification runs using the largest con-
tainer vessel are discussed in the second section. A case study where the design
values are computed for both ships, for a full scatter diagram, is presented in
the last section of this chapter.

8.1 Ships and calculation approach

The data of the two ships used is confidential, therefore it is not possible to
provide information like cross sections, table of main particulars, structural
details, etc.

The dry structural modes are calculated using beam models of the ship
structures. The first five vertical flexible modes are used. The computed mode
shapes for the largest ship are shown in Figure 8.1. The structural damping
is estimated to be 2%, 3%, 4%, 5% and 5% of the wet critical damping for the
first to the fifth flexible mode, respectively. This structural damping is added
using matrix Bu of equation (4.47).

The slamming sections with the scaled normals created for the largest ship
are shown in Figure 8.2. Note that the scaled normals are reversed to make
them visible.

The slamming and Froude-Krylov forces will slow down the ships, these
forces are a part of the added wave resistance. These resistance forces should
be compensated to avoid drift. A possibility is to model the propulsion system,
or use springs and dampers, to keep the ship at the desired velocity and location.

A few of the calculations presented in this chapter have been performed by Niels Mallon.
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Figure 8.1: Elastic mode shapes.

Figure 8.2: Slamming sections and scaled normal.

Both methods require tuning and may not be stable for all sea states. Therefore,
kinematic constraints are imposed on the surge, sway and yaw motion, see
Appendix B. The linear motion, computed in the frequency domain, is imposed.
There is no drift in the linear theory and imposing the linear surge, sway and
yaw motions will hardly influence the calculated bending moment, as the linear
surge, sway and yaw motions are close to the non-linear motions. Imposing the
linear motions is always stable.

8.2 Verifications

The container ship with a length of 360 [m] is used to verify the consistency
of the presented theory. The calculated seakeeping response, slamming loading
and whipping response for various variations of the computational parameters,
e.g. slam section orientation and time step, are presented in this section. In
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addition, the hydro-elastic effects on the computed slamming loads is illustrated
in this section.

The verifications that include slamming loads are done for the ship sailing
at 15 knots in head waves with a significant wave height of 8 metres.

8.2.1 Retardation functions

The frequency dependent part of the radiation force is calculated using retar-
dation functions in the time domain, see Section 4.4.1.

The frequency domain added mass and damping curves can be derived from
the retardation functions using

B(ωe) = B(∞) +
∫ ∞

0
K(τ) cos(ωeτ)dτ, (8.1)

A(ωe) = A(∞) − 1
ωe

∫ ∞

0
K(τ) sin(ωeτ)dτ. (8.2)

These curves should be close to the original frequency domain results if the
retardation functions are calculated correctly. The hydrodynamic coefficients
should also be consistent, that is, they should comply to the Kramers-Kronig
relations. The retardation functions are created based on the damping curves
only, because it is assumed that the Kramers-Kronig relation holds. If the
Kramers-Kronig relation between the added mass and damping does not hold,
it would be impossible to compute the correct added mass curves from the
retardation functions.

The comparison between the original main diagonal added mass and damp-
ing curves and the same curves obtained from the retardation function are
shown in Figure 8.3 for the heave and the first flexible mode. The original
values are indicated by “frequency” and the results of the retardation function
by “time”. The hydrodynamic panels used for solving the BVP are too large to
solve the problem accurately for encounter frequencies higher then 2.5 [rad/s].
The damping curves are extrapolated beyond this frequency before computing
the retardation functions, see Appendix C. This high frequency problem causes
the oscillations in the original results, the extrapolation avoids these oscillations
in the retardation functions and therefore in the “time” results. All curves show
a good correspondence for the encounter frequencies up until 2.5 [rad/s]. This
verifies that the retardation functions are correctly calculated and the frequency
domain added mass and damping curves are consistent.

8.2.2 Motions

The seakeeping motion of the container ship is calculated using both a frequency
domain and time domain calculation. The results of these two approaches are
compared in Figure 8.4 for small waves and in Figure 8.5 for large waves.
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Figure 8.3: Comparison between original hydrodynamic coefficients and the
coefficients calculated from retardation functions.

The frequency domain calculation is fully linear. The time domain approach
includes the non-linear Froude-Krylov and non-linear hydrostatic forces, see
Chapter 4. Note that the slamming loading is not included to ensure a good
comparison between the frequency domain and time domain results. The sea-
keeping loads by small waves are close to the prediction of the linear theory.
Therefore, the resulting response to the small waves is very comparable be-
tween calculations using the frequency domain approach and the time domain
approach for the small waves. This indicates the consistency between the two
different methods.

The non-linearities cause differences between the calculated motion for large
waves. Small differences are visible in the rigid-body motions but the motion
of the first flexible mode is changed significantly by these non-linearities. Due
to the flare of both the bow and the stern, the excitation forces due to the
incoming wave and hydrostatics becomes non-linear. These non-linearities af-
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Figure 8.4: Motion comparison for small irregular waves, H1/3 = 0.5 [m].

fect the heave motion not much, as forces on the bow and stern provide only a
small part of the total heave force. The pitch motion is hardly affected by the
non-linearities as the effect at the bow will partly cancel the effect at the stern.
However, the first flexible mode sensitive to this non-linear effect as the loading
at the bow and stern are the main contributions to the modal excitation of this
mode. The linear theory clearly underestimates the response of the first mode
for this severe sea state.
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Figure 8.5: Motion comparison for large irregular waves, H1/3 = 10 [m].

8.2.3 Internal loads

The internal loads can be calculated using direct integration or superposition
of the response of the elastic modes, see Section 4.4.8. The superposition result
should converge to the result of the direct integration if enough elastic modes are
included in the calculation. The bending moment at amidships, between both
methods, is compared in Figure 8.6. The internal loads can be integrated from
the bow to the midship or from the stern to the midship, these two approaches
are denoted by numbers 1 and 2 in Figure 8.6, respectively.

The direction of the direct integration hardly changes the calculated internal
load. The result obtained by using superposition is close to the results of the
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Figure 8.6: Bending moment calculated using direct integration and modal
superposition.

direct integration. This difference can be expected as only five elastic modes
are included in the calculation. Obtaining almost the same internal load using
both the direct integration method and the superposition method indicates the
consistency of the method.

8.2.4 3D slamming pressure integration

The 3D slamming pressure integration method is presented in Section 5.2.2.
This method should make the calculated slamming force less dependent, or
sensitive, to the tilting angle in the pitch direction selected by the user. It is
investigated if this method indeed reduces the sensitivity on the tilting angle
compared to the classical method where a single slamming force in the plane
of the slamming section is assumed.

This is investigated by calculating the total force in heave and surge di-
rections at the bow of the container ship for a severe slamming impact using
different tilting angles. The orientation of the 2D sections is varied from 90
degrees (vertical sections) to 40 degrees. The calculated slamming forces using
both methods are compared in Figure 8.7. The sensitivity of the calculated
slamming force is clearly less for the presented pressure integration method
than found for the classical method. A strong sensitivity to the chosen slam-
ming section tilt angle is an undesired property and would raise doubts about
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Figure 8.7: Resulting slamming force using the presented and a classical
method.

the application of the 2D methods for slamming computations. As shown, the
strong sensitivity with respect to the tilting angle is significantly reduced by
using the pressure integration method.

8.2.5 Time step

The coupling between the seakeeping and slamming program should ensure that
the slamming impulse is correctly transfered regardless of the time step used.
Figure 8.8 shows the calculated vertical slamming force and resulting bending
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moment at amidships using different time steps. Only the first two flexible
modes are considered in these calculations to allow for large time steps in the
numerical integration for the seakeeping calculation.
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Figure 8.8: Effect of calculation time step.

The amplitude of the whipping is a measure of the total slamming impulse
transfered to the seakeeping program. This amplitude hardly changes for time
steps smaller than 0.2 seconds. The calculated whipping response is underes-
timated when using time steps of 0.3 seconds or larger. Likely, this is because
the peak in the relative velocity is missed when using these large time steps.
The time step used for the other calculations presented in this chapter is 0.1
seconds. This is the maximum stable time step for the explicit numerical inte-
gration when all five flexible modes are included. The slamming excitation is
accurately integrated using this time step.
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8.2.6 Hydroelasticity

The typical duration of a slamming event is about one second for this ship in
the investigated condition. The first wet frequency has a period of 1.6 seconds
which makes a hydro-elastic analysis necessary according to [2]. If one takes
ship flexibility into account, it is expected that the slamming force will reduce
due to the global elastic structural response.

Figure 8.9 shows the vertical slamming force calculated when different num-
bers of flexible modes are included in the calculation. The slamming force is
about twenty percent higher if a rigid-body model is used, indicated by ‘no flex’
in Figure 8.9. The result converged in this case when using two or more elastic
modes.
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Figure 8.9: Influence of hydroelasticity (1).

The seakeeping and slamming calculation were directly coupled in the pre-
vious calculations. Figure 8.10 shows the effect of decoupling the seakeeping
and slamming calculation. The decoupled approach is to first calculate the
seakeeping response without slamming and then compute the slamming forces
based on the calculated relative motions. Even for the rigid-body model the
slamming loading is reduced significantly when the direct coupling method is
applied. This reduction is caused by the change of the rigid-body motions due
to the slamming loading. Although these changes are small they have a signif-
icant effect on the slamming forces as this forces scales with about the square
of the relative velocity. The difference in the slamming force computed with
the decoupled and coupled approach is even more for the flexible ship which
indicates the effect of hydroelasticity.
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Figure 8.10: Influence of hydroelasticity (2).

8.2.7 Slamming calculation method

Two methods are implemented to calculate the slamming force, GWM and
MLM, see Chapter 5. Figure 8.11 shows that the total slamming force acting
on the ship calculated by both methods is significantly different. This differ-
ence can be explained by the shape of the slamming sections. The ship has
a bulbous bow which causes the slamming sections that includes the bulb to
be relatively slender, see Figure 8.2. The shape of these sections violates the
MLM assumption that the slamming sections can be considered blunt. This
effect is shown in Figure 8.12. This figure shows the total vertical slamming
force at two individual slamming sections. The first section includes the bulb,
the slamming force is quite different between GWM and MLM. The second
section is at the bow and does not include the bulb. The calculated slamming
force is very comparable between both methods. This shows that the much
faster MLM method can only be used as long as the slamming sections shapes
are reasonably blunt.

8.3 Case studies

In this section, both container ships are used to illustrate the procedure for the
calculation of the design values as discussed in Chapter 7. The ultimate bending
moment and fatigue damage is calculated for the whole North Atlantic scatter
diagram [57]. The calculations are limited to head waves and a single loading
condition. A simplified operational profile is used, this profile is presented in
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Figure 8.11: Calculated total slamming force at ship using GWM and MLM.
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Figure 8.12: Calculated total slamming force at section using GWM and MLM.

Table 8.1.
The influence of the non-linear loading and the whipping and springing

response is investigated by performing three calculations for the same wave-
trains. First, a linear seakeeping calculation using only the rigid-body modes
is performed. The non-linear Froude-Krylov and hydrostatic forces are taken
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Significant wave height [m] Operational speed [knots]
0 ≤ H1/3 < 5 20

5 ≤ H1/3 < 7.5 15
7.5 ≤ H1/3 < 10 10

H1/3 ≥ 10 5

Table 8.1: Simplified operational profile.

into account in the second calculation. The flexible modes and the slamming
loading are added for the last calculation. It should be noted that in the last
calculation not only the whipping response is computed,, but the signals for
some sea states also contain some springing response. It is expected that the
theory used will underpredict the springing response as most of the springing
is likely to be due to non-linearities in load components which are not included
in the present theory. However, the resulting bending moment will be slightly
increased by the calculated springing response. The still water bending moment
is added to the bending moment of the linear calculation to make it comparable
to the non-linear calculations.

The ultimate bending moment, occurring once in the 100 hours, and result-
ing fatigue damage are presented in Figure 8.13 for the 270 metre ship and in
Figure 8.14 for the 360 metre ship. The results for the different cells of the
scatter diagram are connected by lines in the zero crossing period direction for
visualisation purpose. The lines above zero in the figures at the top are the
hogging moment found using the three calculation approaches and the lower
part are the sagging moments.

The still water bending moment at amidships, which is 2.7 [GNm] hogging
for the 270 [m] ship and 6.1 [GNm] hogging for the 360 [m] ship, causes the
ultimate sagging moment to be pure hogging for significant wave heights up to
4 metre. The increase of the sagging moment due to the non-linearities in the
wave loading is clearly visible. The hogging moment is slightly reduced by the
non-linear loading for the 270 [m] ship. The slamming induced whipping and
springing increases both the expected hogging and sagging moment.

The lower part of Figures 8.13 and 8.14 shows the fatigue damage of a
deck detail caused by one hour in the sea state. The non-linear Froude-Krylov
and hydrostatic forces increase the calculated fatigue loading significantly. The
increase due to the whipping and springing response is even more. The speed
is reduced between 9 and 10 metres significant wave height from 10 knots to 5
knots. This causes the fatigue loading found for 10 metres to be less than that
found for a 9 metre significant wave height. The ultimate bending moment is
also reduced by this speed reduction.

The probability of the occurrence of a sea state has to be taken into account
when computing of the design values. It is assumed that the ships will sail
during their lifetime in total 25 years at sea. The total fatigue lifetime of the
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deck structure is computed by summing the fatigue damage occurring at the
individual cells of the scatter diagram and dividing this with the total time at
sea. The fatigue damage for a single sea state is the computed fatigue damage
per hour times the total time the ship is likely to be in that sea state. The
total ultimate bending moment is computed differently. For every sea state, a
Weibull extrapolation of the bending moment is made using the total time the
ship will be in the sea state according to the wave scatter diagram. The highest
resulting bending moment is taken as the ultimate bending moment. Note that
this is the bending moment that the ship is likely to encounter just once during
the total life of the ship. However, this method does not give insight into the
probability of exceeding the computed ultimate bending moment. It would be
better to agree on an acceptable probability of exceeding and to compute the
ultimate bending using that value.

Figure 8.15 shows the number of days the ship will be in a certain sea state
during the 25 years using both the North Atlantic and the World wide trade
scatter diagrams. The ultimate bending moment and the contribution to the
total fatigue damage for the different sea states are shown in Figure 8.16 for the
270 [m] ship and in Figure 8.17 for the 360 [m] ship. The computed ultimate
bending moment and fatigue lifetime are presented in Table 8.2. The design
bending moment according to the Classification Societies rules is also presented
in this table. It should be noted that for the calculation for the World wide
trade scatter diagram, only the available sea states from the North Atlantic
scatter diagram are used. A few sea states which only occur in the World
wide trade scatter diagram are neglected. The contribution of these cells are
negligible due to their low wave height and probability of occurrence.

The results in Figures 8.16 and 8.17 show that the highest sea states still
determine the expected ultimate bending moment even if the ship is expected to
be less then a day in one of those sea states during its life. The low probability
causes the contribution of the highest sea states to the total fatigue damage to
be negligible. The fatigue damage is mainly caused for the sea states with a
significant wave height between four and eight metres.

Table 8.2 show that the computations predict a higher ultimate bending
moment that the design bending moment prescribed by the Classification So-
cieties rules. The rules do not account for the actual flare of the bow and stern
and therefore underestimate the hog/sag ratio. The rules [38] prescribe a design
hogging and sagging moment of{

MWV,H = 190FMnCL2BCB10−3

MWV,S = −110FMnCL2B(CB + 0.7)10−3
, (8.3)

which result in a wave induced hog/sag ratio of

MWV,H

MWV,S
=

190CB
110CB + 77

. (8.4)
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270 [m] ship 360 [m] ship
Hogging Sagging Fatigue Hogging Sagging Fatigue
Total Total life Total Total life

[GNm] [GNm] [years] [GNm] [GNm] [years]
Rule moment [38] 6.2 0.76 - 14.56 1.74 -

Linear 6.83 1.78 32.0 17.1 5.03 47.2
NA Non-linear 6.10 9.72 18.2 16.8 12.3 30.6

Slamming 7.39 11.9 10.6 19.1 15.8 21.6
Linear 6.30 1.24 66.3 15.8 3.71 117

WW Non-linear 5.79 7.02 40.6 15.6 9.42 77.9
Slamming 7.10 8.84 23.4 17.7 12.4 52.3

Hogging Sagging Hogging Sagging
Wave Wave Wave Total

[GNm] [GNm] [GNm] [GNm]
Rule moment [38] 3.5 3.46 8.4 7.84

Linear 4.13 4.48 11.1 11.1
NA Non-linear 3.40 12.42 10.7 18.4

Slamming 4.69 14.60 13.0 21.9
Linear 3.60 3.94 9.7 9.8

WW Non-linear 3.09 9.72 9.5 15.5
Slamming 4.40 11.54 11.6 18.5

Table 8.2: Rule bending moment, 25 years ultimate bending moment and fa-
tigue lifetime for both the North Atlantic (AN) and World Wide trade (WW)
scatter diagram for the two ships. Both the total bending moment and the
wave induced bending moment are presented.

These container ships have a block coefficient CB of about 0.6 which results
in an rule hog/sag ratio of 0.8. The calculations shows a hog/sag ratio of the
wave bending moment of 0.6 for the largest ship and 0.32 for the 270 [m] ship
for the most severe seas of the North Atlantic scatter diagram. The hogging
moment is still the largest moment due to the hogging SWBM for the 360 [m]
ship. However, the sagging moment is the largest moment for the 270 [m] ship.

The computed ultimate sagging moment is about two times the rule bending
moment for the 270 [m] ship. The computed values must be incorrect, otherwise
ships built according to these rules are likely to break in very severe sea states.
The sea state with a significant wave height of 15 metres and a zero crossing
period of 11 seconds resulted in the highest sagging moment. The bending
moment signal resulting from this computation is presented in Figures 8.18
and 8.19 for both the non-linear and the slamming computation. The ship is
expected to be 2.2 hours in this condition during its lifetime when sailing in the
North Atlantic. The bending moment signal is computed for about 3 hours.
One large peak is visible in the signal. The computed bending moment is about
11.4 [GNm] when slamming is included and 9.3 [GNm] when only using the
non-linear Froude-Krylov forces and hydrostatics. As this peak is much larger
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than the other peaks, such a peak is likely to be encountered less than once in
the three hours.

The one occurrence in the 2.2 hour extreme should be the design value,
but this is estimated to be even higher than the very large peak in the 3 hour
computed signal. The Weibull extrapolations are shown in Figure 8.20 for the
non-linear case and in Figure 8.21 for the slamming case using both Weibull
paper and a normal logarithmic scale. Especially, the plot on the normal log-
arithmic scale shows that the highest extremes have another distribution than
that predicted by the Weibull extrapolation. This is due to waves reaching
the deck. The green water pressure acting on the deck compensates the wave
bending moment. Note that the green water is only modeled by applying the
pressure of the undisturbed incoming wave at the deck. This is insufficient in
order to model the real forces acting at the deck by the green water. However,
it gives an indication of the trend. When making a fit using only the high-
est extremes, the ultimate sagging bending moment will be 9.3 [GNm] for the
slamming case and 7.3 [GNm] for the non-linear case. These values seem much
more realistic. The Weibull extrapolation as used is clearly not valid when
significant green water loading occurs.

Even with the corrections for the incorrect Weibull extrapolations, the com-
puted ultimate moment is still larger than the rule bending moment. This does
not indicate that the class rules underestimate the ultimate hogging bending
moment. As explained below, the computations will give conservative results,
the capacity of the structure is larger then the rule moment and the accuracy
of the computations is not clear for these very high sea states.

The calculations are done for only head waves using unidirectional waves.
There will always be some wave spreading which will reduce the resulting bend-
ing moment as the same amount of wave energy is distributed in different head-
ings. The ultimate bending moment will also be reduced by accounting for a
different heading instead of only head seas. However, it may also be argued
that it is likely that the master steers the ship into the waves if such severe
seas are encountered. For the computation it is assumed that the ship sails at a
speed of 5 knots in the most severe sea states. The master will probably retain
some speed to be able to steer the ship, but this may be less than 5 knots.

The rule bending moment is a design value. The rules contain a number of
safety factors which mean that the ship structure can withstand a large bend-
ing moment without any yield or buckling. Local yield may be even acceptable
for a few occasions during the lifetime of the ship. It would be better to com-
pare the ultimate bending moment computed using these direct calculations
with the ultimate bending moment which the structure can withstand but this
information is not available.

The accuracy of the computations for the very high seas is not clear. The
validation using the full scale measurements of the M-frigate, which is presented
in Chapter 12, shows that the structural response is well predicted for a sea
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state with a significant wave height of 5 metres. However, it is not validated
if this is also the case for a significant wave height of 15 metres. Most likely,
the accuracy of the computations will reduce for increasing wave height. One
can also question the accuracy of the wave condition and the probability value
used. The probability of the severe sea state where the ultimate bending mo-
ment is found is 1/100000 which is equal to 2.2 hours during the 25 years of
lifetime. However, if the real probability would be 0.7/100000 or 1.3/100000
the computed ultimate bending moment would be different. The Bretschneider
spectrum is used to describe the waves. It is not clear if this spectrum is still
valid for these very severe sea states. It is possible that some of the computed
waves can physically not exist and may break in reality.

The ultimate bending moment as presented in Table 8.2 cannot be used as
a substitute for the rule values. However, as the Figures 8.13 and 8.14 show
similar trends for higher sea states, some conclusions can be drawn. The actual
wave sagging moment is higher than the design sagging moment prescribed by
the Classification Societies rules for these container ships. Slamming induced
whipping and springing increases both the hogging and sagging moment. The
ultimate bending moments are increased with about twenty percent for the 270
[m] ship. The ultimate hogging moment is increased by about ten percent and
the ultimate sagging moment by about thirty percent for the largest ship. The
fatigue damage is mainly caused by the less severe sea states. This gives more
confidence in the accuracy of the computed fatigue damage. The reduction of
the lifetime due to the slamming induced whipping and springing is about fifty
percent for the 270 [m] vessel and thirty percent for the 360 [m] ship.

8.4 Calculation of design values

The ultimate bending moment and fatigue damage is calculated in the previous
section using the theory described in Chapter 7. These values are calculated
using a limited number of computed extrema. The variation of the predicted
ultimate bending moment and fatigue damage is investigated for the non-linear
calculation where slamming and whipping are included. This should provide
verification if the method described in Chapter 7 may be used to calculated
design values. The results which include whipping are used as it is expected
that these will result in the largest variation. It should be noted that this
investigation only verifies the method to compute the design values from the
bending moment signal. It does not verify if the calculated bending moment is
correct.

The lines in Figures 8.13 and 8.14 are reasonably smooth which is a first
indication that the calculation procedure as used gives converged values. To
have more insight into the scatter of the results, the calculation of the design
values for the 270 [m] ship is repeated twenty times, including the seakeeping
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calculation, using different wave realisations. The computations for the 360
[m] is repeated eighteen times. The mean values and two times the standard
deviation based on these samples are plotted in Figures 8.22 and 8.23. Assuming
the results to be normally distributed, 95 percent of the results will be within
the two times the standard deviation lines. The figures show that this 95
percent band is small which indicates that the scatter in the calculations is
small. This gives confidence in using the proposed procedure to obtain design
values, provided that the calculated bending moment is correct.

8.5 Conclusions

An ultra large container ship of 360 [m] has been used in this chapter to verify
the presented theory. It has been shown that the computed retardation func-
tion is consistent with the frequency domain added mass and damping. These
coefficients comply also to the Kramers-Kronig relations. The computed re-
sponse using the time domain approach was shown to be close to the results
when using the frequency domain approach, when the ship is sailing in a mild
sea. The difference between results of a linear frequency domain calculation
and a non-linear time domain calculation increases for a more severe sea state,
which is expected.

The computed internal loads are verified by comparing the internal loads
computed using the direct integration method and the modal approach. The
direct integration was also applied to both the forward and the backward di-
rection. All three results showed very good correspondence which indicates the
consistency of the presented method.

An investigation into the sensitivity of the computed whipping response to
the time step used showed that converged results are obtained when using a
time step of 0.2 [s] or less. As the maximum stable time step for the explicit
numerical integration scheme, when including the first five flexible modes in
the calculation, is smaller, the found converged time step for the whipping
computation was deemed acceptable.

The effect of hydroelasticity was also investigated. First, the slamming
force computed for a ship modelled with only rigid-body modes and for the
same ship including flexible modes were compared. The flexibility of the ship
was shown to decrease the computed slamming forces significantly, as could
be expected. The second investigation was comparing the computed slamming
forces when using the direct calculation as presented in this thesis and using a
separated approach where the slamming forces are computed afterwards, using
the computed motions obtained from a seakeeping computation without slam-
ming. This showed that using the direct, hydro-elastic coupling, also reduced
the computed slamming loads. This illustrated the importance of performing a
hydro-elastic analyses for such large flexible ships.
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In the last verification run it was shown that with the approach of integrat-
ing the slamming pressure over the 3D geometry the sensitivity of the resulting
slamming force with respect to the tilting angle of the 2D slamming sections is
significantly decreased compared to the classical method where the slamming
loading is applied as a single force.

The presented method was used for the computation of the fatigue lifetime
and the ultimate bending moment for two ships. The 360 metre container
ship and a 270 metre container ship were used for this case study. The ultimate
bending moment which is expected to occur once during the 25 years of lifetime
of both ships and the fatigue lifetime were calculated for both the North Atlantic
and World Wide trade scatter diagram.

These computations showed that the design wave sagging moment is un-
derestimated by the Classification Societies rules. It is also shown that the
computation of the extreme bending moment using the Weibull extrapolation
is incorrect as soon as there is a significant green water loading. The accuracy of
the results for the very extreme seas is not clear because the theory used is not
validated for these conditions. Also, the wave probability, the actual spectra,
course and speed of the vessel for the most extreme conditions are uncertain.

The slamming induced whipping and springing causes the ultimate bending
moment to be about twenty percent higher for the 270 [m] vessel, about ten
percent for the hogging moment and about 30 percent for the sagging moment
for the 360 [m] ship. The fatigue lifetime was reduced by about fifty percent
by the slamming induced whipping and springing for the 270 [m], and thirty
percent for the 360 [m] ship. This showed the importance of accounting for
slamming, whipping and springing when computing the design values for such
flexible ships. Provided that the computed bending moment is correct.

At the end of this chapter the accuracy of the method for calculating the
design values, which was presented in Chapter 7, was investigated by recom-
puting the design values for the ships using different wave realisations. It was
shown that the variation in the computed design values remained small, which
showed that the method used was accurate.
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Figure 8.13: Design values for the 270 [m] container ship.
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Figure 8.14: Design values for the 360 [m] container ship.
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Figure 8.15: Total time in sea state using different scatter diagrams.
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Figure 8.16: Design values for the 270 [m] container ship for 30 years in the
North Atlantic.
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Figure 8.17: Design values for the 360 [m] container ship for 30 years in the
North Atlantic.
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Figure 8.18: Bending moment signal for the 270 [m] vessel in Hs = 15[m] and
Tz = 11[s].
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Figure 8.19: Bending moment signal for the 270 [m] vessel in Hs = 15[m] and
Tz = 11[s], zoomed.
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in Hs = 15[m] and Tz = 11[s] when including non-linear loads.



8.5. Conclusions 157

-8

-6

-4

-2

0

2

4

10 11 12 13 14 15 16 17

ln
(−

ln
(P

(x
>

A
))

)

ln(A)

1e-04

0.001

0.01

0.1

1

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07

P
(x

>
A

)

A

hogging
saggin

2.2 hours

hogging
sagging

2.2 hours

Figure 8.21: Weibull fit of extremes of bending moment for the 270 [m] vessel
in Hs = 15[m] and Tz = 11[s] when including slamming.
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Figure 8.22: Variation in calculation of the design values for the 270 [m] con-
tainer ship.
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Figure 8.23: Variation in calculation of the design values for the 360 [m] con-
tainer ship.





Chapter 9

Flexible barges

Barges or floaters mutually connected by flexible connections are considered in
this chapter for the verification and the validation of the multi-body and hydro-
elastic capabilities of the presented theory. Two barges connected by a hinge
are used for verification in the first part of this chapter. The calculated response
of a barge with twelve flexible connected floaters is compared with experimental
results in the second part of this chapter. The time domain seakeeping theory
is used for the computations presented in this chapter because the coupling
between different bodies is not implemented in the frequency domain theory as
presented in this thesis.

9.1 Barges connected by hinge

The two barges shown in Figure 9.1 are connected by a hinge which allow only
for pitch rotation. A similar problem was presented in [37] using a frequency
domain approach. An example of two barges connected by a spring can be
found in [51]. There are two possible approaches to calculate the response of
the coupled barges using the generalised modes:

Single body The two barges are modeled as one body. This body has the basic
six rigid-body modes and one additional flexible mode which describes the
motion around the hinge. This “hinge” mode is a rotation of one radian
in pitch direction of the barge at the left-hand side and minus one radian
of the barge at the right-hand side.

Two body Both barges are modeled as a single body. This results in a total
of twelve rigid-body degrees of freedom. The hinge is taken into account
by kinematic constraints. Relative translations are constrained by the
‘spherical’-constraint. Two ‘first form dot’ or ‘d1’-constraints restrict the
relative roll and yaw motions. The different constraints are explained in
Appendix B.
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Figure 9.1: Dimensions in metres of the connected barges.

The first approach is clearly the most simple and shows the advantage of
using the generalised modes approach in the seakeeping calculation. This ap-
proach is also used in [37] to solve the motions of a comparable problem in
the frequency domain. However, it will be shown in this verification that the
single body approach is not fully correct as, for the time domain seakeeping
calculations, it is assumed that the amplitudes of the motions of elastic modes
remain small, which may not be the case for this ‘hinge’ mode.

The problem is first slightly changed to allow one to use this two body
configuration for additional verifications of the presented theory. The hinge
connection is changed to a rigid connection by removing the “hinged” mode for
the single body model. The two body model is adapted similarly by adding a
‘first form dot’-constraint in the pitch direction.

The motions are calculated for irregular head seas with a significant wave
height of 9 metres. Drift in the surge direction is avoided by adding weak springs
to the barges. Figure 9.2 shows the heave and pitch motion at the location of
the hinge. The resulting motion is the same, even if the approaches used are
quite different. A major part of the theory used for the computation has to
be consistent to obtain comparable results. These are mainly the calculation
of excitation forces, the different reference frames for the bodies, the dynamics
and the kinematic constraints.

The hinge is restored and a stiff spring is added between the barges in the
pitch direction for the next verification case. Both the heave at the location
of the hinge and the relative pitch angle between the two barges are shown in
Figure 9.3. The relative pitch shows some springing response. Again, both ap-
proaches give the same results. Even the springing response is exactly the same
for both approaches. This illustrates again the consistency of the presented
theory.

The original problem, with only the hinge and no spring, is considered next.
The resulting motions are presented in Figure 9.4. There are differences be-
tween the results obtained with both approaches in this case. These differences
could be expected as the deformations of the flexible modes are assumed to
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Figure 9.2: Motions with a rigid connection.

be small in the seakeeping calculation. The “hinge” mode of the single body
is a flexible mode and the deformation should remain small. The stiff spring
used in the previous calculation ensured that the displacement of the “hinge”
mode remained small enough for an accurate prediction of the motions using
the single body approach. Without the spring, the motion of the “hinge” mode
is too large in this severe sea state to use the single body approach. The linear
transformations for this flexible mode are not valid anymore in this case. How-
ever, the flexible body response is still close to the two body approach and will
give a reasonable estimation for the motions even for this severe sea state.

9.2 Flexible barge

Experimental results of the seakeeping response of a flexible barge are used to
validate the presented theory. These experiments where carried out at the BGO
FIRST offshore and seakeeping tank at Océanide in France [43]. The flexible

The calculations presented in this section have been performed by Jasper van den Broek,
see [54].
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Figure 9.3: Motions with a stiff spring and hinge.

barge consisted of twelve floaters mutually connected at the top by two steel
strips. Figures 9.5 and 9.6 are a technical drawings of this flexible barge. Figure
9.7 shows a photograph of the model.

Multiple configurations have been tested and are used in various papers for
validation of hydro-elastic theories. The results of the experiments of configu-
ration “C1” are used in this thesis. This configuration and the “C2” and “C3”
configurations were tested during the first series of the experiments. Only head
sea conditions are considered in these tests. Oblique conditions were considered
in the second test series. The two steel strips were replaced by a single steel
rod to allow for torsional deformation in this second test series.

“C1” is the most flexible configuration of the first series of tests. The steel
strips have a thickness of 4 [mm] for this configuration. The steel strips have
a thickness of 6 [mm] for configuration “C2”, and “C3” is a rigid model. All
configurations except “C1” have a modified floater at the front. This modified
floater makes the barge more ship-like.

The motions of six floaters of the barge are measured using an optical track-
ing system known as the Krypton system. The crosses in Figure 9.5 indicate
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Figure 9.4: Motions with only the hinge.

Figure 9.5: Flexible barge, top view; dimensions in [mm].

the locations where the motions were measured.
Both the seakeeping and a decay test are used for the validation. The

seakeeping experiments where done for both regular and irregular seas. The
experimental results published in this thesis may differ from results published
elsewhere, e.g. [42, 28], as the raw experimental data has been reanalysed. The
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Figure 9.6: Flexible barge, front view; dimensions in [mm].

Figure 9.7: Flexible barge, photograph.

decay test has been carried out by lifting the forward floater and releasing it.
All experiments are performed with zero speed. Weak springs were used to keep
the model in a horizontal position.

The two numerical models used to compute the response of the flexible
barge are discussed in the first part of this section. The second part shows the
comparisons with the decay test. The seakeeping results are compared in the
last part of this section.
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9.2.1 Numerical models

This flexible barge can be modeled as one flexible body or multiple rigid bodies
connected by a beam element. The results of both approaches are compared
with the experimental results. Although multiple bodies are used in the actual
experiment, the results of the single flexible body approach are quite interesting.
This is the only available experiment where the measured motions of the flexible
modes have the same frequency range as the incoming waves. This allows to
validate the hydro-elastic coupling for the frequency dependent parts of the
theory.

The first approach is using one flexible body. A uniform mass and stiffness
is assumed for the calculation of the first ten dry mode shapes for this flexible
body using a beam model. Figure 9.8 shows the hydrodynamic mesh used and
the first two mode shapes projected onto this mesh. This mesh is also used as
the integration mesh. Note that the part of the mesh above the still water line is
omitted in the figures to visualise the mode shapes better. The gaps between the
floaters are not modeled to avoid resonance problems in the frequency domain
BVP calculation. Neglecting these gaps causes an overestimation of the internal
load due to the hydrostatic force at the bow and stern. The model is so flexible
that the model will actually deform significantly in the calculation due to this
still water loading. This is compensated by subtracting the still water bending
moment in the time domain calculation using equations (2.39) and (4.47).

Figure 9.8: Mesh with elastic modes.

The second approach uses twelve rigid bodies to model the barge. The
corresponding mesh used in the time domain calculation is shown in Figure 9.9.
The bodies are connected by beam elements which represent the steel strips
shown in Figure 9.7. The axial stiffness of the steel strips is not modeled using
the beam elements as these are very stiff and will reduce the stable time step
for the explicit integration scheme to almost zero. Kinematic constraints are
used to impose that the length of the steel strip cannot change. This makes the
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steel strips infinitely stiff in the axial direction without influencing the stable
time step.

Figure 9.9: Multi-body mesh for time domain calculation.

The time domain mesh shown in Figure 9.9 cannot be used to solve the BVP
in the frequency domain. The sides of the floaters which are facing each other
will cause resonance and negatively affect the solution of the BVP. Figure 9.10
shows the mesh and a mode shape used to solve the multi-body problem in the
frequency domain. The gaps between the floaters are modeled by panels but
the modal displacements of these panels are always zero. One of these “joints”
is indicated by the thick lines in Figure 9.10. The mode shape shown in Figure
9.10 is the heave of the third body.

Figure 9.10: Multi-body mesh for frequency domain calculation.

Springs were used to keep the model in position during the experiments.
The same spring stiffness was added to the surge, sway and yaw motions of the
flexible body. Springs to all surge and sway modes of the multi-body model
are added such that the same total stiffness is obtained. The calculation will
not predict the correct surge motions as the second-order drift forces are not
calculated accurately by the theory used.

The two approaches to model the flexible barge are not equivalent as illus-
trated for the two barges connected by the hinge presented in Figure 9.1. A
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uniform distribution of mass, stiffness and buoyancy is assumed in the flexible
body approach. The multi-body approach takes into account the rigid parts and
localised masses. Therefore, it is expected that the multi-body approach should
give a better representation of the real model. The calculated responses will not
be the same using both models, however, the models should give comparable
results.

9.2.2 Decay experiment

A comparison of the heave motion of the first floater between the experimental
results and the calculations is presented in Figure 9.11. The calculations using
both the flexible body and the multi-body approach are performed with and
without additional viscous damping. The amount of damping has been tuned
to obtain similar amplitudes of motion as found for the first two peaks in the
experiments. The additional damping for the flexible body is 2.5 percent of
the wet critical damping for the heave and pitch mode, and 5 percent for the
flexible modes. The damping for the multi-body approach is defined for the
individual floaters 7.5 percent of the critical damping is added to the heave
modes and 5 percent to the pitch modes. The critical damping is based on a
single wet floater without any connection to the other floaters. Note that the
applied damping is not equivalent between the models, it is very difficult to
apply equivalent damping using the different models.

The amount of additional damping is quite high. The calculated response
is changed significantly by this additional damping. There is a physical expla-
nation for the source of this additional viscous damping. The relative motion
of the floaters will pump water in and out of the gaps between the floaters.
This will cause viscous damping, however, it is very difficult to model this phe-
nomena accurately. Therefore, the simple damping models are used and are
tuned through the decay test. Adding additional viscous damping is also done
by other authors, for example [45] uses 6 percent of the critical heave and pitch
damping, and 7.5 percent for the flexible modes for the configuration with the
rod.

The results in Figure 9.11 show that the calculations with the additional
viscous damping are reasonably close to the experiments for the first two peaks.
The result shows that the calculated natural frequencies are accurate, as the
timing of the first peaks compare well with the experimental results.

The calculated motion using the flexible body and multi-body approach
is very comparable despite the large differences between these methods. This
illustrates the consistency of the presented methodology.

The wet natural frequencies are calculated in the frequency domain using
the flexible body approach. The multi-body approach cannot be used to com-
pute the natural frequencies in the frequency domain as the beam elements are
not implemented for that. These results are compared to other analytical and
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Figure 9.11: Heave displacement of the first floater during decay test.

Mode Analytical [42] Numerical [28] Current method
Heave 5.50 5.50 5.45
Pitch 5.50 5.71 5.68
Flexible mode 1 6.17 6.45 6.27
Flexible mode 2 9.43 9.56 9.68

Table 9.1: Wet natural frequencies (in [rad/s]) of the heave, pitch and the first
two flexible modes of the barge.

numerical results in Table 9.1. The results of the presented method compare
well with the other results. There are no experimental values as the high damp-
ing makes the time trace of the decay test too short to accurately calculate the
natural frequencies from the motion signal of the decay test.

The names of the mode shapes in Table 9.1 refer to the most pronounced
dry mode shape contributing to the wet mode shape. Due to the hydrodynamic
coupling, all dry mode shapes contribute to the wet mode shapes. Therefore,
there is no real wet heave or pitch mode shape. Examples of the wet mode
shapes are presented in [28].
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condition H1/3[mm] Tz[s] condition H1/3[mm] Tz[s]
Irr 1 37 1.19 Irr 4 96 1.60
Irr 2 55 1.19 Irr 5 94 2.00
Irr 3 66 1.60 Irr 6 141 2.00

Table 9.2: Parameters for the irregular waves using JONSWAP spectrum.

9.2.3 Seakeeping experiments

The seakeeping response is measured in both regular and irregular waves. Table
9.2 presents the parameters used for the JONSWAP spectrum for the irregular
seas. The calculations are only performed for irregular waves. The same wave-
train as was measured during the experiment is used in the calculation. Spectral
analysis of the time traces of the motions are used to calculate the RAOs.

Figure 9.12 shows the heave response of the first floater and Figure 9.13 the
heave response of the seventh floater. The experimental results for irregular seas
show significant variation in heave response of the first floater for the different
sea states close to the natural frequency of 6 [rad/s]. The lowest experimental
RAO value corresponds with the highest waves. This difference is caused by
non-linearities in the seakeeping loads, most likely the viscous damping.
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Figure 9.12: RAO heave of the first floater.
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Figure 9.13: RAO heave of the seventh floater.

Only the results of the calculations with wave Irr 3 are presented in the
Figures 9.12 and 9.13 as the calculation results show less dependency to the
wave height as found in the experiments. This is probably because a linear
viscous damping model is used in the calculations. The motion calculated
using the two approaches is quite different in magnitude. This difference can
be explained by three things: the large flexible deformations which are not
allowed for the flexible body approach; the difference between the modeling;
and the difference in the computation of the viscous damping between the two
models. The damping has a large impact on the calculated motion. It is likely
that better results could be obtained when a more accurate damping model
is used. Nevertheless, the results obtained using the two approaches with the
additional damping show a fair correspondence with the experimental results.

Predicting the viscous damping is not an objective of this thesis. The objec-
tive is to predict the hydro-elastic response accurately for problems where the
wave radiation or structural damping is dominant. It is difficult to judge if the
presented theory correctly predicts the hydro-elastic response of this flexible
barge, except for the viscous damping. These comparisons only validate that
the presented method computes the measured trends in the RAO well. Similar
differences between the measurements and the predictions are also found in the
validations presented in [28] and [45].



Chapter 10

Experiments with an
aluminium model

Experiments with an aluminium model are used in this chapter to validate the
calculated hydro-elastic response. Figure 10.1 shows a photograph of the alu-
minium model. The experiments were carried out in towing tank of the Delft
University of Technology in the summer of 2006. The goal of these experiments
was to measure the wet natural frequencies and the response to slamming load-
ing. Using an aluminium model allows one to create an accurate numerical
model of the structure as the material parameters are well known for aluminium
in contrast to materials which are often employed for ship models. A detailed
description of the experiments can be found in [52].

Figure 10.1: Photograph of the aluminium model.

The model and the experimental setup is explained in the first section of

A number of the calculations presented in this chapter have been performed by Kirk
Green, see [13].
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this chapter. The validation of the wet natural frequencies is presented in the
second section. To be able to validate the slamming forces, a method which
estimates the slamming forces using the measured response is presented in the
third section. The last section presents a validation of the calculated slamming
forces and the whipping response.

10.1 Model and experimental setup

The model used in the experiments is described in the first part of this sec-
tion. The second part describes the experimental setup and data acquisition
procedure.

10.1.1 Model

The hydrostatics of the model are presented in Table 10.1. The hydrodynamic
cross sections are presented in Figure 10.2.

Length over all 3.8 [m]
Length at waterline 3.32 [m]
Length of parallel body 3.0 [m]
Beam 0.75 [m]
Draught 0.08 [m]
Depth 0.20 [m]
Volume of displacement 0.130 [m3]
Displacement of mass 130 [kg]
Area of water-plane 2.38 [m2]

Table 10.1: Hydrostatics.
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Figure 10.2: Cross sections.
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The structural drawings of the model can be found in Appendix D. The
model is made from aluminium plates with a thickness of 5 [mm]. The structural
design is such that the local modes have a high frequency compared to the
frequency of the first few global modes. This allows one to accurately measure
the response of the global modes. It also helps to compute the first few global
modes relatively easily using a FEM method, as this method will solve the
natural modes starting from the lowest frequency.

The model has a relatively large width to draught ratio to ensure a signifi-
cant influence of the added mass on the natural frequencies. Otherwise, it would
be difficult to validate the computed added mass by comparing the wet natural
frequencies with the experimental values. The bow of the model has been de-
signed to optimise slamming impact. This should ensure significant slamming
impacts and consequently a significant whipping responses. The bottom has a
small dead-rise angle to avoid entrapment of air during the slamming events.

The hull, excluding paint, has a mass of 95.4 [kg]. The total mass of the
paint is estimated at 1 [kg]. During the experiments with waves, a plastic cover
was placed on the model with a mass of 0.8 [kg]. The masses of the ballast and
the items to connect the model to the towing carriage can be found in Appendix
D.

The finite element model of the structure is shown in Figure 10.3. The
small mesh size is chosen to make the meshing of the small geometrical details
possible. The density of the aluminium is scaled slightly to obtain the same
mass as the real model. This accounts for the weight of cables, accelerometers,
paint, etc.

10.1.2 Experimental setup

As stated before, the experiments were performed in the large towing tank of
the Delft University of Technology. This tank is 142 metres long, more than 4
metres wide and 2.5 metres deep. The tank is equipped with a wave generator
which can produce regular and irregular head waves.

The model is attached to the towing carriage in such way that the sway, roll
and yaw motions are constrained. Springs in the surge direction prevent drifting
of the model. The model can move freely in the heave and pitch direction.
A sketch of the constraints can be found in Figure 10.4. Figure 10.5 is a
photograph of the actual experimental setup. Hinges supported by steel plates
are attached to the model. Steel pipes are connected to the hinges. These pipes
are connected to a small carriage by bearings. The small carriages run over a
rail on the towing carriage and can only move in surge direction. The small
carriage at the front is connected to the two springs. The small carriage at the
back runs freely.

The rigid-body motions are measured by an optical tracking system called
the Krypton system. The structural response is measured using twenty ac-
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Figure 10.3: FE model of structure.

Figure 10.4: Model constraints, sketch.

celerometers. The location of these accelerometers can be found in Appendix
D. Sixteen accelerometers measure the vertical accelerations and four measure
the horizontal accelerations. The wave elevation is measured by a wave probe in
front of the towing carriage. The forces in the surge springs are also measured
using force transducers F1 and F2 shown in Figure 10.5. The data is acquired
using a sample rate of 10 [kHz] which is large enough to measure the natural
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Figure 10.5: Model constraints, experiment.

frequencies of the first few global modes of the structure which have a frequency
up to 300 [Hz]. It should be noted that the optical tracking system samples
the position at a frequency of 60 [Hz].

10.2 Natural frequencies

The natural modes are measured during the first phase of the experiments. The
Frequency Response Functions (FRF) are measured at the 14 accelerometers,
after a hit with an instrumented hammer. The results of the measurements
in still water are shown in Figure 10.6. The amplitude of the FRF indicates
the frequencies of the natural modes. The shape of the natural modes is de-
termined using the phase differences found for the different accelerometers in
the FRF. This experiment is repeated using other locations along the model for
the hammer hit to ensure that all global vibration modes up to 200 [Hz] are
found. This experiment is also carried out for different velocities to investigate
the velocity dependency of the (infinite frequency) added mass.

The response of the model in air is investigated first. This validates if
the numerical model of the structure is accurate. The natural frequencies and
mode shapes are measured for the model lifted out of the water by soft springs.
The effect of these springs on the natural frequency is negligible. Besides the
springs, the connection of the model to the towing carriage is exactly the same
as used for the experiments. This ensures that the effect of these connections are
included in the measured dry frequencies. These connections are also modelled
in the FE model of the structure.

The comparison of the calculated and measured dry frequencies of the first
few global modes can be found in Table 10.2. The results obtained by the
numerical model are close to the measurements which indicates that the FE
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Figure 10.6: FRF between hammer and the 14 vertical accelerometers for the
model in still water.

Frequencies [Hz]
Mode description Experiments FEM calculation
1st Torsional 42.6 45.3
1st Longitudinal 46.9 47.0
2nd Torsional 111.8 112.0
2nd Longitudinal 123.4 125.5

Table 10.2: Dry natural modes.

model is a sufficiently accurate representation of the structure.
The wet natural frequencies are calculated using the frequency domain

method described in Section 3.4. The comparison between the calculated and
measured wet frequencies is presented in Table 10.3. The calculated natural
frequencies are equal for all speeds because the speed is only included in the
encounter frequency. The frequencies of the natural modes are relatively high
meaning that the frequency dependent part of the added mass is almost zero for
these frequencies. This results in an added mass which is the same for all veloc-
ities and almost equal to the infinite frequency value. The comparison between
the experimental and calculation results shows good agreement. The natural
wet frequencies are also calculated in the time domain by giving a mode an
initial displacement and calculating the spectra of the resulting motion in still
water. The calculated natural frequencies using the time domain were found to
be almost equal to the results of the frequency domain computation.
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Frequencies [Hz]
Mode description Expt.

0ms−1

Fn 0

Expt.
1ms−1

Fn 0.18

Expt.
1.5ms−1

Fn 0.26

Expt.
2ms−1

Fn 0.35

Calc.

1st Torsional 28.1 28.0 28.9 30.8 30.3
1st Longitudinal 25.3 25.0 25.6 27.3 25.3
2nd Torsional 70.8 70.7 71.3 71.0 74.6
2nd Longitudinal 61.8 61.2 60.3 59.4 62.4

Table 10.3: Wet natural modes.

The wet natural frequencies of the longitudinal modes are about half that
of the dry natural frequencies. As the increase of the total stiffness by the
hydrostatics is negligible, the total modal mass has to be four times larger for
the wet situation compared to the dry situation. This indicates that the added
mass for these modes is about three times the structural mass. This large
contribution of the added mass to the wet natural frequencies makes the wet
natural frequencies a good measure to investigate if the added mass is computed
accurately.

In addition, the results show that the contribution of the added mass hardly
changes due to the forward velocity. The experiments were carried out with a
velocity up to Froude number Fn = 0.35, but the measured natural frequencies
hardly change. Therefore, calculating the infinite added mass without account-
ing for forward speeds effect gives reasonable results for this model. The zero
speed infinite added mass is normally used when the added mass is included in
the FEM calculation.

10.3 Estimation of slamming loads

In the second part of the experimental investigation the response of the model
in waves with slamming is measured. The slamming loads are not directly
measured, instead the response of the aluminium model is measured using the
accelerometers in combination with the optical tracking system which measures
the rigid-body motions. The Optimal State Estimation method (OSE) is used
to estimate the slamming loads using the measured response. The theoretical
background of the OSE method can be found in Appendix E. This section
explains the preparations to utilise the OSE method. In addition, to validate
the OSE estimate, the estimated external force is compared with a measured
hammer impact.
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10.3.1 Preparation for the OSE

The first forty natural modes are calculated using the FE package trident
[34]. The FE mesh used is shown in Figure 10.3. The FE model also contains
the small blocks which are used to support the accelerometers. These blocks
are added to the FE model to obtain the eigenvectors for the locations of the
accelerometers as accurately as possible

Boundary elements are placed on all wetted elements for the calculation of
the infinite frequency zero speed added mass in still water using the BEM solver
within the FE program. Hydrostatic springs are added to obtain the correct
heave and pitch frequencies. Note that this approach results in different mode
shapes compared to the dry mode shapes which are used in the seakeeping
calculations.

The accelerations, velocities and displacements are estimated by the OSE
method. The errors in the velocities and displacements cannot be estimated
if only the measured accelerations are used as input for the OSE estimation.
The rigid-body displacements have been measured using an optical tracking
system. These measurements cannot directly be used because the motions
were measured with a frequency of 60 [Hz]. The signal does also not include
the small displacements given by the flexible deformations.

A displacement signal can also be obtained by double integration of an
acceleration signal. The calculated displacement is shown in Figure 10.7. Line
d(t) is the displacement measured by the optical tracking system and line

∫∫
a(t)

is the double integration of the acceleration signal. There is a clear difference
between the two signals. The difference is mainly due to the fact that the
initial velocity and displacement are not known and set to zero for the double
integration, but the changing pitch angle with respect to the gravity field and
inaccuracies in the accelerometer cause a so-called drift in the signal.

Before the OSE can be used, the error in both the acceleration and displace-
ment signals are minimised using the rigid-body displacement signals from the
optical tracking system.

The accelerations are corrected using

ac(t) = a(t) + g(1 − cos(θ)) + 2c2 + 6c3t+ 12c4t2 + 20c5t3, (10.1)

with

c0 + c1t+ c2t
2 + c3t

3 + c4t
4 + c5t

5 ≈ dm(t)−
∫∫ t

0
a(t)+ g(1− cos(θ)) dt, (10.2)

where dm(t) are the measured displacements from the optical tracking system.
The g(1−cos(θ)) term accounts for the gravity accelerations due to gravity,

due to changes in the pitch angle. Coefficients c0 to c5 are obtained by a
polynomial fit of the difference between the original double integration and the
measured motions. Coefficient c0 corresponds to the initial displacement of the
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Figure 10.7: Displacements at accelerometer number 1.

point, which cannot be known from the acceleration only. The initial velocities
is c1 and c2 are the mean offset of the accelerometer. Only c3 to c5 are used
to remove actual drift in the accelerometer signal. The original and corrected
acceleration signals are shown in Figure 10.8. The corrections are very small,
but the displacement signals in Figure 10.7 show that the double integration of
the corrected signal is very close to the measured motions.
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Figure 10.8: Original and corrected acceleration at accelerometer 1.

Only vertical forces are estimated using the OSE method. The OSE esti-
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mation is based on

• The corrected vertical accelerations of the fourteen accelerometers which
where oriented in the vertical direction

• Displacements using double integration of the corrected accelerations at
accelerometers 1, 4, 6, 16, 19 and 20, see Figure D.4.

• The first fifteen mode shapes which have a significant contribution to
the vertical accelerations. These are the longitudinal and torsional mode
shapes. The damping for all modes of the wet model is estimated to be
one percent of the critical damping.

The input signals are down-sampled to 5 [kHz] before the OSE estimation
is made. Otherwise, computing a estimation for a time trace of twenty seconds
would require more computer memory than was available (32 Gb). The user
selects locations where the external forces are estimated. Four forces are dis-
tributed over the ship. One at the bow, one at the aft, one in the middle and
one at the side. The OSE estimation becomes inaccurate if more force loca-
tions are added for the estimation. The measurements and the mode shapes do
not contain enough information to estimate the contribution of more than four
external forces. The total heave force, which is the sum of the four predicted
forces is presented as the result of the OSE estimation.

10.3.2 Validation of the OSE estimation

For validation purposes, the aluminium model is hit with a large hammer in
still water. Rubber sheets where placed between the hammer and the model to
obtain a comparable response as was measured during the slamming induced
whipping responses. The hammer force is measured using an accelerometer,
such that f = m · a. This will result in a non-zero force before and after the
impact because the hammer also accelerates during these time spans.

The measured and the estimated force are shown in Figure 10.9. An un-
known force at the location of the hammer impact is used for the OSE calcu-
lation. The estimated force by the OSE during the actual hit is very close to
the measurement. The OSE estimation shows some oscillations after the hit
because the actual damping of the modes is not known. The OSE uses the
external force to compensate for the differences between the real damping and
the user defined damping.

10.4 Validation of computed slamming impact and
whipping response

Regular head waves are used to investigate the slamming impact and resulting
whipping response of the aluminium model. The experiments were carried out
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Figure 10.9: Comparison hammer force.

Run U H ω Figure Run U H ω Figure
[m/s] [m] [Hz] [m/s] [m] [Hz]

1 0.0 0.23 0.56 10.11 9 1.0 0.15 0.68 10.15
2 0.0 0.23 0.60 10.11 10 1.0 0.16 0.72 10.15
3 0.0 0.24 0.64 10.12 11 1.5 0.16 0.54 10.16
4 0.0 0.19 0.68 10.12 12 1.5 0.15 0.56 10.16
5 0.0 0.28 0.72 10.13 13 1.5 0.14 0.60 10.17
6 1.0 0.15 0.56 10.13 14 1.5 0.14 0.64 10.17
7 1.0 0.16 0.60 10.14 15 1.5 0.14 0.68 10.18
8 1.0 0.15 0.64 10.14 16 1.5 0.12 0.72 10.18

Table 10.4: Conditions for whipping experiments.

with velocities of 0, 1 and 1.5 [m/s] and wave frequencies of 0.56, 0.60, 0.64,
0.68 and 0.72 [Hz] resulting in wavelengths ranging from 5 [m] to 3 [m]. An
additional run using a wave frequency of 0.54 [Hz] was done for 1.5 [m/s]. The
wave height used is the maximum wave height which was shown to be possible
during the experiments. Higher waves would likely result in green water, waves
over-topping the towing tank and/or larger displacements of the model than
the setup could handle. An overview of the experiments is given in Table 10.4.

Next to the estimation of the slamming forces, the slamming loads and the
whipping responses are also computed for all measured conditions. The hydro-
dynamic mesh and the slamming sections used for the calculations are shown
in Figure 10.10. It was found that the prediction of the rigid-body seakeeping
motions are quite inaccurate. This could be expected as the video recording
of the experiments shows that the model was, at some time steps, more than
fifty percent out of the water. The linear assumption for the diffraction and
radiation forces do not hold in such conditions. Another problem is the surge
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motions which cannot be correctly computed without correct computation of
resistant and drift forces. Both are not included in the theory used.

The measured rigid-body motions are, therefore, imposed in the calculations
using kinematic constraints. This should ensure the correct relative velocity
and it still allows to validate the whipping response as only the rigid-body
motions are imposed. The wave elevation measured by the wave probe is used
to generate the wave-train for the seakeeping calculations assuming that the
diffraction from the model is negligible at the location of the probe.

Figure 10.10: Hydrodynamic mesh and slamming sections.

Figures 10.11 to 10.18 shows the comparison between the estimated and
calculated total force in the heave direction. The figures show also the compar-
ison between measured and calculated accelerations at the bow, accelerometer
1, see Figure D.4. Both the forces and accelerations are measured in the body
reference frame. Note that the corrected accelerations are presented as the
measured accelerations.

It should be kept in mind that the given heave force is really an estima-
tion. The OSE is developed to predict impulsive loading at a structure. The
prediction of the slamming load will be accurate but the prediction of the non-
impulsive loading will be less accurate. Hydrostatic springs were used to solve
the wet natural modes, which are used by the OSE. The forces from these hy-
drostatics springs are not included in the OSE estimate which will result in a
difference in the non-impulsive loading. There are also whipping oscillations
visible in the heave force. This is caused by the OSE using the external forces
to create the correct structural damping.

10.4.1 Zero speed cases

The prediction of the slamming force and the resulting whipping response is not
so good for the zero speed conditions. This is probably caused by a difference in
wave realisation between the experiment and calculation. The experiments were
carried out in a relatively small towing tank. The radiated waves will reflect
on the tank wall and influence the wave elevation at the model. The tank
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walls are not modelled in the computations and the wave realisation is based
on the measured wave elevation at the probe. This probe will also measure the
radiated waves, but they travel in a different direction which means that they
are incorrectly taken into account for the calculation where only head waves
are assumed. Another reason for the poor prediction is that the magnitude of
the slamming impacts are relatively small for this condition. A small variation
in relative velocity will have a large effect on the total slamming force.

The computation does not predict any slamming between 5 and 10 seconds
for run 1 presented in Figure 10.11(top) where small slamming impacts are mea-
sured. The computed whipping is a result of a slamming event that occurred at
an earlier time step. Due to the very low structural damping, the whipping re-
sponse is still present in the acceleration signal. The amplitude of the whipping
is still very comparable between the measurement and calculation.

The slamming impact and whipping response is overestimated for the
0.60[Hz] wave, see Figure 10.11(bottom). The computed whipping signal shows
that the slamming impact at 8 seconds actually reduces the whipping response.
This is caused by the fact that the present whipping response has an opposite
phase with respect to the slamming loading. This effect is also visible in some
measurements. As there is a small difference in measured and computed natu-
ral frequency, the phase between the present whipping response and slamming
impact will not be correctly computed.

The slamming and resulting whipping is also overpredicted for the 0.64
[Hz] wave and for the 0.68 [Hz] wave, see Figure 10.12. However the resulting
whipping response is quite close to the measurements for the 0.68 [Hz] wave.
The comparison of the total heave force of the shortest wave, 0.72 [Hz], in
Figure 10.13(top) really gives doubts about the coherence between the actual
wave elevation and the wave elevation used in the computation for this case.
The wave signal should have been measured without the model for this zero
speed case.

10.4.2 Forward speed cases

The prediction of the slamming force and the resulting whipping response is
much better for forward speed. The results for 1 [m/s] are shown in Figures
10.13(bottom), 10.14 and 10.15. The computed slamming force compares very
well with the estimation from the experiments. The computed whipping re-
sponse is in very good agreement with the measurements for the 0.56, 0.60 and
0.68 [Hz] waves and is slightly underpredicted for the 0.64 and 0.72 [Hz] waves.

The slamming impacts are underpredicted for the longer waves up to 0.64
[Hz] for the highest velocity of 1.5 [m/s], see Figures 10.16, 10.17 and 10.18.
The resulting whipping response is quite close to the measurements. The mea-
sured slamming impacts last for a time which is approximately the period of
the first natural frequency of the model. This causes the last part of the slam-



186 Chapter 10. Experiments with an aluminium model

ming impact to reducing the whipping response as the modal velocity is then
opposite to the slamming loading. This explains why the computed whipping
response is still close to the measurements even if the slamming impact is un-
derestimated. The underestimation of the slamming impact is visible in the
acceleration signals of the 0.60, 0.64, 0.68 [Hz] waves. The acceleration peaks
during the impact are underestimated for these waves. An explanation of the
underprediction of the slamming force at this high velocity could be the planing
forces which are not computed in the 2D theory used to compute the slamming
forces.

10.5 Conclusions

The presented theory has been validated for the added mass, the slamming
impact and whipping response using experiments with an aluminium model.
The advantage of using the aluminium model is that the structural properties
are well known. The computed and measured dry natural frequencies compare
very well. The computed wet natural frequencies also compare well with the
measured wet frequencies. This shows that the influence of the added mass
is captured well by the computations. The wet natural frequencies were mea-
sured for different speeds and it was shown that the wet natural frequency, and
thereby the infinite frequency added mass, is quite independent of the velocity.
This indicates that it is possible to use the zero speed infinite added mass even
for ships at forward speed. This assumption is often used when including the
added mass in FEM computations.

Slamming induced whipping experiments are also performed using the alu-
minium model. The computed heave forces and accelerations at the bow were
compared to the experimental values. The results for the zero speed cases are
not so good. Likely, this is mainly due to the diffracted waves reflecting at
the tank walls. The predictions for the forward speed conditions show good
agreement with the measurements. The slamming forces at the highest velocity
are slightly underpredicted. A possible explanation could be the contribution
of the planing forces which are not included in the theory used.

It can be concluded that this validation shows that the presented theory is
capable of accurately predicting the wet natural frequencies, slamming impact
and resulting whipping response. However, it should be noted that it was
necessary to impose the measured rigid-body motions to obtain these good
results. The computed rigid-body seakeeping motion proved to be inaccurate
for this model for very severe wave conditions.
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Figure 10.11: Comparison between calculated (black lines) and estimated (gray
lines) heave force and comparison between calculated (black lines) and measured
(gray lines) bow accelerations (a).
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Figure 10.12: Comparison between calculated (black lines) and estimated (gray
lines) heave force and comparison between calculated (black lines) and measured
(gray lines) bow accelerations (b).
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Figure 10.13: Comparison between calculated (black lines) and estimated (gray
lines) heave force and comparison between calculated (black lines) and measured
(gray lines) bow accelerations (c).
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Figure 10.14: Comparison between calculated (black lines) and estimated (gray
lines) heave force and comparison between calculated (black lines) and measured
(gray lines) bow accelerations (d).
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Figure 10.15: Comparison between calculated (black lines) and estimated (gray
lines) heave force and comparison between calculated (black lines) and measured
(gray lines) bow accelerations (e).
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Figure 10.16: Comparison between calculated (black lines) and estimated (gray
lines) heave force and comparison between calculated (black lines) and measured
(gray lines) bow accelerations (f).
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Figure 10.17: Comparison between calculated (black lines) and estimated (gray
lines) heave force and comparison between calculated (black lines) and measured
(gray lines) bow accelerations (g).



194 Chapter 10. Experiments with an aluminium model

-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

5 6 7 8 9 10T
o
ta

l
h
ea

v
e

fo
rc

e
[k

N
]

Time [s]

U = 1.5[m/s], H = 0.14[m], ω = 0.68[Hz]

0.0

5.0

10.0

15.0

20.0

25.0

30.0

5 6 7 8 9 10A
cc

el
er

a
ti

o
n
s

a
t

b
ow

[m
/
s2

]

Time [s]

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

5 6 7 8 9 10T
o
ta

l
h
ea

v
e

fo
rc

e
[k

N
]

Time [s]

U = 1.5[m/s], H = 0.12[m], ω = 0.72[Hz]

2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0

5 6 7 8 9 10A
cc

el
er

a
ti

o
n
s

a
t

b
ow

[m
/
s2

]

Time [s]

Figure 10.18: Comparison between calculated (black lines) and estimated (gray
lines) heave force and comparison between calculated (black lines) and measured
(gray lines) bow accelerations (h).



Chapter 11

Slamming measurements on a
container vessel

The slamming loads on the bow of a container vessel have been measured during
model experiments for regular and irregular head waves. The presented theory
is validated using these experimental results. Also some verification is carried
out using this ship which is much smaller than the two container ships presented
in Chapter 8.

A full description of the model experiments can be found in [15]. The
characteristics of the model and the real ship are given in Table 11.1. The
experimental setup is shown in Figure 11.1. The model is free in heave and
pitch direction but constrained in the other four directions. The upper bow
section, dashed in Figure 11.1, is connected by a force transducer to the model.
This allows to measure the total force on the bow section. The accelerations of
the bow section are also measured and the inertial forces are subtracted from
the measured forces to obtain the external force solely on the bow section. The
external force is also measured at section 18, which is the other dashed section
in Figure 11.1, using the same approach.

Figure 11.1: Experimental setup.

The integration mesh, which is based on the hydrodynamic mesh, of the
ship is shown in Figure 11.2. The different gray scales indicate the sections as

Most calculations presented in this chapter have been performed by Niels Mallon. A more
detailed validation report can be found in [32].
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Model Ship at full
scale

Nominal displacement ∇ 1200 [kg] 21618 [t]
Length between perpendiculars Lpp 5.84 [m] 151.9 [m]
Beam B 1.069 [m] 27.8 [m]
Draught T 0.317 [m] 8.25 [m]
Vertical distance of the centre of
gravity from OH (baseline)

V CG 0.3 [m] -

Longitudinal distance of the cen-
tre of gravity from AP

LCG 2.836 [m] 73.76 [m]

Inertia Kyy/Lpp 0.25 [−] 0.25 [−]

Table 11.1: Characteristics of the model.

defined in the ship model. The cut planes used to create the sections are located
at the boundaries of the sections used to measure the slamming forces during
the experiments. As only planes can be used to create sections, the forces at
the two small sections have to be added to obtain the total force at the section
18. The 2D slamming sections and scaled normals are shown in Figure 11.3.
The ship is modelled as rigid-body.

Figure 11.2: Integration mesh for container ship.

Figure 11.3: Slamming sections and scaled normals.

A few verifications of the calculated slamming force are presented in the
first part of this chapter. The calculated slamming forces are validated using
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the experimental results from the model in the second part of this chapter.

11.1 Verification of calculated slamming loading

This section presents verifications of the calculated slamming forces. The same
kind of verification is also presented for the two large container ships in Chapter
8.

The slamming force at the whole bow starting from section 18 is compared
for all verifications. As this part of the bow is not fully covered by the 2D
slamming sections presented in Figure 11.3, additional 2D slamming sections
are added for these verifications.

11.1.1 Tilting angle of slamming sections

The first verification considers the sensitivity of the computed slamming forces
with respect to the chosen tilting angle of the 2D slamming sections. Figure
11.4 shows the slamming force calculated for different tilting angles.

When using the GWM the calculated slamming force is reasonably inde-
pendent of the tilting angle used. It seems best to avoid using vertical sections
of 90 degrees. The MLM method is much more sensitive to the tilting angle
compared to the GWM method. This sensitivity can be explained by the bul-
bous bow which violates the MLM assumptions. By tilting the sections, more
sections will include the bulb part. The sensitivity of the MLM method is also
caused by a less accurate pressure description. The MLM uses a flat plate as-
sumption. The pressure at this plate is projected onto the sections, see Section
5.3.5. This results in a less accurate pressure distribution when using the MLM
method which results in a less accurate slamming force when using the MLM
method.

11.1.2 Time step

The coupling between the seakeeping and slamming program should ensure that
the slamming impulse is correctly transfered regardless of the time step used.
This was already shown for the large container ship in Section 8.2.5.

The same verification is now repeated for this rigid ship. Using a rigid ship
allows for a larger stable time step for the explicit integration scheme. Figure
11.5 shows the calculated vertical slamming force. This force is integrated over
time to obtain the corresponding impulse, see Figure 11.6. The total slamming
impulse remains about the same for time steps up to 0.4 [s] using the GWM
method. The peak of the relative velocity curve is missed when using a large
time step which causes the calculated slamming impulse to decrease. The time
step of 0.4 [s] is usually larger than the maximum stable time step when the
elastic modes are included for a whipping calculation. The slamming calculation
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Figure 11.4: Slamming force using different tilting angles for the slamming
sections.

using the MLM method converges less well for the small time steps because
the calculated force is partly dependent on the accelerations of the previous
Runge-Kutta step, see Section 5.3.5. This approach becomes less accurate
when increasing the time step.

11.1.3 Sensitivity to relative motion

The sensitivity of the calculated slamming force to small changes in the com-
puted ship motions is now investigated. The slamming loads scales approxi-
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Figure 11.5: Slamming force using different time steps in the seakeeping calcu-
lation using the GWM method.

mately with the square of the relative velocity. This should make the slamming
force very sensitive to changes in the relative motions.

To get an insight into this sensitivity, the slamming force is computed for the
same wave but with small changes in the motions of the ship. The computed
ship motions are varied by changing the main diagonal stiffness or damping
value for the heave or pitch motion. The resulting heave and pitch motions and
the calculated slamming forces are shown in Figure 11.7.

The computed slamming force changes only slightly with the small changes
in the heave motion. The small variations in the pitch motions, however, causes
significant changes in the computed slamming forces. This difference in sensitiv-
ity to the heave and pitch motions is expected as the pitch motions contribute
much more to the relative velocity at the bow than the heave motion does. The
large sensitivity of the calculated slamming force towards the relative motions
shows the importances of an accurate ship motion prediction when calculating
the slamming loads.

11.2 Validation of calculated slamming forces

The measured and calculated slamming forces are compared in Figures 11.8
and 11.9 for regular waves and in Figure 11.10 for irregular waves. The slam-
ming forces are computed using the GWM method. The measured motions are
imposed in the seakeeping calculation to ensure that the slamming forces are
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Figure 11.6: Slamming impulse using different time steps in the seakeeping
calculation.

calculated using the same relative motions as found during the experiments.
Note that the prediction of the rigid-body motions is reasonably accurate for
this ship using the presented theory. However, any variation in the relative
motion will make the validation of only the slamming force more difficult.

All components of the hydrodynamic forces are present in the total force at
the section. The slamming contribution is the sharp small peak seen on top of
the broad peak in the calculated force curve. The broad peak is caused by the
non-impulsive, wave frequency, hydrodynamic forces.

The slamming forces at the bow section are underpredicted, especially for
the 25 knots cases, see Figure 11.9. An explanation for this underprediction
could be that there is in reality an additional uprise of the free surface due to
the bow wave. The bow of this vessel is quite flared and a significant bow wave
will form if the ship would sail in still water at 25 knots with a draught which
is equal to the maximum relative displacement during the slamming events.
This effect is not included in the slamming calculations as the theory used to
calculate the slamming forces is based on drop tests without forward velocity.

An engineering approach is used to investigate if the missing bow wave
could explain the underprediction of the slamming forces. MARIN has kindly
calculated the static bow wave for five different draughts with their program
rapid. The wave height for the relative motion calculation is changed using
this static bow wave. The relative displacement based on the original wave
height is calculated first. The equivalent “draught” is computed and linear
interpolation is used to obtain the height of the static bow wave for the current
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Figure 11.7: Slamming force with small differences in relative motion. Slam-
ming computed using the GWM method.

relative displacement at that location where the slamming forces are computed.
This static bow wave elevation is added to the original wave height and is used
for the calculation of relative motion used for computing the slamming forces.
The results of this approach are also presented in Figures 11.8, 11.9 and 11.10.
This approach turned out to be unstable for the forces at section 18 for the 25
knots case. This is due to the fact that the static bow wave height is actually
decreasing for increasing draughts at section 18. The unstable results are not
shown in the Figures. Note that this static bow wave was not an issue in the
validation using the aluminium model presented in the previous chapter as these
impacts were more bottom slamming instead of bow flare slamming as is the
case for this ship.

The comparison with the experiments, which are presented in Figures 11.8,
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11.9 and 11.10, show that the inclusion of the static bow wave improves the pre-
diction of the slamming force at the bow significantly. However, the predicted
slamming forces at the bow section are still lower than found in the experi-
ments. The prediction using the bow wave is reasonable but the total impulse
of the slamming event is still too low. A possible explanation are the missing
planing forces from 2D approach used for computing the slamming loads.

The force at the bow is overestimated after the slamming event. This is
probably due to the so-called exit phase of the slamming. The slamming com-
putation presented in this thesis does not account for this exit phase.

The non-impulse hydrodynamic forces are overestimated for section 18. The
measurements show no impulsive loading for the zero speed case where the
calculation predicts some slamming force. The prediction of the slamming
loading for the 25 knot cases seems quite good while the slamming loading is
overestimated at 15 knots.

11.3 Conclusions

The verification using this 152 [m] container ship shows good results. The
slamming forces computed with the GWM were shown to be quite independent
on the tilting angle of the 2D slamming section as selected by the user. The
slamming force computed by the GWM method is converged for the time steps
normally used for the seakeeping calculations. The performance of the MLM
method is less good for both the sensitivity towards the tilting angle of the 2D
slamming sections and the time step used in the seakeeping calculation.

The last verification showed that the computed slamming force is very sen-
sitive with changes in the calculated seakeeping motions, especially the pitch.
This sensitivity was expected, but it illustrates the importance of an accurate
seakeeping computation.

The calculated slamming forces at the bow are compared with experimental
results for both regular and irregular waves. The comparison showed that the
slamming forces are significantly underpredicted at forward speed. An expla-
nation of this effect may be the static bow wave due to the velocity. Including
the static bow wave improved the calculation results significant. However, the
slamming forces at the bow section are still underpredicted slightly which could
be explained by the missing planing forces.

It can be concluded that the verification showed that the GWM slamming
computation performs better than the MLM method. The validations show
that the slamming forces are computed with reasonable accuracy when the
relative velocity input is correct. The static bow wave needs to be taken into
account for this ship to obtain an accurate relative velocity prediction used for
the slamming computation.
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Figure 11.8: Comparison between measured and calculated slamming force in
regular waves (a). Measurements are solid lines, calculations long dashed lines
and calculations with additional static bow wave short dashed lines.
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Figure 11.9: Comparison between measured and calculated slamming force in
regular waves (b). Measurements are solid lines, calculations long dashed lines
and calculations with additional static bow wave short dashed lines.
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Figure 11.10: Comparison between measured and calculated slamming force in
irregular waves (c). Measurements are solid lines, calculations long dashed lines
and calculations with additional static bow wave short dashed lines.





Chapter 12

M-frigate

The multi-purpose frigate (M-frigate) of the Royal Netherlands Navy (RNlN) is
used in this chapter for verification and validation of the presented theory. The
M-frigate has a displacement of about 3300 tons and has a maximum velocity
of 29 knots [61]. The length over all is 122 metre and the maximum beam is
14.4 metre. Figure 12.1 shows a photograph of the Hr. Ms. Karel Doorman
which is one of the eight M-frigates.

Figure 12.1: M-frigate Hr. Ms. Karel Doorman, (source RNlN).

The structural 3D-FEM model of the M-frigate has been provided by the
RNlN. Figure 12.2 shows this structural mesh and also the hydrodynamic mesh
used for the presented computations. The program used for creating the hydro-
dynamic mesh is not able to model the shear of the deck correctly. The deck of
the hydrodynamic mesh is a bit too high due to this. This will only affect the
seakeeping calculation if the water reaches the deck which will only be the case
for very severe seas.
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Figure 12.2: Structural and hydrodynamic mesh of M-frigate.

The first eleven elastic mode shapes found in the 3D-FE analysis are in-
cluded in the seakeeping calculation. The stress at the desired location is ob-
tained by multiplying the calculated modal amplitudes with the participation
factors for the stress in the longitudinal direction, computed by the 3D-FE
program.

A structural damping of 2% of the wet critical damping is assumed for the
first two elastic modes, 3% is assumed for the third and fourth mode and 4%
is assumed for the other modes. The time signals of the stress for a measured
slamming event1 and for a calculated slamming event, respectively, are shown
in Figure 12.3. Both events are due to a different wave-train, as the encountered
wave train during the trial is unknown. The signals cannot be the same due to
the difference in wave-trains, but it shows that the damping of the whipping
response in the calculation is reasonably close to the experimental trend.

The first part of this chapter presents a verification of the calculation of the
load cases for the structural model as is described in Chapter 6. A validation of
predicted stress in the deck using the results of a full scale sea trial is presented
in the second part of this chapter.

12.1 Seakeeping load case for the structural model

The loading and response of the M-frigate is calculated for an extreme sea state
with a significant wave height of 8 metres and a peak period of 8 seconds using

1This is a measurement of the full scale trails as described in the second section of this
chapter.
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Figure 12.3: Measured and calculated stress signal for different wave-trains for
the 12 knots run.

the JONSWAP spectrum. This severe sea-state ensures that the pitch motions
are large enough to cause a difference between the reference frames. Otherwise,
the transformation between the different reference frames used to compute the
loading at the FE model would not be tested. The frigate has a velocity of
12 knots and is heading towards the incoming waves for the computations pre-
sented in this chapter. The frequency domain surge, sway and yaw are imposed
by using kinematic constraints.

The response will be computed using three approaches. The first approach
is the normal seakeeping computation. The second approach is performing the
seakeeping computation using the structural mesh. The last approach is trans-
ferring the seakeeping loads to the structural model and solving the response
within the FE package. The computation of the seakeeping forces using the
structural mesh is investigated in the first part of this section. The second part
presents the seakeeping calculations. The last part of this section presents the
results of the structural response calculation.

12.1.1 Hydrodynamic coefficients at structural mesh

When computing the seakeeping loads at the structural mesh, to solve the
response within the FE-solver, it is also used as the integration mesh in all
computations. The hydrodynamic pressure at the structural mesh and the re-
sulting coefficients are computed using the translated dummy Gauss points, see
Section 2.8.1. It is first investigated if this approach, which avoids interpola-
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tion of pressures between the hydrodynamic and structural mesh, is consistent
before computing the loading at the structural mesh.

The dummy Gauss points are translated such that they are located just
outside of the hydrodynamic mesh. The distance between the hydrodynamic
mesh and the dummy Gauss points are normally set to 0.001

√
Aa, with Aa the

average area of the hydrodynamic panels. Figure 12.4 shows the translation
of the dummy Gauss points at the sonar dome of the frigate. The distance
between the hydrodynamic panels and the Gauss points is increased by a factor
of ten for a better visualisation. The figure clearly shows that all Gauss points
are translated in the correct direction and the translations remain small. This
indicates the correctness of the translations procedure as described in Section
2.8.1.

Figure 12.4: Translation of dummy gauss points. Gray coloured mesh is the
hydrodynamic mesh and the wire frame indicates the structural mesh. The
dots are the original Gauss points and the lines indicate the translation.

The approach used for computing the pressures at the structural mesh as-
sumes that the pressure can be computed at every location as long as it is out-
side the hydrodynamic mesh. One could argue that the potential, and thereby
the resulting pressures, is not continuous very close to the hydrodynamic panels
since a constant source strength is defined at the hydrodynamic panels.
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This is investigated by computing the pressures at many locations over the
hydrodynamic mesh. Sixteen Gauss points are used for every structural panel
in order to obtain a large number of points where the pressures is evaluated.
The surge radiation pressure at the sonar dome is presented in Figure 12.5.
This pressure component has a large gradient at the sonar dome which should
help reveal any discontinuities in the pressure distribution due to the hydrody-
namic mesh. The pressure for 1 [rad/s] at 5 [m/s] forward velocity is presented.
The results shows a smooth distribution of the pressure. This shows that the
pressure can indeed be computed everywhere as long it is outside of the hydro-
dynamic mesh.

Figure 12.5: Surge radiation pressure computed at Gauss points of the struc-
tural mesh. The wire frame is the hydrodynamic mesh, the structural mesh is
not shown here.

The dummy Gauss points cannot be translated such that they are exactly
at the hydrodynamic mesh as that is the location of discontinuity of the gradi-
ent of the potential. However, evaluating the pressures at some distance from
the hydrodynamic mesh will change the resulting pressure and hydrodynamic
coefficients. This sensitivity is investigated by computing the hydrodynamic
coefficients when evaluating the pressure at different distances from the hydro-
dynamic mesh. The results computed for 1 [rad/s] and 5 [m/s] forward velocity
are presented in Figure 12.6. The resulting coefficients are divided by the co-
efficients computed using only the hydrodynamic mesh and not the structural
mesh. The results show that the computed coefficients decrease slightly when
the pressures are evaluated at larger distance from the hydrodynamic mesh.
A decrease could be expected, but the results shows that the decrease is not
significant. The results also shows that the lines are smooth, so there is no
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numerical problem at any of the investigated distances. Using a distance of
0.001

√
Aa will result in about 0.005[m] in this case. The results are nearly

converged at this distance.
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Figure 12.6: Sensitivity of computed hydrodynamic coefficients with respect to
variation in distance of the pressure evaluation.

12.1.2 Seakeeping calculation

The seakeeping loading and response is calculated for the same wave-train using
three different methods:

Hydro seakeeping This is the normal, or classical approach, to calculate the
time domain non-linear seakeeping response of the ship. The hydro mesh
is used in all steps of the seakeeping calculation. The structural mesh is
not used in this case except for projection of the mode shapes onto the
hydrodynamic mesh.

Struct seakeeping The hydro mesh is used to solve the BVP and the struc-
tural mesh is used for integrating the hydrodynamic coefficients and for
calculating the non-linear terms in the time domain calculation for this
seakeeping calculation.

Struct FEM This is the calculation or reconstruction of the nodal forces at
the structural mesh. These nodal forces are used as load cases to compute
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the structural response using the FE method. The summation of these
nodal forces are presented as result of this calculation. There are no
motion results for this calculation because it is a post-processing of the
motions of the structural seakeeping calculation. The structural forces
should be almost identical to the forces found in a structural seakeeping
calculation.

The mass distribution of the structural (FEM) model is used for all calculation
methods. This ensures that any difference in response can only be caused by
differences in the calculated loading.

The different force components in the heave direction can be found in Figure
12.7. Figure 12.8 shows the total loading for the heave and pitch modes. The
resulting heave and pitch motions are shown in Figure 12.9. The accelerations
are not shown as the mass distribution used is the same for all methods, the
difference in acceleration is identical to the differences in total force.

The hydrodynamic loading and resulting motion calculated using the dif-
ferent methods are very comparable. The diffraction force, equation (6.7), is
identical for all methods. This force depends only on the location of the ship,
which is the same for all methods as the frequency domain surge, sway and yaw
are imposed. Obtaining the same diffraction force proves that integration of
the hydrodynamic coefficients over different meshes gives consistent results.

There are small differences in the calculated motion between the seakeeping
calculation with the hydro and structural meshes. These differences are caused
by differences in one or more force components. However, as soon there is a
difference in the resulting motion, there will occur a difference in the slamming,
Froude-Krylov, hydrostatic, gravity and radiation loading as these depend on
the computed motion. The gravity loading depends only on the mass distri-
bution and the orientation of the ship, so this component will not cause the
differences in motion. The linear hydrodynamic coefficients are almost identi-
cal for all methods, as already shown for the diffraction force. The radiation
force is also based on the linear hydrodynamic coefficients and will result in an
almost equal force if the motions would be equal. The most likely cause of the
difference in motions are the Froude-Krylov and hydrostatic loading. Due to
the difference in geometry of the deck, see Figure 12.2, the calculated loads will
show small differences. Note that in this severe sea-state the deck is sometimes
wetted.

A Fourier transform, equation (6.4), together with a frequency reconstruc-
tion, equation (6.5), is used to calculate the nodal retardation force. This
approach avoids the calculation and evaluation of the retardation functions for
every node, which saves a lot of computation effort. The retardation functions
are used to compute the modal forces in the time domain seakeeping calcula-
tions. Figure 12.7 shows that there is a large difference in the computed nodal
structural and seakeeping radiation forces at the start of the calculation. The
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Figure 12.7: Force components.

seakeeping radiation force is incorrect at the start of the calculation because
the evaluation of the retardation function needs the velocity history which is
lacking at the start of the calculation. As soon as there is enough history,
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Figure 12.8: Total loading.

the radiation force is almost the same for the structural seakeeping and the
nodal forces. Note that this problem of lack of history does not occur for the
computation of the nodal diffraction forces as these are based on the Fourier
results which contain the full history of the motions. There are some minor
differences in the remaining signal, but they are hardly visible in the graph.
This results shows the consistency of using the Fourier results to compute the
nodal diffraction forces.

It is found that after 10 seconds there are almost no differences between
the total loading calculated during the structural seakeeping and for the nodal
loads at the FEM model. This indicates that the nodal hydrodynamic and
acceleration loading at the structural model represent the seakeeping loading
and accelerations very well. The good agreement between the seakeeping cal-
culations with the hydrodynamic mesh and structural mesh shows that the
structural mesh can be used to perform seakeeping calculations.
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Figure 12.9: Motions using structural and hydro models.

12.1.3 FEM results

The structural response is calculated using a quasi-static FEM approach. Some
nodes are constrained to be able to solve the quasi-static problem. These nodal
constraints are placed such that they suppress the rigid-body motions but will
not cause any additional loading due to constrained lateral contraction.

The structural response is calculated between 85 [s] and 115 [s] of the see-
keeping calculation using the FE method. The resulting forces at the con-
strained nodes indicate how well the hydrodynamic and acceleration forces bal-
ance each other. The maximum force at the constrained nodes is below 60[N ]
for all time steps. This force is negligible compared to the total loading at the
model which shows that the model is well balanced. The reaction force found
is on the order of 10−6 of the total loading at the ship which can be explained
by the numerical accuracy of the FEM program.

The stress in the deck between the superstructure and hangar is evaluated
in Figure 12.10. The stress computed using the direct FEM calculation and
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using the modal superposition within the seakeeping program are presented in
the figure. The stress at this location should be well described using modal
analysis. The good agreement between the direct FEM results and the modal
analysis result shows the consistency of the transfer of the seakeeping load to the
FEM. It also shows that using nodal acceleration forces allows one to account
for whipping induced stress.
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Figure 12.10: Stress in deck.

A direct FEM analysis is only necessary when evaluating the stress at a
location where local response contributes to the resulting stress. Figure 12.11
shows the stress in the foremost bulkhead. The figure clearly shows the increase
of the maximum stress due to the slamming loading. The whipping response
hardly contributes to the stress at this location as can be expected. It would
be very difficult to obtain this stress history when using only a modal analysis.

12.2 Full scale measurements

A full scale sea trial has been carried out on the Hr. Ms. Karel Doorman in
January 1992 at the Northern part of the North Sea. The strains were measured
at thirty locations by the MEOB2, and MARIN3 measured the motions of the
ship. Detailed documentation of these measurements can be found in [5] and
[18].

All calculations presented in this section have been performed by Mirre Janssen. A de-
tailed description of this validation can be found in [19]

2Former electronic and optic services of RNlN
3Maritime Research Institute Netherlands
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Figure 12.11: Stress in the most forward bulkhead.

The measured stress on the weather deck, somewhere near amidships, is
used for the validation. This location is chosen because the stress here will be
mainly induced by the deformations of the global modes and should be well
described using the modal approach for calculation of the stress, which was
shown for a comparable location in the previous section. The measured and
calculated seakeeping motions are not presented in this thesis as the measured
seakeeping motion is restricted information.

The sea trail has been carried out for different headings and two speeds. The
two speeds are 12 and 17.5 knots. Only the head wave conditions are considered
for this validation as the slamming loading cannot be calculated accurately for
oblique seas. Two runs of approximately 24 minutes were measured for both
velocities in head seas. The significant wave height was about 5 metre during
the sea trial which resulted in significant slamming impacts, especially for the
highest velocity.

12.2.1 Sea state

It was planned to measure the sea state using a wave buoy during the sea
trial. However, this buoy could not be deployed due to the heavy weather.
Fortunately, the sea spectra were also recorded at a nearby offshore platform.
The three hour spectra measured at this platform are used to create the wave-
trains used in the calculations.

The measurements while sailing with a speed of 17.5 knots were done be-
tween 6:30 and 7:30 and are simulated using a wave-train based on the spectra
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from 6:00 and 9:00. The measurements while sailing with a speed of 12 knots
were done between 14:10 and 15:10 and are simulated using a wave-train based
on the measured spectra from 12:00 and 15:00 hours. This also gives an idea of
the sensitivity of the results to the wave spectra used. The different measured
sea spectra are shown in Figure 12.12.
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Figure 12.12: Measured wave spectra.

The actual sea was short-crested due to the directional spreading between
the different wave components. This spreading has been measured and is shown
in Figure 12.13 for the 09:00 hour spectra. The average spreading angle is about
forty degrees. The spectra is slightly doubled peaked and the difference in mean
direction of the two peaks is about thirty degrees. The “head wave” direction is
visually determined at 06:00 hours and is used for all measurements of the sea
trial. This makes it likely that the actual heading is not exactly head waves.

The wave spreading, or short-crested seas, cannot be taken into account in
the calculation. Therefore, all wave energy is assumed to be directed at exactly
the head wave condition in the calculations. Using these long-crested seas will
overestimate the resulting bending moment and the stresses for this sea state.

12.2.2 Creating signals

The duration of the measurements was approximately 24 minutes and the same
duration is used for the simulations. The uncertainty in the results is reduced
by combining the two different runs for the condition considered. The different
runs are combined using the approach described in Section 7.1.3. The mean
stress is subtracted from both the measured and the calculated stress signals
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Figure 12.13: Spreading of the 09:00 hour waves.

because the stress signals of the measurements do not include the contribution
of the SWBM.

The zero crossing period of the wave-train is about 9.9 [s]. When sailing at
12 and 17.5 knots, the average encounter periods are 5.7 and 4.8 [s] respectively.
During the 48 minutes the vessel encounters approximately 484 wave peaks
when sailing with 12 knots and 575 wave peaks when sailing with a speed of
17.5 knots. The amount of encountered peaks is an important parameter for the
accuracy of the Weibull extrapolation and the calculated fatigue damage. The
number of wave peaks present in the measurement is about seventy percent of
the 750 extremes needed for an accurate prediction as demonstrated in Chapter
7. This will result in some additional uncertainty in the calculated Weibull
extrapolations and fatigue damage.

The stress signals are low-pass filtered to remove the contribution of the
slamming induced whipping in the stress signals. This allows the determination
of the effect of the whipping response. The stress signals are filtered using a
5th order low-pass Butterworth filter with a cut-off frequency of 1.91 [Hz]. The
effect of this filter on a time trace is shown in Figure 12.14.

12.2.3 Response spectra

Figures 12.15 and 12.16 show the power spectral density of the measured and
calculated time traces of the stress on the deck. These power spectral densities
are calculated using Welch’s method. The left-hand side of the figure shows
the wave frequency response and the energy of the whipping response is shown
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Figure 12.14: Original and filtered stress signal.

in the right-hand side figure. Note the difference in scale between the figures.
The statistical values of the response spectra are presented in Table 12.1.
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Figure 12.15: Spectra of deck stress for 12 knots.

The wave frequency response is overestimated for both speeds but especially
for the 17.5 knots case. This overestimation can partly be explained by using a
long-crested sea in the calculation where the real sea was short-crested. How-
ever, one would expect the same amount of overestimation for both speeds if
this was the only source of error. The overestimation is probably also caused by
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Figure 12.16: Spectra of deck stress for 17.5 knots.

V [knts] M0 < 0.5Hz M0 > 0.5Hz M0 T1[s]
measurement 12 3.35×1014 3.02×1012 3.38×1014 5.56

simulation 12:00 12 4.43×1014 2.19×1012 4.45×1014 5.63
simulation 15:00 12 3.78×1014 3.16×1012 3.81×1014 5.58

measurement 17.5 3.33×1014 6.97×1012 3.40×1014 4.58
simulation 06:00 17.5 4.74×1014 4.88×1012 4.79×1014 4.66
simulation 09:00 17.5 5.46×1014 8.64×1012 5.54×1014 4.60

Table 12.1: Response spectra properties for stress.

using a seakeeping theory which does not fully correctly account for the forward
speed and all non-linearities occurring in this heavy sea.

The calculated first wet hull natural frequency is a bit lower than found in
the measurements. It was shown in Section 10.2 that the natural frequencies
can be predicted accurately using the presented theory if an accurate FE model
of the structure is available. It is almost impossible to model a real ship with
the same level of accuracy as was done for the aluminium model. It is likely
that the difference in measured and calculated natural frequency is caused by
differences between the modelled FE structure and the real structure of the
ship.

The amount of energy of the whipping response in the stress signal is well
predicted for the 12 knots case. The whipping is overestimated when using the
09:00 spectra for the calculation of the 17.5 knots case. It could be argued that
calculating the same whipping energy as found in the experimental results is in
fact an underestimation of the whipping response because long-crested seas are
used as input for the calculations. However, it is difficult to quantify the effect
of short-crested seas on the whipping response since short-crested seas cannot
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be used in the calculations.

12.2.4 Weibull extrapolation

Weibull plots and extrapolations are created for the stress signal using the
approach described in Section 7.1.2. Figures 12.17 and 12.18 are the Weibull
plots for the two velocities. All counted peaks of the measured signal and from
the combined simulation are plotted in the figures. The Weibull fits are shown
using lines. The line indicated by “lin kw = 2” is a line with a shape parameter
of two which is a Rayleigh distribution that would be obtained if linear theory
was used. Note that the scale parameter of these linear lines is just estimated
because these lines are only intended to show that the Weibull fits for the stress
signals have different shape parameters.

The slope of the Weibull fits of both the measured and calculated response
compare very well. This is the shape parameter of the Weibull fit. This shape
parameter is clearly different from 2, the linear line, for the higher extremes,
which indicates non-linearity in the seakeeping loading. This seems to be well
predicted by the presented theory. The scale parameter of the calculated ex-
tremes is just a bit higher than found for the measured extremes of the 12
knots case. The difference is bigger for the 17.5 knots case. This is due to the
overestimation of the seakeeping response as explained in the previous section.

The one hour extrapolations of the extremes in the stress signal are pre-
sented in Table 12.2. The slamming hardly increases the extreme stress for the
12 knots case. This increase is well predicted by the calculations. The increase
is more significant for the 17 knots case, about 8 percent for the sagging ex-
treme. The calculations seems to underpredict this increase but that is likely
due to the overestimated wave frequency response.

Both the measured and calculated stress signals contain only 70 percent of
the required number of extremes for an accurate Weibull fit. The calculation for
the 12 knot case, including slamming, is repeated ten times using different wave
realisations to get an insight into the uncertainty in the Weibull extrapolation.
The results are presented in Table 12.3. These results show that the Weibull
extrapolation is quite accurate for this case. Note that the variation of the
presented difference between the resulting extreme stresses with and without
slamming will be less because the same but filtered time trace is used for both
Weibull extrapolations.
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V hogging hogging influence
incl. excl. slamming
slam slam

[knots] [MPa] [MPa] [MPa]
measurement 12 53.8 51.9 1.9

calculation 12:00 12 60.5 59.0 1.5
calculation 15:00 12 56.3 55.3 1.0

measurement 17.5 55.7 53.6 2.2
calculation 06:00 17.5 63.0 61.4 1.6
calculation 09:00 17.5 62.6 60.0 2.5

V sagging sagging influence
incl. excl. slamming
slam slam

[knots] [MPa] [MPa] [MPa]
measurement 12 83.2 79.7 3.5

calculation 12:00 12 102.0 98.3 3.8
calculation 15:00 12 84.3 82.5 1.9

measurement 17.5 86.4 80.0 6.4
calculation 06:00 17.5 108.9 105.7 3.2
calculation 09:00 17.5 118.7 113.2 5.5

Table 12.2: One hour extremes.

sagging hogging
incl. incl.
slam slam

run [MPa] [MPa]
1 84.3 56.3
2 93.2 56.8
3 88.1 56.6
4 88.9 55.5
5 98.5 61.0
6 94.3 58.2
7 87.2 54.0
8 89.7 56.6
9 94.6 58.7

10 97.3 58.1
mean 91.6 57.2
stdv 4.65 1.91

Table 12.3: 1 hour extreme stresses for 12 knots with slamming for the 15:00
hour spectrum.
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Figure 12.17: Weibull plots for 12 knots including whipping response.
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Figure 12.18: Weibull plots for 17.5 knots including whipping response.
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12.2.5 Fatigue damage

The number of fatigue cycles are counted using the rainflow count method
explained in Section 7.1.1. The damage is calculated using the FAT 160 [17] SN-
curve. Both the number of cycles and resulting damage per hour seakeeping are
shown in Figures 12.19 and 12.20. The same trend as observed in the previous
sections is visible. The calculated seakeeping response is slightly overpredicted
for the 12 knots case and the overprediction is larger for the 17 knots case when
looking at the number of fatigue cycles. The SN-curve causes the differences
between the computation and measurements to be amplified in the resulting
fatigue damage. The predicted damage for the 12 knots case is reasonable but
the damage is really overpredicted for the 17 knots case.
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Figure 12.19: Rainflow count and fatigue damage for 12 knots including whip-
ping response.

The hourly fatigue damage and the lifetime extrapolation for the sea states
are presented in Table 12.4. The whipping response causes a reduction of 10
percent of the lifetime for the 12 knot case and 16 percent for the 17.5 knot
case when looking at the measurements. These reductions are not predicted by
the calculations because the wave frequency response is overpredicted.
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Figure 12.20: Rainflow count and fatigue damage for 17.5 knots including whip-
ping response.

V fatigue/hour lifetime fatigue/hour lifetime ∆
excl. slam in years incl. slam in years life-

[knts] [-] [-] time
measurem. 12 0.1662E-05 68.7 0.1889E-05 60.4 8.3
calc. 12:00 12 0.2854E-05 40.0 0.3166E-05 36.1 3.9
calc. 15:00 12 0.2088E-05 54.7 0.2306E-05 49.5 5.2
measurem. 17.5 0.1904E-05 60.0 0.2285E-05 50.0 10.0
calc. 06:00 17.5 0.3561E-05 32.1 0.4006E-05 28.5 3.7
calc. 09:00 17.5 0.4277E-05 26.7 0.5112E-05 22.3 4.4

Table 12.4: Overview of the fatigue damage results.

12.3 Conclusions

The approach presented in this thesis avoids interpolation of pressures between
the hydrodynamic and structural mesh by using the structural mesh to perform
the seakeeping computations when the seakeeping forces are used for a FE com-
putation. This approach requires the computation of the hydrodynamic pres-
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sures at the structural mesh while the BVP is solved using the hydrodynamic
mesh. The pressure is evaluated at translated dummy Gauss points, which are
located outside the hydrodynamic mesh, to obtain the hydrodynamic coeffi-
cients. In the first section of this chapter it is shown that the dummy Gauss
points are indeed located outside the hydrodynamic mesh and still close to the
structural mesh. It was also shown that the pressure distribution is continuous
near the hydrodynamic mesh which is necessary for the approach used. The last
verification for the use of the dummy Gauss points was an investigation of the
effect of the distance between the hydrodynamic mesh and the dummy Gauss
points. This investigation showed that converged values for the hydrodynamic
coefficients are obtained with the distance used.

The verification of the computed loading for a structural FEM computation
showed good results. First, the forces and motions were compared between a
seakeeping calculation using the normal approach with a hydrodynamic mesh,
a seakeeping calculation using the structural mesh and the computed loading
for the FE computation. The computed forces and motions compared very well
between the different methods which indicated the consistency of the approach
for computing the structural loading. The structural response was solved using
the FE method. Negligible reaction forces were found at the constrained nodes
which indicated that the seakeeping and acceleration forces were well balanced.
The computed stress signal for the deck near amidships agreed very well with
the modal solution from the seakeeping computation. This indicated not only
the consistency of the approach of computing the FE loads, but also showed
that stress induced by the whipping response can be taken into account by
applying nodal acceleration forces.

It can be concluded that the method described in chapter 6 is consistent and
can be used to compute the FE load cases for computing the local structural
response.

A validation using the data of a full scale sea trail of the M-frigate was
presented in the second section of this chapter. The measured stresses at the
weather deck for the head seas conditions were used to validate the presented
theory. The wave frequency response was slightly overestimated for the 12
knots case and a bit more for the 17.5 knots case. The whipping response was
well predicted when sailing at 12 knots and overestimated for the 17.5 knots
condition. The Weibull extrapolation showed that the computations predict
the measured non-linearities well. Good results were also found for the com-
puted fatigue damage, although the SN-curve amplified the overestimation of
the seakeeping response. The overestimation can partly be explained by using
unidirectional waves when the actual sea trail was performed in short-crested
seas.

This validation shows that the presented theory can be used for predicting
the structural response of this ship in head sea condition with the occurrence
of slamming induced whipping.





Chapter 13

Conclusions and
recommendations

The main conclusions about the work presented in this thesis are presented in
the first section of this chapter. Recommendations for future research are given
in the second section.

13.1 Conclusions

The goal set for this thesis is to develop a practical method to calculate the
global and local response of a ship structure due to the seakeeping loading
including the slamming loading. The method should contain the full hydro-
elastic coupling. The previous chapters are first summarised and conclusions
are drawn to judge whether the goals set for this thesis are accomplished.

The hydro-elastic seakeeping problem is formulated in the second chapter.
The seakeeping problem is formulated using generalised modes. All degrees of
freedom are described by this approach using mode shapes, even the rigid-body
modes. The number of degrees of freedom is arbitrary. The generalised mode
approach not only allows to solve hydro-elastic seakeeping problems but it also
allows to solve multi-body problems. The elastic mode shapes are obtained
from either a 3D-FEM calculation or an 1D-beam model of the ship structure.
All degrees of freedom of the ship are balanced in still water to avoid transient
response at the start of the time domain calculation.

The boundary value problem, the seakeeping response including the cal-
culation of internal loads and the wet natural frequencies are solved in the
frequency domain in the third chapter. The resulting linear coefficients for the
added mass, damping and diffraction force are used for the time domain sea-
keeping calculation. The effect of hydroelasticity is investigated by separating
the contribution of the rigid-body modes and elastic modes and investigating
the consequential effect on the internal loads for an ultra large container ship.



232 Chapter 13. Conclusions and recommendations

It is shown that the ship has a significant springing response which would be
excluded when using a rigid-body approach. However, including the elastic
modes in the seakeeping calculation changes also slightly the predicted internal
loads for the lower frequencies which shows the importance of performing a
hydro-elastic analysis for such large flexible ships.

The fourth chapter presents the theory for computation of the seakeeping
motions and internal loads in the time domain. The time domain allows to
account, with relative ease, for non-linear load components and transient re-
sponses. As the time domain also allows for large amplitudes of motion, the
concept of generalised modes is extended to account for these motions. The
Froude-Krylov and hydrostatic loads are computed non-linearly to improve the
seakeeping and internal load predictions. The diffraction and radiation loads
are kept linear to allow for reasonably fast computation times. Spring-damper
and beam elements can be used to connect bodies to the Earth and to each
other. Kinematic constraints can be used to connect bodies and to impose or
constrain motions.

The computation of the slamming force using two different 2D methods
is presented in the fifth chapter. The first method is the Generalised Wag-
ner Model (GWM) and the second method is the Modified Logvinovich Model
(MLM). The GWM is the most accurate method and has a wider range of
validity compared to the MLM method. The MLM is much faster and a bit
more robust compared to the GWM. The computation of the slamming loads
is integrated into the time domain seakeeping calculation. The slamming loads
are calculated based on the relative motion provided by the seakeeping calcu-
lation and the resulting loads are included in the calculation of the seakeeping
response. The modal excitation by the slamming pressure is calculated using
an integration over the 3D geometry of the bow. This includes some 3D effects
and makes the calculation of the slamming pressure less sensitive to the user
selected tilting angle of the 2D sections.

The modal approach used for the seakeeping calculation gives insight into
the global response of the ship structure. However, it is difficult to compute
the local structural response using the modal approach. The local structural
response is computed by transferring the seakeeping loads to a 3D-FE model
of the structure and computing the response within the FEM method. This
approach is explained in the sixth chapter. A method which ensures perfect
balance between the seakeeping and acceleration loads is used.

The seventh chapter explains how design values such as the maximum ex-
pected bending moment and fatigue damage can be calculated from results of
the non-linear time domain calculations. It is investigated how an accurate esti-
mation of the design values can be obtained while minimising the computational
effort. It is shown that it is best to merge the results of different computations
until in total 750 linear extrema are present in the combined signal.

The eighth chapter is the first of five chapters presenting verifications, val-
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idations and case studies of the developed theory. Two ultra large container
ships are used for verification and case studies in this chapter. It is shown that
the computed retardation functions are consistent with the added mass and
damping. Another verification shows that the linear motions computed in the
frequency domain are close to the non-linear motion computed in the time do-
main for small waves. The computed internal loads are verified by comparing
the results from the direct integration method for both the forward and aft
direction and the modal superposition method. It is shown that these three
results are very close to each other. Another verification is the sensitivity of
the calculated whipping response to the selected time step in the seakeeping
calculation. Using a time step of 0.2 seconds results in convergence of results for
this ship. This time step is acceptable as it is larger than the stable time step
for the explicit time integration scheme when including the first five flexible
modes. The effect of hydroelasticity is also investigated. It is shown that the
hydro-elastic effects reduce the computed slamming forces significantly for the
large ship. This again shows the importance of performing a hydro-elastic anal-
yses for large flexible ships. The last verification investigates if the approach
of integrating the slamming pressure over the 3D geometry indeed adds some
3D effect and reduces the sensitivity towards the chosen tilting angle of the 2D
slamming sections. It is shown that this is the case. A case study is presented in
the last part of the chapter. The ultimate bending moment and fatigue damage
are calculated for both the North Atlantic and the World wide trade scatter
diagrams. It is shown that including the flexible modes and slamming loading
reduces the fatigue lifetime by about forty percent. The maximum bending mo-
ment computed for 25 years sailing is increased by about twenty percent by the
slamming induced whipping and springing. Unfortunately, it was shown that
the method used to extrapolate the ultimate bending moment fails as soon as
significant green water loading occurs. The computation of the design values is
repeated using different wave realisations in order to investigate the accuracy
of the computation of these design values. It is shown that the variation of the
results is small, so the proposed method for computation of the design values
is accurate.

Flexibly connected barges are used for the verification and validation pre-
sented in the ninth chapter. The flexibly connected barges can be modeled
using a multi-body approach where the connection between the bodies is mod-
eled, or a single body approach where the elastic modes provide the flexibility
between the barges. The presented theory is verified by comparing the com-
puted seakeeping motions of two barges connected by a hinge, modeled by both
the multi-body approach and the single flexible-body approach. Very com-
parable motions are found when the hinge connection is made stiff by either
a spring or rigid connection. The computed motions using the single flexible
model are unreliable when no stiffness is applied in the hinge direction as the
deformations of the flexible body become too large. It is assumed in the the-
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ory used that the deformation of the elastic modes remain small. Experiments
with twelve flexible connected floaters are used to validate the hydro-elastic
theory. Good agreement between a multi-body and a flexible-body approach is
found. The calculation results also compare reasonably well with the experi-
mental results. This shows the ability to compute hydro-elastic effects and the
multi-body response. However, the viscous damping seems to play a major role
in the resulting motions, the good agreement could only be obtained by tuning
the damping values.

The tenth chapter presents validation of the wet natural frequencies, slam-
ming impact and whipping response using an aluminium model. The calculated
wet natural frequencies correspond very well with the measurements. This
shows that the contribution of the added mass to the flexible motions is well
captured by the theory. The computed slamming forces are reasonably close to
the slamming forces estimated from the measurements. The calculated whip-
ping response is close to the measured whipping response. These results could
only be obtained by imposing the measured rigid-body motion in the seakeeping
calculation.

The measured slamming forces at the bow of a container ship model are
used for validation in the eleventh chapter. Verification of the sensitivity with
respect to the tilting angle of the 2D slamming sections and the time step shows
the same good results as were found for the other container ships presented in
chapter eight. The sensitivity of the predicted slamming loads to changes in
predicted seakeeping motions is also investigated. This sensitivity showed to
be very high for the predicted pitch motion. This could be expected as the
slamming loads scale with approximately the square of the relative velocity.
These results show the importance of an accurate seakeeping prediction when
calculating the slamming loads. The measured rigid-body motions are imposed
to the seakeeping calculation in order to validate the computed slamming force
with the experimental results. The estimation of the slamming impacts com-
pare reasonably well with the experimental results for low speeds. However,
the slamming loads are significantly underestimated at high speeds. This is
probably due to a static bow wave for which the calculations do not account.
The bow of this container vessel has much flare which results in a significant
static bow wave. The predicted slamming loads are much closer to the mea-
sured loads when the wave elevation by the static bow wave is added to the
calculation.

Results of a full scale trial with the M-frigate of the Royal Netherlands Navy
are used for the validation presented in chapter twelve. Predicted and measured
stresses in the weather deck near amidships are compared. The stress due to the
seakeeping are slightly overestimated, especially for the highest velocity. This
can partly be explained by the use of unidirectional waves in the calculation
where the actual sea was short crested. The whipping contribution is well
predicted. It could be argued that it is actually underestimated as the slamming



13.1. Conclusions 235

loads are also computed using the unidirectional waves. The Weibull fits of the
hogging and the sagging stresses show a very good agreement between the
calculations and measurements. The hog/sag ratio is well captured by the
computation. The Weibull fits shows a slight overestimation for the highest
velocity. The fatigue calculation shows good results for the low velocity and
an overestimation for the highest velocity. The addition of a static bow wave
is not necessary for the M-frigate as the bow is much less blunt than the bow
of the container ship. The M-frigate is also used to verify the correctness of
the computation of the seakeeping loads evaluated using a 3D-FEM model. It
is shown that the FEM model is indeed perfectly balanced. It is also shown
that the total seakeeping loads and response of both the original seakeeping
calculation and the 3D-FEM are very close which indicates the consistency of
the method.

It is shown that the presented theory allows the computation of the struc-
tural response of the ship due to the seakeeping loading, including the slamming
loading. The full hydro-elastic coupling is implemented. The modal seakeeping
approach solves for the global structural response, the local structural response
can be obtained by transferring the seakeeping loads to 3D-FEM. All verifica-
tions show that the presented methodology is consistent. The validation shows
that the slamming loads, whipping response and the stresses in the structure
can be predicted with reasonable accuracy provided that the rigid-body sea-
keeping prediction is accurate. The case studies show that the methodology
can be used to compute the design values. This includes the contribution of
slamming induced whipping for all cells of a scatter diagram. This shows that
the developed method is practical to apply in terms of computational effort.
It also illustrates the importance for an hydro-elastic analysis for large flexible
ships, especially when computing the fatigue loading.

While, it can be concluded that the goals set for this thesis are accomplished,
there are some limitations and points for improvement of the presented method.
First of all, the slamming loads can only be predicted for (near) head sea con-
ditions because of the 2D approach used for the computation of the slamming
loads. Another drawback is the accuracy of the seakeeping and slamming pre-
dictions. It has been shown that these are predicted quite accurately for low
speeds but the prediction is not as good for higher velocities. The predicted
rigid-body seakeeping response is also less accurate in very severe condition
when large parts of the ship emerges. Not all load components are currently
included for the internal load calculations and the transfer to 3D-FEM, this is
another limitation of the presented theory. The forces due to the roll damping
and station-keeping should be included for computations in oblique seas.

Even with the current limitations, the presented methodology proves to be a
good framework to define a hydro-elastic problem and to compute the resulting
motions and loads. As the methodology combines different modules such as
the formulation of the hydro-elastic problem, solving the seakeeping response,
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slamming calculation, etc, it is possible to make changes in order to extend
the range of validity of the methodology. One could, for example, change the
2D slamming prediction method by a 3D method to be able to compute the
slamming in oblique seas without changing other components.

13.2 Recommendations

Recommendations for further research are given in this section. The first are
improvements to the presented theory. The others are recommendations on
specific, and more general, topics arising from the research presented in this
thesis.

The improvement of the seakeeping and slamming prediction is an important
topic for further research. The slamming load prediction method should be able
to handle oblique conditions. It appears not to be feasible to utilise a 2D method
in real oblique conditions where large relative roll motion can be expected. A
fast and accurate 3D method has to be developed. The method should also
better account for forward speed effects. It has been shown that the static bow
wave can have a significant effect on the predicted slamming forces. Another
effect of forward speed is the planing force which is not accounted for in the
presented 2D method. An improved method should also account for the exit
phase of the slamming events and not only the entry phase.

The computation of the seakeeping response at forward speeds and in very
severe seas should be improved. It should not only improve the predictions of
the internal loads by the non-impulsive hydrodynamic loading, but it should
also provide a better relative motion prediction which is used to compute the
slamming forces. The seakeeping prediction can be improved by solving the
forward speed boundary value problem instead of using a modified zero speed
solution. The seakeeping prediction can also be improved by accounting bet-
ter for the non-linearities in the loading. The diffraction and radiation force
are computed using linear theory in the presented method. Not only will the
seakeeping prediction become more accurate if the non-linearity of these force
components would be included in the computations, but the non-linear ra-
diation computation will also account for the 3D slamming loading for both
the entry and exit phases. This would make an additional slamming module
superfluous. However, the method should still be fast and robust enough to
compute the design values for a complete scatter diagram. It seems to be quite
a challenge to develop such a method in the near future.

Another topic for future research is the inclusion of the roll damping and
station-keeping forces in the internal loads computation and the transfer of
seakeeping forces to the 3D-FEM model. The roll damping is now only included
as a linear damping term. This gives a roll moment, but it should be known
how the force causing this moment is distributed over the hull. The same holds
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for station keeping. In the presented method the ship is kept at its position
by imposing the linear motions using kinematic constraints. These corrections
could also be seen as a single force and the distribution of this force over the
hull should be known. The best solution would be to compute the roll damping,
manoeuvring, resistance, rudder and propeller force at the 3D FE-model of the
ship. This would be the only way to obtain an accurate distribution of forces
and also an accurate computation of their contributions. The computation of
the roll damping should also be improved. Using a linear model is considered
by many authors to be inadequate to predict the damping of the roll motion
during seakeeping.

The validation of the hydro-elastic theories should also be improved. There
is currently only a very limited set of model and full scale experiments available
to validate the computational results. Most of the available experimental results
also contain some uncertainly, for example, actual wave realisation and viscous
damping, which makes validation difficult. The first step is to acquire more
experimental results which can be used for validation purpose. The next step
is to improve the validation itself. Instead of reporting comparisons between
measurements and computation results as “reasonable agreement was found”
and “it follows the trends well”, an error estimation should be sought such
that the level error of a hydro-elastic computation would be known in advance.
Note that the latter is currently not the case even for rigid-body seakeeping
predictions.

The design values are obtained using brute force computation and post
processing using a rainflow count, SN-curves and Weibull extrapolation. There
are many aspects to improve the computation of the design values. The first is
the use of the Weibull extrapolation. It should be investigated if this is the best
probability distribution to be used for extrapolating the expected maximum
bending moment using signals which includes whipping response and possible
green water loading. The approach to compute the design values using the brute
force method was chosen such that the computational effort is minimised while
having reasonable accuracy in all cells of the scatter diagram. The presented
approach can be changed if only the lifetime values are of interest. Only a
few cells in the scatter diagram are likely to result in the maximum expected
bending moment. About half of the cells contribute significantly to the total
fatigue damage. The computational approach could be to only compute the
design values for the cells of the scatter diagram that contribute significantly
to the fatigue damage or are likely to set the maximum bending moment. Not
using the brute force approach but other methods like response conditioned
waves is another way of reducing the computational effort for calculating the
design values.

The case study with the container ships and the comparison with the data of
the full scale trial of the M-frigate indicated that the bending moment prediction
can be improved by allowing for short-crested seas. Except for the slamming
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computation, it is not difficult to change the theory presented in this thesis to
allow for short-crested seas, this is mostly additional book keeping. However,
to describe short-crested seas accurate, many more wave components will be
necessary which will increase computation times significantly.

The case study presented in Chapter 8 showed that the maximum expected
bending moment is encountered in very severe sea states, which the ship is
expected to encounter for only a few hours during its life. The accuracy of
the computed ultimate bending moment for these very severe conditions can
be questioned. The actual probability of encountering such conditions, which
waves can be expected and at which course and speed the master will sail
in these conditions should be investigated. The computational results should
also be validated using model or full scale test results for those very severe
conditions.

The approach used to solve the boundary value problem in the frequency
domain cannot be used to compute the hydrodynamic damping for the first few
natural modes. This would require more computer memory than is available.
It has been shown in Appendix C that the used extrapolation method for the
damping curve gives good results for a ferry. A better test case for the used
extrapolation method would be using an ultra large container ship at high speed
such that linear springing will be present in the results. A better solution
would be to change the method to solve the boundary value problem such
that the hydrodynamic damping could actually be computed for the very high
frequencies.



Appendix A

Gauss quadrature

The Gauss quadrature is used for numerical integration of the pressure over the
body surface. The Gauss quadrature is the most accurate numerical integra-
tion scheme available. This appendix briefly explains the Gauss quadrature by
summarising the explanation found in [7] and [60].

The Gauss quadrature is explained first for a one-dimensional problem. The
second section of this appendix generalises the theory for the two-dimensional
problems. The integration of pressure to modal and nodal forces is discussed
in the last section.

A.1 One-dimensional

f(x) is the function that is to be integrated between x1 and x2. The limits for
this integral are first rescaled to ξ = −1 and ξ = 1

I =
∫ x2

x1

f(x) dx =
∫ 1

−1
J(ξ)f(ξ) dξ, (A.1)

with J(ξ) = dx
dξ the Jacobian of the transformation. The integral is approxi-

mated by evaluating the function at a limited number of points and multiplying
the results with a weighting factor∫ 1

−1
J(ξ)f(ξ) dξ ≈W1J(ξ1)f(ξ1)+W2J(ξ2)f(ξ2)+ · · ·+WnJ(ξn)f(ξn). (A.2)

The locations for the function evaluations and the weight factors are chosen
such that the highest possible accuracy is obtained. The locations and weighting
factors for different numbers of function evaluations can be found in Table A.1.

Figure A.1 illustrates the Gauss quadrature approach. The top figure at
the left hand side is the original function. The other figures is the integration
of this function use 1, 2 or 3 Gauss points.
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Table A.1: Location and weight factor for Gauss quadrature.
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Figure A.1: Integration using Gauss quadrature with 1, 2 and 3 Gauss points.

A.2 Two-dimensional

The pressure over the body surface is integrated using the integration mesh.
This mesh consists of four-node quadrilateral and three-node triangular panels.
A comparable approach is used to integrate the pressure for both element types.
Therefore, only the integration using the quadrilateral element is explained in
this section.

Figure A.2 shows the local coordinates for a quadrilateral panel. Both local
coordinates have limits -1 and 1. This allows one to write

I =
∫∫

s
f(x, y) ds =

∫ 1

−1

∫ 1

−1
J(ξ, η)f(ξ, η) dξ dη. (A.3)
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The Gauss quadrature is used in both directions, which results in an approxi-
mation for the integral of

I ≈
∑
i

∑
j

WiWjJ(ξi, ηj)f(ξi, ηj). (A.4)

This integration is illustrated in Figure A.3 for different number of Gauss points.
The weighting is the same as that given in Table A.1.
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Figure A.2: Local coordinates of quadrilateral panel.
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Figure A.3: Integration at quadrilateral panel using Gauss quadrature with 1,
2 and 3 points.

A.3 Pressure integration

In this thesis the Gauss quadrature is only used for pressure integration. The
pressures are integrated to modal forces for the body or sections in order to solve
the seakeeping problem. Nodal forces are necessary to calculate the loading at
the structural model.

The mode shapes and normals are calculated for every Gauss point in the
pre-processing phase, see Chapter 2. Note that the four-node panel may be
warped which results in a different normal vector for all Gauss points at a panel.
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The contribution of a single Gauss point to the total force vector working on
the element is equal to

fk ≈ p(ξi, ηj)WiWjJ(ξi, ηj )⃗hkijn⃗ij . (A.5)

The contribution of all Gauss points attached to the body or sections is summed
to obtain the total force vector.

Shape functions are used to calculate the nodal force. The linear quadrilat-
eral panel has four linear shape functions

h1(ξ, η) =
1
4
(1 − ξ)(1 − η), (A.6)

h2(ξ, η) =
1
4
(1 + ξ)(1 − η), (A.7)

h3(ξ, η) =
1
4
(1 + ξ)(1 + η), (A.8)

h4(ξ, η) =
1
4
(1 − ξ)(1 + η). (A.9)

The contribution to the nodal force at node l by a single panel is

f⃗kl ≈
∑
i

∑
j

hl(ξi, ηj)WiWjJ(ξi, ηj)p(ξi, ηj)n⃗(ξi, ηj). (A.10)

The total nodal force is the summation of the contributions over all attached
panels.
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Kinematic constraints

Kinematic constraints are implemented by adding Lagrange multipliers to the
system of Newton equations and by correcting the velocity and displacement
for the kinematic constraints. The Lagrange multipliers do not affect the stable
time step. They are also more accurate than using penalty functions.

The theory presented in [16] is used to implement the kinematic constraints.
The theory is extended for the use of generalised modes. A different approach is
used to correct the velocity and displacement for the constraints. The notation
as used in [16] is partly adopted, this differs from what has been used in this
thesis.

For the kinematic constraints one or more constraint equations are created
in the form

Φ⃗(ξ⃗) = 0⃗. (B.1)

Differentiating this constraint equation with respect to time gives

˙⃗Φ = 0 → Φξ ·
˙⃗
ξ = −Φ⃗t ≡ ν⃗, (B.2)

¨⃗Φ = 0 → Φξ ·
¨⃗
ξ = −

(
Φξ ·

˙⃗
ξ
)
ξ
· ˙⃗
ξ − 2 · Φξt ·

˙⃗
ξ − Φ⃗tt ≡ γ⃗, (B.3)

where the subscript ξ indicates the partial derivative with respect to the coor-
dinates ξ, and t the partial derivative with respect to time.

The equations for one constraint are derived first. The matrices and vec-
tors of the different constraints are combined at the end to obtain one set of
constraint equations.

A number of the constraints used are defined between two bodies. The other
constraints are defined for a single body. A single constraint may consider more
than one degree of freedom. Figure B.1 illustrates the different vectors used for
the constraints. Vector s⃗⋆ is a vector from the center of gravity to the location
of the selected node for the constraint. Vector a⃗⋆ is a user defined vector which
is used for the orientation.
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Figure B.1: Vectors for constraint equations.

B.1 Coordinate system

A fixed set of degrees of freedom is used to calculate the values of a single
constraint equation. This set is ξ⃗∗ = [r⃗r,i, π⃗⋆r,i, r⃗

⋆
f,i, π⃗

⋆
f,i, r⃗r,j , π⃗

⋆
r,j , r⃗

⋆
f,j , π⃗

⋆
f,j ], where

r⃗r is rigid-body displacement, π⃗⋆r the rigid-body rotation, r⃗⋆f the displacement
due to flexible modes and π⃗⋆f the rotation due to flexible modes. Figure B.1
shows these degrees of freedom The index i indicates the first body and j the
second (if any). Please note the mixed reference system of ξ⃗∗, some components
are defined in the Earth reference system and others in the body system. It
is easier to derive the derivatives of the constraint equations using this mixed
system.

The different components of the ξ⃗∗-vector can be calculated using the ap-
proach described in Section 4.3.3. The transformation matrices derived in Sec-
tion 4.2.1 are also used. The flexible deformation will cause that point on a
body have a different orientation than the rigid-body itself. The transformation
matrix between the body and the point orientation is

Tbf,R3,i = I + ˜⃗πf,i. (B.4)

A tilde above a vector indicates the skew-symmetric matrix of the vector

˜⃗n =

 0 −nz ny
nz 0 −nx
−ny nx 0

 . (B.5)
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The transformation from the point orientation to the body is

Tef,R3,i = T−1
bf,R3,i. (B.6)

These linear transformations can be used because the deformations by the flex-
ible modes are assumed to remain small.

All of the constraints used have only dependency on the coordinates and
not on time. This makes it possible to simplify the acceleration equation, (B.3),
to

γ⃗ = −Φ⃗tt +
2∑
i=1

{
− ˙⃗Φrr,i · ˙⃗rr,i −

˙⃗Φ⋆
rf ,i

· ˙⃗r⋆f,i −
˙⃗Φ⋆
πr,i · ˙⃗π⋆r,i −

˙⃗Φ⋆
πf ,i

· ˙⃗π⋆f,i
}
. (B.7)

Some of the constraints have a time-dependent driver, for example a pre-
scribed motion. The time dependency of these driver functions has to be added
to vectors ν⃗ and γ⃗.

B.2 Basic equations

The constraints may be based on the actual location of a point, the distance
between two points or the orientation of a vector at the body. The equations
and their derivatives are first derived for these three basic constraint equations.

B.2.1 Location of a point

The equation for the location of point s⋆, see Figure B.1, in the Earth reference
frame is equal to

Φ⃗lp = r⃗r + Te,R3 · s⃗+ Te,R3 · r⃗f . (B.8)

The derivatives with respect to the different mode groups are

Φlp
rr = I, (B.9)

Φlp
π⋆

r
= −Te,R3 · ˜⃗s− Te,R3 · ˜⃗rf , (B.10)

Φlp
r⋆
f

= Te,R3, (B.11)

Φlp
π⋆

f
= 0. (B.12)

The derivative with respect to time is equal to

˙⃗Φlp = ˙⃗rr + Te,R3 · ˜⃗ωr (s⃗+ r⃗f ) + Te,R3 · ˙⃗rf . (B.13)
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B.2.2 Distance between two points

The distances between the two points s⋆i and s⋆j in the Earth reference frame is
equal to

Φ̄dp = Φ⃗lp
j − Φ⃗lp

i . (B.14)

The time derivative is
˙⃗Φdp = ˙⃗Φlp

j − ˙⃗Φlp
i . (B.15)

Because the two bodies are associated with different modes, the derivatives with
respect to the coordinates for the location of the points, derived in the previous
section, can simply be added.

B.2.3 Orientation of a vector

The orientation of a vector at a body in the earth reference frame is equal to

Φ⃗vo = Te,R3 · Tf,e,R3 · a⃗. (B.16)

The derivatives with respect to the different mode groups are

Φvo
rr = 0, (B.17)

Φvo
π⋆

r
= −Te · ˜(Tf,R3 · a⃗), (B.18)

Φvo
r⋆
f

= 0, (B.19)

Φvo
π⋆

f
= −Te,R3 · Tf,R3 · ˜⃗a. (B.20)

(B.21)

The relevant second order derivatives with respect to time are equal to

Φ̇vo
rr = 0, (B.22)

Φ̇vo
π⋆

r
= −Te,R3 · ω̃r · ˜(Tf,R3 · a⃗) − Te,R3 ·

˜
(Tf,R3 ·

˜⃗̇
πf · a⃗), (B.23)

Φ̇vo
r⋆
f

= 0, (B.24)

Φ̇vo
π⋆

f
= −Te,R3 · ω̃r · Tf,R3 · ˜⃗a− Te,R3 · Tf,R3 ·

˜⃗̇
πf · ˜⃗a. (B.25)

The time derivative is equal to

˙⃗Φvo = Te,R3 · ω̃r · Tf,R3 · a⃗+ Te,R3 · Tf,R3 ·
˜⃗̇
πf · a⃗. (B.26)

B.3 Constraint equations

A formulation for Φ,Φξ and γ⃗ is derived in [16] for every constraint. By adding
the flexible modes, these formulations will be quite lengthy due to the number



B.3. Constraint equations 247

of derivatives. Therefore, another approach is followed. Most constraints can
be formulated using two basic constraint equations from the previous section.
The values of Φξ and γ⃗ are calculated by combining the derivatives of the basic
constraint equations.

The following constraint equations are defined:

d1 The first form of the dot constraint keeps two vectors orthogonal

Φd1
ij = Φ⃗voT

i · Φ⃗vo
j = 0. (B.27)

d2 The second form of the dot constraint keeps a vector and the line between
the points orthogonal

Φd2
ij = Φ⃗voT

i · Φ⃗dp
ij = 0. (B.28)

s The spherical constraint keeps two points together

Φ⃗s
ij = Φ⃗dp

ij = 0⃗. (B.29)

This constraint results in three constraint equations.

ss The spherical-spherical constraint keeps two points at a fixed distance

Φss
ij = Φ⃗dpT

ij · Φ⃗dp
ij − C2 = 0. (B.30)

x The location constraint keeps a point at a body at a fixed location in the
moving Earth reference frame. Three constraint equations are used for
this constraint

Φ⃗x
i = Φ⃗lp

i − x⃗e0 = 0. (B.31)

x̄e0 is the user defined location at which the point should be constrained.
It is possible to delete some components of this constraint equation to fix
the body point along only one or two dimensions of the Earth fixed point.

1 Only one degree of freedom is constrained with this constraint. This is the
only constraint that does not use the basic equations. This constraint is
equal to

Φ1(ξi, d(t)) = ξ⃗i − d(t) = 0, (B.32)

where d(t) is the driver function, which can be the displacements as calcu-
lated in the frequency domain or a measured motion. For this constraint
ν = ḋ(t) and γ = d̈(t).

Both the d1, d2 and the ss constraints are expressed in the form Φ⃗aT ·Φ⃗b = 0
The Φ⃗ξ∗ and γ values for these constraints are

Φ⃗ξ∗ = Φ⃗aT · Φb
ξ∗ + Φ⃗bT · Φa

ξ∗ , (B.33)

γ =
2∑
i=1

∑
ξ∗=[r⃗r,i,π⃗⋆

r,i,r⃗
⋆
f,i,π⃗

⋆
f,i]

(
Φ⃗aT ·Φ̇b

ξ∗+
˙⃗ΦaT ·Φb

ξ∗+Φ⃗bT ·Φ̇a
ξ∗+

˙⃗ΦbT ·Φa
ξ∗

)
· ˙⃗ξ∗. (B.34)
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B.3.1 Correction force

The velocity and displacement are corrected for the applied constraints by using
a correction force or moment. The direction of the correction force should be
representative for the constraint. A unit force vector f⃗⋆corr is created for every
constraint. Because the mass matrix in the body reference frame will be used
for the correction, the force vector should also be in the body reference frame.
Only the unit vector for force or moment in the Cartesian system acting on the
point is calculated, the modal excitation will be calculated later.

The force vector of the 1-constraint is the only vector that is created directly
in the generalised coordinates. It is a vector that is one in the degree of freedom
which is constrained and zero for all other degrees of freedoms.

The s- and the x-constraints fix the displacement of a point in three direc-
tions. Three unit vectors in the x, y and z-directions of the Earth reference
frame are used. The vectors in the body reference frame are given by

f⋆corr,i,R3 = TT
e,R3,i · I. (B.35)

The ss-constraint keeps a fixed distance between two points. The unit force
has the same direction as the vector between the two points d⃗ij

f⃗⋆corr,i,(x,y,z),R3 = TT
e,R3,i ·

d⃗ij

|d⃗ij |
. (B.36)

Both the d1 and d2-constraints keep two vectors orthogonal. A unit mo-
ment around the vector of the cross product of the two vectors is used for the
correction

f⃗⋆corr,i,(ϕ,θ,ψ),R3 = TT
e,R3,i ·

v⃗i × v⃗j
|v⃗i × v⃗j |

. (B.37)

B.4 Combining constraints

The different constraints are collected to obtain the system of constraint equa-
tions. The vectors Φ⃗, γ⃗ and ν⃗ are simply a collection of the values of the different
constraints

Φ⃗ = [Φ1,Φ2, . . . ,Φn]T , (B.38)

γ⃗ = [γ1, γ2, . . . , γn]T , (B.39)

ν⃗ = [ν1, ν2, . . . , νn]T . (B.40)

Note that ν will be zero except for the 1-constraint.
Before the global Φξ and Φ⋆

ξ can be derived, the Φ⃗ξ∗ vectors have to be
transfered to the modal coordinates and their values transformed to the Earth
and body reference frame. The Earth frame values are obtained by Te,R3,i ·Φ⃗πr,i

and Tb,R3,i · Φ⃗rr,i will give the body frame values.
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Equation (2.48) is used to put the rigid-body values in the correct location
of the generalised mode vectors. The contributions for the flexible modes is
equal to

Φ⃗i
ξ,n = h⃗i(x,y,z) · Φ⃗

i
rf ,n

+ h⃗i(ϕ,θ,ψ) · Φ⃗
i
πf ,n

, (B.41)

where n indicates the constraint number.
The unit force vector for the correction of the velocities and displacements

is in the modal coordinates

f⃗ i⋆corr,n = hi · f⃗ i⋆corr,n,R3. (B.42)

The matrices for all constraint equations in the generalised coordinates can
now be created as

Φ⋆
ξ = [Φ⃗⋆

ξ,1, Φ⃗
⋆
ξ,2, . . . Φ⃗

⋆
ξ,n], (B.43)

Φξ = [Φ⃗ξ,1, Φ⃗ξ,2, . . . Φ⃗ξ,n], (B.44)

f⋆corr = [f⃗⋆corr,1, f⃗
⋆
corr,2, . . . f⃗

⋆
corr,n]. (B.45)

B.5 Velocity and displacement correction

Since the kinematics are non-linear, the velocity and displacements still have
to be corrected when Lagrange multipliers are included in the calculation of
accelerations.

A virtual force δf⃗dv is introduced for correction of the displacements

∆ξ⃗ = Te · (A⋆(∞) + m⋆)−1 · f⋆corr · δf⃗dv. (B.46)

The values for the virtual force can be solved using the Newton-Raphson method

Φξ · Te · (A⋆(∞) + m⋆)−1 · f⋆corr · δf⃗dv = −Φ⃗(ξ⃗). (B.47)

After calculating the virtual force, equation (B.46) is used to calculate the dis-
placement correction. Normally, the Newton-Raphson method is iterated until
the required accuracy is obtained. However, as this displacement correction is
carried out at every Runge-Kutta step, only one iteration is required to obtain
sufficient accuracy for normal seakeeping problems.

The velocities are corrected by another virtual force δf⃗vv, following from

∆ ˙⃗
ξ = Te · (A⋆(∞) + m⋆)−1 · f⋆corr · δf⃗vv. (B.48)

The constraint equation for the velocities (B.2) is a linear equation and can be
directly used to obtain the virtual force needed to correct the velocities

Φξ · Te · (A⋆(∞) + m⋆)−1 · f⋆corr · δf⃗vv = ν⃗ − Φξ ·
˙⃗
ξ. (B.49)

The correction vector for the velocities is calculated using equation (B.48).





Appendix C

Extrapolation of damping
curve

The frequency dependent part of the radiation force is calculated using retar-
dation functions for the time domain calculations. These retardation functions
are created by a Fourier transformation of the damping curve. The damping
coefficients are calculated in the frequency domain. It is difficult to calculate
the damping curve for high frequencies. Therefore, the damping curve is ex-
trapolated above a user defined threshold value. The influence of the starting
point and the method for the extrapolation of the damping curve is investigated
in this appendix.

C.1 Calculating of hydrodynamic coefficients

The panel size used to solve numerically the hydrodynamic BVP limits the
highest frequency that can be calculated accurately in the frequency domain.
The stability of the solution of the BVP depends on the wave-length in propor-
tion to the panel size. The relation between the encountered frequency and the
wave-length is λ = 2πg

ω2
e

which decreases quadratically for high frequencies. The
total number of panels scales quadratic with the panel size and the computer
memory required to solve the BVP also increases quadratic to the total number
of panels. Therefore, doubling the available computational memory will only
allow for a small increase in the maximum frequency for which the BVP can be
solved accurately.

Figure C.1 shows an example of the computed damping curve for a ferry
model with a length of about 170 metres and sailing at 12 knots in head waves.
The main diagonal damping curve for the first bending mode, index 7-7 of the
damping matrix, is shown. The natural frequency for the first flexible mode is
6.7 [rad/s]. The oscillations of the damping curve are due to a too coarse mesh
and not due to irregular frequencies. Surface lid panels are used to suppress
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the occurrence of irregular frequencies for this calculation. If the oscillations
were irregular frequencies, the frequency where the oscillations occurs would
be identical for all meshes and a “+∞ −∞” behaviour of the damping curve
is expected for irregular frequencies. Therefore the oscillations are most likely
due to using a too coarse mesh.

The arrows in Figure C.1 show the highest frequency for which the solution
is correct and the computer memory required for the calculation using the
program precal [33]. The damping curve cannot be calculated beyond an
encounter frequency of 5.5 [rad/s] using the available computer with 16 [Gb] of
memory.
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Figure C.1: Damping curve for various panel sizes.

C.2 Extrapolation methods

The damping curve has to be extrapolated to the value at the “infinite” fre-
quency. The value of the damping calculated for the infinite frequency is located
at a high frequency.

A possibility is the use of a linear extrapolation. A linear extrapolation
between the highest calculated frequency value and the infinite frequency value
located at 1.33 times the highest frequency is investigated.

Another extrapolation is also investigated. In this case the infinite frequency
value is located at about two times the highest frequency. A function of type
a
ωb + c is used to extrapolate the damping curve between the highest frequency
and the infinite frequency. Values for the b-coefficient for main diagonal rigid-
body mode terms for zero speed can be found in [55], however there are no
values for the other terms. Because the b value is only known for a few terms,
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all curves are calculated by imposing the condition that the slope should be the
same for the damping curve and the extrapolation at the highest frequency for
which the damping curve can be computed accurately. The variables a and c
follow from the required value at the start and the end of the extrapolation.

The damping curves using the different extrapolation methods are shown in
Figure C.2.1 The damping curve is extrapolated from encounter frequencies 2.7
and 4.0 [rad/s]. The damping curve ending at 2.7 [rad/s] represents the results
of a coarse mesh and the one ending at 4.0 [rad/s] that of a refined mesh. The
function extrapolation is almost identical for the different end frequencies for
these two damping curves. This is an indication that the a

ωb + c function is a
good approximation of the damping curve at high frequencies.
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Figure C.2: Different damping extrapolations for the heave mode and the first
flexible mode.

The resulting retardation functions using the different damping curves are
shown in Figure C.3. The smooth damping curves created by the function
extrapolation results in smooth retardation functions. The retardation function

1The computed damping is negative at some frequencies. This is an error resulting most
likely from using a body boundary condition corrected for forward velocity and a zero speed
surface boundary condition.
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created using the linear extrapolated damping curves shows some oscillations.
The oscillations of the 4.0 [rad/s] curves are less than for the 2.7 [rad/s] curves.
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Figure C.3: Retardation functions for various damping curve extrapolations.

C.3 Response

The different damping curves are used for a fully coupled slamming and whip-
ping calculation in the time domain for a 170 [m] ferry model. Because the
calculated hydrodynamic damping for the main diagonal terms at infinite fre-
quency for some of the flexible modes is negative, a significant structural damp-
ing is added to ensure positive damping for the flexible modes. The frequency
reconstructed motion for surge, sway and yaw are imposed during the time
domain calculation. The resulting heave motion and the response of the first
flexible mode is shown in Figure C.4.

There are almost no differences in motions using the different damping
curves. Only the motions calculated using the linear 2.7 [rad/s] damping curve
show very small differences. This result can be explained by the frequency of
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the wave and slamming excitation. Even with a 12 knot forward speed the wave
excitation is still below the frequency at which the damping curve is interpo-
lated. For these frequency ranges the damping curve is the same for all cases
and the retardation function should give the same result. The frequency of the
slamming excitation and the frequency of the natural modes are at a frequency
where the damping is (almost) the infinite damping for all damping curves so
no large differences are expected.
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Figure C.4: Motion response for various damping curve extrapolations.



256 Appendix C. Extrapolation of damping curve

C.4 Conclusion

It is not possible to calculate the complete damping curves up to the frequencies
of the first natural modes of the ship in a computationally efficient manner. This
is a limitation of the method used. Due to the very rapid increase in computer
memory required for accurate solving of the BVP at increasing frequencies, this
problem will not be solved by the next generation of computers.

This example shows almost no sensitivity between the results and the chosen
extrapolation method of the damping curve. A plausible explanation is that
there is no excitation in the frequency range where the extrapolation gives
differences in the damping curve. This will not be always the case. With
higher forward velocity, or larger ships, the wave excitation will move towards
the frequency where the extrapolation starts.

Because it is difficult to judge the sensitivity to the extrapolation method at
the start of the calculation, it is advised to do the analysis as well as possible.
Using a refined mesh allows to calculate a large part of the tail of the damping
curve. This will make extrapolation less important but it will also cause the
damping curves to get closer to the infinite frequency value. The extrapolation
using the a

ωb +c function shows better results than the linear extrapolation. This
extrapolation has some theoretical justification [55]. Therefore, this function
extrapolation is used for all the results presented in this thesis.



Appendix D

Aluminium model

A few technical drawings of the aluminium model used for the experiments are
presented in this appendix. The masses of the additional components are shown
in Figure D.1, and Figure D.2 shows the top and side view of the structural
design. The cross-sections can be found in Figure D.3. The location of the
accelerometers are presented in Figure D.4

Figure D.1: Mass of additional components.
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Figure D.2: Top and side view of the aluminium model.
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Figure D.3: Cross sections of the aluminium model.
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Figure D.4: Location of accelerometers.



Appendix E

The Optimal State Estimation
Method

The OSE method makes an estimation of the response of the structure and the
external loading at the ship using the modal equations and the measurements.

The theory of the OSE method is briefly discussed in this appendix using the
discussion found in [50]. An extensive discussion can be found in [35, 11, 48, 49].

E.1 Modal equations

The standard equations of motion are used as a starting point

Mx ¨⃗x+ Cx ˙⃗x+ Kxx = f⃗x. (E.1)

The mass matrix should include the added mass of the fluid. The infinite,
frequency independent, added mass can be used because of the high frequency
of natural modes of ship structures. The undamped eigenvalue problem is solved
using a 3D FE-package (

−ω2
iM

x + Kx
)
φ⃗i = 0. (E.2)

The results are the eigen-frequencies ωi and eigenmodes φ⃗i. The eigenmodes
are normalised with respect to the mass matrix

φ⃗Ti Mxφ⃗i = 1, φ⃗Ti K
xφ⃗i = ω2, for i = 1, n. (E.3)

The dynamic equation is transformed to modal coordinates using the trans-
formation matrix T which contains a subset of eigenmodes

Mp ¨⃗p+ Cp ˙⃗p+ Kpp = f⃗p, (E.4)
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with

Mp = TTMxT, Cp = TTCxT,

Kp = TTKxT, f⃗p = TT f⃗x.
(E.5)

The transformation to modal coordinates allows for a significant reduction of
the number of degrees of freedom. Only the eigenmodes below a user defined
cut-off frequency and with sufficient contribution to the expected response will
be used.

E.2 Measurement equations

A vector with measurement signals z⃗m is introduced

z⃗m = Zsp⃗+ Zv ˙⃗p+ Za ¨⃗p+ Zuu⃗, (E.6)

with p⃗, ˙⃗p and ¨⃗p the modal displacements, velocities and accelerations according
to equation (E.4). The matrices Zs,Zv and Za are the participation matrices
for the measured displacements, velocities and accelerations as present in z⃗m.
In fact, based on the kept eigenmodes, these matrices transform the modal
quantities p⃗, ˙⃗p and ¨⃗p to physical displacements, velocities and accelerations.

Vector u⃗ contains the measured external forces, if any. The boolean matrix
Zu selects which measured forces are used.

E.3 The OSE method

There will always be differences between the measurements and the mathemat-
ical model. To account for these differences, residuals are introduced for all
equations. The OSE estimates the response and external loads of the model by
minimizing these residuals.

Vectors ξ⃗1 and ξ⃗2 contain the residuals of the time derivative equations for
the velocities and the accelerations, respectively. These are defined by

˙⃗̂
s = ˆ⃗v + ξ⃗1,

˙⃗̂
v = ˆ⃗a+ ξ⃗2, (E.7)

where ˆ⃗s, ˆ⃗v and ˆ⃗a are the estimated displacements, velocities and accelerations
respectively, based on the set with modal degrees of freedom.

By replacing p⃗, ˙⃗p and ¨⃗p in the modal equation (E.4) by the estimation vari-
ables ˆ⃗s, ˆ⃗v and ˆ⃗a the residual ζ⃗1 is introduced

Mpˆ⃗a+ Cp ˆ⃗v + Kp ˆ⃗s+ Hˆ⃗u = ζ⃗1. (E.8)

Vector ˆ⃗u contains the unknown external forces which the OSE should estimate.
Matrix H is the participation matrix for the external forces.
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The last residual ζ⃗2 is introduced for the measurement equation (E.6)

z⃗m = Zs ˆ⃗s+ Zv ˆ⃗v + Zaˆ⃗a+ Zu ˆ⃗u+ ζ⃗2. (E.9)

Equations (E.7) to (E.9) form the so-called identification model, which is
the basis for the OSE method. Following [35], the identification model can
be formulated more compactly using the augmented state estimator ˆ⃗x and the
augmented input estimator ˆ⃗p

ˆ⃗x =
(
ˆ⃗sT , ˆ⃗vT

)T
, ˆ⃗p =

(
ˆ⃗uT , ˆ⃗aT

)T
. (E.10)

Using these estimators, equations (E.7) to (E.9) can be rewritten as

˙⃗̂
x = Aˆ⃗x+ B ˆ⃗p+ ξ⃗, (E.11)

Ez⃗m = Fx ˆ⃗x+ Fp ˆ⃗p+ ζ⃗, (E.12)

with

A =
(
0 I
0 0

)
, B =

(
0 0
0 I

)
, ξ⃗ =

(
ξ⃗1
ξ⃗2

)

E =
(
0
I

)
, Fx =

(
Kp Cp

Zs Zv

)
Fp =

(
H Mp

Zu Za

)
, ζ⃗ =

(
ζ⃗1
ζ⃗2

) (E.13)

For an optimal state estimation, ˆ⃗x and ˆ⃗p have to be determined such that
the residuals ξ⃗ and ζ⃗ are minimised. For the minimization of the residuals the
following penalty function is introduced

J (x̂, p̂) =
1
2

∫ te

to

(
ξ⃗T (t)Wξ⃗ (t) + ζ⃗T (t)Vζ⃗ (t)

)
dt

+
1
2

(
ˆ⃗x (t0) − q⃗0

)T
R0

(
ˆ⃗x (t0) − q⃗0

)
. (E.14)

This function is minimised using the conditions of equations E.11 and E.12.
Vector q⃗0 is the initial condition at the starting time t0 as defined by the user.
The term

(
ˆ⃗x (t0) − q⃗0

)
is a residual on the initial conditions at starting time

t0. The user supplies the weighting matrices W,V and R0 which express the
confidence in the time derivative equations, model equations, measurements
and initial conditions.

The approach to minimise function (E.14) can be found in [35]. The esti-
mated response and external forces are known after the optimisation.
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E.4 Previous use of the OSE method

The OSE method has been used for estimation of the response and external
loading for full scale shock trials and slamming events [50]. An example of the
analysis of a full scale under-water shock trial is presented as this is a validation
of the predictions by the OSE method.

Figure E.1 shows the velocity at a location of a M-Frigate of the Royal
Netherlands Navy during a full scale shock trial using explosives located under
water. This shock trial is analysed using the OSE method. The accelerations
are measurements at the location but they are not included in the input for the
OSE estimation of the response. The velocity signal is reconstructed using the
estimated response based on measurements at other locations.

Figure E.1: OSE results for M-frigate.

The shock load excites many high-order modes which are not included in the
OSE estimate. Also there will always be some differences between the structural
model and the actual ship. Therefore, the estimated velocity response will differ
from the measured velocity.

Figure E.1 shows that the estimated response is reasonably close to the
measured response at the location. This validates that the OSE method can be
used to estimate the global response of the structure.
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[25] Š Malenica. DYANA, Theory, User’s and Example Manual. Bureau Veri-
tas, 2003.
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