Interactive Networks

A User Interface for Application Owned
Lightpath Networks

Editor’'s Note: The
prototype discussed be-
low was developed by
Rudolf Strijkers under
supervision of Prof. Dr.
Robert Meijer as part of
his phd research on
next-generation Inter-
net architecture. Mem-
bers of the team that
developed the demo
were Mihai Cristea
(post-doc), Laurence
Muller (scientific pro-
grammer) and Robert
Belleman (head of UvA
visualization lab). My
Interview with Rudolf
was conducted on No-
vember 19.

COOK Report: Cees
de Laat and I've been
down in the engine room
talking about what
makes these user controlled
and application controlled
switched light path networks
possible. Now we are going
to look at a prototype of a
user interface with a multi-
touch-sensitive screen that
allows a user to tap on the
tools he wishes to select and
with his finger to draw the
paths he wishes to activate
nodes on a programmable
network. Multiple researchers
can use the multi touch inter-
face at the same time.

According to what you were
telling me the goal of what
we are talking about is to
have this kind of software on
an ordinary researcher’s
screen three or four or five
years from now. At that
point the user should be able
to use it to control most any
application in collaborative
environment. Would you take
me on a guided tour of what
it is and what it does and
how it works?

© 2009 COOK network consultants 431 Greenway Ave. Ewing, NJ

Figure 1. Interactive Networks setup at Super Computing 2008,
Austin, TX.

Strijkers: This is the first
prototype of what we are
calling “Interactive Net-
works”. In interactive net-
works humans become an
integral part of the control
system to manage the next-
generation of programmable
networks and Grids. The
main design principle is this;
by virtualizing the configur-
able and programmable
properties of network ele-
ments as software objects,
any aspect of a network in-
frastructure can be manipu-

PAGE41



THE COOK REPORT ON INTERNET PROTOCOL FEBRUARY 2009

lated from computer pro-
grams. What we show here is
an implementation of an in-
teractive control system con-
cept for user programmable
networks, which applies the
architectural concepts we
have developed in our re-
search.

The network you see here is
the current set up of our test
bed located at the University
of Amsterdam. These icons
represent the network’s ele-
ments and network structure
visualized at IP level. I can
tell you a little bit about the
actual infrastructure. There
are currently twenty nodes,
interconnected by four sub-
nets to create an operation-
ally interesting topology.
Three of these subnets are in
separate virtual machine en-
vironments of VMware, called
ESX servers, that also con-
tain four virtual machines
each. ESX is essentially a
container for virtual ma-
chines. The VMware man-
agement environment en-
ables us to create, clone, and
remove virtual machines. It
also enables creation and
manipulation of complete vir-
tual network environments.

The virtual subnets and ma-
chines are connected to a
physical subnet, which also
contains two physical nodes.
Then we have the four Mac
Mini's here in the booth,

nection. This way, the Mac
mini’s are part of the subnet.

When the network boots and
the nodes come up they will
connect to controller. The
controller is programmed in
such a way that it will send a
out a discovery request when
a new node connects. Each
node will try to discover its
neighbors using ARP to scan
the whole subnet for hosts.
Since it will discover every-
thing in the subnet, we also
find all the nodes in the data-
center. We currently only
display the programmable
nodes, but the whole discov-
ered network can be dis-
played too.

At SC08 we forgot to turn off
WiFi to Scinet on the Mac
mini’'s once and discovered

over 700 nodes within sec-
onds. The neighbors you dis-
cover at Ethernet level will
look like fully connected at
the IP level. For example, if
you interconnect the three
computers with a switch, it
will always look as though
each computer can reach
each other directly. That’s
why it looks like three fully
connected networks here and
one large fully interconnected
network over there; the video
screens are just one hop
away.

Once we have discovered the
networks you can also see
the result over there in the
Mathematica interface on the
fifth screen. The Mathematica
interface has access to the
same information and sup-
ports the same network ma-

which are directly connected Figure 2. Network visualization after discovery. The dashed lines, when
to the physical switch in Am- monitoring is enabled will indicate bandwidth (line width), delay (percentage
sterdam with a gigabit con- of dashing) and jitter (randomize in dashing).

© 2009 COOK network consultants 431 Greenway Ave. Ewing, NJ PAGE42



THE COOK REPORT ON INTERNET PROTOCOL FEBRUARY 2009

nipulations as the touch ta-
ble. We will come back to
this aspect later.

COOK Report: What do
these icons represent?

Strijkers: The icons repre-
sent the type of modes or
functionality that each node
offers. We currently have
three modes. 1. A producer:
this node contains streaming
video content and is visual-
ized as a green-circled arrow.
It can also route traffic. 2. A
consumer: such a node is
connected to a streaming
video client and can display
the streamed content. A play
button in a screen shows it.
3. A router: The sole purpose
of these nodes is to route
traffic and blue-circled arrows
demonstrate it.

At this point we can look at
what kind of videos may be
streaming in the network.
You can push with your finger
on a producer node and a
window opens on the touch
table that gives you a pre-
view of the video. By the
way, the movies we currently
have are: Big Buck Bunny,
Elephants Dream, and two
Cinegrid demo movies. The
first two are actually made in
the Netherlands as part of
the Orange Open Movie Pro-
ject and the son of Cees de
Laat made one of the Cine-
Grid movies. All the movies
stream continuously stream
in high definition, but to un-
known destination IPs. This

way a node never receives a
stream, except when we run
our special expressions to
capture the traffic.
Underneath the node you can
see a small graph, which will
displays CPU load measure-
ments. A button on the top
right of the touch table will
enable or disable the CPU
load measurements in the
network. The real-time load
information for a selected
node will be displayed in this
graph. When the load be-
comes larger than 1, the
nodes will light up red, alert-
ing the operator that the
node is under stress.

Now we can decide to make a
path. Then we go into the
path creation mode, and then
you can decide to trace a
path, from a producer node
to a router to a screen, for
example. And you see the

Figure 3. By touching a producer node you will see a preview of the
video stream. The small graph underneath shows real-time CPU load

measurements.

© 2009 COOK network consultants 431 Greenway Ave. Ewing, NJ

video stream appear on the
screen.

COOK Report: The blue line
is traced with the finger?
[See Figure 4 on page 44 be-
low.]

Strijkers: Yes. If we make a
path, what will happen, we
send a request to the control-
ler asking to create the path
that we just dragged with our
finger. The controller will
send the request to a com-
piler to generate the com-
mands and forwarding ex-
pressions for provisioning the
nodes. The results will be
passed on to a transaction
monitoring, which executes a
distributed transaction to
load the commands and ex-
pressions on the nodes. If
loading of one of the expres-
sions or commands fails, the
whole transaction will be

PAGE43



Figure 4. Simply drag a line with a finger to create a path.

rolled back. So, whatever
happens in inserting or re-
moving requests, the network
will always be in a consistent
state. When drawing a path,
the touch table will also
automatically select an un-
used color and this color will
be used for lifetime of a path
to identify the stream. When
tracing the traffic on IP level
you will actually see the color
codes in the IP packets.

Once we have a path we can
also select it and extend it to
a multicast path. This can be
done by dragging a new
route starting from any node
of the path chosen for the
extension. It's as easy as
that.

COOK Report: You are tak-
ing this content and sending
it to a second screen?

Strijkers: Exactly. I only
have to touch the path on a

node and drag it to a screen
over another route. And then

you can see the movies
streaming on two computers.

COOK Report: With this ta-
ble, and if somebody will

show me, I'm sure I will learn
the basics of it pretty quick,
right?

© 2009 COOK network consultants 431 Greenway Ave. Ewing, NJ

-

Figure 5. Seledting and extending an existing path from a node
creates multicast paths.

THE COOK REPORT ON INTERNET PROTOCOL FEBRUARY 2009

Strijkers: Yes, you will. The
interface is very simple con-
sidering the capabilities. Ac-
tually, what we show here is
a showcase for how we envi-
sion the management of the
next-generation networks.
So, the capabilities of our ex-
perimental programmable
network are one step further
than what you can do with
modern networks now. For
example, I can show you how
we can draw a path with a
loop. Have you ever seen a
path with a loop in a net-
work?

COOK Report: So, in other
words, that path that you
just set will send data back
and forth two or three times?

Strijkers: Yes, the packets
will ping-pong back and forth
before being routed to the
screen. Normally, loops in a

PAGE44



Figure 6. Creating a loop. Unicast paths can be routed any way a user
likes, whether it contains one or more loops or crossings. The compiler

will detect and generate the correct expressions.

network are bad, because
routers have no way of de-
tecting if a certain packet al-
ready came by or not.

To achieve loops in a pro-
grammable network, you
could use special programs
with counters to detect loop-
ing packets. But, we en-
hanced IP a little; we put a
token inside the packet, in
the IP option field to be more
precise. This token is not
necessary, but it allows us to
white list or identify packets
or streams uniquely. The to-
ken enables us to bind net-
work behaviour to traffic that
is not in any sense connected
to the protocols used. An ex-
ample of such a binding is 'I
want a good quality video
connection to my TV, but

only after my pizza arrives’,
but also to bind network be-
haviour of communities or
distributed applications in
grid networks. Our former

THE COOK REPORT ON INTERNET PROTOCOL FEBRUARY 2009

colleague Leon Gommans did
a lot of work on this subject
and we have extended his
ideas to programmable net-
works.

In the demo, the compiler
detects the loop and creates
expressions that change the
colour of a token to a differ-
ent shade. This means that at
every hop the token is rewrit-
ten and will flow in another
streamline graph. For exam-
ple the colour still remains
blue to the application, but in
reality the network uses the
shades to maintain state.

So, I have shown how to
make a unicast path, how we
made a multicast path, and
how we made a path with a
loop. Now I can show you a
little bit what happens inside
the node.

COOK Report: OK

Figure 7. Changing path creation mode. The button with the question
mark shows the discovered topology including non-programmable
nodes.

© 2009 COOK network consultants 431 Greenway Ave. Ewing, NJ

PAGE45



THE COOK REPORT ON INTERNET PROTOCOL FEBRUARY 2009

Strijkers: For this we need
to switch to a different mode.
This mode disables dragging
of paths and allows us to in-
teract with the nodes and
edges of the network. When I
double tap on a node, you
will see what happened in the
node when we made the
loop.

COOK Report: The large
black circle indicates you
zoomed into the node?

Strijkers: Yes. When we
make a path, like a loop for
example, the request is sent
to a controller. This controller
runs the request through the
compiler, which checks if the
nodes are available, how they
are connected, if the source
is a video stream and if the
destination is connected to a
screen. The compiler will
generate a flow graph for

Figure 8. Streamline flow graph currently loaded in a node. Note that due
to the picture contrast the connecting lines are barely visible.

every node. This flow graph
will describe how the traffic
flows from the input ports to
the output ports.

COOK Report: And the out-
put port is skb in the red cir-
cles?

Strijkers: Yes

COOK Report: And the tbs,
what does that stand for?

Strijkers: Let's start at the
first filter first. Netfilter is a
library in the linux kernel,
which captures all the data
from the networking stack at
specific points. When not
used, traffic would normally
go through the normal net-
working stack of Linux. But,
what we do is we capture the
traffic at Netfilter input and
force it to go through the
flow graph. And, skb_trans-

© 2009 COOK network consultants 431 Greenway Ave. Ewing, NJ

mit is actually the output
function of the linux kernel.
So, if we send a packet there,
it will be routed and sent to
the correct host. We have
made a special modification,
were we have full control
over the traffic flow. This first
filter is tbs. It's called the
token based switch. What it
does is, it looks at the packet
and says, it's a blue packet,
and I'm a blue graph, so I
accept the packet. If I would
be a red graph I wouldn’t ac-
cept the blue packet. In other
words, it accepts or drops
packets based on their token.
This allows us to create
application-specific flow
graphs for tokenized streams.

When the packet is accepted,
it goes on to the tb and the
tb filter tears off the token.
Why would we tear of the to-
ken? Because if we send the
message to the Mac mini, it
would have no clue that we
did all kind of weird stuff with
the packet. It just looks like
any other packet. And here is
the magic; we have a filter
that rewrites the IP destina-
tion of the packet to route it
to go there. The library that
allows us to insert/remove
these filter expressions at
run-time in the kernel is
called Streamline. It was de-
veloped at the Vrije Univer-
siteit of Amsterdam and our
colleague Mihai Cristea and I
worked closely with its devel-
oper Willem de Bruijn to
make it suitable for our pur-
pose.

PAGE46



THE COOK REPORT ON INTERNET PROTOCOL

h

Figure 9. Modifying the sampling rate of a flow. The extreme left shows
the manipulated stream, and the screen immediately to its right shows

an unmodified stream that is also part of the same multicast tree.

COOK Report: When you
get a green circle with a plus,
what does that indicate?

Strijkers: The compiler
automatically generates
these expressions, the dis-
tributed transaction proces-
sor executes a two-phase
commit on all the nodes and
inputs them in Streamline.
After the transaction is com-
plete, we can zoom into the
node and modify the expres-
sion that resulted from the
compilation process and that
is currently running in
Streamline. Just by touching
the plus button.

COOK Report: That gets you
to a different interface, or?

Strijkers: Not exactly, it
adds a filter to the run-time
expression at a certain place.
Keep in mind that the actual
code is running in the kernel.

What actually happens is that
this request goes to the spe-
cific node, it picks out the
manipulated expression,
plugs the sampler in and puts
it back into Streamline. And
you can see it, because your
whole video stream goes
nuts. On the left screen we
see the video of a multicast
branch with a sampler and on
the right the unmodified
stream of the other branch.

The image is distorted be-
cause we throw away some
packets. Right now it throws
away 50 percent of the pack-
ets. (Modifies the sampler

© 2009 COOK network consultants 431 Greenway Ave. Ewing, NJ

FEBRUARY 2009

value) So, you just saw me
modifying the flow dropping
rate in real-time. Now we
only implemented user inter-
face support for a sampler,
but you can insert any type
of filter yourself or even write
your own.

This is a powerful tool to ex-
ert very fine-grained control
over traffic. For example you
could add or manipulate rate
limiter filters, which would
allow very precise traffic
shaping. The operator at the
touch table could manually
control the traffic shaping,
but it is also possible pro-
grammatically. I can show
this later on.

Strijkers: And we can say,
hey, we change the sampler
to 80 percent. You will see
that the screen gets gradu-
ally better. It's because of
the encoding that it will do
weird stuff. But, we can also
remove it with the minus. It
will go streamline again, it
will remove the sampler and
you will see the stream turn-
ing back to normal.

COOK Report: Impressive!

Running Mathematica

Strijkers: So, that's the
touch table part. The other
part is we can enable
throughput measurements,
so then the controller will ask
to the network to continu-
ously return throughput

PAGE47



Figure 10. A closer view on the sampler modification interface. The
sampling percentage is changed with the slider.

measurements. And you can
see what happens over there.

COOK Report: You're over
at Mathematica
there

Strijkers: Yeah,
Mathematica is a
scientific computing
environment. It al-
lows you to do in-
teractive calcula-
tions. Mathematica
contains a large li-
brary for statistical
analysis, graph the-
ory and so on. And
by the way, today
they released ver-
sion 7, which in-
cludes out-of-the-
box support for
parallel computing.
Mathematica also is
a powerful symbolic
language that allows

you to write programs and
dynamic visualizations. I im-
plemented a Mathematica
interface to the programma-

THE COOK REPORT ON INTERNET PROTOCOL FEBRUARY 2009

ble network and now Mathe-
matica is part of the pro-
grammable network and is
able to receive measure-
ments or manipulate paths
just like the touch table.

COOK Report: You can see
the orange yellow cone
changing shape, and it looks
almost like the visualisation
of a pumping heart. That's
my metaphor.

Strijkers: It's a 3D contour
plot of the real-time through-
put in the network, so the
analogy with the pumping
heart is quite accurate. The
contour plot shows that we
can now directly apply the
large collection of Mathe-
matica libraries to visualize

© 2009 COOK network consultants 431 Greenway Ave. Ewing, NJ

Figure 11. Interactive Networks in Mathematica. The left window shows the 3D contour
plot of the real-time throughput in the network. The right window shows the current
topology of our programmable test bed.

PAGE48



THE COOK REPORT ON INTERNET PROTOCOL FEBRUARY 2009

and program networks inter-
actively while using real-time
measurements. On the touch
table we do graph layouts by
hand for example; Mathe-
matica can calculate the lay-
out automatically, which you
can see in the other window.
To create the dynamic plot
that is shown on the screen,
a graph layout algorithm of
Mathematica determines the
form of the surface. Then the
throughput measurements
make up the values of the z-
axis.

With the information
given by the network, and
currently we support con-
tinuous measurement of
delay, jitter, bandwidth
and throughput, one or
more operators at once
can write programs that
automate decision-
making. This opens the
way for automated net

work adaptation in a user-
friendly environment.

For example, now we can
say, certain paths should
avoid busy parts of the
network. By using only
standard functions in
Mathematica, it is already
possible to write a simple
program that uses the
real-time throughput in-
formation to continuously
reroute one or more paths
that avoid busy parts of
the network.

COOK Report: In three
years time, this software and
capability should be on every
researcher’s workstation?

Strijkers: We certainly hope
so. The demo we showed to-
day illustrates a novel way to

© 2009 COOK network consultants 431 Greenway Ave. Ewing, NJ

manage programmable net-
works. But, it is not limited to
this case only. Amongst
other things, we would
like to incorporate light-
path management and in-
clude other resources,
such as storage or virtual
machine management. We
hope that on a longer term
we can do trials on a
larger scale, for example,
by integrating our solution
with Internet2, ARGIA and
other research networks
and Grids. Eventually, we
hope to see our work ap-
plied in collaborative con-
trol room environments
for monitoring and control
of complex and large-
scale systems.

PAGE49



