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EXPLAINING AND RECTIFYING AHP REVERSALS  
 

 
Rank reversal can occur in the Analytic Hierarchy Process when 
alternatives are added or deleted.  Recently, it was found that removing a 
non-discriminating criterion could cause the same phenomenon.  This paper 
offers an explanation of these rank reversals and shows how they can be 
avoided through a link between the normalization and weighting processes. 

 
 

Introduction 
 

 It has long been known with the Analytic Hierarchy Process (AHP) that addition or 
deletion of a copy of an existing alternative can cause the rank of other alternatives to reverse 
(Belton and Gear, 1983).  Recently, Finan and Hurley (2002) discovered that removing a 
non-discriminating criterion from a multilevel AHP hierarchy causes the same phenomenon.  
This makes AHP appear deficient, since such removals should have no effect upon the final 
rank order.  It has also been known that addition or removal of alternatives not being copies 
of existing alternatives can cause ranks to reverse (Saaty, 2000). 
 
 A non-discriminating criterion exists when a decision-maker is indifferent among the 
alternatives when they are compared on that criterion.  Since non-discriminating criteria do 
not differentiate between the alternatives, it is presumably safe to eliminate them from further 
consideration.  Similarly, the addition or removal of an alternative that is independent of 
other alternatives should have no effect on the final ranking of alternatives.   
 

 We take as a starting point a previously published paper by Finan & Hurley (2002). 
In that paper, they denote a non-discriminating criterion as a “wash criterion” and investigate 
how the final rank order of the alternatives is affected by removing such a criterion from an 
AHP hierarchy. They differentiate between single-level hierarchies that have only one level 
of criteria below the goal, and multilevel hierarchies, that have two or more criteria levels. 
They show that, assuming a perfectly consistent decision-maker, the final rank order of the 
alternatives is never affected by removing a non-discriminating criterion from a single-level 
hierarchy. But using a simple example of a two-level hierarchy, they show that in multilevel 
hierarchies, leaving out a non-discriminating criterion can reverse the final rank order. This is 
an interesting observation, since most literature on rank reversal in AHP relates to the 
addition or deletion of alternatives, not criteria (ref. Saaty, 2000 and Belton & Stewart, 2002 
). 
 

 Finan & Hurley conclude that, since any hierarchy with multiple levels of criteria can 
be modelled as a hierarchy with a single level of criteria, the methods of synthesizing a 
multilevel AHP hierarchy must be incorrect. Their comments add to the challenge of AHP 
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methodology, but they provide no explanation for the defect nor do they offer any type of 
resolution.  In this paper we do both.  

 
 We use the example provided by Finan and Hurley to show why rank reversals occur.  

We do this for both the addition/removal of alternatives and for the synthesis of a two-level 
hierarchy where a non-discriminating criterion has been removed.  We suggest that there is a 
necessary link between the normalization and weighting processes and that Finan & Hurley 
(and others) have failed to understand the meaning of the unit of measure in a multiple level 
hierarchy. We show that the rank reversal problem is avoided by freezing the unit of measure 
or by proper adjustment of the appropriate weights if the unit of measure changes. We also 
prove that rank reversal will never occur when removing a non-discriminating criterion from 
a single-level hierarchy, even if the decision-maker is not perfectly consistent. We end by 
discussing whether or not one should remove non-discriminating criteria in the first place.  
 
 
 

The Finan and Hurley Example  
 

For our calculations and illustrations, we adopt Finan & Hurley’s example of a 
hierarchy with two levels of criteria below the goal G: two main criteria (C1, C2) on the first 
level and three sub-criteria of C1 (C11, C12, C13) and two sub-criteria of C2 (C21, C22) on the 
second. Their respective local weights are shown in the boxes. The local priorities of two 
alternatives A1 and A2 are shown as well. Below sub-criteria, the global weights are in italics. 
 
 

Figure 1: Example of a Hierarchy with One Non-discriminating Sub-criterion 
 
 

 
 
          goal 
 
 
          main criteria 
 
 
 
          sub-criteria 
 
                               (0.33)            (0.11)               (0.11)           (0.225)            (0.225) global weights 
          of sub-criteria 
 
 A1:             0.5                 0.8                   0.4                 0.2                  0.6 local priorities 
 A2:             0.5                 0.2                   0.6                 0.8                  0.4 of alternatives 

 
First, we compute the initial composite priorities of the alternatives as follows, using 

additive synthesis: 
 

A1 = {0.5*0.6+0.8*0.2+0.4*0.2}*0.55 + {0.2*0.5+0.6*0.5}*0.45 = 0.477 (1) 
A2 = {0.5*0.6+0.2*0.2+0.6*0.2}*0.55 + {0.8*0.5+0.4*0.5}*0.45 = 0.523 
 

From this follows that A2 is 0.523/0.477=1.096 times preferred to A1. 
 
1.  Example of Rank Reversal with Addition of an Alternative  

 

G (1) 

C1 (0.55) C2 (0.45)

C22 (0.5) C11 (0.6) C12 (0.2) C13 (0.2) C21 (0.5) 
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 Given that the above example contains only two alternatives, the deletion of an 
alternative cannot be considered for the rank reversal situation.  But if we add a third 
alternative, the local weights of the alternatives could be as follows:  
                  C11                 C12   C13                  C21             C22 
 A1:           0.333               0.72                0.12                 0.1               0.54  
 A2:           0.333               0.18                0.18                 0.4               0.36 

A3:           0.333               0.1                  0.7                   0.5               0.1 
 

 In AHP fashion, these local priorities are normalized to sum to one.  Although A1 and 
A2 have new local values, they have not changed and they maintain their original relative 
ratios. The new alternative that was added, A3, is relevant to the problem, because it 
dominates on two of the criteria, C13 and C21. The composite priorities of the alternatives will 
now be:  
 

A1 = {0.333*0.6+0.72*0.2+0.12*0.2}*0.55 + {0.1*0.5+0.54*0.5}*0.45 = 0.346 (2) 
A2 = {0.333*0.6+0.18*0.2+0.18*0.2}*0.55 + {0.4*0.5+0.36*0.5}*0.45 = 0.321 
A3 = {0.333*0.6+0.1  *0.2+0.7 *0.2}*0.55 +  {0.5*0.5+0.1*0.5} * 0.45 = 0.333 
 
 

 From this follows that A1 is 0.346/0.321=1.078 times preferred to A2. Rank reversal 
has occurred even though nothing changed between A1 and A2.  Finan and Hurley did not 
consider this type of reversal, but it is the standard type well known in AHP literature when 
alternatives are added or deleted (Saaty, 2000; Belton & Stewart, 2002).   
 
2. Example of Rank Reversal with Removal of a Non-discriminating Criterion 
 

 The reversals that Finan and Hurley uncovered were those caused by the removal of a 
non-discriminating criterion. Notice in Figure 1 that the alternatives under C11 are equally 
attractive on that sub-criterion -- C11 is a non-discriminating or wash criterion.  If C11 is 
removed from the hierarchy and C12 and C13 are re-normalized to the unit sum, C12 and C13 
will get higher weights: 0.5 each. The new composite priorities of the alternatives with C11 
removed are as follows (these are Finan and Hurley’s findings): 
 

A1 = {0.8*0.5+0.4*0.5}*0.55 + {0.2*0.5+0.6*0.5}*0.45 = 0.51   (3) 
A2 = {0.2*0.5+0.6*0.5}*0.55 + {0.8*0.5+0.4*0.5}*0.45 = 0.49 
 

 Now, A1 is 0.51/0.49=1.041 times preferred to A2; their ranks are reversed compared 
with the base results above. This result is similar to the addition or removal of an alternative, 
yet no such change was made.   
 
3.  Example of No Rank Reversal with Removal of a non-discriminating Criterion from 
a Single-level Hierarchy 
 

 In AHP synthesis, it is possible to first compute global weights of the sub-criteria by 
successive multiplication of the local criteria weights and then multiply the local priorities of 
alternatives by those global weights. This boils down to creating a single-level hierarchy 
where only the lowest level of criteria (the former sub-criteria in our example) is shown with 
its global weights. In such a single-level hierarchy there would be no difference between local 
and global weights of the criteria. These global weights of our example are shown in italics in 
Figure 1. 
 

 Taking C11 into account in this single level hierarchy, the composite priorities are: 
 

A1 = 0.5*0.33 + 0.8*0.11 + 0.4*0.11 + 0.2*0.225 + 0.6*0.225 = 0.477  (4) 
A2 = 0.5*0.33 + 0.2*0.11 + 0.6*0.11 + 0.8*0.225 + 0.4*0.225 = 0.523 
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The results are of course identical to (1). A2 is 0.523/0.477=1.096 times preferred to A1.  
 

 Next, we remove non-discriminating C11 and compute new composite priorities by 
simply subtracting 0.5*0.33=0.165 from the previous ones. Thus: 
 

A1 = 0.477 - 0.165 = 0.312       (5) 
A2 = 0.523 - 0.165 = 0.358. 

 
  The new ratio is 0.358/0.312=1.147, thereby heightening the difference between the 
two alternatives and making A2 more pronounced as the best alternative. We observe no 
reversal. 
 

 We could have first re-normalized the remaining global weights and then computed 
the weighted sums, as follows: 
 

A1 = 0.8*0.1642 + 0.4*0.1642 + 0.2*0.3358 + 0.6*0.3358 = 0.4657  (6) 
A2 = 0.2*0.1642 + 0.6*0.1642 + 0.8*0.3358 + 0.4*0.3358 = 0.5343 
 

  The composite priorities are of course higher owing to the re-normalization (which 
heightens the weights), but their rank order is preserved and A2 is still 1.147 more preferred 
than A1. 
 

 We shall now show that in a single-level hierarchy rank reversal will never occur 
when removing a non-discriminating criterion, even if the decision-maker is not perfectly 
consistent1. 
 

 Suppose that we have a set J = {0, 1, ..., n} of n+1 criteria in an AHP hierarchy with 
one level of criteria below the goal. 0 indexes the non-discriminating criterion. The reduced 
set is denoted by J = {1, ..., n}. We have criteria weights cj (j=0, ..., n) for J, with 1=∑

j jc , 

and cj (j=1, ..., n), with 1=∑
j

jc  for the reduced set J. Assuming that we already know the 

values of cj, with all cj<1, then it is reasonable to conclude that ci /cj = ci /cj for i, j ∈ {1, ..., 

n}. Define a constant θ such that ci /ci = cj /cj = θ for i, j ∈ {1, ..., n}. From ∑
=

n

j
jc

1
= 1 = θ 

∑
=

n

j
jc

1
= θ (1 - c0), it follows therefore that θ = 1/(1 - c0), and therefore cj = cj / (1 - c0) for j ∈ 

{1, ..., n}.  
 

 Let the local priority of an alternative x (x=1, ..., m) on a criterion i be denoted by uxi 
and its composite priority for the set J be denoted by wx and for the reduced set J by wx. In 
particular, we have ux0 = 1/m for all x ∈ {1, ..., m} since the criterion indexed by 0 is non-
discriminate. Using additive synthesis, we compute the following difference between the 
composite priorities of alternatives x and y for the full set J (see also Finan & Hurley, 2002): 

 wx - wy = ∑
=

n

k
xkkuc

0
- ∑

=

n

k
ykkuc

0
 

  = c0 /m + ∑ −
=

n

k
xkkucc

1
0 )1( - c0 /m - ∑ −

=

n

k
ykkucc

1
0 )1(  

  = )1( 0c− { ∑
=

n

k
xkkuc

1
- ∑

=

n

k
ykkuc

1
} 

  = )1( 0c− {wx - wy} 

                                                           
1 We are indebted to an anonymous researcher for bringing this to our attention.  
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 Since (1 - c0) > 0, the signs of (wx - wy) and (wx - wy) are the same, and, therefore, the 

rank order is not affected by removing the non-discriminating criterion. Note that we have 
never used the assumption of a perfectly consistent decision-maker. The above can of course 
be extended to removal of more than one non-discriminating criterion. 
 
 

Avoiding Reversals on Addition or Deletion of Alternatives.  
 

 Normalization in AHP methodologies, whether local or global priorities, is generally 
to a unit sum total. Through successive downward rescaling of local priorities to get global 
weights, the unit sum of the local weights are converted into a portion of the unit sum of the 
entire hierarchy.  Notice in Figure 1 that this unit of the total hierarchy is found at the 
topmost node, the Goal, and that the sum of the global priorities on any level below the Goal 
equals that unit.  This implies that the unit for the whole hierarchy is the topmost goal and 
that all partial values below, alternatives and criteria alike, contribute to that unity.  
Subsequent synthesis to get the total contribution of each alternative results in the composite 
alternative values equalling unity (e.g. 0.477 + 0.523 = 1 in Figure 1 and (1)).   
 
 

The Source of the Reversal Problem 
 

 What is rarely recognized with unit sum normalization is that any different re-
normalization produces a new unit of measure.  To realize this, take into account a single 
criterion situation where it is well known that rank reversal never occurs (Saaty, 1990).  Let 
the set {Xj | j= 1, 2, …, m} be ratio values of a single criterion.  The local priority weights of 
an alternative x (x=1, …, m) will be uj = j

m
jj XX 1/ =Σ .  If we add alternative ratio value Xm+1 

to the choice set and re-normalize, the new local priority for an alternative will be uj 
= )/( 11 += +Σ mj

m
jj XXX . With Xm+1 added, the priority unit in which each uj is measured will 

be different, since )/(/ 111 +== +Σ≠Σ mj
m
jjj

m
jj XXXXX . Although ratios are maintained for 

this single criterion situation, the renormalization causes the unit of measure to change.  
 

 For example, consider C21 of Figure 1 to be the single criterion that represents the 
totality of the problem.  C21 would take the unit value of 1 and A1 and A2 would take the 
relative ratio values of 0.2 and 0.8, respectively.  The sum of two alternatives comprises the 
unit.  Next, consider the addition of A3 that is 20% better than A2 on C21.  If we rescale and 
re-normalize the ratio values to make the single criterion sum to one, then the new priorities 
for the alternatives are A1 = 0.1, A2 = 0.4, and A3 = 0.5.  We have a new unit of measure, 
because A1 and A2 no longer equal their original values. They are one-half of their former 
selves with the same ranks and ratios.   
 

 So, what is the implication of this when A3 is added to the multiple criteria hierarchy 
of Figure 1?  The addition and re-normalization with A3 at the bottom level of the hierarchy 
causes all local priorities below criteria to be expressed in a new unit of measure (original 
local priorities of alternatives take on new values).  Also, the addition of A3 brings more 
influence to the total hierarchy – in effect, the overall unit of the topmost goal no longer 
measures the criteria contributions of A1 and A2 but also A3.  Since the former criteria 
weights no longer represent the correct relative amounts that each alternative brings to the 
goal, using them distorts the global priorities of alternatives in a manner that upsets original 
ratios, possibly leading to rank reversals.  It is the overlooking of this intractable link between 
renormalization and criteria weights that accounts for the rank reversal problem. What one 
should take into consideration is the meaning of a criterion weight.  
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 As shown by Schoner et. al. (1997) and Choo et. al. (1999), there is a necessary link 
between the normalization process and the weighting process.  Initially in the hierarchical 
composition process, all local weights and priorities are normalized with respect to the 
totality of each set they are part of; the totality thus gets the unit value for many local ratio 
scales. In this respect, the local weights that sum to unity below each node can be visualized 
as a whole series of little hierarchies (node and sub-nodes) that have not yet been synthesised 
into the overall hierarchy (and an overall ratio scale). The unit weight of each sub-criterion 
pertains to the totality of the alternatives it is covering; the unit weight of each main criterion 
pertains to the totality of the sub-criteria it is covering.  

 
 It is subsequently the process of synthesis via hierarchical weighting that transforms 

the local weights into global weights that are in terms of a unit of the whole hierarchy. In 
effect, the former unit value that each node represented for the totality of directly covered 
items is re-scaled to be in terms of an overall hierarchical unit representing all alternatives 
and all criteria. Although this proportional transformation of local weights yields a new unit 
of measure, the global weights are still weighing the relative importance of the totalities they 
are referring to. The global weight of each sub-criterion pertains to the totality of the 
alternatives it is covering; similarly, the global weight of each main criterion pertains to the 
totality of the sub-criteria and alternatives it is covering. 

 
 
 

Maintaining a Benchmark Unit of Measure Upon Addition or Deletion of Alternatives 
 

 One way to maintain original ratios and therefore ranks with the addition of A3 is to 
preserve the original unit of measure and allow the sum of all composite weights of the 
alternatives to add up to more than unity (e.g. 0.477+0.523+A3>1).  In doing this, we would 
consider Figure 1 and its unit as a fixed, base hierarchy to which all other alternatives are 
evaluated.  Rather than re-normalize local alternative priorities upon the addition of A3, we 
could simply scale A3 and any other new alternative so that it takes its relative value from 
existing alternatives that are deemed to have correctly established priorities.  Those existing 
alternatives are benchmarks for establishing the priorities of other alternatives (Wedley et al., 
1996). For example, the following situation derives A3 without upsetting the ratio of A2/A1. 
 
     C11             C12           C13       C21                 C22 
 A1:           0.5               0.8                0.4                 0.2               0.6  
 A2:           0.5               0.2                0.6                 0.8               0.4 

A3:           0.5               0.111            2.333             1.0               0.111 
 
 

 Notice that A1 and A2 have not been renormalized, that A3 has been placed on the 
same relative scale and unit as A1 and A2, and that this leads to the sum of local weights being 
greater than 1.  Composite priorities would now be: 
 
       A1 = {0.5*0.6+0.8*0.2+0.4*0.2}*0.55 + {0.2*0.5+0.6*0.5}*0.45 = 0.477       (7) 
       A2 = {0.5*0.6+0.2*0.2+0.6*0.2}*0.55 + {0.8*0.5+0.4*0.5}*0.45 = 0.523 
       A3 = {0.5*0.6+0.111*0.2+2.333*0.2}*0.55 + {1.0*0.5+0.111*0.5}*0.45 = 0.684 
 
 
 The original composite units of A1 and A2 are unchanged, but the addition of A3 has 
expanded the base hierarchy to a total of 1.684 units. This is primarily because A3 is so strong 
on C13. A3 has, in fact, become the best choice, while A1 and A2 keep their original ratios and 
ranks. Had we renormalized to unit sum, then the incorrect priorities of (2) would have been 
reproduced. 
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Adjusting Criteria Weights Upon Addition or Deletion of Alternatives 
 

 Another way to preserve rank is to rescale the new alternative into the sum-to-one 
convention (see Example 1), but recognize that the rescaling creates a new unit of measure 
for the hierarchy.  The inclusion of A3 changes the size of the hierarchical pie and we now 
must recognize that there is a link between the normalization process and criteria weights. 
Notice in the previous example, A3 dramatically increases the supply of C13. More C13 and 
other criteria are brought to a hierarchy that gets its weights relative to items that are in it.  
With A3 in C13, for example, the amount of C13 in the hierarchy has gone up by (1+2.333)/1 
relative to its former self. The same applies to all other criteria.  Accordingly, the global 
weights of criteria should be boosted by this relative amount and then renormalized to 
represent new priorities.  
 

       C11          C12             C13         C21                       C22 
Adjustment  1.5*.6*.55   1.111*.2*.55 3.333*.2*.55 2*.5*.45      1.111*.5*.45 
Adjusted value     0.495      0.122      0.367   0.45             0.25  
Renormalized      0.294      0.073      0.218   0.267             0.148 
 
 
 With these adjusted criteria weights, the composite priorities for the alternatives are: 
 
       A1 = {0.333*0.294+0.72*0.073+0.12*0.218} + {0.1*0.267+0.54*0.148} = 0.283 (8) 
       A2 = {0.333*0.294+0.18*0.073+0.18*0.218} + {0.4*0.267+0.36*0.148} = 0.311 
       A3 = {0.333*0.294+0.1  *0.073+0.7  *0.218} + {0.5*0.267+0.1 *0.148} = 0.406 
 
 
  Again, A3 is the best choice, A2 is still better than A1, and more importantly, the ratio 
A2/A1 is still 1.096.  Both ratios and ranks are maintained if criteria weights are adjusted to 
account for the change in unit upon re-normalization.  
 
 
 

Fixed Relationship Between Criteria and Alternatives 
 

 A third way to preserve ratios and ranks upon addition or deletion of alternatives 
combines ideas from the previous two techniques.  Rather than adjust criteria weights upon 
renormalization or fix on a benchmark unit of measure, a linking pin approach establishes a 
fixed relationship between criteria and alternatives (Schoner et al., 1993).  Specific referent 
alternatives under each sub-criterion are given the value of unity and criteria weights are 
established for these specific alternatives.  This relationship or link between criteria and 
alternatives is then kept constant.  That way, the criteria weights that represent the value of 
referent alternatives can be distributed downwards to other alternatives via the ratio of the 
other alternatives to the referent alternative.  In effect, referent alternatives become links to 
distribute the correct portion of each criterion to other alternatives.  So long as this linking 
alternative remains in the hierarchy with its local priority of unity, it will continue to 
distribute hierarchical weights to other alternatives with no effect upon addition or deletion.   
 

 Although the best or ideal alternative of each criterion is usually selected as the link, 
this is not always necessary.  For example, we can make A1 the link under all C1 and A2 the 
link under all C2. 
 
     C11             C12           C13       C21                 C22 
 A1:           1.0               1.0                1.0                 0.25             1.5   
 A2:           1.0               0.25              1.5                 1.0               1.0 



 8

A3:           1.0               0.139            5.833             1.25             0.278 
 
Fixed global criteria priorities for these links are 

)/ˆ(/)/ˆ( 2
11

2
1 xixxi

n
ixixxii uuuuc === ΣΣΣ= where xiû is the selected reference link from A1 or A2.  

Relative global criteria weights established in reference to the links are derived as follows 
using the original priorities of A1 and A2 respectively (ref. Figure 1): 
 

       C11                    C12                            C13       C21                        C22 
Adjustment  (0.5/1)*0.33   (0.8/1)*0.11  (0.4/1)*0.11 (0.8/1)*0.225  (0.4/1)*0.225 
Adjusted value      0.165     0.088   0.044    0.18  0.09 
Renormalized      0.291               0.155               0.078              0.317                0.159 
 

 
 With this fixed relationship, the composite priorities for A1 and A2 are 0.841 and 

0.922 respectively.  A2 is 0.922/0.841 = 1.096 times better than A1, as it should be.  When A3 
is added, it assumes its priority (A3=1.206) via the fixed relationship between criteria and 
referent alternatives.  So long as the referent links do not change, additions or deletions have 
no effect on other alternatives.  If reference alternatives are changed or removed, then it 
would be necessary to establish new criteria weights for the fixed relationship between 
alternatives and criteria.  To avoid this, we recommend referent alternatives be kept fixed.   
 
 
 

Avoiding Reversals on Removal of Non-Discriminating Criteria 
 

 The cause of reversals when removing non-discriminating criteria from a multilevel 
hierarchy is similar to reversals that occur on addition or deletion of alternatives.  Removal of 
a wash criterion is the same as removal of a portion of the hierarchical unit.  If 
renormalization takes place thereafter, the former unit of measurement is changed and ranks 
can change.   
 
 

 
Maintaining a Benchmark Unit Upon Removal of a Criterion 

 
 Had we not re-normalized after removing the non-discriminating criterion in (3), then 

the original unit of measure would be maintained and the composite results would be: 
 
  A1 = {0.8*0.2+0.4*0.2}*0.55 + {0.2*0.5+0.6*0.5}*0.45 = 0.312  (10) 

A2 = {0.2*0.2+0.6*0.2}*0.55 + {0.8*0.5+0.4*0.5}*0.45 = 0.358 
 
 

 We notice that these results with ranks maintained are identical to those obtained in 
(5) by similarly not re-normalizing global weights (A2/A1=0.358/0.312=1.147).  In (10), we 
kept the original normalizations as benchmarks.  The removal of C11 heightened the 
importance of A2, as we would expect, and the same overall unit maintained ranks, as we 
would also expect.   

 
 Finan and Hurley’s unexpected reversal in (3) did not account for the necessary link 

between the normalization process and the weighting process (Choo et al, 1999).  Instead, 
they used unit sum re-normalization of the local weights without realizing that the unit of that 
sum has changed with the removal of the sub-criterion.  With C11 removed, local unit change 
upon re-normalization distorts the ratio of the global weights of C1’s criteria set with respect 
to those of the C2 set, which keep their original weights. This distortion offsets the expected 
accentuation of the best alternative (A2) and causes a reversal.  
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Adjusting Criteria Weights Upon Removal of a Criterion. 
 

 When deriving local criteria weights, it is important to consider the totality of the 
items below as a reference. Just as the criteria weights should be adjusted upon the re-
normalization of a new set of alternatives, so too should they be adjusted upon re-
normalization with a smaller set of criteria. A change in the set of sub-criteria is the case in 
Finan & Hurley’s example reproduced in (3). Leaving out C11 changes C1’s set of sub-
criteria; the new set now is 0.2+0.2=0.4 of its former self. The main criterion C1 now 
represents a different totality of sub-criteria below. Accordingly, the weight of C1 should be 
adjusted to 0.55*0.4=0.22 in order to safely re-normalize the remaining local weights of its 
sub-set to the unit sum. 
 

 The adjusted criterion weight for C1 (0.22) remains commensurate to C2 (0.45), 
although they do not sum to one. Synthesis using the new, normalized local weights of C12 
and C13 (both 0.5) and the adjusted weight for C1 produces: 
 

A1 = {0.8*0.5+0.4*0.5}*0.22 + {0.2*0.5+0.6*0.5}*0.45 = 0.312             (11) 
A2 = {0.2*0.5+0.6*0.5}*0.22 + {0.8*0.5+0.4*0.5}*0.45 = 0.358 
 

  We could have C1=0.22 and C2=0.45 re-normalized to sum to one, but this would not 
have changed the preference ratio between the two alternatives. A2 is 1.147 times preferred to 
A1 which is the result we would want it to be. 
 

 The new values of the global weights can be computed using C1’s adjusted weight 
and the new, normalized local weights of C12 and C13 (both 0.5): 
 
 C12 = C13 = 0.22*0.5 = 0.11 

C21 = C22 = 0.45*0.5 = 0.225 
 
  The global weights of C12, C13, C21 and C22 have not changed and neither have the 
local priorities of the alternatives. Synthesis again yields composite priorities of 0.312 for A1 
and 0.358 for A2 with A2 1.147 times more preferred than A1, therefore not showing rank 
reversal.  
 

 Had C1=0.22 and C2=0.45 been re-normalized to sum to one, then the result C1=0.328 
and C2=0.672 would still be commensurate, but with a different unit of measure. Synthesis 
using the new, normalized local weights of C12 and C13 (both 0.5) and the re-normalized 
weight for C1 and C2 (after adjustment of C1’s weight) produces: 
 

A1 = {0.8*0.5+0.4*0.5}*0.328 + {0.2*0.5+0.6*0.5}*0.672 = 0.4657            (12) 
A2 = {0.2*0.5+0.6*0.5}*0.328 + {0.8*0.5+0.4*0.5}*0.672 = 0.5343 

 
  With global weights, computed from adjusted, fully re-normalized local weights, the 
results would be identical to those in (6) where the correct ratio of 1.147 is achieved.  
 
 
 

Observations and Conclusion 
 

 Of the two types of reversals, we question whether a non-discriminating criterion 
should be removed.  Our techniques demonstrate that removal of a non-discriminating 
criterion accentuates the superiority of the best alternative while maintaining its top rank.  
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Since its rank remains unchanged, there is no advantage in removing the criterion except to 
make the best alternative look better.  Such optics should be avoided, because if the wash 
criterion was relevant in the first place, then it should be maintained as relevant to the final 
solution.  Besides, removing a non-discriminating criterion can be dangerous.  If the relative 
priorities of all alternatives are used to allocate resources, the changed ratios upon removal of 
a wash criterion can result in distorted allocations.  For the purpose of scientific integrity, our 
preference is to diligently define and structure the problem at the outset and then use all 
relevant criteria to make the decision, including those that turn out to be non-discriminate.  
 

 We note that it is rare for weights to be adjusted upon a change of a set of elements in 
an AHP hierarchy. This is not surprising as AHP’s axiom 3, the “independence axiom” 
(Saaty, 2000), does not formally require criteria weights to be derived in relation to lower-
level elements and their normalization. The independence axiom states that elements on a 
specific hierarchy level are dependent on their parent-elements on the next higher hierarchy 
level, but independent of their child-elements (criteria or alternatives) on the next lower level.  
We question whether this ever occurs in reality.  
 

 We believe that it is better to assume dependence and deal with it properly than to 
assume independence and face phenomena like rank reversal that are difficult to justify or 
explain. With the Analytic Network Process, this is essentially what happens (Saaty, 1996).  
In this paper, we have shown that assuming dependence and acting accordingly prevents 
undue rank reversal when an alternative is added or deleted or when a non-discriminating 
criterion is removed.  The latter situation is particularly striking and has the flavour of the 
rank reversal problem of Belton & Gear (1983) where a copy of an existing alternative was 
added to the choice set.  In both cases, the totality of a set of hierarchy elements was changed, 
thereby changing the unit of that totality when re-normalising to the unit sum. Incidentally, 
that totality will change regardless of the non-discriminating nature of a criterion being 
removed or the identical nature of an alternative being added. As soon as one or more of the 
sets of hierarchy elements are changed by adding or removing elements, the appropriate local 
weights must be re-considered and probably adjusted to maintain commensurateness and thus 
prevent ranks from reversing. In the case of benchmark or linking pin synthesis where the 
unit of measure is fixed, such re-adjustment is unnecessary (unless the deletion is the 
benchmark or linking pin).  
 
 

 It should be pointed out that, so far, we have used the weaker requirement of rank 
preservation rather than ratio preservation that could be applied to AHP. As shown above, the 
deletion of a criterion can cause composite ratios to change, although proper weight 
adjustment preserves rank. However, if an alternative is added or deleted, the weight 
adjustment we have suggested would not have resulted in a change in ratios. The reason for 
this differential effect is that the global priorities of the alternatives on each criterion are in 
commensurate units. If the alternatives are discrete and independent of one another, then 
summation across all criteria does not upset the ratio between existing alternatives. If, 
however, we sum across different sub-sets of criteria, the results will be different ratios. In 
effect, each addition or deletion of criteria presents a new evaluation problem whereas 
addition or deletion of an alternative just changes the choice set in the same evaluation 
problem. In both cases, however, the appropriate techniques or adjustments are available to 
maintain the integrity of the ranks. 
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