

Behavioural and Societal
Sciences
Kampweg 5
3769 DE Soesterberg
P.O. Box 23
3769 ZG Soesterberg
The Netherlands

www.tno.nl

T +31 88 866 15 00
F +31 34 635 39 77
infodesk@tno.nl

TNO report

TNO-DV 2011 IN433

CHAOS 2.0 Behaviour and Performance
Modelling Framework

Date March 2012

Author(s) drs. E.M. Ubink

drs. R. Looije

Number of pages 28 (incl. appendices)
Sponsor PGL
Project name CHAOS 2.0 Behaviour and Performance Modelling Framework
Project number 053.01287

All rights reserved.
No part of this publication may be reproduced and/or published by print, photoprint,
microfilm or any other means without the previous written consent of TNO.

In case this report was drafted on instructions, the rights and obligations of contracting
parties are subject to either the General Terms and Conditions for commissions to TNO, or
the relevant agreement concluded between the contracting parties. Submitting the report for
inspection to parties who have a direct interest is permitted.

© 2012 TNO

TNO report | TNO-DV 2011 IN433 2 / 28

Contents

1 Background .. 3

1.1 CHAOS 2.0 .. 3

1.2 About this report .. 3

2 Introduction to CHAOS ... 5

2.1 Competition of different behaviours as a multi-agent system.................................... 5

2.2 Priority of behaviour ... 5

2.3 Multi-tasking ... 6

2.4 Stress ... 6

2.5 Main algorithm ... 7

2.6 Issues with original design ... 7

2.7 Changes in CHAOS 2.0 ... 9

3 CHAOS 2.0 Design Description .. 10

3.1 Overview of modelling classes .. 10

3.2 ICHAOSAgent .. 11

3.3 Pandemonium .. 11

3.4 Resource ... 12

3.5 Demon ... 13

3.6 Behaviour ... 15

3.7 IBehaviourState ... 16

4 Getting started with CHAOS 2.0 ... 17

4.1 High level design ... 17

4.2 Implementation .. 20

5 References ... 27

6 Signature .. 28

TNO report | TNO-DV 2011 IN433 3 / 28

1 Background

CHAOS (Capability-based Human-performance Architecture for Operational
Simulation, (Ubink, Aldershoff, Lotens, & Woering, 2008), (Ubink, Lotens, &
Woering, 2010) is a Java software library that contains a behaviour modelling
architecture. It can be used to create human behaviour and performance models.
CHAOS was originally developed for the SCOPE simulation environment,
a simulation of dismounted soldier operations (Ubink, Aldershoff, & Lotens, 2008).
However, it is a generic framework that can be used for other domains and
applications as well.
Currently, it is central part of the simulation environments SCOPE, SCOPE Light,
BRIGADE and the Driver Model Library. SCOPE Light is derived from SCOPE and
focuses on the simulation of physical performance, thermal strain and clothing
systems. BRIGADE is a simulation of fire fighting operations. BRIGADE is still in a
prototype stage, but further development of the simulation has been postponed.
The Driver Model Library (DML) is a new initiative that is still in full development.
The aim of the DML is to provide a collection of models for traffic behaviour (drivers)
that can be used in various (third party) traffic and driving simulations.

1.1 CHAOS 2.0

By applying CHAOS in simulation environments over recent years, some problems
and shortcomings of the original CHAOS design have emerged. This has resulted in
the development of CHAOS 2.0, a new version of CHAOS that offers many
improvements in the internal mechanisms, class structure and interface definitions.
All these changes result in improved usability and should make developing and
maintaining behaviour and performance models much easier.

1.2 About this report

The CHAOS library is implemented in Java, a third generation object oriented
programming (OOP) language. For some sections of this report, especially chapters
3 and 4, a basic understanding of OOP is assumed. More information on OOP and
Java can be found in the online Java Tutorials (Oracle, 2011).

1.2.1 Naming conventions
To improve readability, all code fragments, including package, class and method
names, are written in the Courier font. Also, the standard Java naming
conventions are used throughout this report:
• an object definition is called a class,
• an instantiation of a class is called an object,
• the functions of a class are called methods,
• classes are organized in packages,
• an interface is a reference type that contains no method bodies. Interfaces

cannot be instantiated and can only be implemented by classes, or extended by
other interfaces,

• an abstract class is a class that cannot be instantiated but can be extended.
Unlike an interface, an abstract class can contain implemented methods.

TNO report | TNO-DV 2011 IN433 4 / 28

• Javadoc is a code documentation tool provided with Java that, generates
documentation in HTML format from code comments. The CHAOS library
contains documentation generated by Javadoc.

1.2.2 Report structure
Readers who are looking to get a broad overview of the CHAOS framework are
advised to just read Chapter 2. It provides a general introduction into the modelling
framework. It also describes some of the shortcomings of the original design that
have led to the development of the updated version, CHAOS 2.0. The most
important changes between the original and new version are also globally
described.
Readers with interest in the technical design should continue reading Chapter 3.
It describes the new version of the framework in more detail, with object
descriptions and class diagrams.
Finally, programmers who want to start working with the CHAOS framework are
advised to read all chapters, including Chapter 4. This final chapter provides a
“getting started manual”, focused on programmers and modellers.

TNO report | TNO-DV 2011 IN433 5 / 28

2 Introduction to CHAOS

CHAOS is a Java software library that can be used in conjunction with simulation
environments to provide human behaviour and performance models for the agents
in the simulation. The framework provides generic objects that need to be sub-
classed to represent the behaviours and resources that are specific to the
simulation. Once these subclasses are implemented, CHAOS takes care of the
dynamics in the system by continuously deciding which behaviours are active and
which are not.

Figure 1 The CHAOS logo.

2.1 Competition of different behaviours as a multi-agent system

The CHAOS behaviour architecture is based on the idea that humans are either
driven by goals they want to achieve (proactive behaviours), or by events that
require them to react in a certain way (reactive behaviours). Proactive behaviours
are related to tasks, while reactive behaviours are triggered by external events such
as a phone that rings, an enemy that appears and starts shooting, or by the
person’s own status, e.g. in case of fatigue or anxiety.
The idea behind CHAOS is that all (latent) proactive and reactive behaviours are in
constant competition with each other. These behaviours are implemented as
software agents, called demons. The goal of these demons is to influence the
behaviour of the entity. In order to do this, they need to obtain the resources that
they require. These resources represent human capabilities, such as reasoning,
fine motoric control, or aerobic capacity.

2.2 Priority of behaviour

The competition between the demons is won by the demons that are most
important in the current situation. The demons communicate their importance by
“shrieking”: the louder a demon shrieks, the more important it is. The shrieking level
of proactive demons is usually static and reflects the priority of the task they
represent. The shrieking of reactive demons is dynamic and depends on external
factors. For instance, when an enemy is detected, this is a very important event that
requires an appropriate reaction.

TNO report | TNO-DV 2011 IN433 6 / 28

The demon that models this reactive behaviour (e.g. taking cover, returning fire) will
in this situation shriek very loudly, probably louder than the other demons in the
competition, which would make it the winner of the competition. This means that it
can take the resources it requires to influence the behaviour of the entity.

2.3 Multi-tasking

Although a single demon will be shrieking loudest because it is most important, this
does not mean that the other demons in the competition cannot influence behaviour
as well. The only requirement for influencing behaviour is that the required
resources are available. If two demons are not conflicting with regards to the
resources they require, they can execute their behaviours simultaneously.
Note that it is possible that not enough resources are available for optimal
performance, in which case sub-optimal multi-tasking may occur. Note that this
does require that the demons are capable of mapping available resources to
performance. In other words, the demons would need to contain a performance
model that takes resource levels as input and gives task performance as output.

2.4 Stress

In CHAOS, stress can be represented as a reactive demon that monitors a specific
(set of) model variable(s). For instance: to model stress related to the thermal
condition of a person, a “heat stress demon” could be implemented. This demon
monitors the person’s body temperature. As the temperature crosses a predefined
threshold, the demon starts shrieking. As body temperature rises, shrieking level
will increase, until the maximum stress level is reached (see Figure 2).
The maximum stress level indicates that a further increase in body temperature will
not result in a further reduction of performance. In other words, the demon “knows”
in what range body temperature affects performance. The stress level is reflected
by the demon’s shrieking level.

Figure 2 Linear stress modelling in CHAOS. The shrieking level of a stress demon corresponds
to the stress level, which is in turn connected to model variables.

The next step is that the demon affects certain resources, depending on its
shrieking level. This will in turn affect the performance of the behaviour demons that
require these resources, effectively turning stress into strain. Through this
mechanism, the effect of stress on performance can be modelled in CHAOS.

TNO report | TNO-DV 2011 IN433 7 / 28

2.5 Main algorithm

The central algorithm in CHAOS is essentially a four-step procedure that is
repeated each time-step. By sub-classing demons and resources, specific
behaviour and performance models can be created. The general mechanism for
deciding which behaviours are active will be the same for every application and is
described in these four steps:
1. Reset resources

The resources may be affected as a result of the previous iteration, so the
resources are reset to their default levels. Also, effects that traits may have on
resources can be effectuated in this step.

2. Shrieking levels are adjusted
This step is only relevant for reactive demons with dynamic shrieking levels:
they can adjust their shrieking level according to the current state of the world
and/or the agent/entity.

3. Stress-demons affect resources
The demons that represent some form of stress can affect (increase or
decrease) resource levels, according to their shrieking level, i.e. according to
the stress level. This could be viewed as the transformation of stress into strain.

4. Execute actions
In this step, demons are requested to take actions, starting with the demon that
is shrieking loudest. This demon will determine if the resources it requires are
available. If so, it will take these resources and execute its behaviour. If not, it
will do nothing. Then the next demon in line (the loudest demon of the rest),
checks if the resources it requires, are available. If so, it will take these
resources and execute its behaviour. This process continues until the last
demon has had a chance to execute its behaviour.

2.6 Issues with original design

The original idea for CHAOS is simple: create a competition (the pandemonium)
between “behaviour elements” (demons). At stake in the competition are
“resources”. When a demon succeeds in collecting enough resources, it is allowed
to control behaviour.
This still is the central mechanism in CHAOS, also in CHAOS 2.0. However, by
applying CHAOS in a number of simulation environments, a number of “specialized”
demons have evolved, each with specific functionalities. The problem is that these
“specialized” demons are all still based on the original, generic demon template,
which was not developed with these different functionalities in mind. This can make
it difficult to fathom existing behaviour models and can lead to confusion when
developing new demons.
The original CHAOS API (Application Programmers Interface) does not provide
much guidance as to what types of “demon specializations” are available or should
be used in certain situations. The API also does not provide insight in how certain
types of demons should be implemented. The goal of CHAOS 2.0 is to untangle the
different specializations and provide specific support for them. In the following
sections we shall look briefly at what these specializations consist of and what
issues they may cause. In section 2.7 we shall look briefly into the changes made to
CHAOS 2.0, intended to solve the issues identified here. Readers that require more
technical insight are encouraged to read Chapter 3, in which the CHAOS 2.0 design
is described in more detail.

TNO report | TNO-DV 2011 IN433 8 / 28

2.6.1 Hierarchical behaviour
In CHAOS, complex behaviours are often modelled as a collection of demons,
rather than as a single demon, with each demon in the collection being responsible
for a specific element (subtask) of the complex behaviour. These collections of
demons are hierarchically structured in parent-child relations.
The parent demons can be viewed as “managers”, while the children may be seen
as “worker demons”. Another way to look at it is as contractors and subcontractors.
The managers/contractors are responsible for updating the shrieking level and
collecting the data (from the simulation) required by the worker/subcontractor
demons. They also determine when a certain worker demon should become active.
The worker demons contain the actual algorithms for controlling behaviour.
They also know which resources are required.
For example, in the SCOPE simulation of soldier operations, the behaviour involved
in reacting to enemy threat is structured hierarchically. There is a manager demon
that is concerned with assessing the threat level and that adjusts its shrieking level
accordingly. It has two worker demons, a demon that is capable of finding and
taking cover and another demon that is capable of shooting at an enemy. So the
manager assesses the situation and instructs the workers, and the workers take
action by seeking cover and firing at the enemy.
The problem with this original setup of CHAOS is that both worker and manager
demons are based on the same, generic demon template, while they have different
responsibilities and provide different functionalities. Depending on the specific role a
demon has, some of its generic functionality will be implemented while other
aspects are unspecified. This can result in confusing code that is difficult to grasp.

2.6.2 States
Some demons in CHAOS make use of states, such as “in progress”, “paused” or
“finished”. The behaviour of the demon depends on the state it is in. State
transitions are taken care of by either the demon itself or by its manager.
The manager is notified when one of its worker demons changes state, so it can
react accordingly. A problem with this approach is that quite some communication
between demons takes place that is related to these state changes. Parent demons
need to be able to react appropriately to all kinds of state changes, but the API
provides no clear instructions on this. Therefore it is the responsibility of the model
builder/developer, who has to make sure that all situations are handled correctly.
If he/she forgets to handle some relevant state changes, the demons will not
behave as expected.

2.6.3 Proactive and reactive demons
A demon’s priority or importance is reflected by its shrieking level. Some demons
have a static shrieking level that represents the intrinsic importance of that demon
in that specific scenario. They typically represent goal directed behaviour, such as a
task that needs to be performed. These demons can also be viewed as proactive,
in the sense that they have a goal they want to achieve. As the opposite of a
proactive demon, a reactive demon reacts to its environment and therefore has a
dynamic shrieking level that is modulated according to changes in the environment.
Again, the problem with the original version of CHAOS is that proactive and reactive
demons are implemented in the same way. The architecture does not provide
separate classes or interfaces to distinguish the two, which can lead to confusion.

TNO report | TNO-DV 2011 IN433 9 / 28

2.7 Changes in CHAOS 2.0

To improve the CHAOS architecture and solve the identified issues, a number of
changes has been made to the original CHAOS architecture. Besides numerous
minor changes, the following three major changes to the class structure of CHAOS
have been made (see also Figure 3):
1 Proactive and reactive demons are now supported by specific subclasses of the

generic demon class, with distinct functionality.
2 The confusing role of child (or “worker”) demons in a parent/child structure has

been replaced by dedicated “Behaviour” components. This approach is based
on the strategy design pattern (Gamma, Helm, Johnson, & Vlissides, 1995)
(Grand, 2002), which means that the Behaviour components form different
strategies that can be employed by the demon.

3 To accommodate the need for states, the behaviour objects can optionally be
associated with states. The states are implemented according to the state
design pattern (Gamma, Helm, Johnson, & Vlissides, 1995) (Grand, 2002),
which is definitely an improvement over the previous solution.

Figure 3 The CHAOS 2.0 class diagram, showing the most important classes. The major
changes are the separate classes for ReactiveDemon and ProactiveDemon and the
addition of dedicated Behaviour components that can optionally be extended with
states.

So the major improvements in CHAOS 2.0 are the untangling of the different roles
demons play, by the addition of dedicated classes for these roles. The result is that
there are more classes now, but the classes themselves have become less
complicated. This makes it much easier to understand what a class is supposed to
do and how a class can be extended to provide custom functionality. For a more
detailed information on the CHAOS 2.0 classes and their functionality, the reader is
referred to Chapter 3.

TNO report | TNO-DV 2011 IN433 10 / 28

3 CHAOS 2.0 Design Description

In this chapter, the global design of the CHAOS framework, version 2.0, is
described. For the sake of simplicity, only the most important classes and methods
are included here. Classes that are not directly related to behaviour modelling, such
as GUI components and classes for event passing, are not described here. Some of
these classes will be treated in Chapter 4. For a complete listing of classes and
methods, the reader is referred to the Javadoc documentation provided with the
CHAOS library.
Another thing to clarify beforehand is that CHAOS is a software library that is
intended to be used in conjunction with other software, usually simulation software
(e.g. a simulation of soldiers or drivers). CHAOS provides behaviour modelling
functionality that can be used to control the agents in such a software simulation.
When the term “simulation” is used, it therefore refers to external software that is
not part of CHAOS, but that uses CHAOS for its behaviour modelling.

3.1 Overview of modelling classes

The classes that are related to the modelling aspects of CHAOS are shown in the
UML diagram in Figure 4. In the diagrams in this chapter, the relations with a black
diamond denote compositions: a Pandemonium is contained in an ICHAOSAgent ,
the Pandemonium contains Demons and Resource s and a Demon contains a
Behaviour component, etc. Relations with a white arrowhead at the end denote
specialization: a StressDemon is a ReactiveDemon, which is a Demon, etc.
Also, the names of abstract classes (i.e. classes that cannot be instantiated and
therefore need to be extended) and abstract methods (methods in an abstract class
that need to be implemented by a subclass) are printed in italic, but only in the UML
diagrams, not in the running text.

Figure 4 UML class diagram of most important modelling classes in CHAOS 2.0.

In the following sections, all these classes are described separately. However, for
the sake of simplicity, not all functionality shall be described. For a full listing and
description of all methods, the reader is referred to the Javadoc documentation that
is provided with the CHAOS software library.

TNO report | TNO-DV 2011 IN433 11 / 28

3.2 ICHAOSAgent

The ICHAOSAgent class (Figure 5) plays an important role in CHAOS, as it forms
an important connection between the external simulation and the CHAOS
framework. It is prefixed with an ‘I’ to indicate that it is not a class but an interface
that still needs to be implemented. This interface should be implemented by an
object that has access to an agent in the simulation that the CHAOS framework is
used for. For each agent in the simulation that is to be controlled by CHAOS, an
ICHAOSAgent should exist, each with its own pandemonium and its own demons.

Figure 5 The ICHAOSAgent interface.

The most important functionality that ICHAOSAgent provides is access to the
simulation time from CHAOS, and access to the pandemonium from the simulation.
The simulation time is required by several objects in CHAOS, mostly demons, for
instance to determine how much time has passed since the last update.
The simulation needs access to the agents pandemonium because the simulation is
responsible for calling the update() method of Pandemonium , that results in
execution of the main loop (see also Section 3.3).
Besides this generic functionality, the object that implements ICHAOSAgent may
be a good candidate to provide the specific functionality that is required for the
simulation that CHAOS is connected to. In other words, methods could be added
that the demons can call to control the agent’s behaviour. Also, methods could be
provided that allow the demons to query (aspects of) the state of the simulated
world. However, since for each simulation specific demons are developed, it may be
easier to allow the demons direct access to the relevant aspects of the simulation.
For more information on this subject, the reader is referred to Chapter 4.

3.3 Pandemonium

The Pandemonium (Figure 6) class plays a central role in the CHAOS modelling
framework. The Pandemonium has three main functions:
1 it contains the demons that are competing;
2 it contains the resources the demons are fighting over ;
3 it manages the competition between the demons.

The methods of the Pandemonium class are closely related to these three tasks.
There are methods to add and remove demons and resources and methods that
provide access to the resources, so the demons can inspect which resources are
available, and can take the resources they require. This functionality will be
described in more detail in Section 3.4. The Pandemonium class also provides the
possibility to add so called observer objects, ICHAOSEventObserver objects to
be precise. These observers can register with the pandemonium to receive an

TNO report | TNO-DV 2011 IN433 12 / 28

event each time the Pandemonium is updated. This functionality is mostly used by
GUI components.
Finally, the Pandemonium contains an update() method that is called from the
simulation, usually from the main simulation loop and on each time-step.
This method triggers the execution of an iteration of the main Pandemonium
algorithm, that is described in Section 2.5.

Figure 6 The Pandemonium and its most important methods.

3.4 Resource

A Resource (Figure 7) in CHAOS is a very simple object. It can be viewed as a
container, much like a bucket that contains water. It has a minimum, maximum and
an actual level. It has a “key” by which it can be retrieved from the pandemonium,
and a name for displaying purposes. The actual “resource” can be taken out of the
container in two ways: by calling limitLevel(int,Demon) or by calling
lowerLevel(int,Demon) .

Figure 7 The Resource class with its most important methods.

The method limitLevel(int,Demon) is called by demons that represent stress.
It limits the level of the resource to the level specified by the first integer parameter.
If the old level was less than, or equal to the specified level, nothing happens.
The second method (lowerLevel(int,Demon)) lowers the level with the delta
specified in the first parameter, but never lower than the minimum level of the
resource. This method is called by demons that represent behaviour. Both methods
return the amount by which the resource was lowered, which is possibly zero.

TNO report | TNO-DV 2011 IN433 13 / 28

3.5 Demon

Another key class in CHAOS is the Demon class (Figure 8). This class has become
significantly less complex in CHAOS 2.0, since much of its original functionality has
been defined in subclasses or has been “outsourced” to the Behaviour class, that
will be described in Section 3.7.

Figure 8 The Demon class with subclasses.

Demon is an abstract class, which means it cannot be instantiated directly. It has an
abstract method that needs to be implemented by subclasses: updateBehaviour() .
This method is called from the main pandemonium algorithm (see section 2.5),
prior to the step in which the resources are taken. When this method is called, the
Demon can decide if its “strategy”, i.e. its Behaviour component, should be
replaced with another Behaviour component, or if some of the current
Behaviour ’s parameters need to update. The method compareTo(Demon)

compares the demon with the demon that is passed as a parameter. It returns
-1, 0 or 1, depending on which demon is shrieking louder.
The other methods are self-explanatory.

3.5.1 ProactiveDemon and ReactiveDemon
The abstract subclasses ProactiveDemon and ReactiveDemon only differ with
respect to how the shrieking level is managed. The shrieking level of a
ProactiveDemon is set externally, by a call to setShriekingLevel(double) .
A ReactiveDemon should manage its shrieking level autonomously, by
implementing updateShriekingLevel() .

3.5.2 StressDemon
The most complex class in Figure 8 is StressDemon . This abstract subclass of
ReactiveDemon can be used to represent stress. In CHAOS, a StressDemon
monitors a stressful situation and adjusts its shrieking level according to the
seriousness of the situation. The more stressful the situation is, the louder the
StressDemon will shriek. See Figure 9 for an illustration of this process, that is
also explained in more detail in Section 2.4.
To support this mechanism, StressDemon provides some generic functionality.
For this functionality to work, subclasses should be able to describe the seriousness
of the situation in a single number (getMonitoredValue()), along with a
minimum, maximum and threshold value. When these data are supplied, the
StressDemon will autonomously calculate its current shrieking level.
The stressor can be reversed (e.g. the right side of Figure 9) by calling
setIsMaxStress(false) .

TNO report | TNO-DV 2011 IN433 14 / 28

Figure 9 Linear stress modelling in CHAOS. The shrieking level of a stress demon corresponds
to the stress level, which is in turn connected to model variables.

Another aspect that is related to stress is recovery, for which the StressDemon

class also provides functionality. The idea behind the recovery process is that as
long as the stress level rises, the StressDemon will continue to increase its
shrieking level. At a certain point it will be allowed to take some resources.
These resources may then be used for behaviour that aids in the recovery from the
stressful situation. In other words, it can use its Behaviour component to recover
from the stressful situation.

Figure 10 The StressDemon class.

For example, if there is a stressor that models physical strain, such as fatigue, the
associated recovery behaviour may be “resting”, i.e. preventing that physical activity
takes place, which would further increase fatigue. However, a problem that may
occur with this recovery solution is that, as soon as recovery starts, the seriousness
of the stressful situation decreases, which in turn decreases the shrieking level of
the StressDemon . This could then result in the resumption of the normal
behaviour, which would in turn increase the stress level (e.g. fatigue), which would
then trigger the recovery behaviour, etc. In other words, the behaviour of the agent
would start to oscillate rapidly, between the normal and recovery behaviours.
To prevent this type of rapid oscillation, the StressDemon class provides the
method setRecoverPercentage() .
The effect of calling setRecoverPercentage() is that the StressDemon stops
recovering only after the stressfulness of the situation has decreased with the

TNO report | TNO-DV 2011 IN433 15 / 28

specified percentage. For instance, only after fatigue has decreased with 10% will
the StressDemon lower its shrieking level, which would then result in the normal
behaviour taking over again. Although this still results in oscillations, it does allow to
dramatically limit the oscillation frequency.
Besides calculating the stress/shrieking level and the recovering procedure, the
StressDemon class also provides the method affectResources() .
This method is intended model performance effects by turning stress into strain. It is
called each time step, right before the resources are distributed between the
demons. The StressDemon can implement this method by taking some resources,
without providing behaviour for it in return. The idea is that the stress impairs
resources, resulting in a strain on the agent. Other demons that depend on these
resources have now less to work with, which may result in behaviour being
executed poorly or not being executed at all.

3.6 Behaviour

An important part of the functionality of the Demon class in the original CHAOS
framework is now outsourced to the abstract Behaviour class (Figure 11).
The two most important methods of Behaviour are preOccupyResources()
and takeAction() . These methods are called from the Pandemonium , in each
time-step. In the default implementation, the Behaviour class simply forwards
these calls to the current IBehaviourState , that will be described in Section 3.7.
Subclasses can also choose to not use states, by overriding the methods
preOccupyResources() and takeAction() . This is a good option if the
Behaviour component is not very complicated and there is no need to divide its
functionality in separate states.
A subclass that overrides these methods should take the resources it requires when
preOccupyResources() is called. The retrieved resources can be stored
internally by calling storeResource(String,int) . When the resources are
needed later on, they can be retrieved by calling the method
getResourceStorage() , that returns the whole collection of stored resources, or
getStoredResourceLevel(String) , that only returns the stored level of a
specific resource.

Figure 11 The Behaviour class.

A subclass that does not have an IBehaviourState associated should also
implements the takeAction() method, that allows the Behaviour component to
control the agent’s behaviour.

TNO report | TNO-DV 2011 IN433 16 / 28

3.7 IBehaviourState

The state pattern (Gamma, Helm, Johnson, & Vlissides, 1995) (Grand, 2002) allows
specific functionality to be associated with specific states. This pattern is also used
in CHAOS 2.0. for Behaviour components, that can be associated with an
IBehaviourState (Figure 12). The Behaviour component can then simply
forward calls of preOccupyResources() and takeAction() to the equivalent
methods of its current state. Note that this is also the default implementation of
Behaviour .
For instance, assume a Behaviour component has two potential states: Paused
and InProgress . If the Behaviour is in state Paused , then calling
preOccupyResources() and takeAction() would probably have no effect,
since the Paused state would provide empty implementations for these methods.
When the state of the Behaviour is changed to InProgress however, the
resulting behaviour will change: resources will be taken and the behaviour of the
agent will be influenced by the Behaviour component. Note however that, from
the perspective of the Behaviour component, not much has changed as it is still
just forwarding the preOccupyResources() and takeAction() method calls to
its state.

Figure 12 IBehaviourState interface and implementing subclasses.

The CHAOS library provides some default implementations of the
IBehaviourState interface (see Figure 12). Since the CHAOS library is a generic
library that provides no actual behaviour models, these implementations are
abstract classes that provide no functionality. They are only provided for
inspirational purposes and should be subclassed and extended with useful
functionality.

TNO report | TNO-DV 2011 IN433 17 / 28

4 Getting started with CHAOS 2.0

This chapter provides directions on how to develop behaviour models with the
CHAOS framework. However, the reader should not expect a step-by-step recipe
that can be followed precisely and then results in a perfect behaviour model.
Behaviour modelling is too complicated for such a recipe to exist. There is no single
best way of developing a behaviour model: each model is different and each
domain and application have their own requirements and implications. For each
domain and application, there are always many modelling solutions possible. In the
end, it is up to the model builder to decide which solution is most suitable and how
the model should be structured.
Although this chapter does not provide the ultimate recipe for behaviour models,
it does describe the structure of such a recipe. In other words, it describes the steps
that are involved when building a behaviour model, with pointers on how to execute
each step. The chapter starts with a section on the high-level design of the
behaviour model and continues with the actual implementation of the components
and the interaction with a simulation engine. The text is illustrated with examples
from the domain of traffic behaviour. These examples are printed in blue text
blocks, such as the one below.

The example we shall be using in this chapter is from the traffic domain:

the modelling of driver behaviour for a traffic simulation. For the sake of

simplicity we shall only consider the behaviour of a person who is driving

behind a lead vehicle on a straight road. The road may contain other

vehicles, but does not contain crossroads or bends. We shall not include

overtaking behaviour or non-driving related behaviours, such as using a

mobile phone or the satellite navigation system.

4.1 High level design

Before we can start implementing a behaviour model, we need to create a high
level design on paper that describes the behaviours and resources. The following
sections describe the most important steps involved in this process.

4.1.1 Determining the scope of the behaviour model
The first step in developing a behaviour model is to determine the scope of the
model: which behaviours are relevant to the simulation and should be included?
The answer to this question depends largely on the domain and type of application.
Developing a traffic simulation aimed at research requires other behaviour models
than a training simulation for the defence domain.
Note that additional behaviours can always be added to the simulation in a later
stage. This is one of the advantages of the distributed modelling approach of
CHAOS, with demons that can be viewed as “behaviour building blocks”.
However, it still is helpful in this stage of the design to we have a global idea of the
behaviours that should be included.

TNO report | TNO-DV 2011 IN433 18 / 28

We want to create an agent that is capable of driving on a straight road,

preferably without crashing into predecessors. A short analysis shows

that this can be modelled with three different types of behaviour:

1. Free Driving: the agent has to be able to drive at a preferred speed

when no predecessors are nearby.

2. Car Following: the agent also has to be able to follow a predecessor

at a suitable distance, when the predecessor is driving at a slower

speed than the agent’s preferred speed.

3. Collision Prevention: the agent has to be able to react quickly by

braking, when its predecessor brakes hard or is driving much slower

than the agent.

4.1.2 Proactive or reactive?
Once it is clear which behaviours should be included, the next step is to divide the
behaviours in proactive, top-down behaviours and reactive, bottom-up behaviours.
Proactive behaviours are usually goal related, i.e. behaviours that help the agent to
achieve its goals. Proactive behaviours are always initiated by the agent and,
if nothing else happens, are all the agent will do. However, sometimes events occur
that require the agent to react. These behaviours are reactive, bottom-up
behaviours. These are triggered not by the agent but by an (external) event.

The Free Driving behaviour is a typical example of proactive behaviour.

It is the behaviour the agent will act out when no other traffic is on the

road, or when the nearest predecessor is at a safe distance.

The Collision Prevention behaviour on the other hand is a typical

example of reactive behaviour. A predecessor suddenly brakes hard; to

prevent crashing into the predecessor’s vehicle, the agent has to react

by braking as well.

The Car Following behaviour is somewhere in between: it has to do with

the goal the agent wants to achieve (get from A to B) but also involves

reacting to the predecessor. We will for now assume it is part of the

proactive behaviour of the agent.

4.1.3 Demons or behaviours?
When it is decided which behaviours should be included and these are divided in
proactive and reactive behaviours, the next step is to decide how these behaviours
should be structured. As was described in Chapter 3, CHAOS 2.0 makes a
distinction between demons and behaviours. This distinction is based on the
strategy pattern (Gamma, Helm, Johnson, & Vlissides, 1995) (Grand, 2002),
with the demon playing the role of client and the behaviour component acting as the
strategy component.
A way to think of this distinction in the case of CHAOS is that the demon represents
the intention of the behaviour (what is it that the agent wants to achieve) while the
behaviour(s) represent the realization of this intention (how is the goal achieved).
Another way to look at it is that the behaviour components form the “modes of
operation” of the demon.

TNO report | TNO-DV 2011 IN433 19 / 28

Figure 13 From a collection of behaviours (left) to a structure with demons and behaviour
components (right). See also the example in the box below.

To determine which demons and behaviour should be created, the collection of
behaviours that need to be modelled (see Section 4.1) should be clustered, with
each cluster representing a specific intention of the agent. The behaviours in the
clusters can be viewed as ways to achieve the goals that are associated with that
intention. Once the clusters are identified, these can be translated directly to
demons with behaviour components, as depicted in Figure 13.

We already identified three behaviours that need to be modelled: free

driving, car following and collision prevention. The first two can be seen as

belonging to “standard driving”, or the intention of “getting from A to B”,

while collision prevention can be seen as belonging to the intention “Not

crashing” or “staying alive”.

This would then call for two demons, that we may call Drive and

DontCrash. The Drive demon gets two behaviour components, or

modes of operation: CarFollow and FreeDrive. The DontCrash

demon only has a single behaviour component that we call

BrakeForPredecessor.

4.1.4 Which resources?
When we have a clear view of the behaviours that are to be modelled, the next step
is to think about the resources that need to be defined. A good starting point here is
to think about the function a resource should play in the behaviour model. There are
only two possible functions. The first function is to prevent that two conflicting,
mutually exclusive, behaviours are executed simultaneously, e.g. walking and riding
a bike. The second function is to modulate task performance, e.g. cognitive task
performance as a function of an attentional resource. Note that performance can be
modulated for several reasons, either because a resource is used by multiple
behaviours (in the case of multi-tasking), or because a resource is impaired as a
result of a stressor.

TNO report | TNO-DV 2011 IN433 20 / 28

When we look at our traffic simulation example again, we can see that all

the behaviour components, CarFollow, FreeDrive and

BrakeForPredecessor are mutually exclusive: none of these

behaviours should be executed simultaneously. This means that there

must be a (set of) resource(s) that prevents simultaneous execution. In

this case, a resource “RightFoot” may be sufficient to prevent

simultaneous execution.

4.2 Implementation

When a global design of the demons, behaviours and resources exists, the next
step is to start building the behaviour model in the CHAOS architecture.
This involves implementing demons and behaviour components, creating a
pandemonium and resources, and linking the pandemonium and demons to an
agent in the simulation. Optionally, some of the GUI components provided with the
CHAOS library can be used to be able to inspect what is going on inside of a
pandemonium. All these steps will be described in the following sections.

4.2.1 Creating demons
The CHAOS library does not contain demons or behaviour components that are
ready to use, because it is impossible to know beforehand which behaviours are
required. Furthermore, it cannot be known how the interaction with a simulation
environment occurs. Therefore, for each application that uses the CHAOS library,
custom demon and behaviour components need to be developed.
The CHAOS library does provide abstract classes that already contain a lot of
functionality. To create custom demons and behaviours, the model builder “only”
has to extend these abstract classes and provide the missing functionality.
The advantage of this approach is that functionality that is specific to a simulation
can easily be added to the demon and behaviour objects. For instance, a demon
could be given access to the simulation world, either to perceive its state or to
manipulate it in some way.

A demon for a traffic simulation could be given access to data related to

the roads, road signs, traffic lights, vehicles, etc. in the simulation. It could

also be given access to the vehicle that is to be controlled by the agent,

i.e. access to the steering wheel, brake and accelerator pedals.

Before implementing a demon, it needs to be decided which abstract demon class
is to be used as the basis for the new demon. As Figure 8 shows, there are three
options here: ProactiveDemon , ReactiveDemon and StressDemon .
For demons that represent proactive behaviour the ProactiveDemon should of
course be used as a starting point. For demons that represent reactive behaviour,
either ReactiveDemon or StressDemon can be used.
Whichever class is chosen, each demon should provide an implementation of the
updateBehaviour() method. This method is called every time-step (i.e. each
time Pandemonium.update() is called), prior to the execution of behaviour.
It gives the demon a chance to change its Behaviour component, or to provide
new data or give new instructions to its Behaviour component.

TNO report | TNO-DV 2011 IN433 21 / 28

An example of the updateBehaviour() method implementation for

the Drive demon. Depending on “some condition”, that is probably

related to the distance to and speed of the predecessor, the behaviour

component is set, either to “car following” or to “free driving”:

public void updateBehaviour() {

 if(someConditionHolds) {
 setBehaviour(mCarFollowBehaviour);
 }

 else {
 setBehaviour(mFreeDriveBehaviour);
 }
}

Besides the updateBehaviour() method, the demons should implement
methods that are related to their shrieking levels. Since the ProactiveDemon
class already provides this functionality (i.e. a setShriekingLevel() method
with public visibility), subclasses do not need to provide any additional
functionality.
For the ReactiveDemon class, the updateShriekingLevel() needs to be
implemented. In this method, the demon should determine its shrieking level and
then call the super.setShriekingLevel() method with the new shrieking level
as parameter. Note that the difference with ProactiveDemon is that this version of
setShriekingLevel() has protected visibility, i.e. is only available to
subclasses and package members.
If the shrieking level of the demon can be described as a linear function of a
variable, as illustrated in Figure 9, then it may be useful to not extend
ReactiveDemon directly, but use StressDemon instead. In that case, only a
minimum and maximum and threshold value of the variable need to be set
(see Section 3.5.2), and the variable value needs to be provided by implementing
the getMonitoredValue() method. Another method that needs to be
implemented is affectResources() . Through this method, the demon can
increase or decrease resource levels as a result of increasing or decreasing stress
levels. This can be viewed as the transition of stress into strain. If this is not
applicable, the affectResources() method can be given an empty
implementation. An example of a StressDemon implementation is given in the
example box below.
The StressDemon class also provides functionality that is related to recovering
from stress, which requires some additional methods that need to be implemented
in a custom demon implementation. For the sake of simplicity, this functionality is
not further described here and the reader is referred to the Javadoc documentation
provided with the software library.

TNO report | TNO-DV 2011 IN433 22 / 28

An example of the DontCrash demon implementation. It is

implemented as a subclass of StressDemon. It uses the calculated

“Time To Collision” (TTC) as the monitored value. In its

updateBehaviour() method, it instructs the

BrakeForPredecessor behaviour component to try to realize a

certain deceleration.

Note that, for the sake of simplicity, the methods related to stress

recovery are not included here.

public class DontCrash extends StressDemon {

// construction
public DontCrash(Pandemonium pandemonium, Driver driver) {

// general initialization code here

// stress related: min, max, threshold and directio n,
// based on Time To Collision (TTC)
setIsMaxStress(false);
setThreshold(8); // start shrieking if TTC < 8

 setMaximum(1); // shriek loudest when TTC <= 1 second

// set (only) behaviour component:
 setBehaviour(new BrakeForPredecessor(driver, this));
}

// no resources to affect
public void affectResources() {}

// calculates time to collision (TTC) under current
// circumstances
private double calcTimeToCollision() {
 // calculations here //
 return ttc;
}

// the monitored value = TTC
public double getMonitoredValue() {
 return calcTimeToCollision();
}

public void updateBehaviour() {
 // provide new data/instructions to behaviour compo nent

// here, for instance by telling the brakeforPredec essor
// component how hard it should be braking

}

Regardless of the type of demon that is implemented, it is usually sensible to add
another layer of abstract classes to the lineage, instead of directly extending
ProactiveDemon , ReactiveDemon or StressDemon . In these abstract classes,
generic functionality, that is specific to the simulation and that is useful to all
demons in the simulation, can be implemented. An example of this approach is
described in the following example box and is illustrated in Figure 15.

Since the Drive demon represents proactive behaviour, the

ProactiveDemon should be used as a starting point. However, to allow

some generic functionality to be implemented for all proactive demons at

once, it makes sense to first add another abstract demon that we could

call TrafficSimProactiveDemon (see Figure 14).

The Drive demon should then be derived from

TrafficSimProactiveDemon.

TNO report | TNO-DV 2011 IN433 23 / 28

Figure 14 Example of a class diagram with an abstract class that contains simulation-specific
functionality and that extends the more generic abstract ProactiveDemon class.
The actual custom demon implementations, such as Drive in this example, are then
derived from this abstract class.

4.2.2 Creating behaviours and behaviour states
Once the demons are created, we arrive at the “business end” of the behaviour
model: the behaviour components. These behaviour components can be directly
derived from the abstract Behaviour class, although it may be useful here as well
to add an abstract class in between that can provide generic, simulation-specific
functionality.
A behaviour component has two “tasks”, the first is to try to collect the resources it
requires, and the second is to influence the behaviour of the agent, given that
sufficient resources are collected. This involves two methods:
the preOccupyResources() method and the takeAction() method.
The default implementation of the Behaviour class is that these method calls are
forwarded to the current IBehaviourState , as follows:

public void takeAction() {
 if(getState()!= null) {
 getState().takeAction(this);
 }

 }

The state itself can be changed by calling the setState() method. Which object
manages the states and state changes (either the Behaviour object or the states
themselves) is up to the model builder. More information on the state pattern in
general can be found in (Gamma, Helm, Johnson, & Vlissides, 1995) and
(Grand, 2002).
The model builder has two options: he can either provide IBehaviourState
implementations that provide the required functionality, or he can override the
preOccupyResources() and takeAction() methods in the Behaviour
subclass, thereby effectively bypassing the state mechanism. It depends on the
(complexity) of the behaviour which solution is preferred. Some behaviour can
naturally be divided in different states, with different actions associated to each
state. Other behaviours are simply active or not, in which case the state pattern
may be unnecessary. An example of such a behaviour is given in the following text
box.

TNO report | TNO-DV 2011 IN433 24 / 28

The following code shows a possible implementation of the

BrakeForPredecessor behaviour component. It tries to get access to

the “RightFoot” resource and if it succeeds, changes the acceleration of

the vehicle of the agent.

public void preOccupyResources() {
 storeResource("RightFoot" ,100);
}

public void takeAction() {
 if(getResourceStorage().containsKey("RightFoot")) {
 int value = getResourceStorage().get("RightFoot");
 if(value<100) return; // r.foot not available �do nothing
 }
 // right foot is available: do something with it:
 getDriver().getVehicle().setAcceleration(accel);
}

Whether the state pattern is used or not, resources will need to be taken and
actions will need to be implemented. The example above illustrates the way to
achieve this: taking a resource simply requires a call to storeResource() ,
with the key identifier of the resource and the amount specified as parameters.
The takeAction() implementation in the example starts with checking if enough
resources are available. This is a very important step and should always be
included. If not enough resources are available, the Behaviour component can
react in several ways. The simplest reaction is to just do nothing. Alternatively, a
performance model could be implemented by changing the default behaviour or
modulating the performance, in case not sufficient resources are available.

4.2.3 Creating resources
Once it is clear which resources need to be available to the demons, the actual
creation of a Resource is rather simple and is achieved by a single constructor
call. More information on the available constructors can be found in the Javadoc
documentation that comes with the CHAOS library.

To create the “right foot” resource for our traffic simulation, the following

constructor call suffices. It creates a resources called “RightFoot” that

ranges from 0 to 100 and has an initial level of 0. Note that the resource

still needs to be added to a pandemonium, which will be described below.

Resource rightFoot = new Resource("RightFoot" ,0);

4.2.4 Using the ICHAOSAgent interface
All agents that are to be controlled by CHAOS, i.e. by a pandemonium with
demons, should implement the ICHAOSAgent interface. This interface provides
some basic functionality to link the simulation and the CHAOS library together
(see Section 3.2 for more information). All ICHAOSAgent objects should also be
updated frequently, preferably from the main simulation loop, as is illustrated in the
example in the box below.

TNO report | TNO-DV 2011 IN433 25 / 28

To update the behaviour of the agents in the traffic simulation, each

driver’s pandemonium gets updated from the main simulation loop:

public void run() {

 Driver[] drivers = getDrivers();

// this is the main simulation loop:
 while(true) {

 // update simulation here

 // update all simulated drivers, i.e. the ICHAOSAge nts :
 for(ICHAOSAgent driver:drivers) {
 driver.getPandemonium().update();
 }

 // maybe do other things here
 }
}

4.2.5 Creating and initializing a Pandemonium
The creation and initialization of a Pandemonium is rather simple. The first step is
to create (or get a handle of) the ICHAOSAgent that the pandemonium should be
controlling. The next step is to call the Pandemonium constructor, with the agent
object as parameter. After that, resources can be created and added to the
pandemonium. The final step is to create the demons to add to the pandemonium.
The following example block contains a code snippet to illustrate these steps.

The following code snippet is an example of how a driver can be created,

with a pandemonium, demons and resources.

public void initDriver(String name) {

 // create an agent:
 Driver someDriver = new Driver(name); //implements ICHAOSAgent

 // create a pandemonium with a reference to the age nt:
 Pandemonium pandemonium = new Pandemonium(someDriver);

 // create and add resources
 Resource rightFoot = new Resource("RightFoot" ,0);
 pandemonium.addResource(rightFoot);

 // create demons

// (demons are added to the pandemonium automatical ly)
 new Drive(pandemonium); // proactive “Drive” demon

new DontCrash(pandemonium); // reactive “DontCrash” demon

 // connect pandemonium and ICHAOSAgent
 someDriver.setPandemonium(pandemonium);
}

4.2.6 Connecting GUI components to monitor the Pandemonium
It is possible to inspect what is going on inside a Pandemonium at runtime,
by making use of the GUI components that are provided in the CHAOS library.
Two components are available for this purpose, the DemonView and
ResourceView components (Figure 15).

TNO report | TNO-DV 2011 IN433 26 / 28

Figure 15 The DemonView (left) and ResourceView (right) components, taken from a
screenshot of the SCOPE simulation.

The DemonView is used to inspect what demons are present and how loud they are
shrieking. It represents the demons as bar charts, with the height of the bar
representing the shrieking level. To use a DemonView, simply call any of the
constructors to create it and add it to a container, such as a JFrame . The next step
is to “connect” an agent with a Pandemonium to it. This can be achieved by calling
setAgent(ICHAOSAgent agent).
The ResourceView component is very similar to the DemonView, but it shows
resources instead of demons. The resources are represented as bar charts, with a
colour coding that shows if and how much of the resources are used by which
demons. In Figure 15 for example, the rightmost demon (MoveActivity) is the
only demon using resources, as indicated by the green colour in the right
ResourceView panel, that is the colour of the MoveActivity bar in the left panel
of Figure 15. Using a ResourceView is identical to using a DemonView: after
construction the view can be added to a container and an ICHAOSAgent can be
associated by a call to setAgent(ICHAOSAgent) .

TNO report | TNO-DV 2011 IN433 27 / 28

5 References

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, Massachusetts:
Addision-Wesley.

Grand, M. (2002). Patterns in Java (2nd ed., Vol. I). Indianapolis, Indiana:
Wiley Publishing.

Oracle. (2011). Retrieved January 2012, from The Java Tutorials:
http://docs.oracle.com/javase/tutorial/index.html

Ubink, E., Aldershoff, F., & Lotens, W. (2008). Models & Methods in SCOPE:
A status report. Soesterberg: TNO.

Ubink, E., Aldershoff, F., Lotens, W., & Woering, A. (2008). Behavior modeling
through CHAOS for simulation of dismounted soldier operations.
Proceedings SPIE, Vol. 6965, 696504.

Ubink, E., Lotens, W., & Woering, A. (2010). Towards a Generic Behaviour
Modelling Interface. Human Modelling for Military Application
(pp. 22/1-22/10). NATO RTO.

TNO report | TNO-DV 2011 IN433 28 / 28

6 Signature

Soesterberg, March 2012 Soesterberg

Drs. W.S.M. Piek drs. E.M. Ubink
Head of department Author

