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Abstract: We present a multiobjedive genetic dgorithm that incorporates various genetic dgorithm techniques that
have been proven to be dficient and robust in their problem domain. More spedficaly, we integrate rank based
seledion, adaptive niching through coevolutionary sharing, €litist recombination, and non-dominated sorting into a
multiobjedive genetic dgorithm cdled ERMOCS. As a proof of concept we test the dgorithm on a softkill
scheduling problem.
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1. I ntroduction

Charaderistic to most engineaing problemsis that they are multiobjective. A problem is said to be multiobjedive or
multicriteria if it involves optimising multiple goals at once It is clea that it is not always possble to find a solution
which is optimal with resped to all objedives. A solution may be optimal regarding one objedive, but at the same
time be inferior regarding another objedive. For instance the st and quelity of a product are typicdly two
objedives one cainot adequately optimise independently, nor can they be eally combined into a single objedive
function. In other words, usually the design goals are cmpeting and many trade-offs are posshle. Therefore the
dedsion which design or solution is best is often taken by an external (human) decision maker. More recaitly
evolutionary tedhniques have been applied to multiobjedive problems as well. Because of their massve parallel
seach these tedhniques are espedally suitable for multiobjedive optimisation. These multiobjedive evolutionary
tedhniques have nevertheless sarcdy bean applied to red-world problems. In this paper we present a multiobjedive
genetic algorithm that is applied and tested on a practical optimisation case.

The next sedion contains a brief introduction on multiobjedive problems and the evolutionary approaches
that have been developed previoudly. In Sedion 3 a new multiobjedive GA cdled ERMOCS is proposed and which
is battle-tested against a red-world problem, softkill scheduling, in sedion 4. Findly, in sedion 5 a conclusion is
posed and remaining issues are discussed.

2. M ultiobjective Genetic Algorithms

2.1  Pareto-optimality

Multiobjedive problems are speaal in the sense that they do not have aunique solution. Usually there is no single
solution for which al objedives are optimal. The solution to a multiobjedive problem therefore comprises a set of
solutions for which holds that there ae no other solutions that are superior considering all objedives. These
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solutions are cdled Pareto-optimal. Hence, optimising a multiobjedive problem is comprised of finding Pareto-
optimal solutions.

The notion of Pareto-optimality is defined in terms of dominance. Let's assume that a multiobjedive problem
has k objedives. Asauming that this is a minimisation problem, then a solution x = (X1, Xz, ... , X«) IS id to
dominate another solutiony = (y1, Yz, ..., Yk) if Oi X <y and 0 x < y;. Solution x is a member of the Pareto-set, or
said to be non-dominated, if there is no other solution y such that y dominates Xx. The multiobjedive problem can
now be defined as finding solutions which are non-dominated.

Over the yeas, several evolutionary approadies to multiobjedive problems have been introduced. The most
commonly used approad is to combine the objedive function into a single objedive function using weighting
coefficients and penalty functions. This problem-transformation enables the use of a smple single-objedive genetic
algorithm to find a single solution, which may be feasible, so requiring no further searches. Weights and penalty
functions are generally hard to set acairately though, whereas both are very problem dependent (Richardson et al.,
1989. As aresult, the solution a GA comes up with, may not fulfil al the designer’s neals. The solution may not
even be non-dominated. Setting the weights corredly requires a cetain amount of seach spaceknowledge, which is
often mot available in advance This way of deding with multiobjedive optimisation is therefore not always
applicable or efficient.

Another, and perhaps more dfedive gproad, is to use genetic dgorithms to locae Pareto-optimal
solutions. These solutions are, by definition, locaied on a boundary, known as the Pareto-front. We would like the
solutions to cover the Pareto-front as well as possble, as to dbtain a good representation of this front. This
approach requires an extensive exploration of the seach space ad it is this requirement that makes evolutionary
algorithms extremely applicable in this case. Their massve paralel exploration of seach spaces is an invaluable
advantage over other more cnventional tedniques in locaing Pareto-optimal solutions. This Pareto-based
approach has additional benefits as well. This approach offers multiple solutions from which a dedsion maker can
seled the solution that is best suited acerding to additional criteria, without requiring additional seaches. Pareto-
based optimisation is hence a more transparent and efficient way of dealing with multiobjective problem.

2.2 Previous efforts

The first algorithm to exploit the parallel properties of genetic dgorithms on multiobjedive problems was
the Vedor Evaluated Genetic Algorithm (VEGA), designed by Schaffer (Schaffer, 1989. His algorithm also was
the first to tred objedives sparately in order to find multiple non-dominated solutions in a single run of the
algorithm. In VEGA, ead generation subpopulations are formed in turn from the eisting population by using
proportional seledion acording to eat of the objedives. These subpopulations are then shuffled together again,
forming a new population on which ordinary crosover and mutation can take place This way offspring, which is
creaed by parents from different subpopulations, is expeded to perform well on both the objedives of the parents,
and the population is expeded to evolve towards the Pareto-optimal front. However, by independently seleding
individuals that score well on a single objedive there is consequently a bias against solutions that do not have high
fitness values for al of the objedives, but are ill non-dominated. VEGA hence performs well in locating the
extreme parts of the Pareto-set, but has problems finding middling points. In short, al non-dominated points $ould
have equal reproduction probabilities.

This notion was first recognised by Goldberg (Goldberg, 1989, giving rise to a dternative kind of
multiobjedive genetic dgorithms, known as Pareto-based approadies. Goldberg suggested using a ranking
procedure, in which all individuals obtain a rank, relating to the number of individuals that dominate them. After
population domination sort, al non-dominated solution are set aside temporarily, giving rise to a new group of non-
dominated solutions, which are adgned rank 2, after which this group is temporarily removed and so on. This
procedure continues until al individuals have obtained a rank. This rank can function as a fithessmeasure. A
another way to assgn a rank-based fitnessto an individual (Fonseca& Fleming, 1993 is by carying out a single
full population domination sort, apply ranking and use alinea or non-linea scding like L/rank; to dbtain a fitness



measure. Heredter the fitness values of the individuals with the same rank are averaged, as to ensure dl equal
individual will be sampled at the same rate.

Fonseca &ad Fleming used this ranking method in their Multi-Objedive Genetic Algorithm (MOGA)
(Fonseca& Feming, 1993. Furthermore, they introduced a niching scheme that cdculates distances in the criteria
gpace (in contrast to distance measurements in decision variable spacg. The fitness $aring niche counts of
individualsisin their scheme caculated within the various ranks. Horn and Nafpliotis (Horn & Nafpliotis, 1993 did
not use eplicit ranking, but focused on locd domination tournaments. Their Niched Pareto Genetic Algorithm
(NPGA) uses a tournament seledion scheme that compares two individuals on their dominance status. Using a
comparison set of randomly seleded individuals ead of the two candidates is classfied as locdly dominated or non-
dominated with resped to the @mparison set. In the cae that one is non-dominated whereas the other is
dominated, the non-dominated individual is sleded for reproduction. If both or neither of the two candidates is
non-dominated, the tournament is dedded using a fitness $aring scheme. In this case the candidate with the lowest
niche count wins. The size of the comparison set (tgom) iS used to control seledion presaure. As Horn (Horn 1996
reagnises, the main difference between the dominance tournament as used in NPGA and the ranking procedure &
used in MOGA isthat the former islocdly cdculated, whereas the latter is much more globally defined. Srinivas and
Deb followed Goldberg's original ranking method more predsely in their Non-dominated Sorting Genetic Algorithm
(NSGA) (Srinivas & Deb, 1993. The sharing procedures are performed within caegories of individuals with the
same ranking. After a non-dominance sort of the entire population, al non-dominated individuals are shared with a
dumny fitnessvalue, which is based on the number of individuals in the aurrent population. After this procedure,
the first class of non-dominated individuals is removed from contention and a next class of non-dominated
individuals is determined and shared with a smaller dummy value and removed as well. In this way the ettire
population is classfied and shared fitnesswise. This procedure gives a large reproduction chance to non-dominated
solutions, and allows for quick convergence to non-dominated regions.

More recaitly, the focus has been on implementing multiobjedive genetic dgorithms in red-world
stuations. On the whole, these dgorithms are based on ether of the mentioned established algorithms with
problem-spedfic enhancements. Examples can be found in (Todd & Sen, 1997, (Obayashi, Tsukahara, &
Nakamura, 1997), (Cunha, Oliviera & Covas, 1997 and (Loughlin & Rajithan, 1997). Recently Shigura (Obayashi,
Takahashi & Takeguchi, 1998 compared several sharing schemes in multiobjedive evolutionary optimisation,
including Coevolutionary Shared Niching, which is implemented in the dgorithm that will be described in the next
sedion. A comprehensive overview of evolutionary approadies to multiobjedive optimisation can be found in
(Fonseca & Fleming, 1995), anddello, 1998).

3. Elitist Recombinative M ultiobjective GA with coevolutionary Sharing (ERM OCYS)

The primary goal of the ERMOCS algorithm is an efficient and robust optimisation of multiobjedive problems. To
achieve this aim we have set out to integrate well-known evolutionary techniques, which have proven to be dfedive
within their spedfic domain. Furthermore, we have alapted the techniques to cope with multiobjedive problems.
All these gproadied are integrated into a Pareto-based genetic dgorithm. In this dion we will discussthe several
techniques that are used in the ERMOCS algorithm and clarify why they are, in our opinion, indispensable for our
aims.

3.1  Conventional techniques

First, since aPareto-optimal set is defined in terms of its non-dominance, seleding a seledion scheme that respeds
this notion is inevitable. A sensible doice therefore is a rank-based seledion scheme instead of the established
proportionate seledion, which if often used in basic genetic dgorithms. An additional ground for this dedsion is that
multiobjedive optimisation should be devoid of any criteria preference Pareto optimisation depends on non-
dominanceinsteal of raw fitness values. Rank-based seledion consequently seansto be the only valid choicein this
matter. To this end in ERMOCS all individuals are given a rank, based on the number of other individuals that



dominate them. Individuals are given rank 1 + n, where n is the number of individuals that dominate them. Non-
dominated individuals consequently obtain rank 1, others obtain arank 1 + p;, where p; is the number of individuals
that dominate them. A fitness conversion is made by a simple linear transformation.

Regarding the seledion scheme, we have diosen to use an €litist recombinative scheme instead of the usual
tournament seledion scheme. Elitist schemes have several interesting advantages (Thierens & Goldberg, 1994.
First of all, by using an €litist scheme there is no need for spedfying a aossover probability, since ditist schemes use
crosover unconditionally. This reduces the overal number of parameters that have to be set, and consequently
making it easier to apply the dgorithm. Seandly, elitist schemes are less nsitive to undersized populations than
tournament seledion, also enhancing the overall performancein case of poorly set parameters. Finally, and also the
most importantly, using elitist recombination ensures that good solutions are never lost during the search process
This is espedaly useful in time-constrained problem areas, since it alows the dgorithm to come up with its best
solutions at any given time.

To preserve diversity in the population, a niching scheme seans unavoidable & well. We neal to maintain
multiple optimal solutions, sincewe ae looking for an optimal set of solutions. Almost all established multiobjedive
genetic dgorithms have gplied some form of niching technique, and niching has proven to be a dficient way to
promote and maintain genetic diversity and to prevent genetic drift in multimodal function optimisation. Goldberg
(Goldberg, 1989 was the first to propose aniching scheme in conjunction with the rank-based seledion technique
when optimising multiobjedive problems. A niching technique promotes the development of stable niches along the
Pareto-optimal front. The most commonplace ad successul niche formation scheme is fitness sharing (Goldberg &
Richardson, 1987. Fonseca ad Feming implemented fitness $aring in their MOGA, with distances being
cdculated in the objedive domain. They aso reagnised the difficulties in setting niche size O4ae COrredly, which is
hard to do without prior knowledge of the fitness landscgpe. To this end, they provided a theoreticd basis for
estimating Osare, Which, athough acairate, is not pradicdly applicable, sinceit requires extensive knowledge of the
search space.

The njunction of tournament seledion and sharing schemes causes chaotic behaviour in the dynamics of
the dgorithm and limits the number of stable niches that can be maintained (Oel, Goldberg & Shang, 1991). Since
elitist recombination is in essence atournament seledion scheme, our algorithm will suffer from the @njunction as
well. In Pareto-based optimisation it is essential that we can maintain a sufficient number of stable niches. The
straightforward solution Oei offers is continuousy updated sharing. The sharing information in the target
population is constantly updated as new individuals are entered. During a tournament, the shared fitness of a
competing individual is based on the number of niche-members it will have in the population that is being creaed.
This smple modification of the standard fitness $aring scheme produces gable dynamics and thus allows for
preservation of many niches. It is easy to use the ditist reambinative scheme with continuously updsted sharing.
After reproduction of the two competing parent individuals, the shared fitnesses of both the parents and the
offspring should be cdculated on the basis of the target population. From these four competitors the two top
solutions can enter the target population. Since we employ an quasi-stealy-state dgorithm, we use a dightly
modified kind of continuously updated sharing, in which the relevant sharing information within the population is
constantly updated. This approach will be described more clearly later on.

3.2  Coevolutionary Shared Niching

As noted, one of the drawbadks of fitness $iaring is tting the sharing radius Osae properly. This parameter has a
significant effed on the performance of the dgorithm and should be set as acarate & possble. Idedly Og¢ae Should
be set adaptively, allowing the dgorithm to optimally cepture the dharaderistics of the fitnesslandscape. There is a
spedfic nead for this in red-world problems, since in these caes fitnesslandscgpes are non-uniform and thus
require non-uniform niche sizes. To this end, Goldberg and Wang (Goldberg & Wang, 1997 devised a sharing
scheme, Coevolutionary Shared Niching (CSN), that eliminates this parameter and nevertheless alows the
algorithm to adaptively find optimal niche locaions. Their technique is inspired by the e®nomic model of



monopolistic competition, which describes the geographicd interadion between customers and businessmen.
Businessmen will distribute themselves among the austomers © as to maximise their profit, while & the same time
customers will go to the shop that minimises their costs. Both populations, customers and businessmen, therefore
have separate interests, which leads to the placement of shops where customers benefit the most.

This economic model has me interesting properties which can be gplied to an evolutionary optimisation
scheme. The wevolutionary shared niching scheme is designed to form stable subpopulation of best solutions
regardless of the solution spadng, extent and modality. The austomer population may be viewed as the common
population of solution candidates, seaching for areas with a high fitness values through seledion and
recombination. The businessmen population has as primary am to locae niches at optimal places. The businessmen
population is a population of solution candidates as well, though the businessmen interad with the astomer
population to find those locaions which yields them the highest payoff. Their fitnessfunction enables them to place
niches at highly fit regions of the search space The interadion between the populations is acamplished through the
separate fitness function for both populations. Keeuing the original economic model in mind, we recd that
customers will go to the store that is closest to them. This $op is defined by a businessman. Since a overcrowded
shop is not desirable, customers will want to move towards other shops. This is adually a plain standard fitness
sharing concept. The fitness function of the austomers therefore is a modification of the standard fitness $aring
scheme. Asauming that at generation t an individual ¢ is srved by businessman b, who has a total of m,; customers,
the fitness of an individual in the customer population is calculated as follows:

f (c)

b.t fene,

f'(c) =

where C, denotes the austomer-set of businessman b. In short, a aistomer shares its fitness with the number of
other customers that use its shop as well.

The businessmen determine the locaion and extent of the niches. They should therefore be locaed at peeks
in the landscape with a cetain minimal distance between them. This distance, denoted a dyin, is important to ensure
agood dstribution of the niches. A businessman’ s fitnessis smply the sum of the raw fitnessvalues of its customers
and it is calculated as follows:

¢(b) = f(c)

clCb,t

Goldberg and Wang suggested two schemes to acaommodate evolution within the businessnen population, smple
CSN and the imprint operator. In the smple CSN scheme, ead businessman is chosen in turn, and a mutation on a
randomly chosen site on the businessman string is performed. If the resulting businessman is an improvement over
the original businessman, than the new individual replaces the original. Improvement is judged on two isues. a) the
resulting individual have ahigher fitnessthan the original and b) the resulting individuals sould be & least dyin away
from all other existing businessmen. This procedure is done up to a cetain number of times. If none of the
mutations prove to be an improvement, then the businesaman is retained in the population in its origina form. This
scheme is effedive on easy problems, but proves to be inadequate on herd and deceptive problems. An imprint
operator is suggested by Goldberg and Wang to enhance the performance This operator smply chooses candidate
businessmen from the astomer population. If a astomer proves to be an improvement over its competing
businessman, the businessman is replaced by the austomer, and the businessman is retained if none of the randomly
chosen customer outperforms the businessman. This procedure is, again, performed upto a cetain number of times
for ead businessman. This approach was more dfedive than the simple scheme and will therefore used in the



ERMOCS algorithm as well. The ERMOCS agorithm though uses a dightly modified version of the imprint
operator, which we be described later on.

In (Goldberg & Wang, 1997 CSN has been tested and analysed on massve multimodal deceptive function
(Deb, Horn & Goldberg, 1992. CSN (with imprint operator) proved to be a dfedive technique for optimisation on
this complex landscepe. In their paper, Goldberg & Wang proposed additional testing on other families of problems,
notably multiobjedive and red-world problems. When applied to multiobjedive optimisation several issues have to
be aldressed. The original scheme uses the adual fitnessvalues to caculate austomer and businessman fitness Of
course, since solutions to multiobjedive problems have several objedive values, raw fitnessvalues are not diredly
applicable. Consistent to the ranked-based seledion we favoured ealier, alogicd solution is to use ranks as fitness
values. By doing so customer fitnessis defined as the (transformed) rank divided by the niche @unt of the shop it
attends. Consequently a businessman’s fitness is the sum of the (transformed) ranks of all its customers.

A little lessobvious is the measurements of distances in the multiobjedive cae. In this case it makes more
sense to use phenotypic measurements in stead of genotypic measurements, like Goldberg & Wang used in their
experiments. Pareto-optimality and dominance ae defined in terms of objedive fitnessvalues. Therefore it is more
logicd to use phenotypic distance measurements. There is a dight isue here though. We have noticed that in our
case smple Euclidean distance measurements suffice. This will only work, however, if both objedives are scded to
approximately the same domain size. If one objedive is ded to a much larger domain than the other objedives
then consequently the movements in the diredion of the larger-scded domain will have lesseffed, and can disrupt
the optimisation process.

The ERMOCS agorithm can be decomposed in four segments, population creation, fitness calculations,
recombinative schemes and imprint operations. We will shortly describe these segments as to clarify the procedures
within the algorithm.

a) create populations.

The algorithm uses integer strings for both populations. The genes correspond directly to the decision varia
b) fitness calculation.

The dgorithm uses ranked-based fithess assgnment. The population is ranked in a single run, assgning a rank to
ead individual i acoording to 1 + pi, where pi is the number of individuals that dominate individual i. This rank is
transformed into a fitnessvalue by a smple linea transformation. Next for ead individual in customer population a
neaest businessman in population is determined. If al customers have been assgned a businessman, the shared
fitness of ead customer is cdculated by dividing its rank-based fitness by the size of the astomer-set of its
businessman. The fitnessof the businessmen is cdculated by taking the sum of the rank-based fitnessvalues of all
the customer each businessman serves.

¢) recombinative scheme

Pairs of individuals in the austomer population are randomly seleded to producetwo offspring by crossover. During
crosover mutation may occur at a rate of pme. The offspring are assgned a rank, based on the airrent customer
population. This rank is transformed into a fitness value. Subsequently, for ead offspring it is determined which
businessman is neaest. The fitnessvalues of the offspring is then divided by the number of customers the seleded
businessmen serve. The fitness values of the parents and offspring are compared to ead other, and the two
individuals with the highest fitness values are seleded. This may imply replacement of parents by offspring. If
however both offspring are inferior to the parents, both parents remain in the austomer population. If an off spring
enters the austomer population, then the businessman to whom the parent belonged loses a austomer and its fitness
is consequently degraded. The businessman to who the off spring belongs gets one extra austomer and consequently
recaves a higher fitness value. This procedure is done to keep the sharing information within the businessman
population as accurate as possible.

d) imprint operation



If al customers have participated in an elitist tournament, an imprint operation is performed. For ead customer in
turn, random customers are diosen up to n times, and chedked if they are a improvement over the competing
businessman. Improvement is dedded on the basis of dominance If the sdleded customer dominates the
businessman and is at least dmin away from all other existing businessmen, it is considered an improvement and
replaces the origina businessman. Unlike the previous sgments, the fitness values of the businessmen and
customers are not continuousy updated. This is unrecessry, since in the next segment (b) all values are
recalculated again.

After segment d the dgorithm starts again at segment b until termination. The pseudo-code in figure 1 is a smple
representation of the basic functions within the algorithm we described above.

ERMOCS algorithm

a. create customer populati@h
create businessmen populat®n

b. rank population C
find a businessmam[J B for each customer(] C
calculate fithess of each customer in popula@on
calculate fitness of each businessmen in popul&ion

C. do for all individuals in customer populati@n
select two individuals p1 and p2
perform crossover, producing ol and 02
rank ol and 02 on current customer populaGon
locate nearest businessman in populadar o1 and 02
calculate shared fitness for o1 and 02
perform elitist recombination between p1, p2, o1 and 02
if offspring is fitter than parents:
replace parent by offspring in populatiGn
adjust fitness of affected businessmen in populd&ion

d. perform imprint operation between customer populafi@nd businessman populatiBn
go to section b

Note that the fitness sharing scheme is imbedded in the fithess calculations of both populations. Furthermor
selection scheme (section c) uses continuously updated sharing information. Each offspring that is created i
assigned a rank and a shared fitness on the basis of the existing population, without actually entering the pc
If an offspring is selected to be included in the population its rank and fitness are already up to date. The on
adjustment that has to be made is a niche count correction: since one individual is replaced by another, a bt
loses one of its customers, while another gains a customer. On close inspection one can argue that the fitne
information is not accurate at all times. This is essentially true, since during the selection procedure fitness v
existing, non-replaced individuals in the customer population are not fithess-wise corrected upon insertion o
individual. This correction would require a complete re-ranking of the customer population and consequently
recalculation of all fitness values. and as an additional result recalculation of the fitness values of the busines
population. To put in another way, procedure b in the algorithm should then be performed after every inserti
new individual, which is computationally unacceptably expensive. Experimental investigation has proven that



not an extremely significant issue, since after each N/2 tournaments the fitness values of both population ar
recalculated by section b in the algorithm. Consequently the errors are reasonably limited.

The main focus of our algorithm is a robust and efficient optimisation of multiobjedive red-world problems,
which involves deding with complex landscgpes, hard constraints and spedfic requests regarding solutions. To this
extend coevolutionary sharing and elitist recombination have been implemented in ERMOCS, and have empiricdly
proven to be mmpetent in pradicd multiobjedive situations. In the next sedion we describe such an application,
and look whether the algorithm lives up to our expectations.

4, Case Study: Scheduling of IR decoys

4.1  Problem description

The ERMOCS agorithm, as described above, has initially been designed to cope with the resource scheduling on
board of naval ships, a time-limited and complex issie. The resource scheduling of a naval ship involves the
resource management of wegpons, both lethal and non-lethal, of the ship duing one or more engagements. Its
primary am is such a deployment of the wegons that the threds are engaged as efficient as possble, i.e. with a
maximised likelihood of ‘kiling’ the thredas (possbly distrading or defleding them by means of ‘eledronic
warfare’) and a minimised expenditure of (scarce) resources. As the number and types of threas and the number of
possble cmbinations and deployment times of wegpons (and their possble positive axd negative interadions)
increases, the scheduling problem incurs a combinatorial explosion.

In this case study we focus on the optimisation of the deployment of infrared decoys (flares). This particular
softkill scheduling problem is well understood in terms of goals and constraints, and the optimisation criteria ae
clealy defined. Deys are intended to either minimise the target a ship presents to an enemy platform or to lure
enemy wegoons away from the ship. Flares present alternative targets to missles guided by an infrared seeker. Since
flares have quite ashort lifetime, they must be positioned carefully and in sequence. An additional constraint is
imposed by the small field of view of most infrared seekers, forcing a good alignment on the flare sequence with
respect to the seeker’s view.

Because dedronic warfare is mainly a game of ‘hide and seek’, geometry and visibility play a fairly large

part in it. So, the proper deployment of flares is an optimisation problem concerning the deployment times and
angles of a sequence of flares, with the optimal deployment depending on the geometry of the aurrent engagement
(i.e. the beaing and velocity of the incoming missle, the heading and speed of the ship and the wind velocity).
Because d least four to five flares must be launched in order to get a sufficient distance between the last flare and
the ship, the number of dimensions of the search spaceis at least this large (it is quadrupled because there ae four
launchers available & four different angles). It can be further enlarged if we take manoeuvrable or trainable
launchers in acount. An exhaustive search of this sach space(athough it is bounded by maximum interval times
between the flares) has proven to take too long so we ae looking for ways of speeding upthis sarch and genetic
algorithms sam worthwhile to investigate for this geead-up. It goes without saying that with an on-line dgorithm, a
solution must be found before the missile hits the ship (and preferably a long time before that).
In an on-line scenario, the anount of seach time that is available to any algorithm is at most a few seconds. The
(sequential) ERMOCS genetic dgorithm is in itself proficient to perform within such smal amounts of time. If the
problem domain is extended however, with for example manoeuvrable launchers, it may be necessary to employ a
parallel version of the dgorithm. Since genetic dgorithms are by nature very suitable to be made paralel, this can be
done relatively easy. This property of genetic dgorithms is a mgor advantage over other non-evolutionary
approaches.

4.2  Objectives and representation issues

A possble solution, a deployment sequence, consist of five variables, denoted as <d, ... ,ds>, which range from O to
20 seoonds. These variables define the intervals between the deployments of flares, starting at the moment a



deployment is initiated. These intervals are our dedsion variables. The dgorithm mekes use of a smulation to
cdculate the dfedivenessof a deployment. A deployment is judged on two objedives, @) the distance & which the
missle passes the ship (known as Closest Point of Approach (CPA)) and b) a measure P of the ad¢ua deceotion of
the missile.

A problem instance is defined by the beaing and velocity of the incoming missle, the heading and speed of
the ship and the wind velocity. Eadh instance ®nsequently has a different seach space ead with different
properties and locaion of the Pareto-optimal solutions. Additionally, eat naval frigate has four possble launch-
sites from which flares can be deployed. This adds up to a problem domain, in which exhaustive search is not an
option. This ach spacehas proven to be too large to be enumerated, espedally since the scheduling has to be
completed within a reasonably small amount of time.

The ERMOCS-agorithm has a few parameters which must be set correaly, notably population sizes, dmin
and mutation rate. As for (customer) population sizing, Pareto-based multiobjedive dgorithms must have
sufficiently large populations to be @le to obtain a good sampling of the Pareto-optima set. In our trials, a
(customer) population size of 250 to 500 gave good results. Smaller populations may not be ale to fill up all
niches, which leads to incorred representation of the Pareto-optimal front. On the other hand, large populations
take up too much computational time due to the ranking procedures and since we ae deding with a time-
constrained problem in this case, care has been taken not too use an extremely oversized population. With resped to
the mutation rate, a value of approximately 0.005 poved to be dficient. Nevertheless these values are educaed
guesses and may not be ided in al situations. Further analysis ould be done to find better ways to optimise the
values. The dyi, parameter, the minimal niche radius, is diredly related to the size of the businessman population.
For example, if we think of the Pareto-optimal set as lutions located an imaginary front of a cetain length s, the
maximal number of businessmen that can be placel alongside this front is of course §dmin + 1. If the number of
businessmen exceads this number, some businessmen will be located at suboptimal places, and consequently multiple
customers will be badly placed as well. If the number of businessmen too small, the Pareto-front will not be
completely covered by solutions. Parts of the front will then be negleded, due to a too small number of allocaed
niches.

4.3  Experimentsand Results

The dgorithm has been tested on numerous instances of the softkill scheduling problem. As described ealier, a
problem instance onsist of values describing the beaing and velocity of the incoming missle, the healing and
spedl of the ship and the wind velocity. As a proof of concept we will apply the ERMOCS algorithm to a typicd
problem instance

This particular, randomly chosen, instance is interesting, becaise it has sme deceptive properties. We use
an customer population of 250 and a businesspopulation size of 10 and the dnin is %t at 10. The mutation is st at
0.005 We ae only using one launcher this time, thus generating only a single problem instance. Figure 17 and figure
2 show respedively the austomer and businessnan population on generation O and generation 50. The number of
times that possble candidates are seleded from the austomer population for imprint is %t at 2. This proved to a
reasonable value. A higher value slows down the algorithm.

! the problem instance variables are as follows: frigate speed: 5 m/s, frigate béavirmgd @peed: 10 m/s, wind bearing: 29@here
a bearing of ©conforms to a eastbound direction; the missile bearing fsa@is aimed directly at the frigate
2 the area below the dashed line indicates areas where solutions are located; these areas have been determined by an exhaus
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figure 1 - customer population at generation O (left) and at generation 50 (right)
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figure 2 - businessmen population at generation O (left) and at generation 50 (right)

Note, as one can seein the final population in figure 1, that the austomer population hes converged to the locaions
close to the cantres of the optimal niches, as defined by the businessmen. This is caused by the ditist recombinative
scheme, which results in a dean representation of the adual Pareto-set. The solution set the ERMOCS algorithm
has found is an acairate representation of the adual Pareto-optimal set. The businessman population hes, as
expeded, found the optimal niches which are locaed on top of the pes. This has as a result that the aistomer
population is optimally distributed over this area as well. The subpopulations are stable as well.

We have gplied the ERMOCS algorithm on numerous instances of the problem. Other problem instances
cause very different solution spaces, ead having its own charaderistics in terms of number of optimal niche
locaions and dstribution. The ERMOCS algorithm has invariably shown to come up with, at least, a reasonable
coverage of the Pareto-optimal front.

The dmn parameter is of gred effed on the performance In this experiment, several peks are il
uninhabited. If we increase dyin beyond the number of peaks, we have noticed increasingly more austomers located
at suboptimal niches. A dni, Wwhich istoo small results in alessuniform distribution along the Pareto-optimal frontier
and lesscoverage of this frontier. The setting of this parameter in conjunction with optima number of businessmen,
is where more reseach has to be done. These two parameters sould be made more aaptive. For example, the
amount of convergence of the austomer population could be used as a measure in this matter. If after an amount of
time still alot of individuals are locaed at very much dominated regions, the number of businessmen may have to be
reduced, for this may imply that there ae some businessmen locaed suboptimally. It may interesting to use a
combined dnin/business population size measure, since these two parameters are diredly related to ead other. A



single parameter of this kind would make an adaptive setting of dyin and business $ze eaier as well. Nevertheless
the setting of dnwin and the businessnan population size is more comprehensive and tranducid than setting the niche
Size0snare and thus enhances the applicability of the technique.

5. Conclusion & discussion

This paper introduces a new multiobjedive dgorithm, which integrates rank based seledion, adaptive niching
through coevolutionary sharing, elitist recombination, and non-dominated sorting, and is cdled ERMOCS. The
primary aim of the dgorithm is to provide arobust and efficient way to optimise red-world problems and it seems
that ERMOCS performs quite well in these environments.

We have tested the dgorithm on a softkill scheduling problem. The dgorithm performs like intended, with a
stealy efficiency and robustness It has diown be dficient, considering the quality of non-dominated solutions it
produces. Furthermore it has demonstrated its robustness because of its cgpabilities on numerous problem
instances, ead with varying properties in terms of search spaceproperties. Still, the results are only an indication of
the performance of the dgorithm since it has not been thoroughly analysed and the experiments have been
rudimentary. Nevertheless the dgorithm has exhibited promising properties and results. It has $own to be caable
to produce alarge set of non-dominated solutions, which can be dfedively processed and judged by an external
dedsion maker. Coevolutionary Shared Niching (CSN) in particular appeas to be abeneficial addition to the field
of multiobjedive optimisation. Its cgpability to adaptively form niches of varying extent and locaion has a beneficia
effect on the performance of this algorithm.

There ae still some issues though that have to be resolved. As mentioned before, the dyin parameter in
conjunction with the businessman population size setting should be made more alaptively, since these still have a
large dfed on the performance of the dgorithm. Furthermore, extensive testing should be done to investigate
performance under more @mplex domains. In the @ntext of the cae study, we muld, for example ald
manoeuvrability to the launchers, which would increase the complexity extensively. Another issie that should be
studied is the optimisation of the speed of the dgorithm. In its current sequential form it can be employed in an on-
line situation. With increasing complexity of the problem domain, one should consider using more dficient
programming and perhaps a parallel version of the ERMOCS algorithm.
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