A state-of-the-art password strength analysis demonstrator

by

Nico van Heijningen (0821976)

2 2

HOGESCHOOL
ROTTERDAM

CMI-Program Technical Informatics — Rotterdam University

June 26, 2013

First supervisor Dhr. L. van de Zeeuw
Second supervisor Dhr. M.S. Bargh

Abstract

Due to recent developments: leaks of large lists of user passwords (e.g. LinkedIn), new prob-
abilistic password cracking techniques and the introduction of password cracking using GPUs.
Passwords can now be cracked faster than ever before. The leaked password lists have been an-
alyzed by hackers and common patterns found inside the passwords are being exploited to crack
others. We have analyzed a collection of these leaked password lists and generated a list of the
most common patterns in a probabilistic order furthermore, we compared the distribution of char-
acters inside passwords to that of English text. Next we have built a state-of-the-art password
strength analysis demonstrator that is able to show which of these common patterns are contained
inside a password and why it could be considered a ’weak’ password. The demonstrator is modeled
after the realistic scenario of an automated password cracking attack and passwords that assessed
’strong’ should therefore ’survive’ such an attack. We are convinced our demonstrator is an im-
provement over the current password strength measurements because it results in a lesser *false
sense of security’ amongst its users and helps them make their passwords more resistant against
such attacks.

ii

Contents

Abstract
Introduction
Background
Related Work

Research — Password Patterns
Methodology e
Results e

Engineering - Password Cracking Setup
Design - Password strength analysis demonstrator
Conclusions

Recommendations

References

Evaluation

A dictclean.php

B Dataset remarks and numerals

C Pack - 62000

D Pack - Battlefield Heroes Beta

E Pack - Bitcoin

iii

ii

15

19

21

22

26

27

28

31

34

36

38

Pack - Gamigo

Pack - Linkedin

Pack - phpBB

Pack - RockYou

Pack - Rootkit.com

Pack - Sony

Pack - Yahoo

Cracking System Benchmarks

Masks only occurring in one dataset

Masks occurring in more than one dataset

Masks occurring in more than one dataset - without three largest masks
Comparison of systems

MDS pseudocode

Hashcat’s default bruteforce mask increment mode

Per position letter frequency heatmaps

v

40

42

44

46

438

50

52

54

55

56

59

62

64

65

67

Introduction

Text-based passwords play an integral part in the day to day protection of our online identity,
a strong password therefore plays an essential role in preventing online identity theft and alike.
When registering a new account, password strength meters provide an indication of the strength
of the chosen password. The meter supplies a user with feedback whether his or her password is
considered ‘weak’ or ‘strong’. The impact of password strength meters on user password selection
behavior has been the subject of several studies [1, 2]. These studies suggest that such meters
can result in stronger user passwords. Yet a large portion of password meters define password
strength as a product of the length of the password and the size of the character set used. They
therefore assign to each possible password the same probability, an equation which only holds for
completely random passwords, which is definitely not the case for user-created passwords. This
suggests that the current implementation of password meters results in a false sense of security.

The strength of a password depends on the time it would take an attacker to correctly guess
the password. This, in turn, is dependent on two more abstract defined factors: the number of
guesses it takes to find the correct password and the speed of checking the validity of each guessed
password. Both factors are influenced by a myriad of psychological and technical factors. Recent
developments have had a large influence on these figures: the introduction of probabilistic guessing
techniques based on large lists of leaked passwords [6] and the ability to exploit the parallelization
of graphical processing units (GPUs) [7, 8].

In this work, we discuss different probabilistic techniques used in password cracking tools,
we define the patterns present in large collections of leaked user passwords and we discuss differ-
ent GPU-based password cracking systems including our implementation of a password cracking
setup. Together this results in an improved password strength analysis demonstrator based on
state-of-the-art password cracking technologies, tools and methods. Our hope is that this encour-
ages users to choose stronger passwords, leads to more security awareness regarding passwords
and leads to a better resistance of users’ passwords against automated password cracking attacks.

Background

In this section we will globally sketch the history of the constant battle between password security
and password cracking. This section is intended to help the reader grasp how password authen-
tication has become what it is today. Furthermore it introduces several techniques and methods
used in the rest of this thesis.

Since Roman times passwords have been used for the purpose of authentication. For a person
can be assumed to be who he claims to be when the secret (i.e. password) shared between the au-
thenticator and authenticatee is correct. The ease and low cost of implementation have contributed
to password authentication being the most widespread and dominant authentication method for
computer systems.

One of the first implementations was used to differentiate between users of time-sharing com-
puter systems. It consisted of a password file containing the actual or plain text passwords of all
the users. This quickly led to undesirable disclosures of users’ passwords: the file could be either
accidentally exposed or purposely stolen with more illicit intentions. A person or attacker that
had obtained such a file could directly login to all the user accounts, which is off course highly
undesirable. That is why a technique was devised to —instead of saving the actual password— save
a ’fingerprint’ or hash of the password [9]. Several of such one-way cryptographic hash functions
have been devised to quickly generate a fixed-size bit string when inputted with arbitrary data.
These algorithms are designed to be irreversible, it should not be possible to calulate the original
data from the hash. Furthermore each returned hash should be unique for the inputted data, any
change in input data should result in a change of the hash value. Finally no two pieces of input
data should result in the same hash. A good cryptographic hash function meets these requirements
yet several older algorithms exist that are prone to attacks [10, 11]. By saving the hashed pass-
words instead of the actual plain text passwords the attacker is not able to log into any of the user
accounts directly.

Yet what the attacker can do is simply check if any of the passwords he inputs into the hashing
function results in a hash identical to one of the hashes in the password file. If so, the inputted
password is identical to the password of the user and the attacker will be able to login to that
account. For an attacker to correctly guess a user’s password he might have to try a lot of different
passwords; in terms of crypto analysis this is called a key search. But human habits make such a
key search a great deal easier. When given free choice most users will choose very short and simple
passwords. For example, a word from the English dictionary could be such a simple password.
This is why attackers have automated such attacks to try common dictionaries or wordlists called
a dictionary attack.

To make it harder for an attacker to correctly guess a password, the passwords had to be
made less predictable. Instead of using simple words users were encouraged to use gibberish
of combinations of words and numbers. Yet because of the increase in computing power the

time it took for each hash to be calculated decreased significantly and attackers automated their
attacks to just try every possible password. This method of brute forcing is therefore called an
exhaustive key search and is sure to reveal all of the passwords but becomes infeasible at bigger
password lengths. Next people were required to satisfy a minimum password length, this is the
idea behind a password policy to make passwords less predictable and the number of passwords
to be guessed incredibly large. The number of possible passwords to guess is called the key space
and it increases significantly with every character and kind of character that is added. For example,
instead of letting a user choose a password of six lowercase letters, making a user choose a nine
character password consisting of lowercase letters, uppercase letters and digits will increase the
possible key space by a factor of forty million. Because of this increase, the size of the dictionaries
and time to calculate all of the possible hashes became too large to be feasible.

Therefore a time-memory tradeoff was devised, by distributedly creating a pre-computed table
of hashed passwords. All the attacker would have to do is look up a hash and find the associated
password. The so-called rainbow tables [12, 13] do not contain all possible hashes rather only the
starting and ending position of chains of hashes. By chaining the hashes together the space needed
for saving all of the possible hashes is significantly reduced yet it is still possible to calculate all
of the intermediate hashes at the cost of some computing time. To counter these rainbow tables a
large random value or salt was concatenated with each password, increasing the key space with
many more orders of magnitudes, making rainbow tables infeasibly large to calculate. Adding a
salt to a password does not increase the task of calculating an individual password yet it does not
only prevent rainbow table attacks but furthermore it makes each and every password hash unique.
Without a salt two identical passwords would result in an equal hash, giving an attacker some
knowledge about password reuse. Also an attacker could not check one hash on a whole password
file anymore. The calculation of the hash needs to be done for every hash individually increasing
the time to crack a password.

Thanks to Moore’s law, attackers have always been in the most comfortable position. They
would only have to wait for hardware to get faster and consequently for their password crack-
ing algorithms to get faster. A recent development is the introduction of video cards or GPUs
into the password cracking game. Due to computer games becoming increasingly popular and
consumers demanding ever-greater graphics in those games, there have been rapid developments
in the hardware making those good looking games possible. This hardware has become acces-
sible to much more general-users thanks to a steady decline in prices. And due to the nature of
graphic calculations, the GPU excels in doing a lot of similar small tasks in parallel. As non-game
software developers tried to use this existing parallelism to their advantage, GPU-vendors have
made their hardware more easily accessible for those developers by creating interfaces to access
their hardware. This technique has been labeled ’General-Purpose computing on Graphics Pro-
cessing Units’ (GPGPU). It is now being used to exploit the embarrassing parallelism of standard
cryptographic hash functions.

This has been counteracted by the introduction of new hashing algorithms like berypt [16] and
later scrypt [17], which have been especially designed for the purpose of password hashing. These
hashing algorithms have a variable work factor to adjust the effort required to calculate the hash.
It can be adjusted as time progresses, keeping the time and resources needed to calculate a single
hash constant. This brings us to the present day, now attackers are focusing much more on ’smarter
algorithms’ which once again exploit people’s password selection habits. Instead of trying to brute
force the whole key space they try to make educated guesses about people’s passwords.

Examples of tools that incorporate such known patterns are Hashcat [14] and John the Ripper
[15], they have incorporated several techniques to make their password guesses mimic the user

habits of password creation. The two techniques we will be focusing on are masks and markov.
The first tries to mimic the common patterns that are present inside passwords (e.g. passwords
tend to start with capital letters). The second is a result of the distribution of characters within
passwords. Just like English text some characters are used more often than others and some
characters are followed more often by specific characters than others (e.g. a ’q’ is rarely used and
when used it is nearly always followed by a ’u’).

There are several other —sometimes simpler but still- very effective attacks available. Ex-
amples could be the use of ’smart’ dictionary or wordlist attacks: the generation of password
guesses by permutating dictionary words (e.g. 'password’, ’p@ssword’, *Password’, *passw0rd’),
combining dictionary words (e.g. the passwords ’dog’ and ’cat’ becomes ’dogcat’ and ’catdog’).
These attacks use user-defined rules to know what part of the password to permutate. A example
would be the permutation of 133t-speak, often people are adviced to substitute the letter "¢’ with
the number ’3’ and the letter "0’ with the number ’0’ etcetera. This pattern can be exploited by
such attacks called rule-based attacks. We will use these attacks in our implementation yet won’t
discuss them nor explain them as these attacks themselves are again based on the exploitation of
patterns inside passwords.

Related Work

In this section we outline the current state of implementation of password meters. We discuss
research performed by others related to ours, we discuss in which ways we build upon other
studies and the ways in which we differ from those studies.

To give a better insight into the current state of implementation of password meters we have
dissected the password meters from Microsoft [3] and Intel [4] in order to discuss how these
password meters define password strength. Both password meters are implemented to run client-
side as a Javascript script, therefore no information regarding the password or password strength is
sent to either Microsoft or Intel. We will now highlight the most important parts of both algorithms
followed by a rewritten mathematical abstraction of the algorithm.

The password meter from Microsoft defines password strength as:

var bits = Math.log(charset) x (passWord.length / Math.log(2));

[Togy (—— g

| = password strength
charset'€"8th)

The password meter from Intel defines password strength as:

var entropy = Math.pow(lowercase_bits ,lowercase_chars) * Math.pow(
uppercase_bits ,uppercase_chars) % Math.pow(digit_bits ,digit_chars) % Math.
pow(special_bits ,special_chars);

var entropy = entropy / 2;
3l var _std_comp_power = 2 x Math.pow(2, 33);
var hours = entropy / _std_comp_power;
<charsetl€ngth)
2 = timeto crackthe password
computer speed

Note both the source code examples use the definition of entropy an bits, these definitions
are not equivalent to the information entropy as defined by Claude Shannon. There are some
similarities yet these are beyond the scope of this work.

The most important thing to note from the mathematical abstractions is the use of

charser! €8t 1o calculate the key space. Both algorithms assign to all possible passwords in

the key space the same probability; they do not distinct between the password *password’ and

the password ’fsejslkq’, which might be used much less.!. Both password meters come with a
disclaimer similar to "Note: This does not guarantee the security of the password. This is for
your personal reference only.”. Such a disclaimer is a requirement as the security of a password
depends on many more factors than its strength only. Yet the meter results in a ’false sense of
security’ as the definition of the password strength by both meters is not up to date with the latest
password cracking techniques the definition by the password meters is more like a shot in the dark
than an educated guess.

This problem was the motivation for Weir et al. [5, 6] to develop an algorithm which generates
probabilistically optimized password guesses. It abstracts a password into its character sets and
associates each step with a probability derived from a training set. Such training sets can be any
set of words, from an English dictionary to previously cracked passwords. This results in a prob-
ability ranked guessing of passwords, instead of sequentially guessing a six character lowercase
password from ‘aaaaaa’ to ‘zzzzzz’. The password ‘monkey’ will have a higher probability than
the password ‘aaaaaa’ and therefore be tried earlier in the cracking process. A more advanced
pattern could be for example, three lowercase letters followed by a digit and finally a number (e.g.
‘dogl @’). Here the different characters sets will be abstracted as such

dogl @ — L3D1$1

This pattern (L3D1S;) learned from the training set can then be used to generate new password
guesses

S — L3D1 S| — L34S — L34! — catd!

The masks used by the Hashcat tool have a large resemblance to this abstracting technique
and this is why we chose to use them. Gage, et al. [18] have conducted a user study quantify-
ing different password strength estimates under different password-composition-policies. They
have implemented a distributed technique for determining the number of guesses needed to find
a specific password, implementing several probabalistic password guessing algorithms including
the one defined by Weir et al. [6]. They used a training set of 12 thousand purposely collected
passwords which were created under different password policies, and showed that a blacklist using
state-of-the-art password guessing techniques is very effective in letting people choose stronger
passwords than a simple dictionary blacklist as, for example, implemented by Twitter. Yet their
research has not resulted in any practical implementation as our work is intended to do.

In his thesis Chrysanthou Yiannis [19] developed a fast, dynamic and self-adjusting attack on
leaked password lists. The attack iterates through different types of password attacks and uses the
output of the previous attack as the input for the next. By doing this an automated targeted attack
is achieved without the need of any human interaction. This resulted in the cracking of 76% of the
passwords of the publicly leaked phpBB list [24]. We consider these password *weak’ as they can
be cracked quite simply. Therefore the remaining 24% of not-cracked hashes can be considered
“strong’ passwords. We aim to make our password strength analysis algorithm only approve such
’strong’ passwords. This is why we have modeled our algorithm to simulate a similar automated
password cracking attack.

IThe Intel password meter does check whether the password is part of a list of 10,000 most commonly used pass-
words, if so the password is assigned a negligible strength.

Research — Password Patterns

In this section we will first explain how we have gathered and organized the data used in our
research. Second we disscuss the experiments we have run against this data followed with their
results.

During our literature study we found several statements suggesting common patterns present
inside passwords. For example, “A vast majority of people still follow common patterns, from
capitalizing the first letter of their password to putting numbers at the end.” [6]. These statements
are based on personal experiences of password crackers, yet we were not able to find any specific
figures to back these statements up. This is why we decided to study such common patterns
ourselves and define a list of patterns ordered by their occurrence.

Methodology

Several large sets of plaintext and hashed passwords can be found online. Most passwords are
leaked by hackers that have broken into a system and have disclosed the user database. For exam-
ple, the hashes of six million LinkedIn passwords were uploaded to a forum dedicated to password
cracking [25]. For each leaked list it is not only the contents that differ, but most lists are organized
in different ways and might be saved in different file formats. Furthermore the list could contain
additional data not useful for our research purposes. This data possibly consist of: commentary by
the hackers, email addresses, usernames, identification numbers or anything else saved in the dis-
closed database. Therefore we need to parse every single list differently, as we are only interested
in the plaintext passwords. The global process of parsing a dataset is as follows:

1. Remove everything but the plaintext passwords
2. Make sure the encoding of the passwords is correct
3. Remove all empty lines

4. Make sure the file uses only Unix line endings (linefeed only, instead of carriage return and
linefeed)

5. Create a sorted version

Because of the sheer number of passwords to be processed and parsed we have automated this
process quite a bit. We made thankful use of the standard Unix core utilities, like cat, cut, grep,
wc, sort and dos2unix to normalize the original leaked password lists. A script was used to check
if each password was valid UTF-8 encoded [42].

Yet the process of parsing was still somewhat cumbersome because of each list’s properties
and background. This is why we would like to thank Matt Weir for providing us with a part of
his cracked password list which he used in his research. The table in appendix B [43] includes
remarks regarding each dataset’s background and properties. Furthermore the percentage of usable
passwords per dataset is included. It is good to note that four out of the ten datasets were leaked
as plaintext passwords instead of hashed passwords 2.

Consequently all the passwords that were leaked plaintext have been used 3. The six remaining
datasets consisted of hash values only. Therefore the hashes needed to be cracked first, which
introduced a bias as the easy passwords will be cracked first and the stronger passwords might
not be cracked. This may result in an analysis lacking the stronger passwords of those lists, that
is why the table in [43] contains the percentage of the list used in our research. Additionally
the table contains the percentage of unique passwords inside the list. We chose to perform our
analysis on the datasets containing duplicate passwords as we could not differentiate between
duplicate accounts or passwords used by multiple users. This too leads to a possible bias as a lot
of duplicate accounts would increase the probability of a pattern.

The majority of the passwords we use in our analysis have already been cracked by other
password crackers. The ’Battlefield Heroes Beta’ list was the only list which was not, we cracked
this list using ’stupid’ brute force methods over a weekend. We were able to crack over fifty
percent of the list before ending the cracking session. We use the list to test the more advanced
password cracking methods further on in this thesis.

Furthermore appendices C through L show automatically generated reports regarding the
dataset’s: line count, mask, character set, and advanced mask statistics. These were generated
using the dicstat.py script from PACK or Password Analysis and Cracking Kit developed by Peter
Kacherginsky [26].

After parsing the cracked and plaintext datasets, we wanted to be able to quickly and easily
query the different datasets. This is why we imported every single password from all the datasets
into a MySQL database. The first time round we were unaware of the fact that MySQL uses a
case insensitive collation by default so the whole process had to be redone, this time using a case
sensitive collation [27]. This resulted in a database of more than 45 million passwords and around
3.6 GB in size.

Results

By dissecting Weir’s afore mentioned statement we defined three possible common password pat-
terns: the first character of a password is more likely to be a capital, the last character of a password
is more likely to be a number and the combination of the former two patterns. Due to time con-
strains we have analyzed the password patterns by devising more specific experiments.

To generate an answer for these experiments we compute an individual answer for every
dataset and take the mean as a representative number for the collection of datasets. We are aware
of the possible bias that this method introduces as every dataset is weighed the same. But due
to the different properties of each dataset it would be impractical to assign a weight to each one
separately. We consider the number of datasets and therefore the sample size large enough to sub-
vert the lack of individual weights. Still, this is important to keep in mind, as the results of the

2denoted in [43] as having no hashing function
3Incorrectly encoded passwords have not been used that is why some of the plaintext leaks are not used as a whole.

experiments will only be valid for this collection as a whole and not for any individual dataset.
To help interpret the data more validly we have calculated the standard deviation of the mean for
every answer and denoted this by G.

Experiment 1 Is the first character of a password more often capitalized than the second
character? (e.g. “Password” vs. “pAssword”)

Yes, of the 10.79% of all passwords containing a capital letter 78.78% has a capital letter at the
first position and 27.30% has a capital letter at the second position. The difference in occurrence
between the first and second position is 51.48 percentage points (6=12.49). Figure 1 shows the
results distinct by dataset including the average results between the datasets.

Occurrence of capital letters in passwords

100%
80%
60%
40%
20%

0%

S
& &
& N N
& S
S S

m fist position M second position

Figure 1: Experiment 1, capital letters

Experiment 2 Is the last character of a password more often a number than the penultimate
character? (e.g. “passwordl” vs. “passworld”)

Yes, of the 62.14% of all passwords containing a number 76.65% has a number at the last
position and 67.25% has a number at the penultimate position. The average difference in occur-
rence of numbers between the last and second to last position is 9.40 percentage points (6=6.22).
Figure 2 shows the results distinct by dataset including the average results between the datasets.
It is interesting to note that the *’Gamino’ dataset is the only dataset this pattern does not apply to,
we were not able to find an obvious explanation for this yet in appendix B [43] some more strange
properties of the ’Gamigo’ dataset are noted.

Occurrence of numbers in passwords

100%
80%
60%
40%
20%

0%

M last postion M penultimate position

Figure 2: Experiment 2, numbers

Now we combine the first two experiments, creating a more advanced password pattern. In-
stead of a password just starting with a capital letter or ending with a number, we want to know
the difference between the pattern of a password starting with a capital letter and ending with a
number and the pattern of a password starting with a capital letter and ending with a symbol.

Experiment 3 Do passwords tend to start more often with a capital letter and end with a
number as opposed to starting with a capital letter and ending with a symbol? (e.g. “Passwordl”
vs. “Password&”)

Yes, of the 8.23% of all passwords containing a capital letter and a number 57.53% start with
a capital letter and end with a number (see: figure 3). As opposed to 1.24% of all of the passwords
containing a capital letter and a symbol. Of those passwords 29.11% start with a capital letter and
end with a symbol (see: figure 4).

The difference between both patterns is 28.42 percentage points (6=16,61).

Passwords containing a capital and number, where the capital is
the first character and the number the last.
100%

80% |
60% —
40% _ - - = — =

20%
0%

percentage of passwords

Figure 3: Experiment 3, capital first, number last

Passwords containing a capital and a special, where the capital is
first and the special the last.

50%

40%
30%
20%
10%

0%

M percentage of passwords

Figure 4: Experiment 3, capital first, special last

The results of all of our experiments seem to support Weir’s statement. Yet it is interesting to
note the differences in significance between the experiments. The differences measured in experi-
ment 1 are much more noticeable than the differences measured in experiment 2. An explanation
for this could be that people use more than one number at the end of their passwords. We would
like to see how these numbers compare to the situation when all the character positions of the
passwords are analyzed, to be able to correctly and completely validate Weir’s statement, yet this
is beyond the scope of this research.

10

To make this research applicable in our password strength analysis we have chosen to gen-
erate even more specific patterns. This is why we have generated a list of patterns that can be
directly inputted in the Hashcat tool, these patterns are named masks. Hashcat’s masks abstract
a password into its corresponding -per position- character set. A character set is denoted as a
question mark followed by a letter defining one of four character sets e.g. ‘P@sswOrd’ results
in ‘2u?sNN?12dN7?°. Table 1 shows the complete definition of the password abstractions used by
Hashcat which are denoted as masks.

Name Abstraction | Character set

Lowercase | 1 abcdefghijklmnopqrstuvwxyz

Uppercase | 7u ABCDEFGHIJKLMNOPQRSTU-
VWXYZ

Digit 2d 0123456789

Special s P#$% &’ () +,-./ @[\ {|}”

Table 1: Definition of Hashcat masks [28]

For every dataset we have generated a list of Hashcat masks that occurred a minimum of one
percent, checked which masks were present in all of the datasets and calculated how much each
mask occurs on average in each dataset. The outcome of this analysis can be found in table 2, it
includes the average percentage of occurrence of each mask between all of the datasets analyzed
and the standard deviation between the datasets as explained previously.

Hashcat mask Percentage | ©
NNNNNN 9.87 4.6
NANNNNNN 7.71 2.35
NNNNNNN 6.76 2.7
7d?d?d?d?d?d 4.40 2.74
NNNN21217d2d | 3.70 1.6
NANNNANNN | 3.48 0.77
NNNNN2d2d 1.72 0.59

Table 2: Masks present in every dataset

There are three important things to note from this table: First none of the seven masks present
in all the datasets contains a ‘?s’ indicating the lack of special characters. Second the masks can be
separated into three simpler groups of passwords: passwords consisting of seven to nine lowercase
letters, passwords consisting of six digits and passwords consisting of five or six lowercase letters
followed by two digits. These are all very simple structures but are apparently used a lot. Third
the differences in patterns between datasets can be very large, for example when we look at the
PANNNNNN mask the differences can be as large as 14.16%. Table 3 shows the differences for the
AN mask broken down by dataset.

When we sum up the average percentages of the masks present in all of the datasets we get a
total average of 37.64%. So when rounded for the sake of simplicity: on average almost 40% of
all the passwords can be cracked using these seven password patterns. The remaining question to

11

Dataset Percentage
62000 14.22
battlefieldheroes | 8.45
bitcoin 6.54
gamigo 2.00
linkedin 3.25
phpbb 14.74
rockyou 12.23
rootkit.com 11.94
sony 16.16
yahoo 9.19

Table 3: Six lowercase letter mask presence per dataset

be answered then is: how long would it take to crack the passwords? To answer this question we
first need to know how much different passwords will have to be tried or brute forced. Therefore
we have calculated the key space associated with these masks:

(26%) 4+ (26°) + (267) + (260 % 10%) + (26”) + (10°) + (267 % 10%) = 5,678,752, 184,704

A total of more than five and a halve trillion different possible passwords to be tried.

Dividing the number of possible passwords by the number of passwords our cracking setup is
able to try each second [44] this results in a time estimate:

13,000, 000,000
60

(5, 678,752,184, 704)
(> = 7.28 minutes

In summary for all the datasets together —consisting of a total of 45 million passwords— it
would take about 7 minutes to crack almost 40% of the passwords by using exhaustive search or
’stupid’ brute force methods.

Another way to look at this data is to weigh the highest percentage of total occurrence as the
most important factor instead of weighing the amount of datasets where the mask occurs in as
the largest factor. In our previous analysis it is possible for a mask to occur in nine datasets with
an average percentage of 50% yet that specific mask would not appear in our results because one
dataset lacks this pattern.

Yet when we do this a lot of the masks are only present in one dataset. Of the forty-nine
most occurring masks twenty-one only occur in one dataset: seventeen masks from Gamigo, two
masks from RockYou, one mask from Battlefield Heroes Beta and one mask from phpBB [45].
Because of the large number of masks only present in the *’Gamigo’ dataset — which as earlier
noted contains some strange patterns see appendix B [43] — we require masks to occur in more
than one dataset. This resulted in a total of twenty-eight masks; these masks account on average
for 72.1% of all of the password in the datasets. But it they would take more than 88 days to brute
force [46]. By removing the three masks that take the most time to brute force the percentage
of cracked passwords is reduced by just 5% but the cracking time reduces to less than an hour.
Appendix P [47] contains these masks and furthermore: the average percentage per dataset, the

12

standard deviation amongst the datasets, the cumulative percentage of the masks, the key space
of each mask and the time it would take to exhaust the whole keyspace of each mask (using the
benchmark of thirteen billion MD5 hashes a second [44]). Please note the standard deviation in the
table, once again suggesting that there is a significant spread between the percentage of patterns
occurring in each dataset.

This analysis has learned us three different things about the patterns inside passwords: First a
large portion of the passwords in the datasets can be abstracted into simple patterns. Second we
know what those patterns are. Third we know what the average occurrence rate of each individual
pattern is. The question remaining: In what order should each pattern be filled out? For instance,
the most significant pattern is a password consisting of six lowercase letters, instead of guessing
“aaaaaa” the password “monkey” is much more likely to occur and should therefore be guessed
earlier on in the cracking process. One solution to this problem is to analyze in what order the
characters are distributed in our large sample of passwords. This letter frequency analysis results
in the occurrence rate of each character per position.

What is the average probability of a character occurring on a position in a password?

Because our datasets still contain some bogus passwords of unrealistic length, we limited our
question to the first ten positions and to an occurence of more than one percent per position.

M position 1 M position 2 M position 3 M position 4 M position 5

M position 6 position 7 position 8 position 9 position 10

60

50

40

30

20

10

percentual distribution

aelroins»1Tt20m39cda45hp638kgub7yjf
character

Figure 5: Per position letter frequency of all the datasets

Figure 5 shows that most vowels (a, e, i, 0, u) are ranked very high, leading us to believe that
the distribution of characters in password is similar to that of natural languages.

We compared the distribution of our password list to that of English text [29]. Because no
English words contain numbers, we have removed them from the comparison. Table 4 shows a
comparison between the distribution of letters in the password datasets and that of English text per
character ordered by their frequency. It is interesting to note the ‘oins’ pattern that is exactly the
same.

The figures in Appendix T [51] show a more detailed comparison between the letter frequency
of passwords and that of English text, including the percentages of occurrence per position.

13

,_,
8
o
o
=

Passwords [a|e|r|o |1 [n |s |1
English e|{t|lalo |i|n |s |r|h|]l|d|c|u

Table 4: Letter frequency of passwords compared to English text

This letter frequency analysis can be further abstracted into a probabilistic process or Markov
Model. Markov Models are used in speech and text recognition systems. When calculating the
global letter frequency (not per position as we did) this equals a Zero Order Markov Model, it
is a Markov Model without any memory, the model has no knowledge of the probability that
a particular letter is preceded or followed by other letters. A First Order Markov Model has
knowledge of the current letter and selects the next letter based on that. For example the letter
‘t’ in English text is more likely to be followed by a ‘h’ than by a ‘q’, using a Markov Model
trained on English text the word ‘the’ will be constructed far earlier than the gibberish word ‘tge’.
The letter frequency analysis has shown that this is no different with passwords. Additionally any
higher order Markov Model will take more of the preceding or following characters into account.
A similar concept is already implemented in several password cracking tools. The Hashcat tool
uses a per position Markov optimization, it considers both the position and the character that came
before it.

14

Engineering - Password Cracking Setup

In this section we compare the hardware and tools of previously built password cracking systems,
we describe the system we have built for the purpose of password cracking and compare the default
implementation of the Hashcat tool to the patterns we found in our earlier research.

Before building a system for the purpose of password cracking we scoped the problem by
defining some restrictions: the system could only consist of publicly available hardware, should
make use of GPGPU (’General-Purpose computing on Graphics Processing Units’) so no spe-
cial purpose developed hardware like ASICs (Application-specific integrated circuits) or FPGAs
(Field-programmable gate arrays) [30]. Furthermore it should make use of readily available soft-
ware or tools, as GPGPU programming and the cryptographic problems of hashes will both raise
very specialistic problems. Lastly the cost of the system should not exceed €1500.

The comparison between existing systems and tools is a problem that is somewhat hard to
quantify as each system consists of different versions of hardware and tools. Therefore the bench-
mark of each system contains different quantifiers in the speed of password cracking. The only
clear indicator available in all of the benchmarks is the speed of the MD35 hashing algorithm. We
have compiled a table of three earlier purpose built password cracking systems and included the
system we built, which can be found in appendix Q [48]. This table includes each system’s: soft-
ware, hardware, price, build date, photo and remarks. The power consumption is stated for the
systems of which those figures are available.

An interesting figure to note from appendix Q is the sole use of AMD video cards where one
would expect NVIDIA video cards to also be used. The reason that AMD cards are used much
more than NVIDA video cards is because the AMD video cards are about five times faster when
cracking passwords. We did not expect this as the software platforms used for GPGPU would
suggest otherwise. When harnessing the power of GPGPU there are two competitive platforms:
OpenCL and CUDA. CUDA is a proprietary platform developed by NVIDIA whereas OpenCL is
an open platform originally authored by Apple and now developed by the Khronos Group [31].
Due to its proprietary background CUDA software can only run on NVIDIA hardware but OpenCL
software can run on all different kinds of hardware, it can therefore run both on NVIDIA, AMD
and even Intel hardware. Because of this OpenCL software has to have a higher level of abstraction
than CUDA software. Normally extra abstraction layers cause extra overhead and result in slower
performance. However, because of our specific needs this is not the case with our application
namely password cracking.

When cracking passwords the overall speed largely depends on the speed with which the cryp-
tographic hashes can be calculated. Most hash types depend on similar instructions and the in-
struction set implemented in AMD hardware —both GPU and CPU- supports these specific in-
structions. Instead of having to execute three different instructions when using the NVIDIA in-
structions, AMD hardware can do these operations using only one instruction. Appendix R [49]

15

contains an example of this; the pseudocode for the MDS5 hashing algorithm, the highlighted lines
are the instuctions optimised on AMD hardware.

Additionally the current AMD hardware has a much higher *bang for buck’ or performance
to money ratio than NVIDIA’s equally priced cards. AMD’s hardware has more raw computing
power; more stream processors (computing units) clocked at higher speeds:

GeForce GTX670 1344 cores * 915 MHz [32] vs. Radeon HD 7970 2048 cores * 925 MHz [33] *

Both the optimized instruction set and the larger bang for buck’ ratio are the reason AMD
video cards are used when trying to crack passwords. Therefore we will also use a AMD Radeon
HD 7970 in our password cracking setup as this gives the best ’bang for buck’ ratio at the moment.

A thing to keep in mind is the decreasing marginal returns when investing in hardware: “A
single desktop with four Radeon HD 6990s for $3000 will increase cracking speed by 160 times.
Buy [sic] a second such system, for another $3000, will only double your cracking speed after
that.” [34] Furthermore because the time it takes to crack a password grows exponentially with
each —-randomly selected— added character, a very expensive —and therefore much faster— password
cracking system only help a little when applying ’stupid’ brute force methods to crack a password.
Figure 6 shows the difference between the earlier mentioned systems [48] which are priced in a
range from $2,000 to $20,000.

Time to crack a random US-ASCII MD5 password

e===TNQ == \Whitepixe| == Erebusv2.5 Epixoip

|

Days to crack
OFRLrNWAUIONOOWOO

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Password length (in number of characters)

Figure 6: A system ten times more expensive cracks a truly random passwords only slightly faster.

Now that we know what hardware to use we want to know what different tools are available,
what the differences are and which one is the most suitable for our purposes. The requirements
are: active development, active community, cracking speed, number of hash types supported and of
course GPGPU support. This narrows our possible tooling down to two competitors, each with its
own benefits and drawbacks. John the ripper: Dating back to the 1990’s John the Ripper is by far
the most mature tool of the two, combined with a large community and immense hash type support

4both approximately the same price at the time of writing; €350

16

itis a very powerful tool. Most of the tool is written to run on the CPU. GPGPU support was added
by the community and can be considered a beta version. It has the advantage of being open source
therefore it is possible to extend the codebase. If a specific hash type is not supported anyone
can write the code needed for its support. Therefore John the Ripper supports a lot of product
specific hashing algorithms. Hashcat: Originally developed because other tools did not support
parallelization. Hashcat evolved from a multithreaded CPU tool into a GPGPU tool. This results in
high cracking speeds, it claims to be the world’s fastest cracker in a multiple of hash types. Despite
being free to use, unfortunately the tool is closed source, this might be a disadvantage when the
support for a specific hash type is needed as this can only be requested and cannot be developed
by ourself. However, the tool already has a multitude of hash types implemented; combined with
the active development we consider this is a bearable risk. Furthermore Hashcat is available in
three different versions: a version implemented on CPU, a version implemented on the GPU used
to crack single hashes and a version implemented on the GPU used to crack a large list of hashes.
The ability to crack large lists of hashes was interesting to us as it can help us to validate our
earlier research. We have used both John the Ripper and Hashcat in our system yet have mainly
used the Hashcat tool. Because of its more stable support of GPGPU, its very active development
and community.

We have compared Hashcat’s default settings to the patterns found in our research. Hashcat’s
default settings consist of two parameters: a mask and Markov based statistics. First we will
discuss the default mask and secondly the Markov statistics.

Hashcat has an ’increment mode’: instead of just brute forcing a mask of a specific length
it will then iterate through that mask at given length. For example if one would enter the mask
of six lowercase letters ("?1?171?17171’), with ’increment mode’ enabled, Hashcat will first brute
force the length one mask (’?1’) secondly the length two mask (’?171") etcetera until it has brute
forced the complete length 1-6 lowercase letter key space. Furthermore Hashcat has the ability to
define custom character sets, where we first had only the *?I’, ?u’, *?d’ and ’?s’ character sets.
Using custom character sets we can for example let the *?1° mask represent both the uppercase
and lowercase letter character sets. Both these options are used by default when brute forcing a
password. Table 5 shows the default Hashcat mask but because Hashcat has its increment mode
enabled by default the default mask is broken into a separate mask for each length. The table in
appendix S [50] shows the dissection of each mask brute force by Hashcat by default.

Denominator | Charset Keyspace

N N?d7u 62

7 Nn2d 36

73 N2d*1$@_ | 41
212292729272727373273732d7d?d7d

Table 5: Hashcat’s default mask

It is interesting to note that Hashcat’s default mask already implements all common masks and
patterns we have found in our earlier research. Yet our masks are more specific as they reduce the
key space even more and are therefore better when brute forcing slow hashes like berypt. It is our
understanding that the default mask of Hashcat is already based on cracked passwords.

Secondly we compare Hashcat’s default Markov statistics to statistics generated using the
different datasets we have available. We have run one hour cracking sessions, each session based

17

on Markov statistics from a different dataset. The dataset we set out to crack was the ’Battlefield
Heroes Beta’ dataset, this is the dataset with the least amount of previously cracked hashes. We
have used the previously cracked hashes from the dataset to create Markov statistics and run a
cracking session using those statistics. The results can be viewed in table 6.

Dataset Cracked hashes
62000 19,505
battlefieldheroes | 22,879
bitcoin 16,346
gamigo 20,442
linkedin 20,360
phpbb 20,381
rockyou 20,089
rootkit.com 19,852
sony 20,875
yahoo 21,032

Table 6: Results of a one hour long cracking session on the Battlefield Heroes Beta hashes. Trying
to crack the entire length eight key space.

By default Hashcat is trained on the ’RockYou’ dataset and does not update its Markov statis-
tics dynamically. The table shows that using cracked hashes from the same set to generate Markov
chains results in the faster cracking of hashes, a difference of cracked hashes of 12.2% between
the default statistics and those generated from the pre-cracked hashes ("RockYou’ 20,089 & *Bat-
tlefield Heroes Beta’ 22,879). The vast majority of the time a Markovian based attack will recover
more passwords than a standard brute force based attack (see figure 7). Yet the difference will
only be noticeable when the key space of the mask to be brute forced cannot be fully exhausted
(as both attacks will crack all of the hashes in the end). That is why we tried to brute force the full
length 8 key space, which would take more than 17 days and stopped the cracking session after
one hour.

100
90
80
70
60

50 ~——Markov Chains

40 ===Classic Bruteforce

% of recovered passwords

30
20
10

12345678 9101112131415161718192021222324252627282930313233343536

Figure 7: “Percentage of recovered passwords (Rockyou) progressions for 6 character pass-
words. Comparison of Markov Chains Dictionary Attack Vs. Classic Brute-force at 36 pre-set
time intervals” [19]

18

Design - Password strength analysis
demonstrator

Our password strength analysis demonstrator will assess the strength of a password based on
automated password cracking techniques. It will be able to show the danger of statistical attacks
which exploit the non-randomness of user-created passwords.

Earlier examples of more advanced password strength meters are known to us [20, 21]. These
incorporate some detection of common patterns yet do not directly model password cracking at-
tacks against the password to result in a figure of password strength. We have shaped our password
strength analysis to incorporate attacks used by professional password crackers [22]. Which are
available by default in password cracking tools [23]. Each of the steps we do to test the strength
of a password can be viewed as a stage of a multistage rocket. Each consecutive stage will have to
adhere to rule stated in the previous one.

We have an advantage over a normal password cracking as we already have the plaintext
password available and consequently do not have to generate all possible password-guesses. Our
algorithm is able to check if the plaintext password suffices to any of our rules and if it does it
will be considered a crackable password and therefore weak. Instead of having to check all of the
possible guesses. Following are the rules used to assess the strength of a password:

To ’survive’ an automated password cracking attack a password may

Brute force attack >
— not consist of a single character set.

— be no smaller than twelve characters when using two character sets: numbers and lowercase or
uppercase and specials etcetera.

— be no smaller than eleven characters when using three character sets: lowercase, numbers and
specials or uppercase, lowercase and numbers etcetera.

— be no smaller than ten characters when using the whole ASCII charset: lowercase, uppercase,
numbers and symbols.

Wordlist attack
— not be in any of our wordlists.

— not contain a large consecutive part of a word in any of our wordlists.

SWe use the speed of “stupid’ brute force of the cracking systems stated in [48] as a lowerbound.

19

Rule-based attack

— be no simple permutation of any of the words in the wordlists

— not contain repetitions, sequences or combinations of those two.
Mask attack

— not consist of a easy to brute force mask. ©

Markov attack

— not consist of common transitions between characters.

After the last step only passwords lacking common patterns —consequently hard to guess
passwords— are left. We are not able to subvert all common patterns as these could originate a
vast amount of sources like pop-culture or demographic properties.

We are aware that we assumed one of the worst case scenarios, an offline cracking attack of
MD)5 passwords. Yet this is not an unreasonable assumption as our datasets show. All of these sets
were either leaked plaintext or leaked hashed with a *fast’ hashing function. This motivates our
research as it could be a concrete danger for one’s password to be part of a leak. We do not return
any time estimation as this is very dependent to the hardware and hashing algorithm used which
could again result in a ’false sense of security’. We only suggest if the password can be cracked
by an automated password cracking attack.

One final note to make is that one might assume this to be the ideal password meter to ac-
company an account registration form. We would advise not to tread lightly on this subject, our
password strength analysis might reduce the global key space of a service significantly when im-
plemented directly as such a password meter.

5The top mask from our research cannot be used, as these are already excluded by the rules stated with the brute
force attack. We use other masks which have a lower probability.

20

Conclusions

The goal of this thesis was to build a state-of-the-art password strength analysis demonstrator. We
set forth to help users make their passwords more resistant against automated password cracking
attacks by assessing the password strength of a password using a simulation of a password cracking
attack.

The first thing we have done was to research the possible patterns inside passwords, which
could lower the overall password strength. We have done this by analysing 45 million user-created
passwords. We have run experiments to check if the assumtions made by other researchers were
significant and interesting and have found that a large portion of the analyzed passwords consist of
simple and easy to crack patterns. Furthermore we found that the letter frequency of the passwords
is similar to that of natural languages and compared it with English text.

Second we have studied the hardware and tools used in existing password cracking systems
and have assembled our own password cracking system which we have used to compare the default
settings of the Hashcat tool to the patterns found in our earlier research. We note that the reason
why AMD video cards are used for the purpose of password cracking has to do with the instuction
set implemented in the hardware and the bigger performance to money ratio. Furthermore we
found that the Hashcat tool has a strong implementation of default settings as it is already based
upon the probablities and patterns of user-created passwords. We suggest some improvements
upon the default settings and argue these could lead to sigificant improvements when cracking
slow hashes.

During the aforementioned two steps we have studied the psychological and technical factors
which together make up for the strength of a password. We have used the results of these steps
to implement a system that assesses the strength of a user’s password based upon a simulation
of automated password cracking attack. We are conviced our system is able to give users better
advice about the strength of their passwords because it makes a user aware of the common patterns
contained in his or her password and therefore hopefully nudges a user to use a password that lacks
these common patterns. We are aware that our system is not able to guarantee one’s password
strength yet it is a significant improvement over most of the password strength analysis algorithms
available.

21

Recommendations

Our recommendations are fourfold, we have defined four groups we would like to give specific
advice: end-users, developers, large technology companies (e.g. Google, Intel, Microsoft, denoted
Fortune 500) and institutions (e.g. National Institute of Standards and Technology (NIST), The
Internet Engineering Task Force (IETF)). We think more industry-wide collaboration leads to a
more secure cyber-domain.

A success story of such collaboration is development and implementation of the *Time-based
One-time Password Algorithm’ (TOTP) [36]. This algorithm originated from the Initiative for
Open Authentication (OATH) [37] and is now implemented for the use of two factor authentica-
tion by i.a. Google, Microsoft and Dropbox. TOTP is implemented for use with a smartphone
application (Android, IOS, Windows Phone) as the second factor in the authentication scheme.

An example of a collaboration to be put into a higher gear is the adoption of hash functions like
berypt and scrypt. Developers seem reluctant to implement these hashing functions, possibly due
to the requirement to support legacy systems running older versions of software which do not have
native support for these hashing functions. On the other hand PHP, for example, supports berypt
from the 5.3.0 release (June 30, 2009) onwards so a better explanation could be that developers do
not implement these hashing functions due to the lower priority of password security and which,
in turn, is the result of uninformed and unaware developers. We are eager to see what happens
with the IETF draft of scrypt [35]. This should hopefully lead to the implementaion of scrypt in
more systems and software.

End-user

— Use a password manager when possible [38, 39, 40]

— Do not use common password patterns

— Use lengthy passwords

— Use all ASCII character sets (lowercase, uppercase, numbers, specials)
— Use different passwords for different services

— Use two factor authentication when available (e.g. Gmail, Hotmail, Twitter, Facebook, Drop-
box)

Developers

— Implement scrypt for the use of password hashing

22

— Use standardized cryptographic functions, do not try to create your own

— Implement two factor authentication (e.g. TOTP)

Fortune 500

Support TOTP

Give uniform advice to users and developers

Encourage users and developers to adopt industry standards

Inform developers with easy to understand code examples for different programming languages

Inform users with tutorials and videos

Institutions

— Encourage the discussion of new industry standards (e.g. scrypt)

23

References

[1] Serge Egelman, Andreas Sotirakopoulos, Ildar Muslukhov, Konstantin Beznosov, Cormac
Herley, and Washington Redmond. Does my password go up to eleven? the impact of
password meters on password selection. 2013.

[2] Blase Ur, Patrick Gage Kelley, Saranga Komanduri, Joel Lee, Michael Maass, Michelle
Mazurek, Timothy Passaro, Richard Shay, Timothy Vidas, Lujo Bauer, et al. How does
your password measure up? the effect of strength meters on password creation. In Proc.
USENIX Security, 2012.

[3] Microsoft - Check your password is it strong?. (2013, June) [Online]. https://www.
microsoft.com/security/pc-security/password-checker.aspx

[4] Intel - How Strong is Your Password?. (2013, June) [Online]. https://www-ssl.intel.
com/content /www/us/en/forms/passwordwin.html

[5] Matt Weir, Sudhir Aggarwal, Michael Collins, and Henry Stern. Testing metrics for password
creation policies by attacking large sets of revealed passwords. In Proceedings of the 17th
ACM conference on Computer and communications security, pages 162—175. ACM, 2010.

[6] Charles Matthew Weir. Using probabilistic techniques to aid in password cracking attacks.
PhD thesis, 2010.

[7] Marcus Bakker and Roel Van Der Jagt. Gpu-based password cracking. 2010.

[8] Martijn Sprengers. GPU-based Password Cracking. PhD thesis, Master’s thesis, Radboud
University Nijmegen, 2011.

[9] Robert Morris and Ken Thompson. Password security: A case history. Communications of
the ACM, 22(11):594-597, 1979.

[10] Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash functions. In Advances
in Cryptology—EUROCRYPT 2005, pages 19-35. Springer, 2005.

[11] Gaétan Leurent. Md4 is not one-way. In Fast Software Encryption, pages 412—-428. Springer,
2008.

[12] Martin Hellman. A cryptanalytic time-memory trade-off. Information Theory, IEEE Trans-
actions on, 26(4):401-406, 1980.

[13] Philippe Oechslin. Making a faster cryptanalytic time-memory trade-off. In Advances in
Cryptology-CRYPTO 2003, pages 617—630. Springer, 2003.

24

https://www.microsoft.com/security/pc-security/password-checker.aspx
https://www.microsoft.com/security/pc-security/password-checker.aspx
https://www-ssl.intel.com/content/www/us/en/forms/passwordwin.html
https://www-ssl.intel.com/content/www/us/en/forms/passwordwin.html

[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

(28]

[29]

[30]

[31]

Hashcat. (2013, June) [Online]. http://hashcat .net/
John the Ripper. (2013, June) [Online]. http://www.openwall.com/john/

Niels Provos and David Mazieres. A future-adaptable password scheme. In Proceedings of
the Annual USENIX Technical Conference, 1999.

Colin Percival. Stronger key derivation via sequential memory-hard functions. In BSDCan
2009: The Technical BSD Conference, 2009.

Patrick Gage Kelley, Saranga Komanduri, Michelle L Mazurek, Richard Shay, Timothy Vi-
das, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Julio Lopez. Guess again (and
again and again): Measuring password strength by simulating password-cracking algorithms.
In Security and Privacy (SP), 2012 IEEE Symposium on, pages 523-537. IEEE, 2012.

Chrysanthou Yiannis Modern Password Cracking: A hands-on approach to creating an
optimised and versatile attack PhD thesis, Department of Mathematics, Royal Holloway,
University of London, 2013.

zxcvbn - realistic password strength estimation. (2013, June) [Online]. https://tech.
dropbox.com/2012/04/zxcvbn-realistic-password-strength-estimation/

How Secure Is My Password?. (2013, June) [Online]. https://howsecureismypassword.
net/

Anatomy of a hack: How crackers ransack passwords like ¢eadzcwrsfxv1331-
(2013, June) [Online]. http://arstechnica.com/security/2013/05/
how-crackers-make-minced-meat-out-of-your-passwords/

Hashcat - Attack modes. (2013, June) [Online]. http://hashcat.net/wiki/#attack_
modes

phpBB: Downtime and Server Compromise. (2013, June) [Online]. http://area51.
phpbb. com/phpBB/viewtopic.php?f=3&t=29973

An Update on LinkedIn Member Passwords Compromised. (2013, June) [Online]. http:
//blog.linkedin.com/2012/06/06/1linkedin-member-passwords-compromised/

PACK. (2013, June) [Online]. http://thesprawl.org/projects/pack/

MySQL Case Sensitivity in String Searches. (2013, June) [Online]. http://dev.mysqgl.
com/doc/refman/5.0/en/case-sensitivity.html

Hashcat Mask Attack. (2013, June) [Online]. http://hashcat.net/wiki/doku.php?id=
mask_attack

English Letter Frequency Counts: Mayzner Revisited. (2013, June) [Online]. http://
norvig.com/mayzner.html

What is the Difference Between a FPGA and an ASIC?. (2013, June) [Online]. http://
www.x1linx.com/fpga/asic.htm

The open standard for parallel programming of heterogeneous systems. (2013, June) [On-
line]. http://www.khronos.org/opencl/

25

http://hashcat.net/
http://www.openwall.com/john/
https://tech.dropbox.com/2012/04/zxcvbn-realistic-password-strength-estimation/
https://tech.dropbox.com/2012/04/zxcvbn-realistic-password-strength-estimation/
https://howsecureismypassword.net/
https://howsecureismypassword.net/
http://arstechnica.com/security/2013/05/how-crackers-make-minced-meat-out-of-your-passwords/
http://arstechnica.com/security/2013/05/how-crackers-make-minced-meat-out-of-your-passwords/
http://hashcat.net/wiki/#attack_modes
http://hashcat.net/wiki/#attack_modes
http://area51.phpbb.com/phpBB/viewtopic.php?f=3&t=29973
http://area51.phpbb.com/phpBB/viewtopic.php?f=3&t=29973
http://blog.linkedin.com/2012/06/06/linkedin-member-passwords-compromised/
http://blog.linkedin.com/2012/06/06/linkedin-member-passwords-compromised/
http://thesprawl.org/projects/pack/
http://dev.mysql.com/doc/refman/5.0/en/case-sensitivity.html
http://dev.mysql.com/doc/refman/5.0/en/case-sensitivity.html
http://hashcat.net/wiki/doku.php?id=mask_attack
http://hashcat.net/wiki/doku.php?id=mask_attack
http://norvig.com/mayzner.html
http://norvig.com/mayzner.html
http://www.xilinx.com/fpga/asic.htm
http://www.xilinx.com/fpga/asic.htm
http://www.khronos.org/opencl/

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]
[41]

[42]
[43]
[44]
[45]
[46]
[47]

[48]
[49]
[50]
[51]

NVIDIA GeForce GTX 670 Specifications. (2013, June) [Online]. http://www.geforce.
com/hardware/desktop-gpus/geforce-gtx-670/specifications

AMD Radeon HD 7970 Specifications. (2013, June) [Online]. http://www.amd.com/us/
products/desktop/graphics/7000/7970/Pages/radeon-7970.aspx#3

Password cracking, mining, and GPUs. (2013, June) [Online]. http://erratasec.
blogspot.nl/2011/06/password-cracking-mining-and-gpus.html

The scrypt Password-Based Key Derivation Function draft. (2013, June) [Online]. http:
//tools.ietf.org/html/draft-josefsson-scrypt-kdf-00

TOTP: Time-Based One-Time Password Algorithm RFC. (2013, June) [Online]. http://
tools.ietf.org/html/rfc6238

OATH - initiative for open authentication. (2013, June) [Online]. http://www.
openauthentication.org/

KeePass Password Safe. (2013, June) [Online]. http://keepass.info/

LastPass - Password Manager, Form Filler, Password Management. (2013, June) [Online].
https://lastpass.com/

1Password. (2013, June) [Online]. https://agilebits.com/onepassword

Parmy Olson. We are anonymous: Inside the hacker world of LulzSec, Anonymous, and the
global cyber insurgency. Little, Brown, 2012.

Nico van Heijningen: Apendix A - dictclean.php

Nico van Heijningen: Appendix B - Dataset remarks and numerals

Nico van Heijningen: Appendix M - Cracking System Benchmarks

Nico van Heijningen: Appendix N - Masks only occurring in one dataset

Nico van Heijningen: Appendix O - Masks occurring in more than one dataset

Nico van Heijningen: Appendix P - Masks occurring in more than one dataset - without three
largest masks

Nico van Heijningen: Appendix Q - Comparison of systems
Nico van Heijningen: Appendix R - MD35 pseudocode
Nico van Heijningen: Appendix S - Hashcat’s default bruteforce mask increment mode

Nico van Heijningen: Appendix T - Per position letter frequency heatmaps

26

http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-670/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-670/specifications
http://www.amd.com/us/products/desktop/graphics/7000/7970/Pages/radeon-7970.aspx#3
http://www.amd.com/us/products/desktop/graphics/7000/7970/Pages/radeon-7970.aspx#3
http://erratasec.blogspot.nl/2011/06/password-cracking-mining-and-gpus.html
http://erratasec.blogspot.nl/2011/06/password-cracking-mining-and-gpus.html
http://tools.ietf.org/html/draft-josefsson-scrypt-kdf-00
http://tools.ietf.org/html/draft-josefsson-scrypt-kdf-00
http://tools.ietf.org/html/rfc6238
http://tools.ietf.org/html/rfc6238
http://www.openauthentication.org/
http://www.openauthentication.org/
http://keepass.info/
https://lastpass.com/
https://agilebits.com/onepassword

Evaluation

Looking back at the writing of this thesis and the graduation process as a whole I can say that
it was a very fulfilling exercise. Information theory, the theory of probability, cryptography and
statistics were all needed to be able to complete this thesis. These subjects were all taught at
school yet all are a very limited part of the curriculum of the CMI-Program Technical Informatics
at the Rotterdam University. So some self-dependence was needed to bring my knowledge of these
subject to a higher level. I have learned to apply these subjects to real problems and questions; to
put the theory into practice.

The subject of the thesis surrounding passwords is one that I very found interesting one that
is active and contains a lot of recent developments. Because of the state-of-the-art requirement of
the thesis I had to delve into the literature and analyze related or existing work. This helped me to
create my own image of possible solutions to the problems along the way.

This assignment was a combination of research and engineering including both psychological
and technical factors. Although I liked this very much having touched all facets of the assignment
this meant the size of the subject increased by a multitude not expected at the beginning of this
thesis. Through deliberate scoping I still had the opportunity to specialize on parts I thought were
of interest yet still resulting in the final design and realization of a product which now incorporates
these parts.

Furthermore the contact with colleagues was a very satisfying part of this thesis. The presen-
tations and demonstrations I gave to colleagues at TNO have helped me to get my story straight
and I think it helped them in with some knowledge and new information. The brainstorming with
and input of: researchers, developers, enthusiasts and less technical people have helped shape this
thesis into what it has become today. This is part of the reason I am going to attend several con-
ferences on the subject of authentication and computer security in the United States of America.

Finally I have done recommendations to multiple parties instead of just one as I think this is an
industry-wide problem which cannot be solved by a single party. The solutions I have put forward
are not necessarily the final solutions to this problem but are a viable solution in the best of my
belief.

27

Appendix A

dictclean.php

S

16

<?php
define ('DICTCLEAN_VERSION’, *0.17);

#
1. Options

#

$options = getopt(’’, array (
“help’,

>list —encodings’,
>encoding: ’,

“dictfile:’,

cleanfile:’,
>dirtyfile:’,
)

—help
if (isset(S$options[help’])) {
echo “dictclean °, DICTCLEAN_VERSION, ", T. Alexander Lystad <
tal@lystadonline .no> (www.thepasswordproject.com)

Usage on Windows: php —f dictclean.php — [switches]

Usage on Linux: ./dictclean.php — [switches]

Example use on Windows: php —f dictclean.php — —dictfile rockyou.txt —
cleanfile rockyou.clean.txt

Example use on Linux: ./dictclean.php — —dictfile rockyou.txt —cleanfile

rockyou.clean. txt

Switches:

—help \t\t\t Show help

—1list —encodings \t List available encodings

—encoding \t\t The encoding you want to check for. Must be listed in ——Ilist—
encodings. Defaults to UTF—8. Example: —encoding ISO—8859—1

—dictfile \t\t The file to analyze. Example: —dictfile dictfile.txt
—cleanfile \t\t Generate cleaned up dictfile. All lines from dictfile with
valid encoding will be written to this file. Example: —cleanfile cleandict
L txt
—dirtyfile \t\t Generate dirty dictfile. All lines from dictfile with invalid
encoding will be written to this file. Example: —dirtyfile dirtydict.txt”;
exit;

}

28

36| # —1list —encodings

if (isset($options[’list—encodings’])) {

38 echo *Available encodings on your system: ', “\n”, implode(”\n”,
mb_list_encodings ());

exit;

40l }

2|# —encoding

if (isset($options[encoding’])) {

44 define ("WANTED_ENCODING’ , 'UTF-8’);

}

4| if (!defined ("WANTED_ENCODING”)) {
define ("WANTED_ENCODING’ , 'UTF-8’);

as| }

sol # —dictfile
if (isset($options[dictfile 1)) {
52 define ('DICTIONARY_FILE’, S$options[’dictfile’]);

si| if (!defined (’DICTIONARY_FILE’)) {

echo ’You have to specify the file you want to analyze. Example: —dictfile
dictionary . txt’;
56 exit;

}
ss| if (!is_-readable (DICTIONARY.FILE)) {
echo "Could not read file \’’, DICTIONARY_FILE, *\’. Please specify a correct

5

path for the file you want to analyze.’;

60| }

2| # —cleanfile
if (isset($options[’cleanfile’])) {

64 $cleanHandle = fopen($options[’cleanfile’], "w’);
}

66
if (isset(S$options[dirtyfile’])) {
68 $dirtyHandle = fopen(S$options[dirtyfile’], 'w’);

}
70
72| #
2. Meat
74| #
echo “dictclean °, DICTCLEAN_VERSION, °' report (www.thepasswordproject.com)’, ”

\n\n";

76| $invalidCount = 0;

$lineCount = 1;

73| $inHandle = fopen (DICTIONARY_FILE, ’r’);

while (($line = fgets($inHandle)) !== false) {
80 if (mb_check_encoding($line , WANTED_ENCODING)) {
if (isset($cleanHandle)) {

82 fwrite ($cleanHandle , $line);

}

g} oelse {

if (isset($dirtyHandle)) {

86 fwrite ($dirtyHandle , $line);
}
88 $detectedEncoding = mb_detect_encoding ($line , null, true);
if ($detectedEncoding) {
90 $detectedString = $detectedEncoding.’ encoding was detected ’;

29

94

96

98

$detectedString = ’Encoding could not be detected’;
}
echo ’Invalid °, WANTEDENCODING, ° at line ’, $lineCount,
$line), "\’ (’, $detectedString, *)’, "\n”;
$invalidCount ++;
}
$lineCount ++;
}
echo ’Lines with invalid °, WANTEDENCODING, ’: ’, $invalidCount, ’/’,
$lineCount, > (', round(($invalidCount/$lineCount)*100, 4), ° %)’ ;

} else {

oo\, trim(

bijlagen/dictclean.php

30

Appendix B

Dataset remarks and numerals

62000 random logins - Lulzsec, it is unknown where these passwords originated from and how old
they are !.

Battlefield heroes beta, a free cartoon-styled video game published by EA.

Mt. Gox, one of the largest bitcoin exchanges. What makes leak interesting is that these
passwords are the equivalent of banking passwords and the target group is very technically savvy.
Out of the total 61,000 passwords leaked only the 1,764 MDS5 hashes have been tried to crack.
Because the remaining 59,236 stronger MD5(unix) hashes are much harder to crack.

Gamigo, a free online social gaming site. The leak contains a lot of ?171?71?7u?u?u?d?d?d masks
for some reason, about 3% of all passwords F.

Linkedin, a social networking website. The leak contains 3,521,180 hashes starting with
00000, and 2,936,840 unmasked hashes. The hashes starting with zeroes were probably a parsing
error by the attacker.

phpBB, open source internet forum software. The full leak contains 400,000 hashes.

Rockyou, a free online social gaming developer. By far the largest leak. Rockyou’s own
password policy only required a five-character password, and did not permit special characters.
But since many of Rockyou’s applications were able to crosspost across multiple social network
sites, the password list contains multiple passwords from the same users originating from multiple
social networking sites like MySpace, Facebook, etc. Also, there is some ’junk’ in there that
probably represents the attacker parsing the SQL dump incorrectly. Finally, since this represents
multiple site passwords, there is no overall password creation policy applied to these passwords.

Rootkit.com, a popular website for discussion and analysis of rootkits. This hack was part of
the attack by *Anonymous’ (most of which became members of Lulzsec [41]) on the technology
security company HBGary. It includes several passwords from MITRE employees.

Sony pictures, from sonypictures.com the main website for Sony’s film and television fran-
chise. The leak contains data related to Sony sweepstakes involving AutoTrader.com, ”Summer
of Restless Beauty” and ”Seinfeld - We’re Going to Del Boca Vista!”. The Autotrader.com dataset
only contains records of elderly people (born before 1944) [https://twitter.com/LulzSec/
status/77845443383525377], We didn’t use it as the data is corrupted and contains a lot of
duplicates. The Beauty & Seinfeld datasets are used.

I'The release noted: “these are random assortments from a collection, so don’t ask which site they’re from or how
old they are, because we have no idea. We also can’t confirm what percentage still work, but be creative or something.”

31

https://twitter.com/LulzSec/status/77845443383525377
https://twitter.com/LulzSec/status/77845443383525377

Yahoo! Voices, a voice over IP service provided by Yahoo! and hacked by the hacking group
D33ds Company.

32

€¢

Name of leak Release date Hashing # leaked % list used % unique
function passwords

62000 random logins - June 16,2011 | None 62,156 99.89 76.93

Lulzsec

50 Days of Lulz - Battlefield | June 25,2011 | MD5 548,773 50.55 98.86

Heroes Beta

Bitcoin June 19, 2011 MD5 1,764 69.33 89.94

Gamigo July 6, 2012 MD5 7,004,341 90.03 99.98

Linkedin June 5, 2012 SHAI1 6,458,020 83.67 91.20

phpBB January 31, MD5 259,424 98.81 72.24
2009

RockYou December 15, | None 32,603,388 100.00 43.99
2009

Rootkit.com February 6, MDS5 71,228 93.81 81.44
2011

Sony Pictures June 2, 2011 None 36,310 99.99 80.92

Yahoo July 12,2012 | None 442,838 100.00 717.35

Table B.1: Dataset numerals

Appendix C

Pack - 62000

[?] Psyco is not available. Install Psyco on 32—bit systems for
faster parsing.
[*] Analyzing passwords: ../../lists/62000/passwords/sorted.txt
[+] Analyzing 100% (62086/62086) passwords
NOTE: Statistics below is relative to the number of analyzed
passwords , not total number of passwords

[*] Line Count Statistics ...

4: 01% (672)

[+] 6: 31% (19296)
[+] 8: 25% (16135)
[+] 7: 16% (10525)
[+] 9: 09% (6199)
[+] 10: 06% (4065)
[+] 12: 03% (2441)
[+] 11: 02% (1751)
]

[*x] Mask statistics ...

[+] allstring: 43% (27092)
[+] stringdigit: 26% (16636)
[+] alldigit: 19% (12164)
[+] digitstring: 03% (1977)
[+] othermask: 02% (1795)
[+] stringdigitstring: 02% (1575)
[+] digitstringdigit: 00% (427)
[+] stringspecialdigit: 00% (159)
[+] stringspecialstring: 00% (141)
[+] stringspecial: 00% (89)
[+] specialstringspecial: 00% (15)
[+] specialstring: 00% (12)
[+] allspecial: 00% (4)

[*] Charset statistics ...
[+] loweralpha: 43% (26707)

34

loweralphanum :
numeric :
loweralphaspecialnum :
mixedalphanum:
loweralphaspecial:
upperalphanum:
mixedalpha:
upperalpha:
mixedalphaspecialnum :
mixedalphaspecial:
upperalphaspecialnum:
upperalphaspecial:
special:

Advanced Mask statistics ..
2121217212121 :
?7d?d?d?d?d?d:

202121212121 71:
21212121212121?1:
7d?d?d?d?d?d?d?d:

20212121721212121°21:
712121712171 ?2d?d:
2121212121212121°21721:
7121217121 ?2d:
212121?217212d?d:
71?2121?21?2d?2d?d?d:
7121?21?712d?d:
2121212121721 212172121°2171:
2712121?121721?21°2d:

?2121212d72d?d?d:

2021212172121212121°71721:

2121212172121 72d:

2121212172121712d?d:
?212121217212d?d?d?d:

Saving Mask statistics
csv

to

33%
19%
00%
00%
00%
00%
00%
00%
00%
00%
00%
00%
00%

14%
10%
09%
08%
05%
04%
03%
02%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%

ol

35

(21088)
(12164)
(615)
(562)
(247)
(206)
(198)
(187)
(58)
(20)
(19)
(11)
(4)

(8831)
(6296)
(5931)
(5365)
(3678)
(2636)
(1893)
(1522)
(1226)
(1112)
(1075)
(976)
(971)
(957)
(804)
(760)
(710)
(696)
(646)

/ analysis/pack/masks/62000.

Appendix D

Pack - Battlefield Heroes Beta

[?] Psyco is not available. Install Psyco on 32—bit systems for
faster parsing.
[*] Analyzing passwords: ../../lists/battlefieldheroes/passwords
/sorted . txt
[+] Analyzing 100% (277418/277418) passwords
NOTE: Statistics below is relative to the number of analyzed
passwords , not total number of passwords

[*] Line Count Statistics ...

[+] 8: 43% (120715)
[+] 6: 23% (66170)
[+] 7: 21% (58441)
[+] 9: 09% (27203)

[*] Mask statistics ...

specialstringspecial: 00% (53)
allspecial: 00% (12)

[+] stringdigit: 41% (115182)
[+] allstring: 29% (81044)
[+] alldigit: 11% (31497)
[+] othermask: 06% (17595)
[+] stringdigitstring: 05% (16391)
[+] digitstring: 03% (10285)
[+] digitstringdigit: 01% (3594)
[+] stringspecialdigit: 00% (840)
[+] stringspecialstring: 00% (532)
[+] stringspecial: 00% (315)
[+] specialstring: 00% (78)

]

]

[*] Charset statistics ...

[+] loweralphanum: 51% (142399)
[+] loweralpha: 27% (74998)
[+] numeric: 11% (31497)
[+] mixedalphanum: 06% (16846)

36

mixedalpha:
upperalphanum :
loweralphaspecialnum :
upperalpha:
loweralphaspecial:
mixedalphaspecialnum :
mixedalphaspecial:
upperalphaspecialnum:
upperalphaspecial:
special:

Advanced Mask statistics ...
7121217212121 71°?1:
7121217212171 :
7171717171?21?2d?d:
702171212171 °?1:
?7d?d?d?d?d?d:
7d?d?d?d?d?d?d?d:
271?21217?21?1?2171?d:
7121?7171?12d?7d?d:
?71?21?1?71?2d?d?d?d:
712171?21?217d?d:
2021712121721212171:
7121?71712d7d:
712171212171 °2d:
7d?7d?d?d?d?d?d:
71?21?2171?17d:
717121?21?1?2127d?7d?d:
2712171212171?2172d7d:
712171?212d?d?d:
?71?21?17d?d7d:

Saving Mask statistics to
battlefieldheroes .csv

01%
00%
00%
00%
00%
00%
00%
00%
00%
00%

08%
08%
07%
06%
05%
03%
03%
02%
02%
02%
02%
02%
02%
01%
01%
01%
01%
01%
01%

../../ analysis/pack/masks/

37

(5019)
(2011)
(1830)
(1027)
(787)
(661)
(222)
(90)
(19)
(12)

(24862)
(23451)
(20675)
(18451)
(14040)
(10760)
(8949)
(8191)
(8120)
(7882)
(7023)
(5812)
(5605)
(5433)
(5081)
(5015)
(4245)
(3328)
(2969)

Appendix E

Pack - Bitcoin

[?] Psyco is not available. Install Psyco on 32—bit systems for
faster parsing.
[*] Analyzing passwords: ../../lists/bitcoin/passwords/sorted.
txt
[+] Analyzing 100% (1223/1223) passwords
NOTE: Statistics below is relative to the number of analyzed
passwords , not total number of passwords

[*] Line Count Statistics ...

[+] 8: 32% (400)
[+] 6: 15% (191)
[+] 9: 14% (172)
[+] 7: 13% (161)
[+] 10: 09% (113)
[+] 12: 04% (57)
[+] 11: 03% (48)
[+] 5: 02% (34)
[+] 14: 01% (17)
[+] 13: 01% (16)

[*] Mask statistics ...

[+ stringdigit: 32% (393)
[+ allstring: 30% (372)
[+ othermask: 14% (176)
[+ stringdigitstring: 09% (113)
[+ alldigit: 06% (77)

digitstringdigit: 01% (20)
stringspecial: 00% (11)
stringspecialdigit: 00% (10)
stringspecialstring: 00% (8)
specialstring: 00% (3)

]
]
]
]
]
[+] digitstring: 03% (39)
]
]
]
]
]
] specialstringspecial: 00% (1)

38

Charset statistics ...

loweralphanum :
loweralpha:
mixedalphanum:
numeric :
mixedalphaspecialnum :
loweralphaspecialnum :
loweralphaspecial:
mixedalpha:
upperalphanum:
mixedalphaspecial:
upperalpha:

Advanced Mask statistics ...
7171717172121?21°?1:
2712121712171 :
717171212121 °?1:
7121?2171?1?717d?d:
20217212121721212171:
7121?7171?12d?7d?d:
271217217121 :

7d?d?d?d?d?d:
7d?d?d?d?d?d?d:
7121?2171?2d?7d?7d?d:
271?21?2171?1?2171?2d:
7171712121?21°21°21°?1°71:
?71?21?17d?d7d:
217171212121°2121°21721°21°71:
7d?d?d?d?d?d?d?d:
712171?21?217d?d:
712171212171 °2d:
21217121217121?217d:

Saving Mask statistics to
csv

45%
28%
10%
06%
02%
02%
01%
01%
00%
00%
00%

07%
06%
04%
03%
03%
02%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%

39

(557)
(348)
(123)
(77)
(35)
(27)
(20)
(20)
(7)
(5)
(4)

(92)
(80)
(57)
(48)
(38)
(26)
(24)
(22)
(21)
(18)
(18)
(18)
(18)
(17)
(17)
(13)
(13)
(13)

../../ analysis/pack/masks/bitcoin.

Appendix F

Pack - Gamigo

[?] Psyco is not available. Install Psyco on 32—bit systems for
faster parsing.
[*] Analyzing passwords: ../../lists/gamigo/passwords/sorted.txt
[+] Analyzing 100% (6305237/6305237) passwords
NOTE: Statistics below is relative to the number of analyzed
passwords , not total number of passwords

[*] Line Count Statistics ...
[+] 10: 44% (2797830)

13: 01% (73383)

[+] 8: 20% (1318414)

[+] 9: 12% (768868)

[+] 7: 06% (395013)

[+] 6: 06% (381958)

[+] 11: 04% (252719)

[+] 12: 02% (180339)
]

[*x] Mask statistics ...

[+] othermask: 31% (1985176)
[+] stringdigit: 29% (1849460)
[+] allstring: 15% (1007788)
[+] stringdigitstring: 13% (827442)
[+] alldigit: 04% (296965)
[+] digitstring: 04% (255288)
[+] digitstringdigit: 01% (70993)
[+] stringspecialdigit: 00% (4807)
[+] stringspecialstring: 00% (4489)
[+] stringspecial: 00% (2052)
[+] specialstringspecial: 00% (423)

[+] specialstring: 00% (338)

[+] allspecial: 00% (16)

[*] Charset statistics ...
[+] loweralphanum: 65% (4119486)

40

[+] mixedalphanum
[+] loweralpha:
[+] numeric :
[+] mixedalpha:
[+] upperalphanum
[+] upperalpha:
[+] loweralphaspecialnum :
[+] loweralphaspecial:
[+] mixedalphaspecialnum:
[+] mixedalphaspecial:
[+] upperalphaspecialnum:
[+] upperalphaspecial:
[+] special:

[*] Advanced Mask statistics ...

[+] ?7171717u?7u?u?d?d?d:
[+] 20717171212121721:
[+] 21212171717172d7d:
[+] 2071717172171
[+] 212121721717171:
[+] 2020721717121 21721721:
[+] 2W2071712121212121721:
[+] 7d?d?d?d?d?d?d?d:
[+] ?212171717171712d7d:
[+] 71717d717172d?21?71?17?1:
[+] 207171712d2d?21271?717?1:
[+] 71717d7172d71?71?71?17?1:
[+] 20717171721712d2d?17?1:
[+] ?7121?7d2d7171?1217171:
[+] 717d7d71?217212121217?1:
[+] ?2d?1?7d?171717?1217171:
[+] 7d?d?171?217212121?17?1:
[+] ?7121?7172d7d?71?1?17171:
[+] 7d?1717d?2171?2121?17?1:
[+] ?2d?1?71717d?71?1?717171:
[+] 2d?717171721712d?71?17?1:
[+] 7d?d?d?d?d?d:
[+] 2071717172172d?2d?71?17?1:
[+] 2d?7171717212d?2121217?1:
[+] ?21212d?217171?12d7171:
[+] 71717171?2d?7d?7d?d:
[+] ?2121217217171°7?12d7d71:
[+] 271717171717d7d:
[+] 212121717171°7?1?717d7d:
[+] 7171717171?2d?2d?7d?d:

[*] Saving Mask statistics to
csv

12%
12%
04%
03%
00%
00%
00%
00%
00%
00%
00%
00%
00%

03%
02%
02%
02%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%

ol

41

(813161)
(788700)
(296965)
(197963)
(47158)
(21125)
(9630)
(5812)
(2881)
(1726)
(351)
(263)
(16)

(191346)
(160777)
(146972)
(126403)
(115117)
(114390)
(106022)
(92130)
(84706)
(77937)
(77717)
(77618)
(77403)
(76936)
(76649)
(76570)
(76489)
(76477)
(76166)
(76159)
(75954)
(75450)
(75429)
(75381)
(74433)
(74278)
(73645)
(69360)
(67987)
(65773)

/ analysis/pack/masks/gamigo.

Appendix G

Pack - Linkedin

[?] Psyco is not available. Install Psyco on 32—bit systems for
faster parsing.
[*] Analyzing passwords: ../../lists/linkedin/passwords/sorted.
txt
[+] Analyzing 100% (5403392/5403392) passwords
NOTE: Statistics below is relative to the number of analyzed
passwords , not total number of passwords

[*] Line Count Statistics ...
[+] 8: 31% (1727267)

[+] 9: 17% (960775)
[+] 10: 12% (690556)
[+] 7: 11% (617401)
[+] 6: 10% (584877)
[+] 11: 06% (364901)
[+] 12: 04% (222753)
[+] 13: 02% (114421)
]

14: 01% (67023)

[*] Mask statistics ...

[+ stringdigit: 38% (2083937)
[+ allstring: 24% (1322955)
[+ othermask: 12% (678398)
[+ stringdigitstring: 10% (566169)
[+ digitstring: 04% (222746)
[+ alldigit: 03% (202589)

digitstringdigit: 01% (85121)
stringspecialstring: 01% (62467)
stringspecial: 00% (26258)
specialstring: 00% (4412)
specialstringspecial: 00% (3161)

]
]
]
]
]
]
[+] stringspecialdigit: 02% (144440)
]
]
]
]
]
] allspecial: 00% (739)

42

[*] Charset statistics ...

[+] loweralphanum: 44% (2387265)
[+] loweralpha: 21% (1153838)
[+] mixedalphanum: 15% (848051)
[+] loweralphaspecialnum: 04% (230962)
[+] mixedalphaspecialnum: 04% (222184)
[+] numeric: 03% (202589)
[+] mixedalpha: 02% (138598)
[+] loweralphaspecial: 01% (71265)
[+] upperalphanum: 01% (68998)
[+] mixedalphaspecial: 00% (33156)
[+] upperalpha: 00% (30519)
[+] upperalphaspecialnum: 00% (12866)
[+] upperalphaspecial: 00% (2362)
[+] special: 00% (739)
[*] Advanced Mask statistics ...

[+] 70212171217217121: 04% (247933)
[+] 7121?2172121712d?2d: 03% (191913)
[+] 20212121217212121721: 03% (179935)
[+] 712121712121 : 03% (175640)
[+] 21202172121 2121217121: 02% (158504)
[+] 20212172121?2171: 02% (149567)
[+] 7121?7171?2d?d?d?d: 01% (107497)
[+] 20721212172121721212172121: 01% (99590)
[+] 7d?d?d?d?d?d: 01% (93337)
[+] 7121217121721712d: 01% (87642)
[+] 202171212171212d7d: 01% (85959)
[+] 270712171712d?d: 01% (76002)
[+] 71712171712?2d?7d?d?d: 01% (71694)
[+] 212172172121 71?212171?21?2171: 01% (64981)
[+] 71?21?171?1?72d?d?d: 01% (63866)
[+] 71212171?21717d?7d?d?d: 01% (61317)
[+] 712121712121712172d7?d: 01% (59911)
[+] 71?1717d?7d?d?d: 01% (55941)
[+] 7d?d?d?d?d?d?d?d: 01% (55026)

[*] Saving Mask statistics to ../../ analysis/pack/masks/linkedin
.CSV

43

Appendix H

Pack - phpBB

[?] Psyco is not available. Install Psyco on 32—bit systems for
faster parsing.
[*] Analyzing passwords: ../../ lists/phpbb/passwords/sorted.txt
[+] Analyzing 100% (256288/256288) passwords
NOTE: Statistics below is relative to the number of analyzed
passwords , not total number of passwords

[*] Line Count Statistics ...

[+] 6: 27% (69516)
[+] 8: 26% (68111)
[+] 7: 17% (45167)
[+] 9: 09% (23498)
[+] 5: 05% (14478)
[+] 10: 05% (14197)
[+] 4: 03% (8070)
[+] 11: 02% (5705)
[+] 12: 01% (3083)

[*] Mask statistics ...

[+ allstring: 52% (135708)
[+ stringdigit: 21% (53858)
[+ alldigit: 12% (30785)
[+ othermask: 05% (13010)
[+ stringdigitstring: 04% (12087)

]

]

]

]

]

] digitstring: 02% (5999)
[+] digitstringdigit: 00% (2280)

] stringspecialstring: 00% (1084)

] stringspecialdigit: 00% (608)

] stringspecial: 00% (550)

] specialstring: 00% (124)

] specialstringspecial: 00% (111)

] allspecial: 00% (84)

[*] Charset statistics ...

44

loweralpha:
loweralphanum :
numeric :
mixedalphanum:
mixedalpha:
upperalphanum:
upperalpha:
loweralphaspecialnum :
loweralphaspecial:
mixedalphaspecialnum :
mixedalphaspecial:
special:
upperalphaspecialnum:
upperalphaspecial:

Advanced Mask statistics ...
2712121212171 :
212121212121 21?1:
21212121212171 .
7d?d?d?d?d?d:
20212121721212121°21:
271212171721
2121212121212121°21721:
7d?d?d?d?d?d?d?d:
2121217212121 2d?d:
271212171
212121?21?212d?d:
7d?2d?d?d?d?d?d:
7121?21?12d?d?d?d:
2121212121 ?2d:
7121?1712d?d:
212121212121 ?21°2d:
7d?d?d?d:
712121?21212d?2d?d:
2021212172121212121°71721:

Saving Mask statistics
csv

to

50%
28%
12%
03%
02%
00%
00%
00%
00%
00%
00%
00%
00%
00%

14%
10%
09%
05%
04%
04%
02%
02%
02%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%

AR

45

(128459)
(73871)
(30785)
(9071)
(5352)
(2060)
(1897)
(1888)
(1670)
(682)
(358)
(84)
(64)
(47)

(37770)
(27495)
(24325)
(13265)
(10860)
(10625)
(6322)
(6251)
(5407)
(4511)
(3449)
(3249)
(3246)
(3209)
(3077)
(3065)
(2999)
(2777)
(2735)

/ analysis/pack/masks/phpbb.

Appendix I

Pack - RockYou

[?] Psyco is not available. Install Psyco on 32—bit systems for
faster parsing.
[*] Analyzing passwords: ../../lists/rockyou/passwords/sorted.
txt
[+] Analyzing 100% (32602639/32602639) passwords
NOTE: Statistics below is relative to the number of analyzed
passwords , not total number of passwords

[*] Line Count Statistics ...

[+] 6: 26% (8488359)
[+] 8: 19% (6513033)
[+] 7: 19% (6287948)
[+] 9: 12% (3949755)
[+] 10: 09% (2954593)
[+] 5: 04% (1326950)
[+] 11: 03% (1163241)
[+] 12: 02% (686824)
[+] 13: 01% (429673)

[*] Mask statistics ...
[+] allstring: 44% (14359391)

specialstringspecial: 00% (30202)
specialstring: 00% (16641)
allspecial: 00% (9525)

[+] stringdigit: 30% (9833044)
[+] alldigit: 15% (5193093)
[+] digitstring: 02% (895678)
[+] othermask: 02% (829934)
[+] stringdigitstring: 01% (597382)
[+] stringspecialstring: 00% (258197)
[+] stringspecial: 00% (241778)
[+] stringspecialdigit: 00% (189675)
[+] digitstringdigit: 00% (148099)

]

]

]

46

[*] Charset statistics ...

[+] loweralpha: 41% (13589764)
[+] loweralphanum: 33% (10814848)
[+] numeric: 15% (5193093)
[+] loweralphaspecial: 01% (534600)
[+] upperalphanum: 01% (532265)
[+] loweralphaspecialnum: 01% (522358)
[+] upperalpha: 01% (488177)
[+] mixedalphanum: 01% (463520)
[+] mixedalpha: 00% (281450)
[+] mixedalphaspecialnum: 00% (57747)
[+] mixedalphaspecial: 00% (55771)
[+] upperalphaspecial: 00% (30406)
[+] upperalphaspecialnum: 00% (29115)
[+] special: 00% (9525)
[*] Advanced Mask statistics ...

[+] 702121712121 12% (3987972)
[+] 202172121217121: 08% (2738090)
[+] 212121721217212121: 07% (2469728)
[+] 7d?d?d?d?d?d: 06% (2278937)
[+] 20217212121 7121?2171: 04% (1382192)
[+] 2021217121: 02% (943285)
[+] 71212171217172d?72d: 02% (923992)
[+] 2021217121217212172171: 02% (869683)
[+] 7d?d?d?d?d?d?d?d: 02% (817588)
[+] 20712171212d7d: 02% (751557)
[+] 2021217212121 72d: 02% (726231)
[+] 7d?d?d?d?d?d?d: 01% (641777)
[+] 7121?1712d?2d: 01% (614420)
[+] 71212171?21717212d: 01% (568674)
[+] 7121?2171?12?2d: 01% (540869)
[+] 7d?d?d?7d?d?d?d?d?d?d: 01% (540786)
[+] 2071217171?21712d?2d: 01% (488287)
[+] 20217212121 7121217212171: 01% (456864)
[+] 7d?d?d?d?d?d?d?d?d: 01% (449025)
[+] 2021?2121217121?217d: 01% (401075)
[+] 70212171212171217d7?d: 01% (356681)

[*] Saving Mask statistics to ../../ analysis/pack/masks/rockyou.
csv

47

Appendix J

Pack - Rootkit.com

[?] Psyco is not available. Install Psyco on 32—bit systems for
faster parsing.
[*] Analyzing passwords: ../../lists/rootkit.com/passwords/
sorted . txt
[+] Analyzing 100% (66819/66819) passwords
NOTE: Statistics below is relative to the number of analyzed
passwords , not total number of passwords

[*] Line Count Statistics ...

[+] 8: 26% (17561)
[+] 6: 25% (16897)
[+] 7: 17% (11567)
[+] 9: 10% (7236)
[+] 10: 06% (4454)
[+] 5: 04% (2682)
[+] 11: 03% (2146)
[+] 4: 02% (1444)
[+] 12: 01% (1298)

[*] Mask statistics ...

specialstringspecial: 00% (93)
allspecial: 00% (52)

[+] allstring: 44% (30041)
[+] stringdigit: 21% (14538)
[+] alldigit: 14% (9582)
[+] othermask: 07% (5343)
[+] stringdigitstring: 05% (3384)
[+] digitstring: 02% (1708)
[+] digitstringdigit: 00% (655)
[+] stringspecialstring: 00% (558)
[+] stringspecialdigit: 00% (403)
[+] stringspecial: 00% (351)
[+] specialstring: 00% (111)

]

]

48

[*] Charset statistics ...

[+] loweralpha: 42% (28548)
[+] loweralphanum: 31% (20804)
[+] numeric: 14% (9582)
[+] mixedalphanum: 03% (2560)
[+] loweralphaspecialnum: 02% (1462)
[+] mixedalpha: 01% (1166)
[+] loweralphaspecial: 01% (1033)
[+] mixedalphaspecialnum: 00% (606)
[+] upperalphanum: 00% (387)
[+] upperalpha: 00% (327)
[+] mixedalphaspecial: 00% (233)
[+] special: 00% (52)
[+] upperalphaspecialnum: 00% (38)
[+] upperalphaspecial: 00% (21)
[*] Advanced Mask statistics ...

[+] 2071717212121: 11% (7975)
[+] 20212171212171?71: 09% (6305)
[+] 2202171717171 08% (5363)
[+] 7d?7d?d?d?d?d: 06% (4315)
[+] 220721717121212121: 03% (2639)
[+] ?7d?d?d?d?d?d?d?d: 03% (2036)
[+] 221717171 02% (1816)
[+] 207171721212121212171: 02% (1722)
[+] 70212171?21?217d?2d: 01% (1330)
[+] 7d?d?d?d?d?d?d: 01% (1197)
[+] 71?712171272d?2d?7d?d: 01% (949)
[+] 20202171717212121212121: 01% (798)
[+] 71?21?2171: O01% (755)
[+] 270717171?212d?2d?d: 01% (740)
[+] 21?717171712d?d: 01% (730)
[+] 207171712121212d: 01% (672)

[«*] Saving Mask statistics to ../../ analysis/pack/masks/rootkit.
com. csv

49

Appendix K

Pack - Sony

[?] Psyco is not available. Install Psyco on 32—bit systems for
faster parsing.
[*] Analyzing passwords: ../../lists/sony/passwords/sorted.txt
[+] Analyzing 100% (36308/36308) passwords
NOTE: Statistics below is relative to the number of analyzed
passwords , not total number of passwords

[*] Line Count Statistics ...

12: 01% (422)

[+] 8: 27% (10008)
[+] 6: 27% (9925)
[+] 7: 19% (7050)
[+] 9: 11% (4269)
[+] 10: 06% (2395)
[+] 11: 02% (914)
[+] 5: 01% (666)
]

[*x] Mask statistics ...

[+] allstring: 47% (17290)
[+] stringdigit: 39% (14187)
[+] alldigit: 04% (1639)
[+] digitstring: 03% (1152)
[+] stringdigitstring: 02% (1048)
[+] othermask: 01% (618)
[+] digitstringdigit: 00% (232)
[+] stringspecialdigit: 00% (62)
[+] stringspecialstring: 00% (41)
[+] stringspecial: 00% (35)
[+] specialstring: 00% (2)

[+] specialstringspecial: 00% (1)

[+] allspecial: 00% (1)

[*] Charset statistics ...
[+] loweralpha: 44% (16207)

50

[+] loweralphanum: 42% (15267)
[+] numeric: 04% (1639)
[+] mixedalphanum: 03% (1357)
[+] mixedalpha: 01% (656)
[+] upperalphanum: 01% (458)
[+] upperalpha: 01% (427)
[+] loweralphaspecialnum: 00% (118)
[+] mixedalphaspecialnum: 00% (84)
[+] loweralphaspecial: 00% (72)
[+] mixedalphaspecial: 00% (15)
[+] upperalphaspecialnum: 00% (6)
[+] upperalphaspecial: 00% (1)
[+] special: 00% (1)

[*] Advanced Mask statistics ...

[+] 2071717121?1: 16% (5869)
[+] 2071717121212121: 09% (3554)
[+] 212121217217217?1: 09% (3516)
[+] 2171717121212d?2d: 05% (1863)
[+] 212121217121212121: 03% (1328)
[+] 2071717212121212d: 02% (973)
[+] 21212121717d: 02% (931)
[+] 7d?7d?7d?d?d?d: 02% (930)
[+] ?2121217217172d?2d: 02% (873)
[+] 2121212171?212d: 02% (803)
[+] ?712121217d7d?d?d: 02% (737)
[+] 2121212172171?212121721: 01% (690)
[+] 21?71721717171712d?d: 01% (663)
[+] ?21?212121717d?d?d: 01% (612)
[+] 717171712d?d: 01% (606)
[+] 21?21212171: 01% (545)
[+] 212121217212121212d: 01% (488)
[+] ?2121217171?d?d?d?d: 01% (474)
[+] 20717171212121212d?2d: 01% (419)
[+] ?71?1217d7d?d?d: 01% (382)
[«*] Saving Mask statistics to ../../ analysis/pack/masks/sony.csv

51

Appendix L

Pack - Yahoo

[?] Psyco is not available. Install Psyco on 32—bit systems for
faster parsing.
[*] Analyzing passwords: ../../lists/yahoo/passwords/sorted.txt
[+] Analyzing 100% (442838/442838) passwords
NOTE: Statistics below is relative to the number of analyzed
passwords , not total number of passwords

[*] Line Count Statistics ...

5: 01% (5322)

[+] 8: 26% (119134)
[+] 6: 17% (79628)
[+] 9: 14% (65968)
[+] 7: 14% (65608)
[+] 10: 12% (54761)
[+] 12: 04% (21729)
[+] 11: 04% (21219)
]

[*x] Mask statistics ...

[+ stringdigit: 41% (185311)
[+ allstring: 34% (153410)
[+ alldigit: 05% (26080)
[+ othermask: 05% (25039)
[+ digitstring: 05% (24962)
[+ stringdigitstring: 04% (18676)

]
]
]
]
]
]
[+] digitstringdigit: 01% (4647)
] stringspecialdigit: 00% (2362)
] stringspecial: 00% (1112)
] stringspecialstring: 00% (927)
] specialstringspecial: 00% (168)
] specialstring: 00% (127)
] allspecial: 00% (17)
[*] Charset statistics ...
[+] loweralphanum: 50% (224086)

52

loweralpha:

numeric :
mixedalphanum
loweralphaspecialnum:
mixedalpha:
upperalphanum:
mixedalphaspecialnum:
loweralphaspecial:
upperalpha:
mixedalphaspecial:
upperalphaspecialnum:
upperalphaspecial:
special:

Advanced Mask statistics ..
2121217212121 :
212121212121 71?1:
202121212121 71:
2712121?2121212d?2d:
20212121212172121°?1:
212121?212121?21212d72d:
7d?d?d?d?d?d:
2712121212121 ?212d:
2021212121212121°21721:
2121212172121712d?d:
71?2121?21?2d?2d?d?d:
212121?21?212d?d:
71?2121?721?12d?d?d:
2121212172121 72d:
2121212121 ?2d:
21212121721?217d?2d?d:
2121212172121?21?21°2d:
2712121712121?2d?d?d?d:
7121?21?12d?d:
21?7121?71712d?7d?d?d:
7d?d?d?d?d?d?d?d:
202172121217212121721°21°721:
20212172121212121212121°71:

Saving Mask statistics to
csv

33%
05%
05%
01%
01%
00%
00%
00%
00%
00%
00%
00%
00%

09%
07%
06%
04%
03%
02%
02%
02%
02%
02%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%
01%

o

53

(146512)
(26080)
(23233)
(6289)
(5122)
(3416)
(3349)
(2190)
(1776)
(496)
(223)
(49)
(17)

(40693)
(32438)
(29129)
(20315)
(16185)
(12631)
(12583)
(10620)
(10310)
(10281)
(8394)
(8174)
(7123)
(7122)
(6452)
(6109)
(6053)
(5880)
(5756)
(5701)
(5285)
(4964)
(4888)

/ analysis/pack/masks/yahoo.

Appendix M

Cracking System Benchmarks

Hash Algorithm Speed (Passwords / Second)
MD5 13006.5M/s
Joomla 10658.0M/s
SHA1 5533.9M/s
MSSQL(2000) 4885.3M/s
phpass, MD5(Wordpress), MD5(phpBB3) 5482.2k/s
mdScrypt, MD5(Unix), FreeBSD MDS5, Cisco-10S MDS5 | 8954.3k/s
NThash, NTLM 17183.5M/s
Domain Cached Credentials, mscash 9302.1M/s
SHA256 2246.0M/s
descrypt, DES(Unix), Traditional DES 154.7M/s
SHAS512 242.9M/s
sha512crypt, SHA512(Unix) 33174/s
LM 2382.1M/s
Oracle 7-10g, DES(Oracle) 570.6M/s
berypt, Blowfish(OpenBSD) 8519/s

Table M.1:

54

Appendix N

Masks only occurring in one dataset

gamigo NNNM?au?d?d?d
rockyou 7d?d?d?d?d?d?d?d?d?d
rockyou 7d?d?d?d?d?d?d?d?d
gamigo NN2ANN2ANNNN
gamigo NNN212d2dNNNN
gamigo NN2ANANNNNN
gamigo NNANNN12d2dN
gamigo NN2AANNNNNN
gamigo Nd2dNNN21212121
gamigo 2d12d21NNNNNAN
gamigo 2d2d212 NN NN
gamigo NNN2dWANNNNN
gamigo 2dNNdNNNNNN
gamigo 2dNNNANNNNN
gamigo dNNNNN2dNN
battlefieldheroes NNNN7d?d2d
gamigo NNNN12d2dNNN
gamigo dANNNAN212121
gamigo NN2ANNNN2dNN
phpbb 7d?d?d?d
gamigo NNANNN21N2d2d 21
Table N.1:

55

Appendix O

Masks occurring in more than one
dataset

56

LS

Mask Datasets | Percentage | Cumulative percentage | G Key space Cracking time per mask (days)
NN 2 1.45 1.45 0.32 | 456,976 0.00
?d?d?d?d?d?d 10 4.4 5.85 2.74 | 1,000,000 0.00
7d?7d?d?d?d?d?d 5 1.74 7.59 0.26 | 10,000,000 0.00
NNANN 5 2.64 10.23 0.9 | 11,881,376 0.00
N21717d?d?d 2 1.27 11.5 0.2 | 17,576,000 0.00
NN21212d2d 6 1.62 13.12 0.31 | 45,697,600 0.00
7d?d?d?d?d?d?d?d 9 2.54 15.66 1.5 | 100,000,000 0.00
NNNNN2 6 1.79 17.45 0.42 | 118,813,760 0.00
N21N?7d?d?d?d 3 1.13 18.58 0.12 | 175,760,000 0.00
NNNNNN 10 9.87 28.45 4.6 | 308,915,776 0.00
NNNNN2d2d 10 1.72 30.17 0.59 | 1,188,137,600 0.00
NNNNNN2d 6 1.71 31.88 0.48 | 3,089,157,760 0.00
NN?1217d2d?d2d 9 1.77 33.65 0.5 | 4,569,760,000 0.00
NNANANNN 10 6.76 40.41 2.7 | 8,031,810,176 0.00
NN121717d2d7d 7 1.68 42.09 0.63 | 11,881,376,000 0.00
NNN2121712d2d 10 3.7 45.79 1.6 | 30,891,577,600 0.00
NANNNNN 9 1.88 47.67 0.69 | 80,318,101,760 0.00
NNNNN2d2d?d?d 5 1.2 48.87 0.13 | 118,813,760,000 0.00
NANNNNNN 10 7.71 56.58 2.35 | 208,827,064,576 0.00
NNN2121717d2d2d 2 1.59 58.17 0.21 | 308,915,776,000 0.00
NNAN171MN2dd 7 1.6 59.77 0.36 | 803,181,017,600 0.00
NANNNNNN2d 4 1.25 61.02 0.12 | 2,088,270,645,760 0.00
NNANNNd2d?2dd | 2 1.23 62.25 0.1 | 3,089,157,760,000 0.00
NAANNNNNN 10 3.48 65.73 0.77 | 5,429,503,678,976 0.00
NNANNNNN2Ad 5 1.46 67.19 0.7 | 20,882,706,457,600 0.02
NANNNNANNNN 9 2.28 69.47 0.46 | 141,167,095,653,376 0.13
NANNNANNNNNN 6 1.31 70.78 0.26 | 3,670,344,486,987,780 | 3.27
NANNNNNNNNN | 4 1.32 72.1 0.18 | 95,428,956,661,682,200 | 84.96

Table O.1:

Cracking the masks occurring in more than one dataset

[]
o O

(6]
o

N
o

w
o

N
o

Cracking time (days)

=
o

o

1 6 8 101213 16 17 19 28 30 32 34 40 42 46 48 49 57 58 60 61 62 66 67 69 71 72

Percentage cracked passwords

Figure O.1: Cracking the masks occurring in more than one dataset

Cumulative percentage

80
70
60
50
40
30
20
10
0

A A - R - s R - R - A A i

& 5 T ™ T T DA O TR T T TR0 T TR DT o

g(\.(\ﬁ(\.g(\.xnggxn2(\.1;(\.&(\.&;(\.&1212

~ffcsfc Pzl lcrlcseaecsc

o = A Sl S s B il B S S s = S Sl S~ = S S i S~ = S S S S S oot

S % A S RS A R T S S R o R S o S R o A s

~ oo =~ & &= e Tl i N R R i e

5 o o [~ &~ &= e e S e S S T e SR S

= o ~ =~ T &~ = oSt RETE

~ o~ &~ & e T [S

o o [o ~ ~

o~ ~ =

Figure O.2: Cracking the masks occurring in more than one dataset cumulative percentage

Benchmark passwords/second | Total percentage | Total key space Days to crack

13,000,000,000 72.1 99,273,538,380,506,200 | 88.38

Table O.2:

58

Appendix P

Masks occurring in more than one
dataset - without three largest masks

59

09

Mask Datasets | Percentage | Cumulative percentage | G Key space Cracking time per mask (minutes)
NNNN 2 1.45 1.45 0.32 | 456,976 0.00
7d?d?d?d?d?d 10 4.4 5.85 2.74 | 1,000,000 0.00
?d?d?d?d?d?d?d 5 1.74 7.59 0.26 | 10,000,000 0.00
NNANN 5 2.64 10.23 0.9 | 11,881,376 0.00
N21717d?d?d 2 1.27 11.5 0.2 | 17,576,000 0.00
NNNN2d?d 6 1.62 13.12 0.31 | 45,697,600 0.00
7d?d?d?d?d?d?d?d | 9 2.54 15.66 1.5 | 100,000,000 0.00
NNN217172d 6 1.79 17.45 0.42 | 118,813,760 0.00
NN1N?d?d?d?d 3 1.13 18.58 0.12 | 175,760,000 0.00
NANNNN 10 9.87 28.45 4.6 | 308,915,776 0.00
NANNN2d2d 10 1.72 30.17 0.59 | 1,188,137,600 0.00
NNNNNNd 6 1.71 31.88 0.48 | 3,089,157,760 0.00
NN?1217d?d?d72d 9 1.77 33.65 0.5 | 4,569,760,000 0.01
NANNNNN 10 6.76 40.41 2.7 | 8,031,810,176 0.01
NN121717d2d7d 7 1.68 42.09 0.63 | 11,881,376,000 0.02
NNN2121717d2d 10 3.7 45.79 1.6 | 30,891,577,600 0.04
NNANNNN 9 1.88 47.67 0.69 | 80,318,101,760 0.10
NANNN2d?2d?d?d 5 1.2 48.87 0.13 | 118,813,760,000 0.15
NANNNNNN 10 7.71 56.58 2.35 | 208,827,064,576 0.27
NANNN17d2d2d 2 1.59 58.17 0.21 | 308,915,776,000 0.40
NANNN1N?dd 7 1.6 59.77 0.36 | 803,181,017,600 1.03
NANNNNNN2d 4 1.25 61.02 0.12 | 2,088,270,645,760 | 2.68
NNA121717d2d?d2d | 2 1.23 62.25 0.1 | 3,089,157,760,000 | 3.96
NAANNNNNN 10 3.48 65.73 0.77 | 5,429,503,678,976 | 6.96
NAANNNNNANM | 5 1.46 67.19 0.7 | 20,882,706,457,600 | 26.77

Table P.1:

Cracking the masks occuring in more than one dataset

Yo}
o

[ole]
o

N
o o

%)
o

w b
o O

NN

Cracking time (minutes)

[Eny
o

%)

1 6 8 10 12 13 16 17 19 28 30 32 34 40 42 46 48 49 57 58 60 61 62 66 67
Percentage cracked passwords

o

Figure P.1: Cracking the masks occurring in more than one dataset without the three largest masks

Cumulative percentage

80

60
50
40
30
20
10

21217171

?d?d?d?d?d?d

?d?d?d?d?d?d?d
?RI?IRI?I

?1RIIIIPd
RIRIRIPI?I

?1?1?1?d?d?d
?1?1?171?d?d

?d?d?d?d?d?d?d?d
RIPIRIRIZII

?1?1?1?d?d?d?d
?RI?I?I?1?d?d
?1RI?IRIPI?1?d
?1?1?1?1?d?d?d?d
?RI?I?1?1?d?d?d
?IRIRIR1RI?1?d?d
2RIR1IR1?171717d
?R1?I?1?1?7d?d?d?d
2RIRIRRIPIRIPI
?1?1R1?1?1?1?d?d?d
?RIPIRIR1?1?1?d?d
RIPIRIRIIPI?IR
PRIPIRIRIRI?IRIRI

?RI?I?I?1?1?d?d?d?d
PRIPIRIPII?I?I?H?d

Figure P.2: Cracking the masks occurring in more than one dataset cumulative percentage without
the three largest masks

Benchmark passwords/second | Total percentage | Total key space Minutes to crack
13,000,000,000 67.19 33,070,136,182,896 | 42.40

Table P.2:

61

Appendix Q

Comparison of systems

62

€9

Whitepixel D3adOne - Project Erebus v2.5 Epixoip TNO

Software Whitepixel V2 oclHashcat-lite v0.10 oclHashcat-lite v0.11 oclHashcat-lite-0.15
Hardware 4x HD 5970 (dual GPU) 8x HD 7970 10x HD 7970 2x HD 6970

4x HD 5970 (dual GPU) 1x HD 7970

3x HD 6990 (dual GPU) 1x 17 3820

1x HD 5870 1x OCZ Vector 256GB

2x 1TB HDD

Speed (MD5 | 33.1 billion 74.2 billion 180 billion 16 billion
password/second)
Cost < $3,000 >$10,000 >$20,000 < $2,000
Date December 14, 2010 July 17, 2012 December 3, 2012 April 18,2013
Power - - 7 kW < 800 Watt
consumption
Remark The oldest system. The software | Uses SSDs with rainbow tables and | The only distributed GPGPU | Our system.

patched optimizations directly in the
OpenCL machine code.

dictionaries.

Figure Q.1:

password hash cracking solution
found.

i

Appendix R

MDS pseudocode

//MDS5 Mainloop:
for i from 0 to 63
if 0 < i < 15 then
F := (B and C) or ((not B) and D) < bitselect
g = i
else if 16 < i1 < 31
F := (D and B)or ((not D) and C) + bitselect
g = (5xi+1)modl6
else if 32 < 1 < 47
F := B xor C xor D
g = (3%x1+5) mod 16
else if 48 < 1 < 63
F := C xor (B or (notD))
g = (7*1) mod 16

dTemp := D
D :=C
C :=B
B := B + leftrotate((A+F+K[i]+M[g]),s[i]) < bitshift
A := dTemp
endfor

64

Appendix S

Hashcat’s default bruteforce mask
increment mode

65

99

User specific charset: N 72 73 d
Hashcat charset: N2d?u | N2d | N?d*!1$@_ | d
Key space 62 36 | 41 10
Benchmark used (passwords/second) 13,000,000,000

Time to bruteforce complete mask (years) 2871

Table S.1:

Masks Keyspace Crackingtimepermask(minutes) | Cumulativecrackingtime
71 62 0,00 0,00

172 2232 0,00 0,00

217272 80352 0,00 0,00

212727272 2892672 0,00 0,00
2172727272 104136192 0,00 0,00
17272727272 3748902912 0,00 0,00
21727272727272 153705019392 0,20 0,20
2172727272727273 6301905795072 8,08 8,28
217272727222722373 258378137597952 331,25 339,54
21727272727272737373 10593503641516000 13581,41 13920,95
2172222272727273737373 105935036415160000 135814,15 149735,10
21222222727272237373232d? 1059350364151600000 1358141,49 1507876,59
21222222727272737373232d2d 10593503641516000000 13581414,93 15089291,52
217292727272722373273237d7d?d 105935036415160000000 | 135814149,25 150903440,77
217222727272722327373737d7d?d?d | 1059350364151600000000 | 1358141492,50 1509044933,27

Table S.2:

Appendix T

Per position letter frequency heatmaps

67

89

Percentual distribution

HO0-5 m5-10 m10-15

position 7
position 6
position 5
position 4
position 3
position 2

position 1

w - + e o © < o X oo S5 o) > /W

character

Figure T.1: The per position character distribution of passwords

69

m0-5 m510 ®m10-15 m15-20

position 7
S
S position 6
S
n . .
= position 5
e
2
o position 4
()
2
c position 3
]
o
5 .
& position 2
position 1
© (V) — (@) = c " - + £ O © e o X oo > o) > — %

character

Figure T.2: The per position character distribution of English text

	Abstract
	Introduction
	Background
	Related Work
	Research – Password Patterns
	Methodology
	Results

	Engineering - Password Cracking Setup
	Design - Password strength analysis demonstrator
	Conclusions
	Recommendations
	References
	Evaluation
	dictclean.php
	Dataset remarks and numerals
	Pack - 62000
	Pack - Battlefield Heroes Beta
	Pack - Bitcoin
	Pack - Gamigo
	Pack - Linkedin
	Pack - phpBB
	Pack - RockYou
	Pack - Rootkit.com
	Pack - Sony
	Pack - Yahoo
	Cracking System Benchmarks
	Masks only occurring in one dataset
	Masks occurring in more than one dataset
	Masks occurring in more than one dataset - without three largest masks
	Comparison of systems
	MD5 pseudocode
	Hashcat's default bruteforce mask increment mode
	Per position letter frequency heatmaps

