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Abstract: Increased demand for high bandwidth and high efficiency made full state-feedback control
solutions very attractive to power-electronics community. However, full state measurement is econom-
ically prohibitive for a large range of applications. Moreover, state measurements in switching power
converters are very noisy. These facts make the development of observer design targeted specifically
to power electronics highly important. This paper analyses suitability of two previously proposed
hybrid observer design techniques for continuous-time linear switched and discrete-time piecewise
affine systems in context of power converters. Furthermore, a novel design procedure of Luenberger
type observers is proposed for discrete-time systems with input-induced bilinearity. The performance of
developed observers is demonstrated through simulation and experimental results obtained for a buck-
boost converter.
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1. INTRODUCTION

Power converters are ubiquitous in consumer and industrial
electronics. Both fields continuously demand higher efficiency,
reliability and performance from converters. In this context
advanced control techniques which rely on full state feedback
rather than classic output feedback become increasingly attrac-
tive, see e.g., [Cortés et al., 2008, Mariéthoz et al., 2010, Spinu
et al., 2011a,b]. However full state measurement may not be
economically feasible in a wide range of applications. More-
over, measuring the inductor current is known to be a fairly
complex task, as common mode voltage rejection is required,
and it is very noisy due to ripple. As such, development of
observer design techniques targeting power converters is of a
paramount importance for the future development of the field.

Typical high efficiency power converter consists of, ideally
lossless, linear storage elements interconnected by switches.
Ideally, for a given state of switches the converter exhibits
linear dynamics. There are two type of switches currently used
in power converters, controlled, e.g., transistors, and elements
with state dependent switching, e.g., diodes. As such a general,
continuous-time (CT), model of a power converter is expressed
as an affine switched differential equation with controlled and
state-dependent switching.

In the context of digital control systems, discrete-time (DT)
models are preferred and the computed control action is typ-
ically supplied to the modulator. Such models can be derived
by using averaging techniques [Kazimierczuk, 2008]. By ap-
plying averaging a DT possibly nonlinear model of the system
with continuous inputs is obtained. The typical non-linearity
which appears in converter models is input-induced bilinearity.
It appears when the energy is transferred from an internal stor-
age element through a switch, e.g., from the inductor through
transistor in a boost converter. Direct handling of nonlinear

dynamics is not straightforward and, often, an approximated
piecewise affine (PWA) model is used for the system.

Observer design for linear DT systems is a somewhat trivial
problem, however the other three classes, i.e., CT switched
affine, DT bilinear and PWA plant models raise considerable
difficulties.

In this paper the attention is concentrated on the synthesis of
Luenberger type observers for CT switched affine, DT sys-
tems with PWA dynamics, and input-induced bilinearity. First
two observer design techniques are based on previous works,
[Alessandri and Coletta, 2001b] and [Heemels et al., 2008],
respectively, and a novel hybrid observer synthesis method is
proposed for the DT-B model.

All three synthesis techniques are compared through simula-
tions. Experimental results of DT observers on a buck-boost
converter setup are also provided.

2. PRELIMINARIES

This section explains some mathematical notations and defini-
tions used in this paper.

Let R, R+, Z and Z+ denote the set of real numbers, the
set of non-negative reals, the set of integer numbers and non-
negative integers, respectively. Rn×m denotes the set of real
n × m matrices. For a matrix Z ∈ R

n×m, [Z]ij ∈ R denotes
the element on the i-th row and the j-th column of Z, [Z]i• ∈
R

1×m denotes the i-th row of Z and [Z]•j ∈ R
n×1 denotes the

j-th column of Z. 1p ∈ R
p is a vector with [1p]i = 1 for all

i ∈ Z[1,p], p ∈ Z≥1 Given a vector x ∈ R
n, ‖x‖p denotes the

p-norm of x, ‖x‖ denotes an arbitrary norm of x.

Given two sets P, S ∈ R
n, PS := P ∩ S, and Co(P) denote the

convex hull of all points in P.
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The next lemma is an application of the Schur complement
[Boyd et al., 1994].

Lemma 2.1. When Q = Q⊤ and R = R⊤ the following matrix
inequalities are equivalent

[

Q S

S⊤ R

]

≻ 0, (1)

R ≻ 0,

Q− SR−1S⊤ ≻ 0.
(2)

In matrices ∗ denotes the transposed, e.g.,
[

A B
∗ C

]

⇐⇒

[

A B

B⊤ C

]

.

Definition 2.2. A polyhedron (or a polyhedral set) in R
n is

a set obtained as the intersection of a finite number of open
and/or closed half-spaces. A polyhedron P ⊂ R

n has an H-
representation:

P := {x ∈ R
n|Pex ≤ 1pe

, Pix < 1pi
}

where Pe ∈ R
pe×n,Pi ∈ R

pi×n and pe, pi ∈ Z≥1.

Let P(Rn) denote the set of all bounded and non-empty poly-
hedrons in R

n. Given a polyhedron P ∈ P(Rn), the map
vert : P(Rn) ⇉ R

n provides the set of vertices of cl(P).

Consider the following two autonomous systems

x+ = φd(x), (3)

ẋ = φc(x), (4)

with φc(0) = φd(0) = 0.

A function α : R+ → R+ belongs to class K∞ if it is
continuous, strictly increasing, α(0) = 0 and lim

s→∞
α(s) = ∞.

Theorem 2.3. Let α1, α2 ∈ K∞, ρ ∈ R(0,1) and let V : Rn →
R be a function such that:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), ∀x ∈ R
n, (5a)

V (φd(x)) ≤ ρV (x), ∀x ∈ R
n. (5b)

Then system (3) is asymptotically stable in R
n.

Definition 2.4. The function V that satisfies (5) is called a
Lyapunov function in R

n and ρ is called the contraction rate
of V .

The counterpart of Theorem 2.3 for the continuous time au-
tonomous system (4) follows.

Theorem 2.5. Let V : R
n → R be a function such that

V (0) = 0 and V (x) > 0 for all x ∈ R
n
6=0. Furthermore, let

V̇ (φc(x)) ≤ −ρV (x), ∀x ∈ R
n, (6)

for some ρ ∈ R>0. Then system (4) is asymptotically stable in
R

n.

3. SYSTEM DESCRIPTION

Prior to observer synthesis the system model has to be defined.
Fast switching dynamics of power converters makes analysis
of the system properties challenging. As such, several mod-
elling strategies were developed in the field. Three most com-
mon approaches to power converter modelling are summarized
in following subsections. To support modelling procedures,
schematic representation of two classic converter topologies are
shown in Figure 1, i.e., buck and boost converters.

+

−

Vs Ih

s1 R L

C

+

−

Vs Ih

s1R L

C

(a)

(b)

Fig. 1. Schematics of the buck (a) and the boost (b) DC/DC
power converters.

3.1 Continuous-time switched affine model

As mentioned before, high efficiency DC/DC power converters
generally comprise of linear components, e.g., capacitors and
inductors, which are interconnected by switching elements. As
such, general continuous-time model of the converter is

ẋ = A(s)x+B(s)w + f, (7)

y = Cx,

where x ∈ R
n is the system state, i.e., capacitor voltages and

inductor currents, [s]i ∈ Z[0,li],i = Z[1,m] denote the state
of the switch i, w ∈ R

v are the exogenous signals applied to
the converter, e.g., input voltage and output current, y ∈ R

o

denote available state measurements. Vector f contains additive
constant terms such as forward voltage of a switch. Matrices
A(s) and B(s) have the following form

A(s) :=







s⊤A1

...

s⊤An






+A0, B(s) :=







s⊤B1

...

s⊤Bn






+ B0, (8)

where A0 ∈ R
n×n, B0 ∈ R

n×v , Ai ∈ R
m×n and Bi ∈ R

m×v

for i ∈ Z[1,n].

Remark 3.1. Note that a typical switching element has two
positions, e.g., open or closed, when the switching element has
multiple positions it can be modelled as multiple two position
switches. As such, the CT-SA model of a power converter (7)
which has li = 1 for all i ∈ Z[1,m] generally can be derived.
Without loss of generality li = 1 assumed throughout the paper.
2

The vector s can assume only a limited number of values,
i.e., 2m according to the Remark 3.1. Let S := {sj}j∈Z[1,2m]

be the set of all possible states of switches, and for each sj ,
Aj := A(sj) and Bj := B(sj). With this notation (7) becomes
a continuous-time switched affine (CT-SA) model

ẋ = Ajx+Bjw + f, if s = sj , (9)

y = Cx,

where Aj := A(sj) and Bj = B(sj).

3.2 Averaged discrete time bilinear model

When the converter is controlled by a fixed frequency pulse-
width modulated (PWM) signal a very useful modelling tech-
nique is averaging. In this way, the function of a switch be-
comes equivalent to a transformer but applicable to DC signals.
The continuous time averaged model of the power converter
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[u]i
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[s]i

Fig. 2. Example of a PWM waveform generated by the control
signal [u]i ∈ R[0,1] with Ts half of the PWM cycle. [u]i
is marked with dashed line, switch state [s]i with dotted
line and the internal triangular signal of the modulator with
solid line.

is of the same form as (7) with the only difference that the
switch state s is changed to u ∈ R

m
[0,1], which is the vector

of duty-cycle ratios for each switching element. The averaging
is performed for a time interval Ts, which is typically a multiple
of half PWM periods and is equal to the sampling time of the
controller. As such, this model describes converter behaviour
only at the sampling instants and is discretized in practice. A
typical PWM waveform is shown in Figure 2.

The model (7) has input-induced bilinearity, i.e., it contains
products [u]i[x]j and [u]i[w]j . Thus, the discretization is typ-
ically done by Euler forward method. After discretization, one
obtains discrete-time averaged bilinear (DT-B) model of the
power converter

x+ = (In + TsA(u))x+ TsB(u)w + Tsf, (10)

y = Cx.

As the switching period of the converter is very small compar-
ing to time constants of output filters, the DT-B model captures
well the converter dynamics regardless to approximation errors
introduced by the discretization method.

3.3 Approximation with discrete time PWA model

Dealing with nonlinear models is generally difficult. As such,
a discrete-time piecewise affine (DT-PWA) approximation of
the DT-B converter model is often employed for controller and
observer synthesis. The DT-PWA approximation of the DT-B
model can be computed as follows.

Let the domain of variation of x, u and w, i.e.,

D = {
[

x
u
w

]

|x ∈ X ∈ P(Rn), u ∈ R
m
[0,1], w ∈ W ∈ P(Rv)},

be partitioned into polyhedral regions {Pj}j∈Z[1,s]
, such that,

⋃

j∈Z[1,s]
Pj = D and Pi ∩ Pj = ∅ for all i, j ∈ Z[1,s], i 6= j.

Then for each j ∈ Z[1,s], a finite set of points of interest
Sj ⊂ Pj is selected. Next an optimizations problem is solved
such that the error in between the affine model corresponding
to Pj and the value of the DT-B model is minimized over Sj .
As a solution to this optimization problem, one recovers the
DT-PWA approximation of the DT-B converter model,

x+ = Āix+ B̄iu+ W̄iw + f̄i, if
[

x
u
w

]

∈ Pi. (11)

The DT-PWA model demands slightly more computation power

in the real-time, i.e., the vector
[

x
u
w

]

has to be located within

{Pi}i∈Z[1,s]
. Nevertheless, it makes a range of controller and

observer synthesis techniques applicable.

4. OBSERVER SYNTHESIS

This section provides a Luenberger type observer synthesis
technique for each model given in Section 3. Observer synthesis
methods for CT-SA and DT-PWA models have some similari-
ties and will be presented first. Then, a novel hybrid observer
design method is proposed which is applicable to systems with
DT-B model.

Prior to the observer synthesis several assumptions are made.

Assumption 4.1. At each time instant the state of switches s is
known.

Typically observers are computed on the same platform with
controllers, thus a communication between them ensures that
the state of all controlled switches is known. Precise commuta-
tion of uncontrolled switches can be forced by maintaining the
converter in continuous conduction mode.

Assumption 4.2. The region of DT-PWA model, Pi ⊆ P̄, such

that
[

x
u
w

]

∈ Pi, is known at each moment of time.

As the u introduces the bilinearity into the DT-B model, it is
reasonable to partition P̄ with respect to u only. This strategy
coupled with Assumption 4.1 satisfies the statement of As-
sumption 4.2.

Assumption 4.3. External signals w are measurable.

4.1 Observer synthesis for CT-SA model

Let begin with writing the state estimation equation for the CT-
SA model (9) when s = si,

˙̂x = Aix̂+Biw + f + Li(y − ŷ),

ŷ = Cx̂,

where Li ∈ R
n×o is the observer gain and i ∈ Z[1,2m]. Under

the Assumption 4.1, the error dynamics e := x − x̂ can be
written as,

ė = (Ai − LiC)e. (12)

Theorem 4.4. Let,

(Ai − LiC)⊤P + P (Ai − LiC) ≺ −ρP, (13)

be satisfied for all i ∈ Z[1,2m], some symmetric positive definite

matrix P ∈ R
n×n and some ρ ∈ R>0. Then the error dynamics

(12) is globally asymptotically stable.

For the proof of this theorem refer to Theorem 2.2 in [Alessan-
dri and Coletta, 2001b]. To solve the inequality (13) of Theo-
rem 4.4 the following Lemma is introduced.

Lemma 4.5. Let

(PAi − YiC)⊤ + (PAi − YiC) ≺ −ρP, (14)

be satisfied for some symmetric positive definite matrix P ,
some Yi, i ∈ Z[1,2m] and ρ ∈ R>0. Then the inequality (13)

is satisfied with P and by taking Li = P−1Yi.

The proof of the Lemma 4.5 is discussed in Problem 2.4 in
[Alessandri and Coletta, 2001b]. Note that the LMI (14) can be
solved for a single Y = Yi, for all i ∈ Z[1,2m], and yields a
common observer gain for all modes of the converter L = Li.

4.2 Observer synthesis for DT-PWA model

The observer design technique for the DT-PWA model is very

similar to the CT-SA. When
[

x̂
u
w

]

∈ Pi the Luenberger observer
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can be written as follows,

x̂+ = Āix̂+ B̄iu+ W̄iw + f̄i + Li(y − ŷ) (15)

ŷ = Cx̂.

From Assumption 4.2 it follows that for any
[

x̂
u
w

]

∈ Pi,
[

x
u
w

]

∈

Pi, and as such, the error dynamics is

e+ = (Āi − LiC)e. (16)

Theorem 4.6. Suppose there exist a positive definite matrix P
and a number ρ ∈ R(0,1) and

(Āj − LjC)⊤P (Āj − LjC) � ρP, (17)

hold for all j ∈ Z[1,s]. Then the error dynamics (16) is globally
asymptotically stable.

To solve the inequality (17) in Theorem 4.6 the following
lemma is introduced.

Lemma 4.7. Suppose that
[

ρP Ā⊤
j P − C⊤Yj

PĀj − Y ⊤
j C P

]

� 0. (18)

hold for all j ∈ Z[1,s], and some P ≻ 0, ρ ∈ R(0,1) and Yj .

Then the inequality (17) holds with P , ρ and Lj = (YjP
−1)⊤,

respectively.

For the proof of Theorem 4.6 and Lemma 4.7, interested reader
is referred to Theorem 1 and Lemma 1 from [Alessandri and
Coletta, 2001a], respectively. As in case of the CT-SA observer,
it is possible to compute a single gain L = Li for the DT-PWA
observer by considering a single Y = Yi in (18).

Remark 4.8. A better approximation of the DT-B model, com-
paring to the DT-PWA, can be obtained with the piecewise
model of the following form

x+ = Āix+ B̄iu+B(u)w + f̄i, if
[

x
u
w

]

∈ Pi. (19)

Under Assumption 4.1 and Assumption 4.2, the error dynamics
remains unchanged. As such the observer synthesis method
described in this section is applicable to system (19) also.

Remark 4.9. Although, in this paper it is assumed that con-
verter mode, i.e., s = si is known, the observer design can be
extended to handle the situations when Assumption 4.1 does not
hold, e.g., discontinuous conduction mode in power converters.
See [Juloski et al., 2003] for more details for the case when
system mode has to be estimated as well.

4.3 Observer synthesis for DT-B model

Let U := {Ui}i∈Z[1,h]
, where Ui is a bounded and non-empty

polyhedron, such that, Ui ∩ Uj = ∅ for all i, j ∈ Z[1,h], i 6= j,
and ∪i∈Z[1,h]

Ui = R
m
[0,1]. A separate observer gain will be

synthesized for each polyhedral set Ui, i ∈ Z[1,h].

As for the other two observers, one recovers the following state
estimation equation and error dynamics for the DT-B model,

x̂+ = A(u)x̂+B(u)w + f + Li(y − Cx̂), (20)

e+ = (A(u)− LiC)e, (21)

when u ∈ Ui.

Theorem 4.10. Suppose that there is a symmetric positive def-
inite matrix P , a number ρ ∈ R(0,1) and the observer gains

Li = (YiP
−1)⊤, such that,

[

ρP (PA(vj)− Y ⊤
i C)⊤

∗ P

]

� 0, ∀vj ∈ vert(Ui), (22)

Ih

[s]2

RL L

C
+

−

Vs

[s]10

1

0

1

Fig. 3. Schematic representation of a buck-boost converter.

holds for all i ∈ Z[1,h]. Then the error dynamics (21) is
exponentially stable.

Proof. Let u ∈ Ui = Co(vert(Ui)).
Thus u =

∑

vj∈vert(Ui)
λjvj , for some λj such that

∑| vert(Ui)|
j=1 λj = 1. As such,

P

[

u⊤A1

...
u⊤An

]

=
∑

vj∈vert(Ui)



λjP





v⊤

j A1

...
u⊤An







 . (23)

By employing (23) one can show that
[

ρP (PA(u)− Y ⊤
i C)⊤

∗ P

]

=
∑

vj∈vert(Ui)

(

λj

[

ρP (PA(vj)− Y ⊤
i C)⊤

∗ P

])

� 0, (24)

for all u ∈ Ui. By employing Lemma 2.1 one recovers,

ρP − (PA(vj)− Y ⊤
i C)⊤P−1(PA(vj)− Y ⊤

i C) � 0,

which is equivalent to

ρP − (A(vj)− LiC)⊤PP−1P (A(vj)− LiC) � 0. (25)

As (24) is valid for all i ∈ Z[1,l], (25) implies that

ρe⊤Pe− (e+)⊤Pe+ ≥ 0. (26)

Consider the following function V (e) := e⊤Pe. Equation
(26) shows that V (e) is the Lyapunov function for the error
dynamics. Thus the error dynamics is globally asymptotically
stable. 2

Remark 4.11. It is possible to obtain a single gain L when
U1 = R

m
[0,1]. However, it can be done also by enforcing

continuity at the boundary of two adjacent regions by,

PA(vj)− Y ⊤
i C = PA(vj)− Y ⊤

j C, vj ∈ Ui ∩ Uj , i 6= j.

The results of these two methods can differ, as the second
method slightly reduces the conservatism and may return a
feasible solution for smaller values of ρ. 2

5. SIMULATION AND EXPERIMENTAL RESULTS

The three approaches to state observer synthesis given in Sec-
tion 4 are applied to state-estimation for a buck-boost DC/DC
converter. The schematic of a buck-boost converter is given in
Figure 3. System state vector is defined as x :=

[ vC
iL

]

, where
vC is voltage across capacitor and iL is the current through the

inductor. The external signals w :=
[

Vs

Ih

]

are the supply voltage
Vs and the output current Ih.

Typically, measuring vC does not impose any difficulty in real-
life applications. On the other hand, measuring the iL is a rather
difficult task. Thus, in this example the capacitor voltage is
considered to be measured and the inductor current is estimated.
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Table 1. Component values for the buck-boost
power converter

Name Value

Vs 10 V

Ih 0.2 A

C 22µF

L 220µH

RL 0.2Ω

Table 2. Buck-boost converter modes

Mode Switch state

s1 [s]1 = 0, [s]2 = 0
s2 [s]1 = 0, [s]2 = 1
s3 [s]1 = 1, [s]2 = 0
s4 [s]1 = 1, [s]2 = 1

For this particular case study assumed component values for
the converter are given in Table 1. The matrices Ai and Bi,
i ∈ Z[0,2] are defined as follows:

A0 =
[

0 0

0 −
RL
L

]

, A1 =
[

0 0
0 1

C

]

, A2 =
[

0 0
− 1

L
0

]

,

B0 =
[

0 − 1
C

0 0

]

, B1 = [ 0 0
0 0 ] , B2 =

[

1
L

0
0 0

]

, f = [ 00 ] .

As each switch [s]i has two possible positions, the converter can
function in four modes. Possible switch states and associated
modes are given in Table 2. The construction of CT-SA model
follows directly as shown in Section 3.1. Then this model is
discretized, as shown in Section 3.2, with the sampling time
Ts = 10µs to obtain the DT-B model.

To obtain the PWA approximation of DT-B model one has to
define each region Pi. The domain of variation of x, u and w,

D := X× R
2
[0,1] ×W,

where

X := {x ∈ R
2| − 10 ≤ [x]1 ≤ 20, −10 ≤ [x]2 ≤ 10},

W := {w ∈ R
2|0 ≤ [w]1 ≤ 20, 0 ≤ [w]2 ≤ 1}.

Note that only [u]2 affects the A(u). As such, the splitting of
the space D is defined as follows,

Pi := X× Ui ×W, ∀i ∈ Z[1,4],

U1 :=
{

u ∈ R
2| 0 ≤ [u]2 < 0.25

}

,

U2 :=
{

u ∈ R
2|0.25 ≤ [u]2 < 0.5

}

,

U3 :=
{

u ∈ R
2| 0.5 ≤ [u]2 < 0.75

}

,

U4 :=
{

u ∈ R
2|0.75 ≤ [u]2 ≤ 1

}

.

Next, the procedure described in Section 3.3 yields the DT-
PWA model for the system.

Totally six observers are compared in this case-study, i.e., single
and multiple gain versions of observers for CT-SA, DT-PWA
and DT-B system models. The partition U := {Ui}, i ∈ Z[1,4]

was employed in the observer synthesis for the DT-B model.

5.1 Simulation results

The first set of simulations is obtained as follows. The converter
behaviour was simulated with the continuous-time switched
affine model with initial conditions x = [ 00 ] and controlled
by PWM signal as shown in Figure 2 with constant duty-cycle
ratios u = [ 0.5

0.37 ]. The sampling is performed twice each PWM
period. The initial conditions of the observer are x̂ = [ 23 ].

0 0.2 0.4 0.6 0.8 1

x 10
−4
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2

time

[x
] 1
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time

[x
] 2

 

 

CT−SA system

DT−B obs. SG
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Fig. 4. Convergence of DT observers.
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2

4

time

[x
] 2

Fig. 5. Stationary error in the state estimation with DT-PWA
observer.

Let begin by analysing the convergence of DT observers. Fig-
ure 4 shows the simulation results of DT-PWA and DT-B ob-
servers, both single gain (SG) and multiple gain (MG) versions,
with measurements from the CT-SA model of the converter.

As expected, all observers converge successfully to the actual
state values. Nevertheless, it is noticeable that single gain ob-
servers are considerably more aggressive comparing to multiple
gain counterparts. This happens, regardless to the fact that the
same ρ = 0.9 was used during synthesis. The explanation of
this fact comes from that a single gain observer has to stabilize
the error dynamics on larger domain, thus higher gain may be
required.

DT-PWA observers show impressive convergence in Figure 4.
However, one should remember that the DT-PWA model is
only an approximation of the real converter dynamics, and
its accuracy is expected to drop when the duty-cycle ratio is
near the boundary of the a region Pi. The same simulation
is repeated for duty-cycle ratios of u = [ 0.5

0.48 ]. The result of
the simulation are reported in Figure 5. Notice the offset in
the trajectories of DT-PWA observers. It is clearly visible on
[x]2, and appears due to the mismatch in between the DT-PWA
approximation and the DT-B converter model.
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Fig. 6. Convergence of CT-SA observers.
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Fig. 7. Start-up of the buck-boost converter in closed-loop with
an affine feedback from estimated states.(Oscilloscope
measurements from real-life experimental platform.)

The CT-SA observers were simulated in the same environment
as DT observers from Figure 4. The result is shown in Figure 6.

For this particular example, the convergence of the CT-SA ob-
servers is slower comparing to DT observers. Nevertheless, the
value of such observer comes from the fact that it estimates the
true switching trajectory of the states and not only the average
value. This type of observers may be especially beneficial in
case of converters which are controlled with variable frequency
PWM signal.

5.2 Experimental results and final considerations

Typically, observers are used in combination with state feed-
back. To show the consistency of the results presented in this
paper a start-up of the buck-boost converter in closed loop
with the affine feedback from the estimated states with DT-B
observer with single gain are shown in Figure 7. For more
details on the used control law, interested reader is referred to
[Spinu et al., 2011a]. The obtained result is consistent with the
start-up of the converter when all states are measurable.

There are a few unanswered questions left in this paper, which
constitute the object of future research. Probably the most
important task would be to estimate the state of uncontrolled

switches at each given moment of time. Another aspect is
that the converter dynamics may not be fully observable for
some modes, e.g., the inductor current is unobservable when
[s]2 = 0 or [u]2 = 0. In the particular case of the buck-boost
converter the gain associated to inductor current several orders
of magnitude smaller for unobservable modes comparing to
fully observable ones. Nevertheless, more in depth investigation
of these phenomena is required.

6. CONCLUSIONS

In this paper a short review of observer design techniques
tailored to needs of power-electronics community was given.
Apart from existing solution to state estimation of continuous-
time switched affine and discrete-time PWA systems, a new
solution was designed for state estimation of systems with
input-induced bilinearity. The convergence analysis and prac-
tical suitability to state estimation in power converters was
demonstrated on the example of a buck-boost converter. Com-
pelling simulation results coupled with successful experiments
encourage further development observer synthesis methods and
advanced observer-based control techniques for power convert-
ers.
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