
Efficiently Computing Private Recommendations

Zekeriya Erkin1 Michael Beye1 Thijs Veugen1,2

Reginald L. Lagendijk1

1Information Security and Privacy Lab, Faculty of EEMCS
Delft University of Technology, 2628 CD, Delft, The Netherlands

2TNO Information and Communication Technology
P.O. Box 5050, 2600 GB Delft, The Netherlands

{z.erkin, m.r.t.beye, p.j.m.veugen, r.l.lagendijk}@tudelft.nl

Abstract

Online recommender systems enable personalized
service to users. The underlying collaborative filtering
techniques operate on privacy sensitive user data,
which could be misused if it is leaked or by the service
provider him self. To protect user’s privacy, we propose
to encrypt the data and generate recommendations by
processing them under encryption. Thus, the service
provider observes neither user preferences nor recom-
mendations. The proposed method uses homomorphic
encryption and secure multiparty computation (MPC)
techniques, which introduce a significant overhead in
computational complexity. The second contribution of
this paper lies in minimizing this overhead by packing
data. The improvements are illustrated by a complexity
analysis.

Keywords: Recommender systems, user privacy, MPC,
homomorphic encryption, data packing.

1 Introduction

In the last decade, we have experienced phenomenal
progress in information and communication technolo-
gies. Cheaper, more powerful, less power consuming
devices and high bandwidth communication lines
enabled us to create a new virtual world in which
people mimic activities from their daily lives without
the limitations imposed by the physical world. As a
result, online applications have become very popular
for millions of people [1].

Personalization is a common approach to further
improve online services and attract more users. Instead
of making general suggestions for the users of the
system, the system can suggest personalized services
targeting only a particular user based on his preferences
[2]. Since the personalization of the services offers high
profits to the service providers and poses interesting
research challenges, research for generating recom-
mendations, also known as collaborative filtering,
attracts attention both from academia and industry.

The techniques to generate recommendations for
users strongly rely on information gathered from the
user. This information can be provided by the user
himself as in profiles or the service provider can
observe users’ actions, such as click logs. On one hand,
more user information helps the system to improve the
accuracy of the recommendations. On the other hand,
the information on the users creates a severe privacy
risk since there is no solid guarantee for the service
provider not to misuse the users’ data. It is often seen
that whenever a user enters the system, the service
provider claims the ownership of the information
provided by the user and authorizes itself to distribute
the data to third parties for its own benefits [14].

As an example, consider pay-TV boxes. A small
box purchased by the user provides high quality broad-
casting with several interesting features like recording
programs. Companies in this field also suggest pro-
grams and movies that they think their customers may
like. In order to make useful recommendations to their
customers, the small box observes the user behavior:

it records the programs watched, the duration spent in
front of the TV and so on. The information gathered by
the box is then sent to a server and processed to deduce
meaningful information about users. It is obvious that
this system can be used for harming the user’s privacy.

In this paper, we propose a cryptographic solution to
preserve the privacy of users in a recommender system.
In particular, the privacy-sensitive data of the users
are kept encrypted and the service provider generates
recommendations by processing encrypted data. The
cryptographic protocol developed for this purpose
is based on homomorphic encryption [3] and secure
multiparty computation (MPC) techniques [15]. While
the homomorphic property is used for realizing linear
operations, protocols based on MPC techniques are
developed for non-linear operations (e.g. finding the
most similar users).This added privacy comes at a cost:
increased computational complexity. Aside from MPC
techniques, multiplications in the encrypted domain are
expensive, because they involve exponentiations of rel-
atively large numbers. Another issue is data expansion,
because (small) plain texts are transformed into cipher
texts of a large, fixed length. A main contribution of
this paper is to provide a significant reduction of the
overhead of working in the encrypted domain, by using
data packing. In this way, many smaller plain texts are
combined into one large cipher text, thus performing
several multiplications by one single exponentiation.
As an added benefit, the message expansion is reduced.

After looking at related work in Section 2, we will
outline the general workings of a recommender system
in Section 3. In Sections 4, the cryptographic primitives
used throughout the paper will be introduced. In Sec-
tions 5 and 6, we present our privacy-preserving proto-
col for generating recommendations. A security anal-
ysis of the proposed scheme is provided in Section 7.
The complexity analysis is given in Section 8. Finally,
conclusions will be drawn in Section 9.

2 Related Work

In [4], Canny proposes a system where the private
user data is encrypted and recommendations are
generated by applying an iterative procedure based
on the conjugate gradient algorithm. The algorithm
computes a characterization matrix of the users in a
subspace and generates recommendations by calcu-

lating reprojections in the encrypted domain. Since
the algorithm is iterative, it takes many rounds for
convergence and in each round users need to participate
in an expensive decryption procedure which is based on
a threshold scheme where a significant portion of the
users are assumed to be online and honest. The output
of each iteration, which is the characterization matrix,
is available in clear. In [5], Canny proposes a method to
protect the privacy of users based on a probabilistic fac-
tor analysis model by using a similar approach as in [4].

While Canny works with encrypted user data, Polat
and Du suggest to protect the privacy of users by us-
ing randomization techniques [12, 13]. In their paper,
they blind the user data with a known random distri-
bution assuming that in aggregated data this random-
ization cancels out and the result is a good estimation
of the intended outcome. The success of this method
highly depends on the number of users participating in
the computation since for the system to work, the num-
ber of users need to be vast. This creates a trade-off
between accuracy/correctness of the recommendations
and the number of users in the system. Moreover, the
outcome of the algorithm is also available to the server
who may constitute a privacy threat to the users. Fi-
nally, the randomization techniques are believed to be
highly insecure [16].

3 Generating Recommendations

A centralized system for generating recommendations
is a common approach in e-commerce applications. To
generate recommendations for userA, the server fol-
lows a two-step procedure. In the first step, the server
searches for users similar to userA. Each user in
the system is represented by a preference vector which
is usually composed of ratings for each item within
a certain range. Finding similar users is based on
computing similarity measures between users’ prefer-
ence vectors. Pearson correlation (Eq. 1) is a com-
mon similarity measure for two users with prefer-
ence vectorsVA = (v(A,0), . . . , v(A,M−1)) andVB =
(v(B,0), . . . , v(B,M−1)), respectively, whereM is the
number of items and̄v represents the average value of
the vectorv.

simA,B =
∑

M−1

i=0
(v(A,i)−vA)·(v(B,i)−vB)

√

∑

M−1

i=0
(v(A,i)−vA)2·

∑

M−1

i=0
(v(B,i)−vB)2

. (1)

Once the similarity measure for each user is com-
puted, the server proceeds with the second step. In this
step, the server chooses thoseL users with similarity
values above a thresholdδ and averages their ratings.
These average ratings are then presented asrecommen-
dations to userA.

In e-commerce applications the number of items of-
fered to users is usually in the order of hundreds or
thousands. Apart from many smart ways of determin-
ing the likes and dislikes of users for the items, we as-
sume the users are asked to rate the items explicitly with
integer values in the range of[0,K]. This rating ma-
trix is usually highly sparse, meaning that most of the
items are not rated. Finding similar users in a sparse
dataset can easily lead the server to generate inaccurate
recommendations. To cope with this problem, one ap-
proach is to introduce a small set of items that is rated
by most users. Such a base set can be explicitly given
to the users or implicitly chosen by the server from the
most commonly rated items. Given such a small set
of items that is rated by most users, the server can com-
pute similarities between users more confidently, result-
ing in more accurate recommendations. Therefore, we
assume that the user preference vectorV is split into
two parts: the first part consists ofR elements that are
rated by most of the users and the second part contains
M − R sparsely rated items that the user would like to
get recommendations on [2].

4 Cryptographic Primitives and
Security Model

We use encryption to protect user data against the
service provider and other users. A special class of
cryptosystems, namely homomorphic cryptosystems,
allows us to process data in the encrypted form. We
choose the Paillier cryptosystem [11] as it isaddi-
tively homomorphic meaning that the product of two
encrypted values[a] and [b], (where [·] denotes the
encryption function), corresponds to a new encrypted
message whose decryption yields the sum ofa and b

as[a] · [b] = [a + b]. As a consequence of the additive
homomorphism, any cipher text[m] raised to the power
of a public valuec corresponds to the multiplication
of m andc in the encrypted domain:[m]c = [m · c].
In addition to the homomorphism property, the Paillier
cryptosystem is semantically secure implying that
each encryption has a random element that results in
different cipher texts for the same plain text.

As a part of a cryptographic protocol introduced in
Section 6, we use another additively homomorphic
and semantically secure encryption scheme, DGK
[7, 6]. The DGK cryptosystem is used to replace the
Paillier cryptosystem in a subprotocol, for reasons of
efficiency. For the same level of security, DGK has a
much smaller message space compared to the Paillier
cryptosystem and thus, encryption and decryption
operations are more efficient than under Paillier.

We use the semi-honest security model, which as-
sumes that all players follow the protocol steps but are
curious and thus keep all messages from previous and
current steps to extract more information than they are
allowed to have. Our protocol can be adapted to the
active attacker model by using the ideas in [10] with
additional overhead.

5 Privacy Preserving Recom-
mender System

In this section we propose a protocol based on ad-
ditively homomorphic encryption schemes and MPC
techniques. In particular the service provider, i.e. the
server, receives the encrypted preference vector of user
A and sends it to the other users in the system who can
then compute the similarity value on their own by using
the homomorphism property of the encryption scheme.
Once the users compute the similarity values, they are
sent to the server. After that, the server and userA run a
protocol to determine which similarity values are above
a thresholdδ. The server - being unaware of the number
of users with a similarity value above a threshold, and
their identities - accumulates the ratings of all users in
the encrypted domain. Then, the encrypted sum is sent
to userA along with the encrypted number of similar-
ities above the threshold,L. UserA decrypts the sum
andL and computes the average values, obtaining the
recommendations. Each step of the proposed protocol

is detailed in the following sections.

5.1 Key Generation and Preprocessing

Any user in the system who wants to get recommen-
dations generates personal public key pairs for the
Paillier and the DGK cryptosystems. We assume that
the public keys of the users are available publicly.

Since the Pearson correlation given in (1) for userA
andB can be also written as:

simA,B =

R−1
∑

i=0

CA,i · CB,i, where (2)

CX,i =
(v(X,i) − vX)

√

∑R−1
j=0 (v(X,j) − vX)2

.

The termsCA,i and CB,i can be easily computed by
usersA and B, respectively. Each user computes a
vector from which the mean is subtracted and nor-
malized. Since the elements of the vector are real
numbers and cryptosystems are only defined on inte-
ger values, they are all scaled by a parameterf and
rounded to the nearest integer resulting in a new vec-
tor V ′

i = (v′

(i,0), . . . , v
′

(i,R−1)) whose elements are now
k-bit positive integers. Note that the threshold valueδ
should also be adjusted accordingly.

5.2 Computing Similarity Measures

The similarity value between userA and any other user
B is computed over the rating vectors of sizeR. The el-
ements of the user vectorV ′

A = (v′

(A,0), . . . , v
′

(A,R−1))
are encrypted individually by using the public key of
the userA. Then, the encrypted vector[V ′

A]
pkA

is sent
to the server. The server then sends the encrypted vec-
tor to the other users in the system. Any userB who
receives the encrypted vector[V ′

A]
pkA

can compute the
encrypted similarity as follows:

[simA,B] =

[

R−1
∑

i=0

v′

(A,i) · v
′

(B,i)

]

=
[

v′

(A,0) · v
′

(B,0) + . . . + v′

(A,R−1) · v
′

(B,R−1)

]

=
[

v′

(A,0)

]v′

(B,0)

· . . . ·
[

v′

(A,R−1)

]v′

(B,R−1)

(3)

=

R−1
∏

i=0

[

v′

(A,i)

]v′

(B,i)

.

Note that we omit the encryption keypkA above and
in the rest of the paper for the sake of readability. The
computed similarity value is then sent back to the server
in encrypted form.

5.3 Finding the Most Similar Users

Upon receiving similarity values from users, the server
initiates a cryptographic protocol with userA to deter-
mine the most similar users whose similarity values are
above a public thresholdδ. The protocol receivesN en-
crypted similarity values and outputs an encrypted vec-
tor [ΓA] = ([γ(A,0)], [γ(A,1)], . . . , [γ(A,N−1)]). The ele-
ments of this vectorγ(A,i) are either an encryption of 1,
if the the similarity value between userA and useri is
above the thresholdδ, or an encryption of 0, otherwise.
The details of this protocol can be found in Section 6.

5.4 Generating Recommendations

After obtaining the vector[ΓA], the server can gen-
erate the recommendations for userA. For this pur-
pose, the server sends[γ(A,i)] to theith user in the sys-
tem. Useri, referred to as userB, can raise[γ(A,B)]
to the power of each rating he has left in his ratings
vector to obtain another encrypted vector[Φ(A,B)] =
([φ(A,R)], [φ(A,R+1)], . . . , [φ(A,M−1)]) whereφ(A,j) =

[γ(A,B) · v′

(B,j)] = [γ(A,B)]
v′

(B,j) for (R ≤ j < M).
Notice that userB does not know the content ofγ(A,B).
The resulting vector[Φ(A,B)] is either the encrypted rat-
ing vector of userB or a vector of encrypted 0’s. Vec-
tor [Φ(A,B)] is then sent to the server to be accumulated
with other users’ vectors.

The above procedure can be improved in order to
minimize the computational and communication cost
by using data packing. Instead of raising[γ(A,B)] to
the power of each rating, the ratings can be represented
in a compact form and then used as an exponent:

v′

(B,R)|v
′

(B,R+1)| . . . |v
′

(B,M−1) , (4)

where| represents the concatenation operation. Assum-
ing that eachv′

(B,j) is k-bits andN of such vectors are
to be accumulated by the server, whereN is the number
of users participating in the protocol, each compartment
should have a bit size ofk + log(N). Thus, packing is
achieved by the following formula:

v′′

B =

M−R
∑

j=0

2j(k+log(N)) · v′

(B,j+R) . (5)

By packing values, the communication cost reduces
significantly as we obtain a packed value rather than a
vector of encrypted vectors. Packing also reduces the
number of exponentiations which is a costly operation
in the encrypted domain, introducing a gain in compu-
tation. However, depending on the message space of
the encryption scheme,n, and the number of ratings,
M −R, it may not be possible to pack all values in one
encryption. The number of values that can fit into one
encryption isT = n/(k + log(N)). Therefore, we may
needS = ⌈(M − R)/T ⌉ encryptions.

Once userB packs his ratings to obtainv′′

B , he can
compute[Φ(A,B)] as follows:

[

Φ(A,B)

]

=
[

γ(A,B)

]v′′

B (6)

=

{

[v′′

B] if γ(A,B) = 1

[0] if γ(A,B) = 0 ,

and sends[Φ(A,B)] to the server. Upon receiving
[Φ(A,i)] values from all users, the server accumulates
them:

[ΦA] =

N
∏

i=0

[

Φ(A,i)

]

=

[

N
∑

i=0

Φ(A,i)

]

. (7)

Notice that the result will be equal to the sum of ratings
of the users who have similarity values above thresh-
old δ. The server also accumulates the[γ(A,i)] values
to obtain the number of users above the threshold also
encrypted:

[L] =

N
∏

i=0

[

γ(A,i)

]

=

[

N
∑

i=0

γ(A,i)

]

. (8)

These two values,[ΦA] and [L] are then sent to
user A. After decrypting, userA decomposesΦA

and divides each extracted value byL, obtaining the
average ratings ofL users. This concludes our protocol.

An important observation at this point is the value of
L. If L = 0, the user can notify the server to repeat
the second step of the protocol with a new threshold. If
L = 1, the user obtains exactly the same ratings vector
of some user but he does not have the identity of that
particular user.

6 Cryptographic Protocol for
Finding Similar Users

Finding similar users is based on comparing the
similarity value between userA andB, simA,B , to a
public thresholdδ. As the similarity value is privacy
sensitive and should be kept secret both from the server
and the user, we compare it in the encrypted domain.
For this purpose, we use a comparison protocol that has
been introduced in [8]. The cryptographic protocol in
[8] takes two encrypted values,[a] and[b], and outputs
the resultλ again in the encrypted form: ifa > b
[λ = 1], and[λ = 0] otherwise. For the completeness
of the paper, we give a brief description of the protocol.
More explanation and implementation details on the
comparison protocol can be found in [8].

Given the similarity value simA,B and public thresh-
old δ, both of which areℓ bits, the most significant bit
of the valuez = 2ℓ + simA,B − δ is the outcome of
the comparison. However, we need to obtain the most
significant bit ofz in the encrypted domain. While the
encrypted value[z] can be computed by the server, the
most significant bit of[z] requires running a protocol
between the server and userA who has the decryption
key. Note that the similarity value cannot be trusted to
the user as it leaks information about other users in the
system. Therefore, the server adds a random valuer to
z: [c] = [z + r] and sends it to userA who then de-
crypts it. Notice that the most significant bit now can
be computed as:

[

γ(A,i)

]

=
[

2−ℓ(z − (c mod 2ℓ − r mod 2ℓ) + α · 2ℓ
)

] , (9)

where the last term is necessary depending on the
relation betweenc andr. The variableα is a single bit
representing whetherc > r or not. At this point, we
convert the problem of comparing[simA,i] andδ to the
problem of comparingc andr which are owned by the
user and the server respectively.

Comparingc and r requires another cryptographic
protocol in which the server and userA evaluate the
following formula for each ofℓ bits:

[ei] =



1 − ci + ri + 3
ℓ−1
∑

j=i+1

cj ⊕ rj



 , (10)

whereci andri are theith bits of c andr, respectively.
The value ofei can be 0 if and only ifc > r, when
ci = 0, ri = 1 and the upper part ofc andr are the
same. After these computations, the server sends the
randomized and shuffled[ei] values to the userA. User
A decrypts them and checks whether there is a zero
among the valuesei. Existence of a 0 value indicates
that r > c. However, this leaks information about
the comparison of simA,B and δ thus, the server ran-
domizes the direction of the comparison by replacing
1− ci + ri in Eq. 10 with−1− ci + ri at random. User
A then returns[α] which is either[1] or [0] depending
on the existence of a 0 among theei values. The server
can correct the direction of the comparison and obtain
the[γ(A,i)] by replacingα in Eq. 9.

By using this comparison protocol, each simi-
larity value is compared to thresholdδ in paral-
lel. The outcomes of the comparisons,[ΓA] =
([γ(A,0)], [γ(A,1)], . . . , [γ(A,N−1)]), are then used in the
subsequent steps.

7 Security Analysis

Our protocol for generating recommendations can be
considered as a secure multi-party computation in the
semi-honest model. The parties that participate in the
computation are theN users and the server. The private
input of useri, 0 ≤ i < N , is his (or her) normalized
preference vectorV ′

i = (v′

(i,0), . . . , v
′

(i,M−1)), together
with the decryption keyKi. The output for userA, A
being the user that is requesting a recommendation,
equals the accumulated recommendation vectorΦA of
lengthM − R and the numberL of similar users, i.e.
the number of users for which the similarity value with
A exceeds a thresholdδ.

In order to show that our protocol privately com-
putes the recommendation vector for userA in the
semi-honest model, we have to show that whatever
can be computed by any party in the protocol from its
view of a protocol execution, can be computed from its
input and output (see Definition 7.2.1 from Goldreich
[9]). We have basically three different types of parties,
namely the server, userA, and any other useri 6= A.

The view of the server of a protocol execution
consists of all public parameters, its randomly gen-
erated variables, and a number of received messages

encrypted with the public key ofA. The public parame-
ters are the public keys of all users, the thresholdδ, the
number of (most rated) itemsM andR, the sizeℓ of the
similarity values, the sizen of the encryption scheme,
the sizek of one normalized rating, and the number
S of encryptions needed to present the accumulated
recommendation vector. The randomly generated vari-
ables of the server are theN − 1 variables (r) that are
used in the comparison protocol to determine whether
the similarity value with useri, (i 6= A), exceeds the
thresholdδ or not. The comparison protocol, which we
use as a subprotocol, has been proven secure in [7, 6].
Our encryption system Paillier, with a message space
size ofn and the decryption keyKA, is semantically
secure [11]. Therefore, it easily follows that anything
that the server could compute from its view, can be
computed from the public parameters alone.

The view of userA consists of all public parameters,
its private input and output, and all messages received
by the server. All messages, different from the output
of A, that are received by the server, are related to the
N−1 executions of the comparison protocol to compare
the similarity value simA,i with public thresholdδ for
eachi 6= A. Since the comparison protocol is known
to be secure, it easily follows that anything userA
could compute from its view, can be computed from the
public parameters and its private input and output alone.

The view of useri, (i 6= A), consists of all public pa-
rameters, its private input, and all messages received by
the server. The only message that useri received from
the server is the normalized preference vector[V ′

A], en-
crypted by the public key of userA. Since Paillier is
semantically secure, it easily follows that anything user
i could compute from its view, can be computed from
the public parameters and its private input alone.

8 Complexity Analysis

The performance of our protocol is mainly determined
by the interaction among the server, and userA, who
asks for recommendation, and other users in the sys-
tem. In our construction, the server participates in the
computation and relays messages among users. User
A, on the other hand, only participates in the protocol
in two stages: 1) when he asks for a recommendation
and uploads his encrypted data and 2) when he receives
the encrypted recommendation. Other users help the

Table 1: Computational complexity.

Server UserA UserB
Paillier DGK Paillier DGK Paillier DGK

Encryption O(N) O(Nℓ) O(R) O(ℓ) - -
Decryption - - O(1) O(ℓ) - -
Multiplication O(NS) O(Nℓ2) - - O(R) -
Exponentiation - O(Nℓ) - - O(R + S) -

server with the recommendation generation.

Recall thatR is the number of heavily rated items,N
is the number of users,ℓ is the length of the similarity
values and thresholdδ, S is the number of encryptions
required (with packing), andT is the number of values
that fit into one encryption.

8.1 Round Complexity

Our protocol consists of 5 rounds. The data transfer
from users to the server in the initialization stage is 0.5
round. To determine the similar users and generate the
recommendation, the server needs 4 rounds of inter-
action. Notice that to obtain[ΓA] in the comparison
protocol, all encrypted values are compared to a public
valueδ, and all comparisons can be done in parallel. In
the last stage, the server sends the recommendation to
userA which requires another 0.5 round. This gives
O(1) rounds.

8.2 Communication Complexity

The amount of data transferred during the protocol
is primarily influenced by the size of the encrypted
data. For userA, the amount of encrypted data to be
transferred isO(R + Nℓ). The server, on the other
hand, has to receive and sendO(N(R + S + ℓ))
encrypted data which is heavily influenced by the data
transmission during the comparison ofN similarity
values. Other users in the system need to receive and
send dataO(R + S). As mentioned in Section 5.4,
by packing multiple values into one single encryption,
we can reduce the data expansion by a factor ofT ,
significantly reducing our communication overhead.

8.3 Computational Complexity

The computational complexity depends strongly on the
cost of operations in the encrypted domain, which can
be categorized into four classes: encryptions, decryp-
tions, multiplications and exponentiations. In Table 1,
we provide the number of each operation in the Pail-
lier and the DGK cryptosystems. One exception is for
the decryption operation in DGK, which is actually a
zero-check which is a fast and less expensive operation
compared to original decryption. Again, data packing
allows us to operate onT rating values with one single
exponentiation. This reduces the number of exponenti-
ations by a factor ofT .

8.4 Optimizations

In order to improve the performance of the system, we
may consider a few optimizations. Firstly, once the sim-
ilarity value between two users is computed, it can be
stored by the server for future use. As long as the rating
vectors of sizeR that are used for similarity computa-
tion do not change, the similarity value will remain the
same. This eliminates most of the expensive encryption,
exponentiation and multiplication operations in the en-
crypted domain. Secondly, in our analysis we assume
that the similarity values are computed for all users
in the system. In applications with millions of users,
this approach can be reconsidered in several ways. A
smaller set of users can be selected at random, or a
group of users who are trusted by userA, also known
as social trust network, can be chosen for the similar-
ity computation. Thirdly, encryption can be optimized
for run time efficiency. The random values required for
Paillier and DGK cryptosystems can be generated in ad-
vance or in the idle time of the processors, resulting a
substantial gain in efficiency as suggested in [8].

9 Conclusion

In this paper we proposed a cryptographic approach for
generating recommendations to the users within online
applications. The proposed method is constructed by
homomorphic encryption schemes and MPC tech-
niques. This makes our proposal provably secure and
not reliant on the number of users in the system, as
opposed to randomization techniques [12, 13].

The inevitable overhead introduced by working in the
encrypted domain is reduced significantly by packing
data (as well as using the DGK cryptosystem), as shown
in our complexity analysis. Unfortunately, we cannot
compare our result with previously proposed systems
due to space restrictions. However, we conclude that
our proposal is based on a realistic scenario and the re-
quired technology is not overly demanding compared to
cryptographic tools like thresholding schemes, as used
in other approaches as in [4].

References

[1] Internet usage statistics. http://www.
internetworldstats.com/stats.htm,
2009.

[2] G. Adomavicius and A. Tuzhilin. Toward the next
generation of recommender systems: A survey of
the state-of-the-art and possible extensions.IEEE
Trans. on Knowl. and Data Eng., 17(6):734–749,
2005.

[3] N. Ahituv, Y. Lapid, and S. Neumann. Processing
encrypted data.Commun. ACM, 30(9):777–780,
1987.

[4] J. F. Canny. Collaborative filtering with privacy. In
IEEE Symposium on Security and Privacy, pages
45–57, 2002.

[5] J. F. Canny. Collaborative filtering with privacy
via factor analysis. InSIGIR, pages 238–245, New
York, NY, USA, 2002. ACM Press.

[6] I. Damg̊ard, M. Geisler, and M. Krøigaard. Ef-
ficient and Secure Comparison for On-Line Auc-
tions. In J. Pieprzyk, H. Ghodosi, and E. Daw-
son, editors,Australasian Conference on Informa-
tion Security and Privacy, volume 4586 ofLNCS,
pages 416–430. Springer, July 2-4, 2007.

[7] I. Damg̊ard and M. Jurik. A Generalization, a
Simplification and some Applications of Paillier’s
Probabilistic Public-Key System. Technical re-
port, Department of Computer Science, University
of Aarhus, 2000.

[8] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser,
R. L. Lagendijk, and T. Toft. Privacy-preserving
face recognition. InProceedings of the Privacy
Enhancing Technologies Symposium, pages 235–
253, Seattle, USA, 2009.

[9] O. Goldreich. Foundations of Cryptography. Ba-
sic Applications, volume 2. Cambridge University
Press, first edition, May 2004.

[10] O. Goldreich, S. Micali, and A. Wigderson. How
to Play any Mental Game or A Completeness The-
orem for Protocols with Honest Majority. InACM
Symposium on Theory of Computing, pages 218–
229. ACM, May 25-27, 1987.

[11] P. Paillier. Public-Key Cryptosystems Based
on Composite Degree Residuosity Classes. In
J. Stern, editor,Advances in Cryptology, volume
1592 ofLNCS, pages 223–238. Springer, May 2-
6, 1999.

[12] H. Polat and W. Du. Privacy-preserving collabora-
tive filtering using randomized perturbation tech-
niques. InICDM, pages 625–628, 2003.

[13] H. Polat and W. Du. SVD-based collaborative fil-
tering with privacy. InProceedings of the 2005
ACM symposium on Applied computing, pages
791–795, New York, NY, USA, 2005. ACM Press.

[14] Shopzilla, Inc. Privacy policy, 2009.
http://www.bizrate.com/content/
privacy.html.

[15] A. C.-C. Yao. Protocols for Secure Computa-
tions (Extended Abstract). InAnnual Symposium
on Foundations of Computer Science, pages 160–
164. IEEE, November 3-5, 1982.

[16] S. Zhang, J. Ford, and F. Makedon. Deriving pri-
vate information from randomly perturbed ratings.
In ICDM, pages 59–69, 2006.

