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EXPLAINING AND RECTIFYING AHP REVERSALS

Rank reversal can occur in the Analytic Hierarchy Process when
alternatives are added or deleted. Recently, it was found that removing a
non-discriminating criterion could cause the same phenomenon. This paper
offers an explanation of these rank reversals and shows how they can be
avoided through a link between the normalization and weighting processes.

Introduction

It has long been known with the Analytic Hierarchy Process (AHP) that addition or
deletion of a copy of an existing alternative can cause the rank of other alternatives to reverse
(Belton and Gear, 1983). Recently, Finan and Hurley (2002) discovered that removing a
non-discriminating criterion from a multilevel AHP hierarchy causes the same phenomenon.
This makes AHP appear deficient, since such removals should have no effect upon the final
rank order. It has also been known that addition or removal of alternatives not being copies
of existing alternatives can cause ranks to reverse (Saaty, 2000).

A non-discriminating criterion exists when a decision-maker is indifferent among the
alternatives when they are compared on that criterion. Since non-discriminating criteria do
not differentiate between the alternatives, it is presumably safe to eliminate them from further
consideration. Similarly, the addition or removal of an alternative that is independent of
other alternatives should have no effect on the final ranking of alternatives.

We take as a starting point a previously published paper by Finan & Hurley (2002).
In that paper, they denote a non-discriminating criterion as a “wash criterion” and investigate
how the final rank order of the alternatives is affected by removing such a criterion from an
AHP hierarchy. They differentiate between single-level hierarchies that have only one level
of criteria below the goal, and multilevel hierarchies, that have two or more criteria levels.
They show that, assuming a perfectly consistent decision-maker, the final rank order of the
alternatives is never affected by removing a non-discriminating criterion from a single-level
hierarchy. But using a simple example of a two-level hierarchy, they show that in multilevel
hierarchies, leaving out a non-discriminating criterion can reverse the final rank order. This is
an interesting observation, since most literature on rank reversal in AHP relates to the
addition or deletion of alternatives, not criteria (ref. Saaty, 2000 and Belton & Stewart, 2002

).

Finan & Hurley conclude that, since any hierarchy with multiple levels of criteria can
be modelled as a hierarchy with a single level of criteria, the methods of synthesizing a
multilevel AHP hierarchy must be incorrect. Their comments add to the challenge of AHP



methodology, but they provide no explanation for the defect nor do they offer any type of
resolution. In this paper we do both.

We use the example provided by Finan and Hurley to show why rank reversals occur.
We do this for both the addition/removal of alternatives and for the synthesis of a two-level
hierarchy where a non-discriminating criterion has been removed. We suggest that there is a
necessary link between the normalization and weighting processes and that Finan & Hurley
(and others) have failed to understand the meaning of the unit of measure in a multiple level
hierarchy. We show that the rank reversal problem is avoided by freezing the unit of measure
or by proper adjustment of the appropriate weights if the unit of measure changes. We also
prove that rank reversal will never occur when removing a non-discriminating criterion from
a single-level hierarchy, even if the decision-maker is not perfectly consistent. We end by
discussing whether or not one should remove non-discriminating criteria in the first place.

The Finan and Hurley Example

For our calculations and illustrations, we adopt Finan & Hurley’s example of a
hierarchy with two levels of criteria below the goal G: two main criteria (C,, C;) on the first
level and three sub-criteria of C; (Cyy, C», C3) and two sub-criteria of C, (C,;, Cy;) on the
second. Their respective local weights are shown in the boxes. The local priorities of two
alternatives A| and A, are shown as well. Below sub-criteria, the global weights are in italics.

Figure 1: Example of a Hierarchy with One Non-discriminating Sub-criterion

G

goal

C, (0.55) C, (0.45) main criteria

Ci (06) Ci, (02) Cis (02) Cyy (05) Cy (05) sub-criteria

(0.33) (0.11) 0.11) (0.225) (0.225) global weights

of sub-criteria

Ay 0.5 0.8 0.4 0.2 0.6 local priorities
As: 0.5 0.2 0.6 0.8 0.4 of alternatives

First, we compute the initial composite priorities of the alternatives as follows, using
additive synthesis:

A, = {0.5%0.6+0.8*%0.2+0.4*0.2} *0.55 + {0.2*0.5+0.6*0.5} *0.45 = 0.477 (1
A, = {0.5%0.6+0.2*%0.2+0.6*0.2}*0.55 + {0.8%0.5+0.4*0.5}*0.45 = 0.523

From this follows that A, is 0.523/0.477=1.096 times preferred to A;.

1. Example of Rank Reversal with Addition of an Alternative



Given that the above example contains only two alternatives, the deletion of an
alternative cannot be considered for the rank reversal situation. But if we add a third
alternative, the local weights of the alternatives could be as follows:

Cu Ci Cis Ca Ca
Ay 0.333 0.72 0.12 0.1 0.54
As: 0.333 0.18 0.18 0.4 0.36
Aj: 0.333 0.1 0.7 0.5 0.1

In AHP fashion, these local priorities are normalized to sum to one. Although A, and
A, have new local values, they have not changed and they maintain their original relative
ratios. The new alternative that was added, A;, is relevant to the problem, because it
dominates on two of the criteria, C;3 and C,;. The composite priorities of the alternatives will
now be:

Ay = {0.333%0.6+0.72%0.2+0.12%0.21 *0.55 + {0.1*0.5+0.54*0.5}*0.45 = 0.346 (2)
A, = {0.333%0.6+0.18*0.2+0.18*0.2}1%0.55 + {0.4*0.5+0.36*0.5}*0.45 = 0.321
As = {0.333%0.6+0.1 *0.2+0.7 *0.2}*0.55 + {0.5*0.5+0.1*0.5} * 0.45=0.333

From this follows that A, is 0.346/0.321=1.078 times preferred to A,. Rank reversal
has occurred even though nothing changed between A; and A,. Finan and Hurley did not
consider this type of reversal, but it is the standard type well known in AHP literature when
alternatives are added or deleted (Saaty, 2000; Belton & Stewart, 2002).

2. Example of Rank Reversal with Removal of a Non-discriminating Criterion

The reversals that Finan and Hurley uncovered were those caused by the removal of a
non-discriminating criterion. Notice in Figure 1 that the alternatives under C;; are equally
attractive on that sub-criterion -- C;; is a non-discriminating or wash criterion. If Cy; is
removed from the hierarchy and C,, and C,; are re-normalized to the unit sum, C;; and Cj3
will get higher weights: 0.5 each. The new composite priorities of the alternatives with Cy;
removed are as follows (these are Finan and Hurley’s findings):

A, = {0.8%0.5+0.4%0.51%0.55 + {0.2%0.5+0.6%0.5}*0.45 = 0.51 3)
Ay = {0.2%0.5+0.6%0.51 *0.55 + {0.8%0.5+0.4*0.5}%0.45 = 0.49

Now, A, is 0.51/0.49=1.041 times preferred to A,; their ranks are reversed compared
with the base results above. This result is similar to the addition or removal of an alternative,
yet no such change was made.

3. Example of No Rank Reversal with Removal of a non-discriminating Criterion from
a Single-level Hierarchy

In AHP synthesis, it is possible to first compute global weights of the sub-criteria by
successive multiplication of the local criteria weights and then multiply the local priorities of
alternatives by those global weights. This boils down to creating a single-level hierarchy
where only the lowest level of criteria (the former sub-criteria in our example) is shown with
its global weights. In such a single-level hierarchy there would be no difference between local
and global weights of the criteria. These global weights of our example are shown in italics in
Figure 1.

Taking Cy; into account in this single level hierarchy, the composite priorities are:

A;=0.5%0.33 +0.8*%0.11 + 0.4*0.11 + 0.2*0.225 + 0.6%0.225 = 0.477 “)
A;=0.5%0.33 + 0.2*¥0.11 + 0.6*%0.11 + 0.8*0.225 + 0.4*0.225 = 0.523



The results are of course identical to (1). A, is 0.523/0.477=1.096 times preferred to A;.

Next, we remove non-discriminating C;; and compute new composite priorities by
simply subtracting 0.5%0.33=0.165 from the previous ones. Thus:

A;=0477-0.165=0.312 5)
A, =0.523-0.165=0.358.

The new ratio is 0.358/0.312=1.147, thereby heightening the difference between the
two alternatives and making A, more pronounced as the best alternative. We observe no
reversal.

We could have first re-normalized the remaining global weights and then computed
the weighted sums, as follows:

A;=0.8%0.1642 + 0.4*0.1642 + 0.2*0.3358 + 0.6*0.3358 = 0.4657 6)
A;=0.2%0.1642 + 0.6*0.1642 + 0.8%0.3358 + 0.4*0.3358 = 0.5343

The composite priorities are of course higher owing to the re-normalization (which
heightens the weights), but their rank order is preserved and A2 is still 1.147 more preferred
than Al.

We shall now show that in a single-level hierarchy rank reversal will never occur
when removing a non-discriminating criterion, even if the decision-maker is not perfectly
consistent'.

Suppose that we have a set J= {0, 1, ..., n} of nt+1 criteria in an AHP hierarchy with
one level of criteria below the goal. 0 indexes the non-discriminating criterion. The reduced

set is denoted by J = {1, ..., n}. We have criteria weights ¢; (=0, ..., n) for J, with Xc =1,
and ¢; (=1, ..., n), with X ¢, =1 for the reduced set J. Assuming that we already know the

values of ¢;, with all ¢;<1, then it is reasonable to conclude that ¢;/c; = ¢;/c; for i, j € {1, ...,

n}. Define a constant & such that ¢;/c; = ¢; /c; = @ for i, j € {1, ..., n}. From igj =1=6
J=

icj = 6(1 - co), it follows therefore that 8= 1/(1 - ¢,), and therefore ¢; = ¢; / (1 - ¢o) forj €

j=1

{1, ..., n}.

Let the local priority of an alternative x (x=1, ..., m) on a criterion i be denoted by u,;
and its composite priority for the set J be denoted by w, and for the reduced set J by w,. In
particular, we have u,y = 1/m for all x € {l, ..., m} since the criterion indexed by 0 is non-
discriminate. Using additive synthesis, we compute the following difference between the
composite priorities of alternatives x and y for the full set J (see also Finan & Hurley, 2002):

n n
Wy-Ww, = Eockuxk - E,Ockuyk
n n
=co/m+ T(l—cy)epuy - colm- Z(1-cy)eu
k=1 k=1

= (I-c) { Xeguy - zgk”yk !
k=1 k=1

= (I=cy) {we - wy}

! We are indebted to an anonymous researcher for bringing this to our attention.



Since (1 - ¢) > 0, the signs of (w, - w,) and (w, - w,) are the same, and, therefore, the
rank order is not affected by removing the non-discriminating criterion. Note that we have
never used the assumption of a perfectly consistent decision-maker. The above can of course
be extended to removal of more than one non-discriminating criterion.

Avoiding Reversals on Addition or Deletion of Alternatives.

Normalization in AHP methodologies, whether local or global priorities, is generally
to a unit sum total. Through successive downward rescaling of local priorities to get global
weights, the unit sum of the local weights are converted into a portion of the unit sum of the
entire hierarchy. Notice in Figure 1 that this unit of the total hierarchy is found at the
topmost node, the Goal, and that the sum of the global priorities on any level below the Goal
equals that unit. This implies that the unit for the whole hierarchy is the topmost goal and
that all partial values below, alternatives and criteria alike, contribute to that unity.
Subsequent synthesis to get the total contribution of each alternative results in the composite
alternative values equalling unity (e.g. 0.477 + 0.523 =1 in Figure 1 and (1)).

The Source of the Reversal Problem

What is rarely recognized with unit sum normalization is that any different re-
normalization produces a new unit of measure. To realize this, take into account a single
criterion situation where it is well known that rank reversal never occurs (Saaty, 1990). Let
the set {Xj | j=1, 2, ..., m} be ratio values of a single criterion. The local priority weights of

an alternative x (x=1, ..., m) will be uj =X, /Z"_ X ;. If we add alternative ratio value Xy
to the choice set and re-normalize, the new local priority for an alternative will be u;
=X, /(ZT,X,+X,.,). With X;.; added, the priority unit in which each u;is measured will
be different, since X, /X7 X, # X, /(ET_ X, + X

this single criterion situation, the renormalization causes the unit of measure to change.

) . Although ratios are maintained for

m+l

For example, consider C,; of Figure 1 to be the single criterion that represents the
totality of the problem. C,; would take the unit value of 1 and A; and A, would take the
relative ratio values of 0.2 and 0.8, respectively. The sum of two alternatives comprises the
unit. Next, consider the addition of Aj that is 20% better than A, on C,;. If we rescale and
re-normalize the ratio values to make the single criterion sum to one, then the new priorities
for the alternatives are A; = 0.1, A, = 0.4, and A; = 0.5. We have a new unit of measure,
because A; and A, no longer equal their original values. They are one-half of their former
selves with the same ranks and ratios.

So, what is the implication of this when Aj is added to the multiple criteria hierarchy
of Figure 1? The addition and re-normalization with Aj; at the bottom level of the hierarchy
causes all local priorities below criteria to be expressed in a new unit of measure (original
local priorities of alternatives take on new values). Also, the addition of Aj; brings more
influence to the total hierarchy — in effect, the overall unit of the topmost goal no longer
measures the criteria contributions of A; and A, but also As. Since the former criteria
weights no longer represent the correct relative amounts that each alternative brings to the
goal, using them distorts the global priorities of alternatives in a manner that upsets original
ratios, possibly leading to rank reversals. It is the overlooking of this intractable link between
renormalization and criteria weights that accounts for the rank reversal problem. What one
should take into consideration is the meaning of a criterion weight.



As shown by Schoner et. al. (1997) and Choo et. al. (1999), there is a necessary link
between the normalization process and the weighting process. Initially in the hierarchical
composition process, all local weights and priorities are normalized with respect to the
totality of each set they are part of; the totality thus gets the unit value for many local ratio
scales. In this respect, the local weights that sum to unity below each node can be visualized
as a whole series of little hierarchies (node and sub-nodes) that have not yet been synthesised
into the overall hierarchy (and an overall ratio scale). The unit weight of each sub-criterion
pertains to the totality of the alternatives it is covering; the unit weight of each main criterion
pertains to the totality of the sub-criteria it is covering.

It is subsequently the process of synthesis via hierarchical weighting that transforms
the local weights into global weights that are in terms of a unit of the whole hierarchy. In
effect, the former unit value that each node represented for the totality of directly covered
items is re-scaled to be in terms of an overall hierarchical unit representing all alternatives
and all criteria. Although this proportional transformation of local weights yields a new unit
of measure, the global weights are still weighing the relative importance of the totalities they
are referring to. The global weight of each sub-criterion pertains to the totality of the
alternatives it is covering; similarly, the global weight of each main criterion pertains to the
totality of the sub-criteria and alternatives it is covering.

Maintaining a Benchmark Unit of Measure Upon Addition or Deletion of Alternatives

One way to maintain original ratios and therefore ranks with the addition of A; is to
preserve the original unit of measure and allow the sum of all composite weights of the
alternatives to add up to more than unity (e.g. 0.477+0.523+A;>1). In doing this, we would
consider Figure 1 and its unit as a fixed, base hierarchy to which all other alternatives are
evaluated. Rather than re-normalize local alternative priorities upon the addition of Aj;, we
could simply scale A; and any other new alternative so that it takes its relative value from
existing alternatives that are deemed to have correctly established priorities. Those existing
alternatives are benchmarks for establishing the priorities of other alternatives (Wedley et al.,
1996). For example, the following situation derives A; without upsetting the ratio of Ay/A;.

Cn Ci Cis Ca Cy
Ap: 0.5 0.8 0.4 0.2 0.6
Ay 0.5 0.2 0.6 0.8 0.4
Aj: 0.5 0.111 2.333 1.0 0.111

Notice that A; and A, have not been renormalized, that A; has been placed on the
same relative scale and unit as A; and A,, and that this leads to the sum of local weights being
greater than 1. Composite priorities would now be:

A, = {0.5%0.6+0.8%0.2+0.4%0.2}%0.55 + {0.2%0.5+0.6%0.51%0.45 = 0.477 (7
As = {0.5%0.6+0.2%0.2+0.6*0.2} *0.55 + {0.8*0.5+0.4%0.5}*0.45 = 0.523
A; = {0.5%0.6+0.111%0.2+2.333%0.21%0.55 + {1.0%0.5+0.111*0.5}*0.45 = 0.684

The original composite units of A; and A, are unchanged, but the addition of A; has
expanded the base hierarchy to a total of 1.684 units. This is primarily because Aj; is so strong
on Cy;. Aj has, in fact, become the best choice, while A; and A, keep their original ratios and
ranks. Had we renormalized to unit sum, then the incorrect priorities of (2) would have been
reproduced.



Adjusting Criteria Weights Upon Addition or Deletion of Alternatives

Another way to preserve rank is to rescale the new alternative into the sum-to-one
convention (see Example 1), but recognize that the rescaling creates a new unit of measure
for the hierarchy. The inclusion of A; changes the size of the hierarchical pie and we now
must recognize that there is a link between the normalization process and criteria weights.
Notice in the previous example, A; dramatically increases the supply of C,;. More C;; and
other criteria are brought to a hierarchy that gets its weights relative to items that are in it.
With Aj in Cy;, for example, the amount of Cy; in the hierarchy has gone up by (1+2.333)/1
relative to its former self. The same applies to all other criteria. Accordingly, the global
weights of criteria should be boosted by this relative amount and then renormalized to
represent new priorities.

Cll C12 C13 CZI C22
Adjustment 1.5%.6*.55 1.111*2%.55 3.333*%2%55 2*5%45 1.111*.5%.45
Adjusted value  0.495 0.122 0.367 0.45 0.25
Renormalized 0294 0.073 0.218 0.267 0.148

With these adjusted criteria weights, the composite priorities for the alternatives are:

Ay = {0.333%0.294+0.72*0.073+0.12%0.218} + {0.1%0.267+0.54*%0.148} = 0.283  (8)
A, = 0.333%0.294+0.18*0.073+0.18*0.218} + {0.4%0.267+0.36*0.148} = 0.311
As = {0.333%0.294+0.1 *0.073+0.7 *0.218} + {0.5%0.267+0.1 *0.148} = 0.406

Again, Aj is the best choice, A, is still better than A;, and more importantly, the ratio
A,/A; is still 1.096. Both ratios and ranks are maintained if criteria weights are adjusted to
account for the change in unit upon re-normalization.

Fixed Relationship Between Criteria and Alternatives

A third way to preserve ratios and ranks upon addition or deletion of alternatives
combines ideas from the previous two techniques. Rather than adjust criteria weights upon
renormalization or fix on a benchmark unit of measure, a linking pin approach establishes a
fixed relationship between criteria and alternatives (Schoner et al., 1993). Specific referent
alternatives under each sub-criterion are given the value of unity and criteria weights are
established for these specific alternatives. This relationship or link between criteria and
alternatives is then kept constant. That way, the criteria weights that represent the value of
referent alternatives can be distributed downwards to other alternatives via the ratio of the
other alternatives to the referent alternative. In effect, referent alternatives become links to
distribute the correct portion of each criterion to other alternatives. So long as this linking
alternative remains in the hierarchy with its local priority of unity, it will continue to
distribute hierarchical weights to other alternatives with no effect upon addition or deletion.

Although the best or ideal alternative of each criterion is usually selected as the link,
this is not always necessary. For example, we can make A; the link under all C; and A, the
link under all C,.

Cn Ci Cis Cy Ca
Ap: 1.0 1.0 1.0 0.25 1.5
Ay 1.0 0.25 1.5 1.0 1.0



Aj: 1.0 0.139 5.833 1.25 0.278

Fixed global criteria priorities for these links are
c, =@, /X u,)/ T (@, /2> u,)where il is the selected reference link from A, or A,.

Relative global criteria weights established in reference to the links are derived as follows
using the original priorities of A; and A, respectively (ref. Figure 1):

Cll C12 C13 CZI C22
Adjustment  (0.5/1)*0.33  (0.8/1)*0.11  (0.4/1)*0.11  (0.8/1)*0.225 (0.4/1)*0.225
Adjusted value  0.165 0.088 0.044 0.18 0.09
Renormalized  0.291 0.155 0.078 0.317 0.159

With this fixed relationship, the composite priorities for A; and A, are 0.841 and
0.922 respectively. A, is 0.922/0.841 = 1.096 times better than A, as it should be. When A;
is added, it assumes its priority (A;=1.206) via the fixed relationship between criteria and
referent alternatives. So long as the referent links do not change, additions or deletions have
no effect on other alternatives. If reference alternatives are changed or removed, then it
would be necessary to establish new criteria weights for the fixed relationship between
alternatives and criteria. To avoid this, we recommend referent alternatives be kept fixed.

Avoiding Reversals on Removal of Non-Discriminating Criteria

The cause of reversals when removing non-discriminating criteria from a multilevel
hierarchy is similar to reversals that occur on addition or deletion of alternatives. Removal of
a wash criterion is the same as removal of a portion of the hierarchical unit. If
renormalization takes place thereafter, the former unit of measurement is changed and ranks
can change.

Maintaining a Benchmark Unit Upon Removal of a Criterion

Had we not re-normalized after removing the non-discriminating criterion in (3), then
the original unit of measure would be maintained and the composite results would be:

Ay = {0.8%0.2+0.4*%0.21%0.55 + {0.2%0.5+0.6%0.5*0.45 = 0.312 (10)
Az = {0.2%0.24+0.6%0.21 *0.55 + {0.8*0.5+0.4*0.5}%0.45 = 0.358

We notice that these results with ranks maintained are identical to those obtained in
(5) by similarly not re-normalizing global weights (A,/A;=0.358/0.312=1.147). In (10), we
kept the original normalizations as benchmarks. The removal of C;; heightened the
importance of A,, as we would expect, and the same overall unit maintained ranks, as we
would also expect.

Finan and Hurley’s unexpected reversal in (3) did not account for the necessary link
between the normalization process and the weighting process (Choo et al, 1999). Instead,
they used unit sum re-normalization of the local weights without realizing that the unit of that
sum has changed with the removal of the sub-criterion. With C;; removed, local unit change
upon re-normalization distorts the ratio of the global weights of C,’s criteria set with respect
to those of the C, set, which keep their original weights. This distortion offsets the expected
accentuation of the best alternative (A,) and causes a reversal.



Adjusting Criteria Weights Upon Removal of a Criterion.

When deriving local criteria weights, it is important to consider the totality of the
items below as a reference. Just as the criteria weights should be adjusted upon the re-
normalization of a new set of alternatives, so too should they be adjusted upon re-
normalization with a smaller set of criteria. A change in the set of sub-criteria is the case in
Finan & Hurley’s example reproduced in (3). Leaving out C;; changes C,’s set of sub-
criteria; the new set now is 0.2+0.2=0.4 of its former self. The main criterion C; now
represents a different totality of sub-criteria below. Accordingly, the weight of C; should be
adjusted to 0.55%0.4=0.22 in order to safely re-normalize the remaining local weights of its
sub-set to the unit sum.

The adjusted criterion weight for C; (0.22) remains commensurate to C, (0.45),
although they do not sum to one. Synthesis using the new, normalized local weights of C,
and Cy; (both 0.5) and the adjusted weight for C, produces:

Ay = {0.8%0.5+0.4%0.51%0.22 + {0.2*0.5+0.6%0.5}%0.45 = 0.312 (11)
As = {0.2%0.5+0.6%0.51*0.22 + {0.8*0.5+0.4%0.5}*0.45 = 0.358

We could have C,=0.22 and C,=0.45 re-normalized to sum to one, but this would not
have changed the preference ratio between the two alternatives. A; is 1.147 times preferred to
A, which is the result we would want it to be.

The new values of the global weights can be computed using C,’s adjusted weight
and the new, normalized local weights of C, and C;3 (both 0.5):

C12 = C13 = 022*05 = 011
C21 = sz = 045*05 = 0225

The global weights of Cj,, Cy3, Cp; and Cy, have not changed and neither have the
local priorities of the alternatives. Synthesis again yields composite priorities of 0.312 for A,
and 0.358 for A, with A, 1.147 times more preferred than A,, therefore not showing rank
reversal.

Had C,=0.22 and C,=0.45 been re-normalized to sum to one, then the result C;=0.328
and C,=0.672 would still be commensurate, but with a different unit of measure. Synthesis
using the new, normalized local weights of Ci, and Cy3 (both 0.5) and the re-normalized
weight for C; and C, (after adjustment of C,’s weight) produces:

A= {0.8%0.5+0.4*0.5}*0.328 + {0.2*¥0.5+0.6*0.5} *0.672 = 0.4657 (12)
A, = {0.2%¥0.5+0.6%0.5}*0.328 + {0.8*0.5+0.4*0.5}*0.672 = 0.5343

With global weights, computed from adjusted, fully re-normalized local weights, the
results would be identical to those in (6) where the correct ratio of 1.147 is achieved.

Observations and Conclusion

Of the two types of reversals, we question whether a non-discriminating criterion
should be removed. Our techniques demonstrate that removal of a non-discriminating
criterion accentuates the superiority of the best alternative while maintaining its top rank.



Since its rank remains unchanged, there is no advantage in removing the criterion except to
make the best alternative look better. Such optics should be avoided, because if the wash
criterion was relevant in the first place, then it should be maintained as relevant to the final
solution. Besides, removing a non-discriminating criterion can be dangerous. If the relative
priorities of all alternatives are used to allocate resources, the changed ratios upon removal of
a wash criterion can result in distorted allocations. For the purpose of scientific integrity, our
preference is to diligently define and structure the problem at the outset and then use all
relevant criteria to make the decision, including those that turn out to be non-discriminate.

We note that it is rare for weights to be adjusted upon a change of a set of elements in
an AHP hierarchy. This is not surprising as AHP’s axiom 3, the “independence axiom”
(Saaty, 2000), does not formally require criteria weights to be derived in relation to lower-
level elements and their normalization. The independence axiom states that elements on a
specific hierarchy level are dependent on their parent-elements on the next higher hierarchy
level, but independent of their child-elements (criteria or alternatives) on the next lower level.
We question whether this ever occurs in reality.

We believe that it is better to assume dependence and deal with it properly than to
assume independence and face phenomena like rank reversal that are difficult to justify or
explain. With the Analytic Network Process, this is essentially what happens (Saaty, 1996).
In this paper, we have shown that assuming dependence and acting accordingly prevents
undue rank reversal when an alternative is added or deleted or when a non-discriminating
criterion is removed. The latter situation is particularly striking and has the flavour of the
rank reversal problem of Belton & Gear (1983) where a copy of an existing alternative was
added to the choice set. In both cases, the totality of a set of hierarchy elements was changed,
thereby changing the unit of that totality when re-normalising to the unit sum. Incidentally,
that totality will change regardless of the non-discriminating nature of a criterion being
removed or the identical nature of an alternative being added. As soon as one or more of the
sets of hierarchy elements are changed by adding or removing elements, the appropriate local
weights must be re-considered and probably adjusted to maintain commensurateness and thus
prevent ranks from reversing. In the case of benchmark or linking pin synthesis where the
unit of measure is fixed, such re-adjustment is unnecessary (unless the deletion is the
benchmark or linking pin).

It should be pointed out that, so far, we have used the weaker requirement of rank
preservation rather than ratio preservation that could be applied to AHP. As shown above, the
deletion of a criterion can cause composite ratios to change, although proper weight
adjustment preserves rank. However, if an alternative is added or deleted, the weight
adjustment we have suggested would not have resulted in a change in ratios. The reason for
this differential effect is that the global priorities of the alternatives on each criterion are in
commensurate units. If the alternatives are discrete and independent of one another, then
summation across all criteria does not upset the ratio between existing alternatives. If,
however, we sum across different sub-sets of criteria, the results will be different ratios. In
effect, each addition or deletion of criteria presents a new evaluation problem whereas
addition or deletion of an alternative just changes the choice set in the same evaluation
problem. In both cases, however, the appropriate techniques or adjustments are available to
maintain the integrity of the ranks.
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