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Chapter 1

Introduction

From Terminator 2 (1991):

——–

The Terminator: “Why do you cry?”

John Connor: “You mean people?”

The Terminator: “Yes.”

John Connor: “I don’t know. We just cry. You know, when it hurts.”

The Terminator: “Pain causes it?”

John Connor: “No, it’s when there’s nothing wrong with you, but you cry

anyway. You get it?”

The Terminator: “No.”

——–

In the dialogue displayed above, the Terminator, a cyborg from the future, talks to

a human. This cyborg appears to have acquired natural language processing skills

and therefore is very human-like: it produces grammatically correct sentences and

it reacts coherently to the human’s utterances. However, the Terminator is not com-

pletely indiscernible from humans because one of the elements that it still lacks is

emotional intelligence: the cyborg does not seem to understand why people cry. This

is where affective computing can step in to make the cyborg emotionally intelligent.

Affective computing is a relatively young multidisciplinary research area where dis-

ciplines like psychology, speech technology, computer vision, and machine learning

meet. Psychology provides us ways to describe, model, understand and regulate emo-

tions. Speech technology, computer vision and machine learning provides us methods

to recognize and synthesize vocal and facial expressions. In addition to vocal and

facial expressions, affect can also be expressed and measured through gestures or

physiological measures like heart rate or respiration rate. Although affective comput-

ing is a relatively broad research area that is the interface between affect modeling

and technology, and although affect can be expressed and measured through multiple

modalities, we narrow our focus to the automatic recognition of affect in speech.

In this Chapter, we explain the basic ‘ingredients’ that are needed to develop

speech-based affect recognition systems. First, in Section 1.1, we explain how affec-
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tive computing is becoming increasingly important in people’s lives, and we motivate

our choice to focus on affective speech analysis (rather than e.g., analysis of physio-

logical measurements). In Section 1.2, we describe some popular theories and models

of emotion. We identify and describe challenges in Section 1.3 that one can encounter

when one would like to develop affect recognition systems. Finally, we formulate our

research questions in Section 1.4 and we give an outline of the content of this thesis.

1.1 Motivation for speech-based affect recognition

1.1.1 Affective Computing

Affective computing can be defined as a research area that aims at designing and

developing systems that can recognize, interpret and synthesize human emotional

states. Why would one want to develop these systems? It is an undeniable fact that

computers are becoming increasingly embedded in our daily life. Technology is every-

where and one needs to interact with it. Affective computing can enhance the ways

people interact with technology. For example, the way people play video games has

evolved from sitting behind a computer screen or TV to standing or dancing or play-

ing tennis in front of the TV. Imagine how the gaming experience could be enhanced

when the gameplay is adapted to one’s emotional state? Emotion recognition can

add a new dimension in multimedia content analysis. Movies or TV broadcasts can

be searched by types or various levels of emotion, such as excitement. In computer-

aided learning, an affective component can help to maintain or increase the student’s

motivation. For instance, when the virtual tutor detects frustration with the student,

the virtual tutor can give the student encouraging comments or it can slow down

the pace. And if the virtual tutor detects that a student is getting bored, it can chal-

lenge the student by bringing up more complex exercises. Decision-making systems

can improve their decision-making processes when emotional states are taken into

account. For example, a system can decide to allocate fewer tasks to an operator who

is recognized as being in stress. Interaction with machines, robots or spoken dialog

systems in call centers, will feel much more natural and will be much more effective

if human emotions can be recognized. Some research communities aim at developing

humanoid robots that must have human-like capabilities such as emotion recognition

and synthesis (unlike The Terminator who does not understand what causes the hu-

man to cry). Emotion recognition can also be employed in call centers for monitoring

purposes: if the emotion recognition system recognizes an angry caller, the system

can decide to route this caller to a more friendly and cooperative human employee.

One of the most well-known examples of emotion recognition is that of an ‘affective

mirror’ as proposed by Rosalind Picard [134]. This ‘affective mirror’ would be ‘an

agent that interacts with a person, helping him/her to see how he/she appears to oth-

ers in various situations’, and can be used to practice job interviews or presentations.

In addition to these application-oriented contributions that open up many more re-

search (and business) opportunities, research in affective computing also contributes

to a better understanding of how emotion is produced and perceived by humans. It is

clear that with the increasing amount of computers and technology embedded in our

daily life, the need for a more a/effective and natural way of interaction increases.
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1.1.2 Affect in speech

Vocal expressions, facial expressions, gestures, body postures and the ANS (autonomic

nervous system, e.g., heart rate, diameter pupil, respiration rate etc.) are all ways of

means through which emotions can be expressed and measured. The way these mul-

tiple modalities interact with each other is not yet clearly understood. A well-known

study by Mehrabian [116] is an example of how multiple modalities can interact with

each other. Mehrabian investigated the relative importance of verbal and nonverbal

messages in expressing feelings and attitudes. He states that there are three elements

in face-to-face communication: words, tone of voice, and body language. According to

Mehrabian, each element has its relative importance in determining how likeable the

person is who expresses his/her feelings:

Total Liking = 7% Verbal Liking + 38% Vocal Liking + 55% Facial Liking

However, this rule has only been validated in specific situations. Many researchers

have misinterpreted this rule by generalizing it to all situations. The rule is only valid

when the verbal and non-verbal communications are incongruent. An example of

incongruent verbal and non-verbal communication is:

Verbal: “It’s OK, I don’t mind!”

Non-verbal: avoids eye contact, looks anxious etc.

Only in cases where the communication is incongruent, the receiver of the mes-

sage is more likely to trust the non-verbal message. Hence, in all other communi-

cations (that are not incongruent), the interaction between verbal and non-verbal

communication is not understood yet.

Although emotion can be measured and expressed through many different modal-

ities, this thesis focuses on the vocal channel of emotion expression. One of the main

reasons for choosing speech is that speech measurements can be made in a relatively

unobtrusive way. Attaining physiological measurements, such as heart rate or EEG

signals, usually requires more effort and is usually more obtrusive for the subject,

although nowadays, wearable measuring equipment is available which reduces the

amount of effort and obtrusiveness. Secondly, speaking is a very natural way of inter-

action. Speech-enabled interaction will become increasingly important as the number

of multitasking processes in daily life increases (e.g., making telephone calls while

driving), and as interest in (humanoid) robots grows steadily. The third reason that

we focus on speech is because we are interested in speech as an information carrier.

Affect is only one of the types of information that is ‘hidden’ in speech. In addition to

the verbal content, i.e., the words that are spoken, speech carries a lot of other (meta)

information that helps the receiver (i.e., the listener) to decode what the message is

that the sender (i.e., the speaker) wants to convey. Information that is ‘hidden’ in

the voice of the speaker can tell the receiver something about the speaker’s identity,

the speaker’s age, the speaker’s gender, the speaker’s regional accent or the speaker’s

emotional state. Technologies are being developed that enable the automatic extrac-

tion of these types of speaker information. For the recognition of the verbal content,

what is said, automatic speech recognition systems (ASR) are available. Automatically

recognizing who said something is undertaken in speaker recognition. Accent and lan-

guage recognition involves finding out what foreign or regional accent, or language
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this person speaks. In emotion recognition, the goal is to detect the emotion of the

speaker: how something is said. These different types of speaker information are also

referred to as paralinguistic information: all the non-verbal elements in speech that

convey something about the speaker (e.g., laughter).

Prosody is considered the main (auditory) contributor to the conveyance of affect

in speech (prosody can also be used for coding semantic and lexical information).

Prosodic behavior in speech can usually be described in terms of speech characteristics

such as rhythm, loudness, pitch, and tempo (Lexicon of Linguistics [1]). Other ways

of expressing affect in speech are so-called ‘affect bursts’, see Scherer [161], Schröder

[167]. As defined by Scherer [161], these are “very brief, discrete, nonverbal ex-

pressions of affect in both face and voice as triggered by clearly identifiable events”.

Laughter, cries and sneezes are examples of affect bursts but verbal interjections like

“Heaven!” are not. Although the emotional meaning of affect bursts may not be im-

mediately apparent (laughter can have different types of meanings and functions),

they have an important social, communicative and affective role in human conversa-

tion. The words chosen to communicate are obviously also cues to affect in speech.

However, the main focus in speech-based affective recognition has traditionally been

on an acoustic analysis of affective speech, without taking into account the lexical con-

tent. One of the reasons is that for lexical analyses, a transcription of what is said is

needed, obtained either manually or automatically which is a hard problem itself, and

not always available. Further, the choice of words is to an extend domain-dependent.

1.2 Theory and models of emotion

One of the first things we do when we perform science, is defining things in order to

create a consensual working space. However, the notorious question ‘What are emo-

tions?’ gives rise to a wide range of possible answers. As Scherer [163] puts it nicely,

one of the major problems in emotion research is “the lack of a consensual definition

of emotion and of qualitatively different types of emotions”. There is no generally ac-

cepted methodology for describing emotions, and hence, there is no agreed taxonomy

of emotional states, although the literature does offer some inexhaustive, possible tax-

onomies that are relatively frequently used. One well-known structuring of emotions

is a structuring along the temporal dimension, see Table 1.1. On this dimension,

‘emotion’ is on one end of the scale while ‘attitude’ and ‘personality traits’ are on the

opposite end. Emotions that are relatively brief in duration and very distinctive are

also referred to as ‘full- blown’ emotions. Examples of ‘full-blown’ emotions are the

well-known ‘basic, universal emotions’, see Ekman [56]: Anger, Disgust, Fear, Happi-

ness, Sadness, and Surprise.

Definitions of emotions are related to theories and models of emotion. We will

shortly describe three theories and models of emotions that have been influential

in emotion research (for a richer and more comprehensive description of emotion

theories, the reader is referred to Scherer [162]):

Componential emotion theory: Scherer has proposed a componential model of emo-

tion, see Scherer [160, 164]. A leading concept in these componential models is

that emotions are regulated by a cognitive evaluation of eliciting events and sit-
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Short description Duration Rapidity of
change

Intensity

Emotion: relatively brief episode of

synchronized responses by all or most

organismic subsystems to the evalua-
tion of an external or internal event

as being of major significance (e.g.,
Anger, Sadness, Joy, Fear, Shame,

Pride, Elation, Desperation)

+ +++ ++→ +++

Mood: diffuse affect state, most pro-
nounced as change in subjective feel-

ing, of low intensity but relatively

long duration, often without appar-
ent cause (e.g., cheerful, gloomy, ir-

ritable, depressed)

++ ++ +→++

Interpersonal stances: affective

stance taken toward another person

in a specific interaction, coloring the
interpersonal exchange in that situa-

tion ( e.g., distant, cold, warm, sup-

portive, contemptuous)

+→++ ++ +→++

Attitudes: relatively enduring, af-

fectively colored beliefs, preferences,
and predispositions toward objects or

persons (e.g., liking, loving, hating,

valuing, desiring)

++→+++ 0→+ 0 →++

Personality traits: emotionally

laden, stable personality dispositions

and behavior tendencies, typical for
a person (e.g., nervous, anxious,

reckless, hostile, envious, jealous)

+++ 0 0→+

Table 1.1: Affective states taxonomy adopted from Scherer [162], 0 indicates absence,

+++ indicates highest degree, → indicates hypothetical range.

uations. These evaluation processes determine the relevance of the event and its

consequences: if the eliciting event is not relevant to the major concerns of the

organism, then there is no need to be emotional. The patterning of the responses

in different domains (e.g., physiology, expression) are determined by the out-

come of these evaluation processes. Componential models thus aim at making

the link between the elicitation of emotion and the response patterning more

explicit. Scherer’s component process model states that different emotions are

produced by a sequence of cumulative stimulus evaluation or appraisal checks

with emotion-specific outcome profiles. Moreover, the model assumes that there

are as many different emotional states as there are differential patterns of ap-

praisal results. One of the advantages of componential models is the emphasis

on the variability of different emotional states that are produced by different

appraisal events which presumably makes the emotion-voice relation testable

by concrete hypotheses.
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Discrete emotion model: One of the most popular description of emotion is based

on the assumption that there is a small number of universal or fundamental

discrete emotion categories. Most of the discrete emotion theories stem from

Darwin ([47]) who observed that a large number of emotional phenomena are

universal, and who placed strong emphasis on the expression of emotion in

face, body and voice. Inspired by Darwin, psychologists like Tomkins ([183])

and Ekman ([57]), who were mainly working in the field of facial expressions,

theoritized that there are a number of basic emotions that are characterized by

very specific response patterns in physiology, and facial and vocal expressions

as well. A well-known set of basic emotions is termed “the Big Six” which are

Anger, Disgust, Fear, Joy, Sadness and Surprise. Major drawbacks of this model

are that 1) usually, these archetypical ‘basic’ emotions are not very much part

of everyday life emotions, and 2) the set of emotions is very small. The Big Six

basic emotions are based on Ekman’s observations that members of a Stone Age

culture are able to recognize this list of emotions which suggests that there are

at least some emotions that are universal.

Dimensional emotion model: Another model that has gained much attention in emo-

tion research is the dimensional approach to emotion. Several ‘flavors’ of this

approach are possible: some use 2 dimensions while others use 3 emotion di-

mensions, and some position emotions in a circular way. Wundt ([212]) was

one of the first who suggested that emotional states can be mapped in a 2 or

3-dimensional space. He proposed that emotions can be positioned by three

dimensions: pleasantness – unpleasantness, rest – activation, and relaxation –

attention. In 1954, Schlosberg [165] derived three similar dimensions: pleas-

antness – unpleasantness, attention – rejection, and sleep – tension. Osgood

et al. [129] showed that almost all (non-)linguistic concepts could be placed

in a three dimensional space (positive – negative, active – passive, degree of

power) with respect to their meaning. So, researchers seem to agree on the

existence of 2 or 3 emotion dimensions along which emotion concepts can be

described. Furthermore, there is evidence that emotion concepts are (men-

tally) placed in a circular order by people. Russell [153] showed that affec-

tive concepts fall in a circle where similar emotions lie close to each other

while opposite emotions lie 180 degrees apart from each other in a two di-

mensional map (arousal-sleepiness, pleasure-displeasure): pleasure (0◦), ex-

citement (45◦), arousal (90◦), distress (135◦), displeasure ( 180◦), depression

(225◦), sleepiness (270◦) and relaxation (315◦), see Fig. 1.1. Plutchik [136, 138]

also proposed a circular model of emotion in which emotions are conceptual-

ized in a color wheel where similar emotions lie close together. He added a third

dimension, intensity, such that the three dimensional emotion model is shaped

like a cone, see Fig. 1.2.

A dimensional emotion model is attractive since it has the ability to cover a large

amount of varied emotions in a relatively simple way. The first main emotion

dimension is positive (pleasure) vs. negative (displeasure) and is also known

as Valence (or Evaluation). The emphasis of emotion research has usually been

on Valence: people are simply more interested in discriminating positive from
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Figure 1.1: The circular order of emotions as proposed by Russell [153] (figure adopted

from Russell [153]).

negative emotions, e.g., detection of frustration with customers calling to a call

center or detection of aggression in public environments. The second dimension

is active (aroused) vs. passive (sleepy) and is also known as the Arousal dimen-

sion. For example, is this person bored or very excited? The third dimension

represents a degree of power or control, e.g., dominance vs. submissiveness. In

the literature, the Arousal and Valence dimensions are the most frequently used

ones; mostly because most of the emotion concepts can be sufficiently described

in terms of Arousal and Valence.

We have described three emotion theories and models that are relatively fre-

quently adopted by the affective computing community. In our research, we will

mostly work with discrete emotion categories and a dimensional model of emotion.

As we will be tackling and discussing a broad range of various types of discrete emo-

tion categories and emotion dimensions, we will view emotion in this thesis as a very

broad concept. As a working definition for ‘emotion’ throughout this work, the fol-

lowing view on emotion that is stated in Cowie and Schröder [44] and the technical

annex of the HUMAINE project 1 (an EU-funded network of excellence) is retained.

Emotion, in this thesis, is considered

in an inclusive sense rather than in the narrow sense of episodes where a

strong rush of feeling briefly dominates a person’s awareness . . . emotion

in the broad sense pervades human communication and cognition. Hu-

man beings have positive or negative feelings about most things, people,

1http://emotion-research.net/projects/humaine/aboutHUMAINE/ technical annex public.pdf
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Figure 1.2: Plutchik’s circular model of emotion (figure adopted from Plutchik [138]).

events and symbols. These feelings strongly influence the way they attend,

behave, plan, learn and select.

Terms like ‘affect’ or ‘emotional state’ will be interchangeably used to refer to ‘emotion’

in its broader sense.

1.3 Challenges in speech-based affect recognition

In this Section, challenges that one can encounter in the development of a speech-

based affect recognizer are identified. The challenges are divided into three develop-

ment phases of an affect analyzer: data acquisition and annotation, feature extraction

and learning, and performance evaluation.

1.3.1 The development phases of speech-based affect recognizers

For the development of (speech-based) affect recognizers, roughly three phases can

be distinguished. Fig. 1.3 summarizes the development in a scheme. The first phase

deals with data acquisition and annotation. It is not sufficient to have the data alone,

the data also needs labeling: what emotion is associated with this particular speech

signal? The second phase deals with feature extraction and model learning: the

speech signals need to be described in terms of speech features that serve as input
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for the learning algorithm. A (machine) learning algorithm must be chosen that can

learn the mapping between the features and the emotion classes. And finally, in the

third phase, in order to find out how good this mapping works, the recognizer needs

to be evaluated in a proper way.

Figure 1.3: The development phases of an affect recognizer.

This chain of development shown in Fig. 1.3 looks straightforward. However, in

each phase there are challenges and issues identifiable that need further attention

and discussion.

1.3.2 Challenges in data acquisition and annotation

The machine learning techniques used to train models to recognize emotion require

a lot of labeled data. To give an idea of how much data sometimes is needed to

train a system: a speaker or language recognition system is usually trained with hun-

dreds of hours of speech data. Labeled emotional speech data is sparse, which is a

notorious problem in the emotion research community: there is a lack of annotated

spontaneous emotional speech data. Filling this shortage of natural emotional speech

data with acted emotional speech data is somewhat dangerous since several studies

have shown that there are (large) differences between acted and natural emotional

speech, e.g., Wilting et al. [210], and it decreases the ecological validity of the study.

However, to an extent, the use of acted emotional speech can be supported by ar-

guing that natural emotions are to a certain extent portrayals of emotions that are

expressed in a controlled manner, so the question can be reversed: how natural are

real-life emotional expressions (Banse and Scherer [12])?

Acquiring a substantial amount of spontaneous emotional speech data in the field

has appeared to be a difficult process. A large percentage of real-life emotion sit-

uations occur in a social-interactive context in which people adhere to social con-

versational dialogue rules (e.g., Levinson [106]). Due to these implicit conversation

rules, and due to the Observer’s Paradox (the influence of the presence of the ob-

server/investigator on the experiment, see Labov [100]), people suppress their emo-

tions to a certain degree when they converse with each other while knowing that

they are being recorded and observed. For example, Ekman [56] found in one of

his experiments that Japanese people masked their negative expressions with a smile

when a scientist sat with them as they watched films. Without the scientist sitting

next to the subject, the masking was less frequent. As Ekman [56] suggests: “in

private, innate expressions; in public, managed expressions”. Furthermore, speaking
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is a highly controlled and regulated process. Vocalizations that are less controlled

are usually triggered by physiological changes that are caused by relatively extreme

events. When we want to elicit such vocalizations, we should also consider ethics

which is an aspect that must not be underestimated. For example, with respect to

data acquisition and distribution, many people (e.g., companies, call centers) are re-

luctant to give away their data, even if it is for research purposes, because of privacy

issues which is understandable but unfortunate for researchers.

When we have collected real-life, natural emotional speech data, the next chal-

lenge is to describe these naturally occurring emotions. It appears difficult to label

naturally occurring emotions, especially when the context in which the emotional

situation took place is unknown. In addition, the production and perception of emo-

tion is to a certain degree person-dependent. Some people are intrinsically more

expressive than others. Moreover, people disagree on the description and nature of

the emotion perceived. One way to obtain reliable “ground truth” labels for emo-

tional speech data, is to have multiple persons annotate parts of the data and to

analyze how much people agree with other (inter-annotator agreement): when mul-

tiple annotators agree with each other on a specific label of a segment, then this can

be considered more or less “ground truth”. Intra-annotator agreement, the consis-

tency/quality of the rater him/herself, may also play a role. Hence, post-processing

the data recorded is a very time consuming and effort consuming process.

In short, we have identified some challenges to acquire natural emotional speech

data that is suitable for the development of speech-based emotion recognizers:

• Due to suppression or masking of emotions in a natural social-interactive con-

text, the emotions expressed are subtle and non-frequent.

• Natural, real-life emotions are difficult to label and may be mixed: there is no

consensus on how to describe these emotions methodologically.

• The production and perception of emotion is mostly person-dependent which

complicates the emotion annotation procedure and the development of a gen-

eral affect recognition system.

1.3.3 Challenges in feature extraction and model learning

From the literature, it is clear that some acoustic features (e.g., F0, energy, speech

rate) are important for discrimination between emotions. Most of the features appear

to correlate relatively well with the Arousal dimension: for example, according to our

studies (see Chapter 4), Anger (=high Arousal) can be relatively well discriminated

from Sadness (=low Arousal) acoustically. This is not the case with the Valence di-

mension: it appears that e.g., Anger and Joy are acoustically very easily confused

with each other by emotion classifiers (e.g., Truong and van Leeuwen [189]). Al-

though significant acoustic differences have been found between the expression of

positive and negative emotions, in practice, these differences do not turn out to be

predictive enough for automatic discrimination. Therefore, the strategy that is usu-

ally adopted is to extract as many features as possible from the speech signal and feed

these features to an algorithm that selects the features that are highly discriminative.
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In contrast with other research areas, such as ASR or facial expression recognition, in

which well-established features and methods exist (e.g., Facial Action Coding System

by Ekman and Friesen [58], Active Appearance Modeling by Cootes et al. [43]), the

search in speech-based emotion recognition for a set of acoustic features in combina-

tion with an algorithm that achieves high performance, is still ongoing. In general,

with the current set of features and algorithms, it appears difficult to capture subtle

emotion expressions that are often encountered in natural emotional speech. Ex-

treme emotions on the other hand, can be better discriminated from each other, at

least when the extremes lie on the Arousal dimension.

In order to boost performance, multimodal approaches to emotion recognition

have been employed and are becoming increasingly popular. Acoustic features are

often combined with facial features, lexical features or other physiological features.

How to combine and synchronize these different sources of information is an ongoing

question and a research area on its own.

In short, some challenges in feature extraction and learning that can be encoun-

tered are the following:

• It is difficult to establish acoustic profiles for specific emotions.

• Discriminative acoustic features for Valence discrimination are hard to find.

• The speech features and technology commonly used have trouble recognizing

subtle emotion expressions.

1.3.4 Challenges in performance evaluation

In many technologies, such as automatic speaker recognition and automatic language

recognition, there exist international benchmark tests that enable the researchers to

assess and compare the performances of their systems on an international level (car-

ried out by the National Institute of Standards and Technology [2]). This is only

possible when there are clear tasks, shared data sources and evaluation protocols de-

fined and provided. For a relatively new research area such as speech-based emotion

recognition, this does not exist yet. This is one of the reasons why it is difficult to read,

compare and interpret the performances reported in the large number of studies, see

also Table 2.4.

It is arguable whether the evaluation approach undertaken in the majority of the

studies shown in Table 2.4 reflects the ‘true’ task of the emotion classifier. To what

extent do the performance figures reflect the real performance of the targeted ap-

plication when applied in the real-world? Emotion recognition is a multi-class clas-

sification task that can be approached in various ways. A lot of studies have used

a relatively small set of basic emotions in their classification experiments. An ex-

ample of a popular set of emotions is Anger, Disgust, Fear, Joy, Sadness, Boredom

and Neutral. This emotion recognition problem can be approached as a classification

task, conforming to the ‘traditional’ forced-choice classification evaluation paradigm.

Given a sample, the task is to choose one of the emotion classes available: is it Anger

or Disgust or Fear or etc. As Banse and Scherer [12] already suggested, since the

number of emotion classes is small, this task does not really reflect recognition which
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is what we actually want: it rather reflects discrimination between a small number of

emotion classes. In addition, in such configuration, we should acknowledge that it is

impossible to model each possible emotion. Hence, we should also acknowledge the

possibility that in real-life, the emotion classifier can encounter ‘new’ emotions that

have not been ‘learned’ by the emotion classifier. Associated with the traditional clas-

sification evaluation framework is the classification accuracy defined as the number

of correctly classified cases defined by the total number of cases. While this perfor-

mance figure is sensitive to skewed class distributions which make its interpretation

non-transparent and less comparable, the classification accuracy is still often reported

as a single main performance figure although alternatives are available.

In short, challenges involving performance evaluation of affect recognizers are the

following:

• The lack of shared data sources and evaluation protocols makes it difficult to

compare performances between studies.

• The current evaluation methodology can be improved in terms of soundness.

1.4 About this thesis

1.4.1 Goals and research questions

Traditionally, emotion recognition has been carried out with clean data that was ac-

quired in a controlled way, meaning that acted emotional speech was used that usu-

ally contained extreme, basic universal emotions, i.e., not-so-real affect. These studies

have formed the basis of the current emotion recognition research. However, it is clear

that, in order to develop advanced affect recognition systems, the use of real affect is

a must. Hence, the central aim in this thesis is the following:

to develop speech-based affect recognition systems that can deal with real

affect.

The challenges associated with the aim to develop speech-based affect recognition

systems that can deal with real affect (described in Section 1.3) give rise to several

interesting research questions that are answered in this thesis.

Researchers have come to realize that the gap between affect recognition in the lab

and in the field is a significant one and that it is a problem that should be addressed.

Hence, we designed our affect recognition experiments such that aspects of reality,

naturalness and validity during all phases of development of our speech-based affect

recognition systems are addressed. We believe that the link between the experimental

setting, in which the affect recognition experiments are carried out, and the targeted

affect application needs to be strengthened. This has some consequences for the way

automatic affect recognition systems traditionally are developed.

We hypothesize that the character of the speech material available plays a leading

role in the development of an affect recognizer, more than in other similar recognition

technologies, such as e.g., language recognition. The naturalness and the intensity of

the emotions expressed, and the way these expressions are annotated in the speech
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data are all aspects that heavily influence the task and performance of the recognizer.

Hence, we can formulate the following three research questions:

Research question 1 (RQ1): How does the speech data’s level of naturalness used

in speech-based affect recognition affect the task and performance of the recog-

nizer?

Research question 2 (RQ2): How does the description and annotation of emotional

speech data that is used in speech-based affect recognition, affect the task and

performance of the recognizer?

Research question 3 (RQ3): What features and modeling techniques can best be

used to automatically extract information from the speech signal about the

speaker’s emotional state?

Since affect is such a broad term, we have made decisions about what type of emo-

tions to focus on. Firstly, to allow for comparison with previous studies, we performed

emotion recognition on acted emotional speech data containing the six basic universal

emotions (see Chapter 4). Using recognition technology and a detection framework

adopted from related research areas such as language recognition, we show how ba-

sic, extreme emotions can be detected and discriminated from each other under fairly

clean conditions.

Subsequently, we shifted towards the use of more natural affective speech data.

For example, we have used speech data recorded during meetings and emotion data

elicited from people who were playing a videogame. As a consequence, our focus

has moved to the detection of non-verbal vocal expressions that are somehow related

to affect. Laughter is such a non-verbal vocal expression. Until recently, the auto-

matic detection of laughter has not gained much attention: in the ASR (automatic

speech recognition) community for example, laughter was simply seen as non-speech

that one should get rid of first. Our laughter study presented in Chapter 5 was one

of the first studies that investigated the automatic detection of laughter in meetings

in a systematic way, comparing several feature types and learning algorithms with

the eventual goal to apply laughter detection in affective computing. In addition to

laughter, we decided to focus on another emotionally colored phenomenon present

in meetings, namely the recognition of sentiments and opinions (i.e., subjectivity).

We assume that when people express their sentiments and opinions, people are more

expressive (both vocally and textually) than when they express factual statements.

Moreover, the recognition of subjectivity may help to identify so-called hot spots in

meetings, which can be described as moments with increased involvement of multi-

ple participants. Subjectivity recognition has traditionally been investigated on tex-

tual level. To the best of our knowledge, our experiments presented in Chapter 5 are

one of the first to use both acoustic and textual features for the recognition of opin-

ion clauses, and the polarity (positive or negative opinion) of these opinion clauses.

Using combinations of these features, we show what the contribution of acoustic in-

formation can be to subjectivity and polarity recognition.

As an intermediate between emotions that are acted or natural, we used spon-

taneous material containing affective vocal and facial expressions that are elicited
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through gaming. This is material that we have collected ourselves at TNO with the

aims to 1) compare ‘felt’ (annotations from the subjects playing the game themselves)

and ‘perceived’ emotion annotations (annotations from observers), 2) develop affect

recognizers that can predict Arousal and Valence scalar values rather than emotion

categories, and 3) compare human performance to machine performance. The ef-

fect of ‘felt’ vs. ‘perceived’ emotion annotations on the task and performance of an

affect recognizer has previously not been investigated yet (to the best of our knowl-

edge). One advantage of using separate Arousal and Valence scales is that recognizers

for these emotion dimensions can be developed and optimized separately from each

other. We used acoustic and lexical features for the prediction of Arousal and Valence,

and compared their performances. The description of the spontaneous emotion mate-

rial collected and the results of the prediction experiments and analyses are presented

in Chapter 6.

The insights attained during the development of all these different types of recog-

nizers, using speech material containing emotions ranging from acted, to elicited, to

natural, provide answers to RQ1, RQ2, and RQ3.

Although the focus is on the use of spontaneous emotional speech material, there

is one Chapter in this thesis that involves a speech database containing acted ba-

sic, universal emotions. These types of databases have been used frequently in the

past, and many recognizers were developed with these databases. Main reasons for

using acted emotional speech is that this type of material is much easier to acquire

than spontaneous emotional speech data, and the emotion labeling is straightforward.

However, one major objection against the use of acted and basic emotions is that the

classification experiments performed with these datasets are not very representative

of real-life situations; in other words, the ecological validity of these classification ex-

periments is relatively low. Obviously, one partial solution is to use natural emotional

speech data. That is exactly what we have done in Chapter 5 and Chapter 6. Alter-

natively, we can try to bridge the gap between lab and field emotion classification

experiments by proposing more appropriate ways of evaluation that will better reflect

real-life situations:

Research question 4: How can the current evaluation methodology for affect recog-

nition in the lab be improved to match more closely the real-life, field situation

in which affect occurs?

In contrast with other similar recognition technologies such as language recog-

nition (given a speech sample, what is the language spoken?), the relatively young

research area of emotion recognition (given a speech sample, what is the emotion?)

does not seem to have a common evaluation framework. In Chapter 4, we show

how the detection framework, that is commonly used in language recognition, can be

adopted in emotion recognition. We will show that this framework offers many ad-

vantages which can make the traditional emotion classification experiments (slightly)

more ecological valid. We also propose an ‘open-set’ detection evaluation methodol-

ogy which addresses RQ4.
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1.4.2 Outline

In the next Chapters, we describe several experiments that we have performed to in-

vestigate the research questions mentioned previously. All these experiments involve

the development of speech-based affect recognition systems. First, in Chapter 2, we

give an overview of past speech-based affect recognition studies and describe what

data, features, methods, and evaluation metrics were frequently used in these stud-

ies. In addition, we provide an overview of all the materials and methods used in our

current experiments.

Acquiring non-acted affective speech material is a well-known issue in affective

computing research. In our studies (see Truong et al. [192]), we have undertaken

efforts to acquire natural affective speech data in the field. We have tried to mea-

sure real affect in speech during emergency situations on a naval ship, during crisis

meetings, and while people are playing a virtual reality game. In Chapter 3 (based

on Truong et al. [192]), we describe what difficulties we have encountered (and the

implications thereof) in our efforts to collect emotional speech data in the field.

Since labeled natural emotional speech data is sparse, it is very convenient to

be able to use existing databases that contain acted emotional speech. Additional

advantages are that we can relatively quickly and easily test new recognition tech-

nologies, we have few worries about the labeling of the emotions, and we can adopt

techniques and evaluation procedures from similar recognition technologies such as

automatic language recognition. In Chapter 4, we describe how we used state-of-the-

art recognition technology to develop emotion detectors that can detect acted basic,

universal emotions. One of the key elements in developing these detectors is that we

adopt a detection framework which has not frequently been used in emotion recogni-

tion, but which offers many advantages over the classical classification paradigm that

is traditionally used in emotion recognition. For example, within this detection frame-

work, we have designed an ‘open-set’ evaluation that simulates an open-set situation

(see Truong and van Leeuwen [188], van Leeuwen and Truong [195]), i.e., the pos-

sibility that the detector encounters new emotion categories that have not been ‘seen’

before by the detector (that were not included in its training set). The ‘open-set’ sim-

ulation was introduced with the goal to make the results of lab emotion classification

experiments more representative of real-life situations.

It is commonly agreed that the use of acted emotional speech in affect recogni-

tion is very convenient, but it is not very ecologically valid. Hence, the experiments

described in Chapter 5 and Chapter 6 involve natural emotional speech and elicited

emotional speech respectively. In Chapter 5, we present detection experiments per-

formed on spontaneous meeting data with the goal to detect emotionally colored

behavior in meetings. In the first part of Chapter 5 (based on our work published

in Truong and van Leeuwen [186, 187, 190]), we explain how we developed auto-

matic laughter detectors. In the second part of Chapter 5 (published as Raaijmakers,

Truong, and Wilson [143]), we explain how we developed detectors for the recog-

nition of sentiment and opinions in meetings: we detect whether an utterance is

subjective or not, and if it is subjective, whether it is positive or negative subjective

(i.e., polarity detection).

As an intermediate between natural and acted emotions, we have also experi-
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mented with emotional speech data that we elicited from people who were playing

video games (see Merkx, Truong, and Neerincx [118]). Part of the data is annotated

by the gamers themselves and observers. Emotion prediction experiments were car-

ried out with this data to compare the use of self annotations to observers’ annotations

(see Truong et al. [191]), and to compare the use of acoustic and lexical features for

Arousal and Valence recognition (see Truong and Raaijmakers [185]). Rather than

to classify emotion categories, the detectors were developed to predict Arousal and

Valence scalar values. The elicitation and recording procedures of this corpus, and

the results of the emotion prediction experiments are presented in Chapter 6.

Figure 1.4: Detection experiments described in this work.

We can place all detection experiments that we performed along two scales. The

first one ranges from acted data to spontaneous/natural data: we have performed

detection experiments with acted, elicited and natural emotional speech data. The

second one ranges from concrete/direct emotion modeling to abstract/indirect mod-

eling. It seems as if we progress towards the use of natural emotion data, the model-

ing of emotion becomes more abstract: for instance, in using natural meeting speech

data, the focus has shifted to the detection of subjectivity which can be linked to af-

fective expressiveness, but it is not considered a specific emotion category. This also

applies to laughter: the expression of laughter can be an affective event, but it is

not always immediately clear what the emotional meaning is of that laughter event.

When we place our detection experiments in a 2-dimensional plot, the chapters can

be arranged as in Fig. 1.4.

Finally, in Chapter 7, we draw conclusions from the experiments performed and

discuss these in the light of the research questions. Furthermore, we give recommen-

dations for future research.



Chapter 2

Automatic affect recognition in speech:

past and current affairs

In recent years, due to a growing interest for affective computing, an increased

amount of literature has become available on the investigation of automatic emotion

recognition (and synthesis) in speech. The first studies on emotional speech focused

on finding acoustic correlates of emotional speech. Furthermore, also in the areas of

psychology, researchers started to investigate the perception of emotion, and human’s

ability to recognize emotions in speech. Subsequently, with the rapid development of

recognition technology, the first studies on automated analyses of emotional speech

began to appear. In this Chapter, that is divided in two parts, we provide an intro-

duction into the research area of automatic emotion recognition in speech, and we

introduce the materials, methods, features and performance metrics used to develop

our speech-based affect recognizers presented in this thesis. First, we carried out a

literature study on past speech-based affect recognition studies. In Section 2.1, we

describe some acoustic characteristics of emotional speech as found in past studies.

In Section 2.2, we briefly describe how well humans can classify emotions in speech.

An overview of past speech-based affect recognition studies is given in Section 2.3.

Finally, in the second part of this Chapter, we give a description of the materials,

methods, features, and performance metrics used in the current study.

2.1 Acoustic characteristics of emotional speech

Early studies on the acoustics of emotional speech originate from the seventies, car-

ried out by Williams and Stevens [206, 207]. In Williams and Stevens [206], the

emotional states of pilots during flight were studied. In Williams and Stevens [207],

acoustic correlates of emotional speech, originating from actors and originating from

a real-life situation were investigated and compared. The sound sample used in [207]

is a good example (and one of the first) of a naturalistic emotional speech sample that

is collected in the field. The sound sample is that of a radio announcer who was de-

scribing the landing of the Hindenburg zeppelin that suddenly burst into flames and

crashed. The radio announcer, who witnessed the crash and sounded deeply affected,

continued reporting. An acoustic analysis was carried out on this sample of emotional
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speech (see Fig. 2.1). Among other acoustic parameters investigated, Williams and

Stevens [207] concluded that the fundamental frequency (F0) was the most important

predictor of emotion.

Figure 2.1: Narrow-band spectrograms of the radio announcer’s speech during his report

on the Hindenburg crash (from Williams and Stevens [207]).

Also in the seventies, Scherer and colleagues developed interests for the study of

the relationship between personality and voice characteristics, and vocal expression

of emotions. During that time, emotional speech researchers took up observations

made in studies on facial expressions, mainly led by scientists like Tomkins [183],

Friesen and Ekman [59, 56]. As a consequence, most of the classical emotional speech

studies employed the popular “basic, universal emotion categories” rather than “a di-

mensional model” as suggested by Schlosberg [165]. The recognizability and gen-

eralizability of basic, universal emotions, and the relative easiness with which these

emotion data could be portrayed and collected (by hiring actors) also contributed to

the popular use of basic emotions in emotional speech research.

In general, the studies on the acoustics of discrete basic emotions (e.g., Banse and

Scherer [12], Murray and Arnott [123]) seem to provide a consistent view, except

for a few inconsistencies. Most inconsistencies may be contributed to differences in

manifestations or portrayals of the basic emotion. For example, the acoustic charac-

teristics of Anger described in Table 2.1 are associated with Hot Anger rather than

Cold Anger; it is not always clear what type of Anger was used in a particular study.

Although the studies seem to agree with each other, the evidence for these emotion-

specific vocal patterns is not at all conclusive. In Banse and Scherer [12], three major

causes are given for this observation, which affect the interpretation of these studies
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and the development of speech-based affect recognizers: 1) most of the studies on

the acoustics of emotional speech only employ a small, restricted set (3–6) of emo-

tion classes, consequently, the acoustic descriptions are more likely to be specific to

this set of emotions and contrastive with respect to each other rather than generic, 2)

the limited number of acoustic parameters (F0, energy) used in previous studies may

have obscured the existence of other vocal profiles of emotions that manifest them-

selves through other acoustic parameters, 3) the atheoretical nature of much of the

research makes cumulativeness of the empirical findings and hypotheses hard. These

are valid points made in Banse and Scherer [12], which are gradually being taken up

by researchers.

Anger (Hot) Sadness Joy Fear Disgust

Speech rate + - +/- ++ - -

Pitch average +++ - ++ +++ - - -

Pitch range ++ - ++ ++ +

Intensity ++ - - ++ = - -

High-frequency energy ++ - + ++ +

Table 2.1: Acoustic characteristics for some basic emotions (partly adopted

from Ververidis and Kotropoulos [200], Murray and Arnott [123], Scherer [159]).

Table 2.1 summarizes the behavior of some frequently used acoustic features for

a number of discrete basic emotion categories. The summary shows that Anger and

Sadness are very distinct emotions, while Anger and Joy and Fear appear to be very

similar acoustically.

In a dimensional approach to emotion, statements on acoustic profiles of emo-

tions can be made in a broader and generic context namely in terms of the two or

three emotion dimensions Arousal, Valence and Dominance. Murray and Arnott [123]

noted that the Arousal dimension is correlated with the auditory variables which im-

plies that the activity of emotional meaning can be carried by the relatively simpler

acoustic parameters of F0 and energy. Many of the studies using ‘traditional’ acoustic

features such as F0, energy, duration and speech rate, have found that these fea-

tures are characteristic for emotions that differ in Arousal level, for instance Anger

vs. Sadness. Valence, on the other hand, is probably communicated through much

more subtle and complex vocal patterns and parameters that are less auditory evident

and measurable. Emotions that differ on the Valence scale, for instance, Anger vs.

Happy, may be more characterized by source and articulation characteristics which

manifest themselves in voice quality (e.g., creaky, harshness, breathy) and spectral

features (e.g., formants, MFCCs, energy distribution in spectrum). In the literature,

it is agreed upon that the usual acoustic variables investigated show indeed stronger

correlations with the Arousal dimension than the Valence dimension, e.g., Banse and

Scherer [12], Scherer [159, 163], Ververidis and Kotropoulos [200], Schröder et al.

[169].

Whether the findings here about the acoustic characteristics of emotional speech

are also valid in spontaneous emotional speech, remains debatable. The acoustic

characteristics partly seem to overlap, however, several studies have found indications



20 | Chapter 2

that there are indeed significant differences in the acoustics of acted vs. spontaneous

emotional speech. Wilting et al. [210] have found differences in the production

and perception of acted vs. spontaneous speech which may also reflect in the acous-

tics. Vogt and André [203] compared feature sets for acted and spontaneous speech.

They found, by performing feature selection, that for acted speech, pitch-related fea-

tures and pauses are very important, whereas for spontaneous speech, Mel-Frequency

Cepstrum Coefficients were most important. In addition, they found that there was

few overlap between the feature sets of acted and spontaneous speech. In Schaeffler

et al. [158], vocal parameters in spontaneous and posed child-directed speech was

investigated. It appeared that voice quality parameters are more used in mothers’

child-directed speech (presumably spontaneous affective speech) than in speech from

non-mothers directed to imaginary children (presumably acted affective speech), al-

though it remains unclear whether the factor mother or non-mother may have also

played a role. These studies have shown that there are indeed important acoustic

differences between acted and spontaneous speech.

Note that the acoustic characteristics of emotional speech have also been investi-

gated from a speech synthesis view, e.g., Schröder [166], Murray and Arnott [123].

However, there is no one-to-one mapping between emotional speech synthesis fea-

tures and emotional speech recognition features, although there are similar modeling

difficulties. For example, Valence also appears to be difficult to convey in synthetic

speech (Schröder [168]).

2.2 Human classification of emotions in speech

Prior to the rise of machine classification of emotions in speech, it was investigated

by e.g., Banse and Scherer [12], Van Bezooijen [193] how good humans can recog-

nize emotions in speech. These studies actually involve discrimination rather than

recognition: the subject is usually forced to choose between a relatively small number

of emotion classes. Furthermore, subjects are usually asked to classify acted, dis-

crete, basic emotions. One large study on the human perception of Dutch emotional

speech was carried out by Van Bezooijen [193] in 1984. In a forced choice percep-

tion experiment, Dutch subjects were asked to classify the acoustic emotional stimuli

(produced by actors) into one of the 10 discrete emotion categories. The stimuli

consisted of Dutch sentences that were produced in different emotions. Banse and

Scherer [12] used a larger number of emotion categories, namely 14, and carried out

a similar perception experiment with German listeners. The carrier sentences were

two meaningless, nonsense utterances that were composed of phonemes of several

Indo-European languages. Burkhardt et al. [25] used 7 discrete emotion categories

in his perception experiment, and offered German emotional utterances to German

listeners. In Figure 2.2, the recognition rates of these three human recognition stud-

ies are plotted against each other to see whether there is agreement among several

studies on the recognizability of various emotions. From this figure, it can be seen

that there is indeed a common trend visible between the studies: of all the emotions

offered, Disgust and Shame are worst recognized by humans whereas (Hot) Anger is

best recognized.
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Figure 2.2: Recognition rates (%) of human recognition experiments of emotions in

speech - comparison between several studies.
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(a) Van Bezooijen study [193].
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(b) Banse and Scherer study [12].

Figure 2.3: In these r× c matrices, row r is classified as column c: the larger the square,

the higher the recognition rate.

In Figure 2.3, erroneous confusions between emotions made by humans are shown.

Humans appear to be very good in discriminating between basic emotions that lie on

opposite sides of the Arousal and Valence dimensions: it can be seen from Fig. 2.3

that Anger and Joy are seldom mistaken for each other, and Anger and Sadness are

never confused with each other. The rest of the erroneous confusions do not seem to

show a pattern.

2.3 Machine classification of emotions in speech

In the studies on acoustic correlates of emotional speech and human perception of

emotion, the basis was laid to pursue automatic classification of emotions in speech.

From the nineties on, a large number of automatic speech-based emotion classifica-
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tion studies have been carried out. Given the amount of variation between these

studies along various dimensions, it is difficult to develop a concise and consistent

view about the state of affairs in this research area. However, there are certain de-

velopments visible that are geared towards a more consistent view and approach to

speech-based emotion classification. In Table 2.4, a brief summary of several speech-

based emotion classification studies is given. Each study can be characterized by a

number of ‘parameters’ within each development process that can vary between emo-

tion recognition studies as shown in Fig. 1.3 and Table 2.2.

Development

process

Parameters Examples

Data acquisition

and annotation

Nature of data acted, WOZ, spontaneous

Number of speakers

Number of emotion classes

Type of emotion/annotation discrete categories, dimen-

sions, basic emotions

Feature

extraction

Unit of analysis phoneme, syllable, word,

utterance

Short-term ASR spectral Mel-Frequency Cepstrum

Coefficients, (Rasta-) Per-

ceptual Linear Prediction

Other (long-term) pitch-related, energy-

related, energy in spectrum-

related, voice quality

Learning

Probability density function

(pdf) modeling

Gaussian Mixture Models,

Hidden Markov Models

Kernel methods Support Vector Machine,

Support Vector Regression

Other Neural Networks, Decision

Trees, Boosting, K-Nearest

Neighbor

Evaluation
Protocol K-fold-cross valida-

tion, person depen-

dent/independent, de-

tection, classification

Metrics classification accuracy, F1,

Equal Error Rate, Cost of

Detection

Table 2.2: Variations along several parameters in emotion recognition studies.

2.3.1 Data acquisition and annotation

As Table 2.2 and Fig. 1.3 show, the first development process is that of data acquisition

and description. Data acquisition and description can be varied along several param-

eters. The first parameter involves the nature of the data. With the nature of data,
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we mean whether the data is acted or spontaneous. One of the problems in emotional

speech research is the lack of annotated, natural emotional speech data. Hence, we

can observe from Table 2.4 that most of the studies have used acted (posed) emotional

speech data, e.g., Banse and Scherer [12], Petrushin [133], Tato et al. [182], Nwe

et al. [125], Yacoub et al. [214], Ververidis and Kotropoulos [199], Schuller et al.

[171], Clavel et al. [40], Schuller and Rigoll [170], Hu et al. [81], Vlasenko et al.

[202]. For these type of databases, actors (or non-actors) are hired to act out a given

emotion and utter the same sentences in various (usually basic) emotions. Clearly,

there are advantages to the use of acted emotional speech when one wants to per-

form automatic classification experiments. Using actors offers a quick way to collect

emotional speech uttered by various speakers in various emotions under controlled

conditions. The speech signal is clean and the amount of work needed to post-process

the data and signals is relatively small, e.g., no segmentation and emotion annotation

is required. It can be useful to perform a rating (perception) study to verify the natu-

ralness and recognizability of the emotions expressed by the actors. A major drawback

of using acted emotional speech is that it, to a certain extent, lacks ecological valid-

ity: emotions acted out by actors do not per se reflect natural emotions that occur in

real-life. Acted emotional speech tend to sound more exaggerated and less natural to

listeners. Several studies have proven that there are significant differences between

acted and spontaneous emotional speech, e.g., Vogt and André [203], Wilting et al.

[210], Schaeffler et al. [158]. However, acquiring natural emotional speech data

suitable for machine classification is a complex and very time- and effort consuming

process. In addition, the quality of the signal recorded can be degraded and in gen-

eral, there are less controllable parameters. Localizing and labeling the emotion in the

speech data recorded involves a lot of human labor. Despite these factors, an increas-

ing number of researchers is undertaking efforts to acquire emotion data in a natural

environment which is also reflected in the growing number of classification studies

using natural emotional speech data, see e.g., Fernandez and Picard [62], Vidrascu

and Devillers [201], Devillers and Vidrascu [52], Neiberg et al. [124], Graciarena

et al. [67], Truong and van Leeuwen [187], see Table 2.4.
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Figure 2.4: Tension between acted and natural emotional speech.

As an intermediate, elicitation and Wizard-Of-Oz methods (WOZ) can be used to

collect (semi-)spontaneous emotional speech. Elicitation methods include watching

movie clips (e.g., Lang [102]), listening to music (e.g., Wagner et al. [204]), and
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playing games (e.g., Kim et al. [91], Johnstone [88], Yildirim et al. [216], Merkx et al.

[118], Truong et al. [191]). Wizard-Of-Oz methods include interaction with a virtual

character (e.g., Cox [46]) or spoken dialog system, see e.g., Ang et al. [6], Batliner

et al. [16, 15]. In Fig. 2.4, a graph is plotted that reflects the tension between the

use of spontaneous material and the level of complexity. In Table 2.3, a number of

spontaneous emotional speech databases is listed.

Database Number
speakers

Nature
data

Types of emotions Description, annotation
of emotion data

Belfast
Natural

( Douglas-

Cowie et al.
[53])

31m, 94f
(English)

natural wide range of affec-
tive speech, neutral,

angry, sad, pleased,

happy, amused, wor-
ried

clips taken from televi-
sion chatshows, current

affairs programs, and in-

terviews conducted by re-
search team, unscripted

interactive discourse, an-

notation with Feeltrace
and in categories

SAL (pilot

database, Cox
[46])

20 sub-

jects
(English)

semi-

natural

wide range of emo-

tion related states,
not very intense

interaction with virtual

characters, each of whom
have different personali-

ties, interactive discourse,

annotation with Feeltrace

Smartkom
(Steininger

et al. [181])

45 sub-
jects

(Ger-
man)

semi-
natural

joy, gratification,
anger, irritation,

helplessness, pon-
dering, reflecting,

surprise, neutral

human-machine WOZ
dialogues, solving tasks

with system, interactive
discourse, annotation in

categories and intensity

(weak, strong)

AIBO (Bat-
liner et al.

[17])

81 chil-
dren

(51 Ger-

man, 30
English)

semi-
natural

joyful, surprised, em-
phatic, helpless, an-

gry, motherese

human-robot interaction
(robot pet), annotation in

categories

SUSAS

(Hansen and
Bou-Ghazale

[75])

13f, 19m

(English)

acted,

natural

anger, stress (fear,

anxiety), task load
stress

partly read speech, speech

recorded during task ex-
ecutions, or rollercoaster

rides in amusement park

Vera am Mit-

tag (Grimm
et al. [70])

44m, 60f

(Ger-
man)

natural wide range of primar-

ily negative and neu-
tral emotions, fewer

positive emotions

clips from talk shows,

annotation on Arousal,
Valence and Domi-

nance scales with Self-
Assessment-Manikin

(SAM)

Table 2.3: Various spontaneous emotional speech databases that have frequently been

used by the research community.

The second and third parameters that can be varied within the development pro-

cess of data acquisition and description is that of number and types of emotion. It

can be seen from Table 2.4 that the number of emotions in these studies varies from

two to fourteen; the majority of the studies have two to seven emotion classes which
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is relatively small. Also, the majority of the studies covers discrete stereotypical ‘ba-

sic’ emotions, e.g., Tato et al. [182], Nwe et al. [125], Ververidis and Kotropoulos

[199], Schuller et al. [171], Datcu and Rothkrantz [48], Hu et al. [81], Vlasenko

et al. [202]. This is one of the points of criticism that is brought forward by Banse

and Scherer [12]:

It is doubtful whether studies using 4–6 response alternatives in a vocal

emotion recognition study actually recognition or whether, more likely,

the psychological process involved is discrimination among a small num-

ber of alternatives . . . Obviously, real life requires true emotion recognition

rather than emotion discrimination . . . In consequence, the ecological va-

lidity of recognition rates can be expected to increase with the number of

alternatives.

The quote above also applies to automatic emotion classification. The perfor-

mance of the emotion classifier depends on the number and types of emotion classes

used in the classification experiment, so the performance figures should be read and

interpreted with care. For example, an emotion classifier that achieves 87% accuracy

in a three-class classification problem with Anger, Neutral, and Sadness, can give a

somewhat flattering picture of the situation, e.g., in Yacoub et al. [214], the 87%

accuracy dropped when a fourth class Happiness was added.

Reasons for classifying ‘basic, universal’ emotions are simply that the data is rel-

atively easily acquired, and/or that the data is publicly available. The choice for

emotions to be classified seems to be therefore somewhat data-driven rather than

application-driven. Hence, in some cases, from an application point of view, the emo-

tion classification experiment performed does not make much sense. For example, a

forced choice classification experiment between Anger, Sadness, Disgust and Happi-

ness does not seem to provide very useful information about Angriness detection if

the targeted application is an Angriness detector in a call center environment since 1)

Sadness and Disgust are probably not frequently encountered in such environments,

and 2) we are less interested in how Anger can be discriminated from Sadness, Disgust

or Happiness, but more interested in how Anger can be discriminated from Not-Anger.

In a dimensional approach to emotion recognition the number of emotion classes

is usually reduced to 3–5, characterized by the two emotion dimensions or the “four

quadrants” in the Arousal-Valence space. The four quadrants are usually called Positive-

Active (PA), Positive-Passive (PP), Negative-Active (NA), and Negative-Passive (NP).

Discrimination can also be performed along the dimensions: Positive vs. Negative,

and Active vs. Passive. More recently, Grimm et al. [69, 68] predicted emotion on

continuous scales of Arousal and Valence. Using Support Vector Regression, Grimm

et al. [69] outputs scalar values on Arousal and Valence scales without the use of

discrete categories. The advantage of such an approach is that language-dependent

emotion labels that describe the emotion categories have become superfluous.

Naturally, the choice for certain types of emotions depends on the targeted appli-

cation in mind. The affect recognizers developed in Petrushin [133], Yacoub et al.

[214], Vidrascu and Devillers [201], Devillers and Vidrascu [52] aim to detect emo-

tions of Agitation, Frustration, Anger, and Fear in medical, financial and customer-

service call centers. Fear is also detected in the context of surveillance and safety
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(Clavel et al. [40]). Frustration, Annoyance and Anger can also occur when spoken

dialogue systems that provide a service to a customer fail to fulfill the need of the cus-

tomer, e.g., Batliner et al. [16, 15], Ang et al. [6], or when students get upset and frus-

trated because a spoken-tutoring-dialogue system fails to understand and help them,

e.g., Liscombe et al. [108], Hua et al. [83], Litman and Forbes-Riley [109]. Stress has

been extensively investigated by Zhou et al. [219], Fernandez and Picard [62], Kwon

et al. [99] in the context of car-driving and pilots: in environments where critical situ-

ations are likely to occur, stress can be useful to detect. Some ‘exotic’ emotions such as

motherese (i.e., child directed speech) and emphatic (Batliner et al. [20], Kwon et al.

[99]), deceptive speech (Graciarena et al. [67]), depressed, suicidal speech (Yingtha-

wornsuk et al. [217]), and fatigue, sleepiness in speech (Krajewski and Kröger [96])

have also been addressed. Hotspot detection for meeting summarization and/or meet-

ing browsing (i.e., localization of events with a high level of activity in a meeting) has

recently gained interest (Neiberg et al. [124], Wrede and Shriberg [211]). Salway

and Graham [157], Hanjalic and Xu [74] are modeling emotion in the context of

information-retrieval like applications, such as movie browsing. In general, nega-

tive emotions receive more attention from researchers than positive emotions; there

simply is a greater need for applications that detect negative emotions than positive

emotions. However, we would also like to mention a few studies that have analyzed

non-negative emotional speech. Rosenberg and Hirschberg [151] investigated the

acoustics of charismatic speech by analyzing presidential speech, and Chen et al. [38]

investigated the acoustics of friendly speech.

Finally, the fourth parameter in data acquisition and description is that of number

of speakers. The number of speakers partly determines how generizable the results

of the classification experiments are. The more speakers, the better generalizable

the results will be. More importantly, when classification experiments are performed

speaker-independently, the generalizability of the results also increases.

2.3.2 Feature extraction

In feature extraction, an important parameter along which one can vary is the unit of

analysis for feature analysis. The choice for a certain unit of analysis is related to the

choice for the type of speech features: spectral or prosody-oriented features.

Since it is not clear yet which acoustic features describe what emotions best, most

researchers use a rather crude, though effective strategy to feature extraction: a large

number of acoustic features (>1000) is extracted and a feature selection algorithm is

applied to reduce this set to a smaller number of most powerful features. From the

literature, we know that prosodic features, including F0 (pitch), energy, speech rate,

and the distribution of energy in the spectrum are among the most important features

for emotion classification. These types of features are usually measured suprasegmen-

tally, that is, measured over a unit larger than a phoneme. Prosody usually occurs in

a hierarchy of higher levels of an utterance (although prosodic analysis at phoneme-

level does exist). Short-term (e.g., each 16 ms) prosody measurements are usually

not meaningful, since it is the prosodic behavior over time that is important for emo-

tion recognition. This means that the unit of analysis (or analysis window) in prosodic

analyses can be as large as a syllable, or a word, or a sentence. However, note that lin-
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guistic units such as syllables and words require an ASR system that can deliver these

units’ boundaries. Usually statistical measures such as mean, standard deviation, the

range etc. are calculated from these series of measurements and used as input fea-

tures. Examples of various levels of measurements of prosody can be given when

prosody is used in a linguistic sense rather than in a paralinguistic sense. Prosody is

not only utilized for the expression of paralinguistic information, it also has a linguis-

tic function (which makes affect recognition even more complex and difficult). For

example, in some languages, like Dutch, different syllables in words can be stressed

to mark differences in meaning. In the Dutch minimal stress-pair, ‘kaNON vs. KAnon’,

lexical stress makes a meaningful distinction between the words ‘cannon’ and ‘canon’.

Stress on word-level may mark given information vs. new information in a sentence:

‘MARY bought a book’ (‘book’ is given information, ‘mary’ is new information) vs.

‘Mary bought a BOOK’ (‘mary’ is given information, ‘book’ is new information).

On the other hand, there are features that can be more meaningful when extracted

on a short-term level. Spectral features as used in automatic speech recognition or

speaker recognition, such as Mel Frequency Cepstrum Coefficients or Perceptual Lin-

ear Prediction coefficients, are typically measured with frame rates around 10–20 ms

and window lengths around 20–40 ms. Formants can also be used as features. The

majority of studies, see Table 2.4, employ a combination of pitch, energy, duration

and spectral features for the classification of emotion: usually a combination of fea-

tures extracted on different levels yields the best performances (e.g., fusion between

spectral and prosodic features).

2.3.3 Learning

The machine learning algorithm learns how to map input features to specific emotion

classes. There are several learning algorithms that are very popular among emotional

speech researchers, mainly because these have proven to give good performance. In

Table 2.4, it can be observed that Support Vector Machines (SVM), Gaussian Mixture

Models (GMM), and Hidden Markov Models (HMM) are among the most frequently

used ones.

Support Vector Machine (Vapnik [197]), a kernel method, is one of the most pop-

ular method used in emotional speech recognition, e.g., Schuller et al. [171], Schuller

and Rigoll [170], Devillers and Vidrascu [52]. A Support Vector Machine aims at find-

ing the best separating hyperplane between groups of datapoints that maximizes the

margins between these groups (see Section 2.4.3, and for a more detailed and mathe-

matical description, see Vapnik [197]), and is also known as a discriminative method.

Hidden Markov Models and Gaussian Mixture Models are generative methods that

model probability density functions (pdfs). HMMs have successfully been employed

to model sequential, temporal patterns: current automatic speech recognition tech-

nology is based on the use of HMMs. An HMM models these sequential patterns

with stochastic processes, complying to the Markov property that given a state, fu-

ture states only depend on the current state and not on the past states. In short,

an HMM can be specified by five elements: 1) the number of states in the model,

2) the observation space per state which can consist of a finite number of elements

(discrete HMM) or which can be infinite, multidimensional and continuous (continu-
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ous HMM), 3) the state transition probability distribution, 4) the observation symbol

probability distribution in a certain state, and 5) the initial state distribution. The

observation probability distribution in a certain state can be modeled by a Gaussian

Mixture Model. Hence, a GMM is sometimes also referred to as a 1-state HMM. For

a more detailed description of HMMs, the reader is referred to Rabiner and Juang

[144], Rabiner [145]. GMMs are briefly described in section 2.4.3.

The training of HMMs and GMMs usually requires a lot of speech data in order to

accurately model the probability distributions: speaker or speech recognition systems

that employ HMMs or GMMs are usually trained with hundreds hours of audio. Typi-

cally, HMMs and GMMs perform best when trained with short-term spectral features

while SVMs perform best when trained with static acoustic vectors computed over

the whole utterance (e.g., Batliner et al. [18], Schuller et al. [173], Truong and van

Leeuwen [187]).

2.3.4 Evaluation

Through evaluation, the final development process in Table 2.2, we can assess the

performances of the affect recognition systems developed: how well does the af-

fect recognition system perform (in comparison with other systems)? During eval-

uation, it is standard practice to divide the data in three mutually disjoint sets: one

for training, one for development and one for testing. Most importantly, the testing

set should be a held-out set containing samples that are not present in the train-

ing set. Often, to compensate for lack of data, a K-fold cross validation procedure

can be used. A special case of K-fold cross validation in which each fold samples

from a certain speaker is held out for testing is also referred to as ‘leave-one-out’ or

‘leave-one-speaker-out’ (LOSO). Leave-one-speaker-out evaluation is useful to asses

the speaker-independency of emotion classifiers. If shared datasets, common evalua-

tion protocols and common performance metrics are used, then comparisons between

different studies can be properly made. However, in speech-based emotion recogni-

tion research, there is a lack of well-defined standards: this is the main reason why

the studies in Table 2.4 cannot be properly compared to each other.

As a performance metric, the most commonly used metric according to Table 2.4

is classification accuracy which is defined by the number of correct classifications di-

vided by the total number of test samples. However, classification accuracy is not a

very appropriate performance measure when the balance between the classes in the

test set is imbalanced. Several studies have proposed to use a performance measure

defined as the uniformly weighted harmonic of the classification accuracy and the

per-class recognition rate, e.g., Batliner et al. [16, 18], Schuller et al. [172], while

others borrow performance measures from other research areas. For example, emo-

tion recognition can be approached as an information retrieval problem: given a set

of speech samples that contain different emotions, how can we retrieve the speech

samples with the specific target emotion that was queried. For these types of tasks,

performance can be expressed as the weighted harmonic mean between precision and

recall (e.g., Neiberg et al. [124]). In the context of this type of emotion search system,

precision can be defined as the number of correctly retrieved speech samples divided

by the total number of speech samples retrieved. Recall can be defined as the num-
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ber of correctly retrieved speech samples divided by the number of speech samples

that should have been retrieved. Furthermore, borrowed from speaker recognition

and signal detection theory, Equal Error Rate (the point where the false alarm rate is

equal to the miss rate) can also be applied in emotion recognition (e.g., Clavel et al.

[39]). These evaluation metrics will be discussed in more detail in section 2.4.4.

Obviously, the use of all these different performance metrics, the lack of standards

and shared datasets do not contribute to the transparency of the large number of

emotion recognition studies.
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Study Type emotions (number of

emotions)

Number

of

speak-

ers

Nature data SI/SD Features Method Performance

Banse

1996 [12]

Hot+Cold Anger, Joy, Dis-

gust, Sadness etc. (14)

12 Acted ? F 0, energy, speech rate, long-

term spectrum

LDA A: 25%–35%

Petrushin

1999 [133]

Agitation, Calm (2) 18 acted telephone

messages

? F0, energy, speaking rate, for-

mants

KNN, NN A: 73%–77%

Zhou

2001 [219]

Neutral, Anger, Loud, Lom-

bard (4)

? simulated, real

(SUSAS)

SI/SD pitch, MFCC, TEO HMM A: ∼ 67%–89%

Ang 2002 [6] Annoyance, Frustration (2) ? wizard- of-oz ? F0, energy, speech rate, dura-

tion, pauses, spectral tilt

Decision tree A: 75%

Tato 2002 [182] Anger, Happy, Sad, Bored,

Neutral (5)

14 acted SI F0, energy, durational features,

formants, spectral energy distri-

bution

NN A: 59.3%–77%

(Arousal), A:

60% (Valence)

Nwe

2003 [125]

Anger, Disgust, Fear, Joy,

Sadness, Surprise (6)

12 acted SD LFPC coefficients HMM A: 77%–89%

Batliner

2003 [16]

Joy, Surprised, Neutral,

Helpless, Anger (7)

86 wizard of oz

(Smartkom)

? duration, energy, F0, POS fea-

tures

NN, LDA RR: 68.3%, CL:

62.9% (Anger

vs. Not-anger)

Fernandez

2003 [62]

Stress (4) 4 spontaneous

(in-car)

SD TEO - Teager Energy Operator HMM, SVM, NN A: ∼ 37%–61%

Kwon 2003 [99] Anger, Lombard, Loud, Neu-

tral (4)

? partly simu-

lated, partly

real (SUSAS)

? pitch, MFCC, formants HMM, SVM, LDA,

QDA

A: 67.1%

Kwon 2003 [99] Anger, Bored, Neutral, Sad,

Happy (5)

51 spontaneous

(AIBO)

? pitch, MFCC, formants HMM, SVM, LDA,

QDA

A: ∼ 40.8%

Yacoub

2003 [214]

Anger, Neutral (2) 8 acted SI pitch, loudness, durational fea-

tures

NN, SVM, KNN, De-

cision tree

A: ∼ 72%–91%

Ververidis

2004 [199]

Anger, Happiness, Sadness,

Surprise, Neutral (5)

4 acted ? short-term features, i.e., for-

mants, pitch, energy contours

Bayes classifier,

Gaussian Densities

A: 50.6%–

61.1%

Vidrascu

2005 [201]

Positive, Negative (2) 404 real-life medical SI F0, energy, spectral, duration,

disfluency

SVM, Logistic Model

Tree

A: 80%–83%

Schüller

2005 [171]

Joy, Anger, Disgust, Fear,

Sadness, Surprise, Neutral

(7)

35 movies SI pitch, energy, duration, for-

mants, spectral

SVM, KNN, boosting A: ∼ 40%–72%
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Devillers

2006 [52]

Relief, Anger, Fear, Sadness

(4)

690 real-life finan-

cial, medical

SI (a) lexical cues, (b) F0, spectral,

microprosody, energy, duration,

disfluency

SVM (a) A: 78%, (b)

A: 59.8%

Clavel

2006 [39]/Clavel

2007 [40]

Fear, Neutral (2) 400 movies SI prosodic, voice quality GMM EER: 30.5%, A:

70.8%

Batliner

2006 [18]

Anger, Motherese, Emphatic,

Neutral (4)

51 spontaneous

(AIBO)

SI prosodic, spectral (MFCCs), POS

features

NN, RF, Linear

Regression, Naive

Bayes, SVM, Rule-

based

RR: ∼ 63.5%,

CL: ∼ 62.4%

Neiberg

2006 [124]

Positive, Neutral, Negative

(3)

92 spontaneous

meetings

? MFCC, pitch, word n-grams GMM A: 80%, F1:

50%

Schuller

2006 [170]

Anger, Fear, Joy, Disgust,

Sadness, Boredom, Neutral

(7)

10 acted (Berlin) ? zcr, pitch, formants, energy,

spectral features

NN, boosting, SVM

etc.

A: ∼ 61%–87%

Graciarena

2006 [67]

Deceptive, non-deceptive

(2)

32 spontaneous

(interviews)

SD prosodic (pitch, energy, dura-

tion), lexical, MFCCs

SVM, GMM A: ∼ 60%–64%

Datcu

2006 [48]

Anger, Fear, Joy, Disgust,

Neutral, Sadness, Boredom

(7)

10 ? acted F0, intensity, formants Gentleboost A: ∼44%–

∼91%

Schuller

2007 [172]

Anger, Motherese, Emphatic,

Neutral (4)

51 spontaneous

(AIBO)

? energy, duration, F0, spectral

features, POS features a.o.

SVM, RF Femo: ∼ 50%–

60%

Hu 2007 [81] Anger, Fear, Happiness, Sad-

ness, Neutral (5)

8 acted ? MFCC GMM supervector-

based SVM

A: 77.9%–

82.5%

Grimm

2007 [69]

Activation, Valence, Domi-

nance (3)

47 spontaneous tv

(VAM)

? pitch, energy, MFCC Fuzzy Logic, Fuzzy

KNN, SVR

Eregr 0.13–0.18

Yingthawornsuk

2007 [217]

Depressed, Suicidal (2) 20 partly sponta-

neous

? energy in frequencybands, vocal

tract-based features

GMM A: 85.3%–

90.3%

Vlasenko

2007 [202]

Anger, Fear, Disgust, Joy,

Neutral, Boredom, Sadness

(7)

10 acted (Berlin) SI MFCC, pitch, energy, duration,

formants

GMM A: 89.9%

Batliner

2008 [20]

Intimacy, Neutral (2) 24 spontaneous (

child-directed

speech)

? duration, energy, pitch, for-

mants, cepstral features, voice

quality

SVM, RF Femo: 70%–

80%

Table 2.4: Various emotion classification studies in speech briefly summarized. LDA=Linear Discriminant Analysis, KNN=K-Nearest Neighbours, NN=Neural Network, HMM=Hidden Markov

Model, QDA=Quadratic Discriminant Analysis, SVM=Support Vector Machine, RF=Random Forest, SVR=Support Vector Regression, GMM=Gaussian Mixture Model
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2.4 Materials and methods used in current study

As an introduction to the experiments presented in this thesis, a short overview of all

databases, speech features, learning algorithms and evaluation metrics used in our

experiments, is given in this chapter.

2.4.1 Databases

For the emotion recognition experiments performed in this thesis, various speech

databases were employed. Five different databases were used, of which four contain

spontaneous speech, i.e., ICSI, AMI, CGN, and TNO-GAMING. The TNO-GAMING corpus

was newly collected and is presented in this thesis (for a detailed description of this

corpus see Chapter 6). These databases are shortly described here, and summarized

in Table 2.5.

Database Number
speak-
ers

Size Nature
data

Types of emo-
tion

Description, annota-
tion of emotion data

ICSI

(Janin
et al.

[85])

53 (En-

glish,
non-

native

English)

72 h non-

scripted,
natural

wide range of

emotionally col-
ored behavior

emotional behavior in

meetings, (discrete)
annotations of dialog

acts and laughter,

(dis-)agreement

AMI (Car-
letta

[35])

171
(English,

non-
native

English)

100 h scripted,
natural

wide range of
emotionally col-

ored behavior

emotional behavior
in meetings, (dis-

crete) annotations
of dialog acts and

subjectivity, laughter,

(dis-)agreement

CGN

(Oostdijk

[127])

4251
(Dutch)

800 h natural,
scripted

sponta-

neous, read
speech

no particular
emotion

face-to-face, spon-
taneous telephone,

interviews, lectures,

broadcast, read
speech, no particular

emotion annotations

TNO-
GAMING

(Merkx

et al.
[118])

28
(Dutch)

appr.
78 m

– 186

m

spontaneous,
elicited

Frustration,
Amusement,

Excitement,

Surprise etc.

audiovisual record-
ings of subjects

playing videogames,

discrete and contin-
uous dimensional

emotion annotation

from gamers them-
selves and observers

BERLIN

(Burkhardt
et al.

[25])

10 (Ger-

man)

appr.

25 m

acted Anger, Joy,

Disgust, Fear,
Neutral, Sad-

ness, Boredom

discrete

Table 2.5: Short overview of (emotional) speech databases used in current study.
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ICSI The ICSI Meeting Recorder Corpus (Janin et al. [85]) contains 72 hours of au-

dio recorded during 75 meetings held at ICSI (International Computer Science

Institute). These are ‘natural’ meetings, in the sense that these meetings would

have taken place anyway. The recordings were made with head-worn micro-

phones (near-field) and desktop microphones (far-field). In total, there are 53

unique speakers of which 23 are non-native speakers of English and 28 are na-

tive speakers of English. For each meeting, speech transcripts are available at

different information levels. In addition to words, other information is also tran-

scribed such as word fragments, restarts, filled pauses, contextual comments

(e.g., “while whispering”) and non-lexical events such as laughter and coughs.

In addition, dialog act information is also available through the MRDA corpus

(the ICSI Meeting Recorder Dialog Act corpus, Shriberg et al. [176]), which

includes hot spot labeling (Wrede and Shriberg [211]). Emotion annotation is

available in the form of hot spot and laughter annotation. The speech tran-

scriptions in the ICSI corpus allow for research on diverse topics such as speech

activity detection, overlap analysis, hot spot analysis, agreement vs. disagree-

ment detection etc.

AMI The AMI Meeting Corpus (Carletta [35], McCowan et al. [114]) contains 100

hours of multimodal meeting data. Of the 100 hours, 35 hours contain non-

scripted meetings and 65 hours contain scripted meetings. In the scripted meet-

ings, the participants (4 per meeting) play the roles of employees of an elec-

tronics company who are part of a design team whose task is to develop a new

remote control. Since not all participants are native speakers of English, the

database consists of a mix of native and non-native English. The AMI (Aug-

mented Multi-party Interaction) project is concerned with research and devel-

opment of technology to support human interaction in meetings, and to improve

the effectiveness of the ways meetings are run and documented. Speech and

face recordings are available, as well as captured images of the slides, shared

documents, and electronic whiteboard output used during the meetings. In ad-

dition, annotations of different types of meta-data are available, e.g., speech

transcriptions, dialog act annotation, emotion annotation, topic segmentation,

gesture annotation, subjectivity, etc. These multimodal, synchronized record-

ings and annotations allow for multidisciplinary research in audio and visual

processing and recognition, for example, speech recognition, emotion recogni-

tion, information retrieval, gesture recognition etc.

CGN (Corpus Gesproken Nederlands, in English: Dutch Spoken Corpus) The Spo-

ken Dutch Corpus (Oostdijk [127]) contains approximately 800 hours of Dutch

speech, recorded in The Netherlands and Flanders. Recordings consist of vari-

ous types of human communications such as spontaneous face-to-face conver-

sations, telephone dialogues, interviews, lectures, broadcasts, read speech and

more. The corpus includes speech transcriptions and annotations on different

levels: orthographic transcription, POS (Part-Of-Speech) tagging and lemmati-

zation, and lexicon coupling for multi-word units. A part of the corpus is also

enriched with syntactic annotations, phonetic transcriptions, word segmenta-
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tions and prosodic annotations.

TNO-GAMING The TNO-GAMING database (Merkx et al. [118]) is a newly collected

database that is presented in more detail in Chapter 6. The database con-

tains approximately 186 minutes spontaneous audiovisual data of subjects who

where playing a videogame against each other. The data was collected at TNO in

Soesterberg, The Netherlands. In 7 sessions, 28 participants played a videogame

in teams of 2 by 2 against each other. High quality speech and face record-

ings are available, as well as a speech transcriptions on word-level. Emotions

were elicited by inserting surprising events in the game and by hampering key-

board and mouse controls. The gamers annotated their own emotions in emo-

tion categories, and on Arousal and Valence emotion dimensions. A part of the

database is also annotated by external observers. One of the interesting aspects

of this database is that it contains emotion annotations of the people playing

the videogame themselves, and of observers.

BERLIN The BERLIN Emotional Speech database1 (Burkhardt et al. [25]) contains

emotional speech from 10 actors (5 male and 5 female speakers). The emo-

tions expressed are Anger, Disgust, Joy, Fear, Neutral, Sadness and Boredom

(note that Surprise is not included which is considered one of the 6 basic uni-

versal emotions by Ekman [56], and that Boredom is not considered a basic

emotion by Ekman [56]). As validation of the emotions expressed, 20 subjects

were asked to recognize the correct emotion and to rate the emotion expressed

on level of naturalness. From the original 800 sentences, 494 sentences remain

after selecting speech samples that are rated as natural by at least 60% of the

listeners and that are correctly recognized by at least 80% of the listeners.

2.4.2 Speech features

Several types of segmental (frame-based) and suprasegmental speech features were

used in several experiments described in this thesis. First, we have employed typical

ASR and speaker recognition frame-based speech features, like PLP and MFCC, for

speech-based emotion recognition. Furthermore, suprasegmental features, like pitch

and energy, will also briefly be described.

Frame-based (segmental) features

Perceptual Linear Prediction Coefficients (PLP) Perceptual Linear Prediction Coef-

ficients (PLP, Hermansky [77]) have been successfully applied in speaker and

speech recognition as representatives of the speech signal (e.g., Hermansky

[77], Matejka et al. [113], Kajarekar et al. [89]). PLP coding is similar to Linear

Predictive Coding (LPC) analysis in that it is based on the short-term spectrum

of speech with the advantage that PLP coding is more consistent with human

hearing; it modifies the short-term spectrum of speech by several psychophysi-

cally based transformations. The basic idea of LPC is that a speech sample at the

1The whole database, including additional (acoustic) analyses can be downloaded from

http://www.expressive-speech.net
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current time can be approximated as a linear combination of past speech sam-

ples. The RASTA filter (Relative Spectral), proposed by Hermansky and Morgan

[78] makes PLP analysis more robust against slowly varying linear spectral dis-

tortions (that can be caused by channel distortions). Rasta-perceptual linear

prediction coefficients are also referred to as RPLP. Figures 2.5 and 2.6 summa-

rize the processes involved in the computation of these features.

Figure 2.5: Processes involved in the computation of PLP features (figure adopted

from Hermansky [77]).

Figure 2.6: Processes involved in the computation of RPLP features (figure adopted

from Hermansky and Morgan [78]).

Mel-Frequency Cepstrum Coefficients (MFCC) Mel-Frequency Cepstrum Coefficients

are the most popular speech features used in automatic speech recognition

(e.g., Davis and Mermelstein [49], Morgan and Bourlard [119]). Similar to PLP

and RPLP analysis, MFCCs are representations of the short-term power spec-

trum, except that the spectrum is averaged over neighboring frequency bands
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and the frequencies are scaled according to a scale that imitates psychoacoustic

properties of the human ear. In this case, the Mel-scale is used which is a scale

of pitches judged by listeners to be equal in distance from one and another; the

Mel-scale is linear in the lower frequency area and logarithmic in the higher

frequency area. The coefficients are obtained after a Discrete Cosine Transform

of the spectrum; hence, this process is also known as ‘taking the spectrum of

a spectrum’ and results in a representation that is also known as a cepstrum.

Fig. 2.7 shows the processes involved in the computation of MFCC features.

Figure 2.7: Processes involved in the computation of MFCC features.

Suprasegmental features

In a substantial number of studies on the characteristics of emotional speech, mea-

surements of pitch, energy, speech rate, the distribution of energy in the long-term

averaged spectrum (LTAS), and statistics thereof (e.g., standard deviation, mean, min-

imum, maximum), have proven to be relatively good descriptors of emotional speech

(e.g., Schuller et al. [172], Vlasenko et al. [202], McGilloway et al. [115], Banse and

Scherer [12], Pittam et al. [135]). Inspired by these studies, we have mainly fo-

cused on pitch-related, energy-related, and the long-term averaged spectrum-related

suprasegmental properties of the speech signal. As Table 2.2 shows, in feature extrac-

tion, one has to decide how large the analysis window is for feature extraction. The

use of linguistic meaningful units as analysis windows, such as words, was not always

possible because word segmentation was not always available. Therefore, in some

cases, we used the whole utterances as an analysis unit, and in some cases, we used

voiced units that were determined by a simple voiced-unvoiced detection algorithm.

Furthermore, when the acoustic features were extracted per word in an utterance,

we aggregated these word-level features to utterance-level because some machine

learning models perform better with static feature vectors. Aggregation was simply

done by taking the mean, minimum and maximum over all word-level features, per

feature per utterance. Table 2.6 gives an summary of acoustic features that were fre-

quently employed in this study. More details about the extraction of these features

are given in the Chapters separately. Here, we briefly give short descriptions of the

speech features used. Most of these features could be extracted with Praat (Boersma

and Weenink [23]).
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Features extracted over each word1 . . . wordN

or whole utterance

Aggregation functions for

each feature over all the

N features of an utterance

{featureA1 . . . featureAN}
standard deviation pitch, mean pitch, range

pitch, mean absolute slope pitch, standard devi-

ation intensity, mean intensity, range intensity,

mean root-mean- square, mean absolute slope

intensity, slope LTAS, Hammarberg index, center

of gravity of spectrum, skewness of spectrum,

speech rate

mean, minimum, maximum

Table 2.6: Some acoustic features that we have frequently used in this thesis, the aggre-

gation functions only apply when features are extracted on word-level.

Pitch It is generally acknowledged and shown (e.g., Banse and Scherer [12], McGil-

loway et al. [115], Murray and Arnott [123]) that pitch plays an important

role in the expression of vocal affect. As shown in Table 2.1, mean pitch and

the range of pitch tend to increase with an increase in Arousal. Sadness and

Boredom are usually associated with monotonous melody contours which are

reflected in e.g., low pitch range values and small standard deviations. Anger

and Joy are often associated with increased pitch values. Pitch is actually the

perception of a physical property of a signal namely the fundamental frequency

(F0). To measure F0, Praat (Boersma and Weenink [23]) uses an algorithm

that performs an acoustic periodicity detection on the basis of an accurate auto-

correlation method as described in Boersma [22].

Intensity/energy Similar to pitch, intensity is deemed important for the expression

of affect in the voice. Highly Aroused speech can be associated with high in-

tensity values, and vice versa (see Table 2.1). In Praat (Boersma and Weenink

[23]), intensity values are based on an intensity contour that is calculated at

linearly spaced time points ti = t1 + (i− 1)dt.

Energy distribution in (long-term averaged) spectrum It is known that with in-

creased vocal effort (that is related to perceived loudness), the amount of energy

in the higher frequency regions of the spectrum increases (relative to the lower

frequency regions, see e.g., Sluijter and Heuven [177]). Since vocal effort can

also be related to affect, the difference between energy in higher and lower fre-

quency bands of the (long-term averaged) spectrum is also often used as a cue to

different speaking styles and emotions (e.g., Banse and Scherer [12], Schröder

et al. [169]). The Hammarberg index (Hammarberg et al. [73]) is an example

of a measure that measures this difference of energy: it is defined as the dif-

ference between the energy maximum in the 0–2000 Hz frequency band and

in the 2000–5000 Hz band. We have also used the slope of the long-term av-

eraged spectrum as a measure: the expectation is that this negative slope will

be less steep with increasing vocal effort. The center of gravity is a measure for
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how high the frequencies in a spectrum are on average, and the skewness is a

measure of how much the shape of the spectrum below the center of gravity is

different from the shape above the mean frequency (both can be measured with

Praat).

Speech rate A higher speech rate is associated with high Arousal, while low speech

rate is associated with low Arousal, see Table 2.1. We approximate speech rate

by dividing the number of words (or voiced units) spoken by the total amount of

time used to speak these words (optionally, the pauses can be subtracted from

the total time).

2.4.3 Machine learning methods

Several machine learning methods have been employed for affect recognition in this

work. The choice for a specific machine learning model was mainly motivated by

proven successes achieved in other, past studies or other similar recognition tech-

nologies. We discuss Gaussian Mixture Models, Support Vector Machines, and the

AdaBoost algorithm that we have used in our affect recognition experiments.

Gaussian Mixture Modeling (GMM) GMMs (e.g., Alpaydin [5], Reynolds and Rose

[148]) form the basis of Hidden Markov Models used in current ASR technology.

GMMs are also referred to as 1-state HMMs. A GMM models the distribution of

observed data through Gaussian Probability Density Functions (PDFs). Each

pdf can be defined by its parameters: its mean µ and its covariance matrix

Σ. The general assumption of an GMM is that there are K components; each

component generates data from a Gaussian with mean µk and covariance matrix

Σk. A GMM is a weighted average of the K components (hence the ‘mixture’),

where the sum of wk amounts to 1. In learning, these unknown parameters

are optimized through the Expectation-Maximization (EM, see Dempster et al.

[50]) algorithm. In testing, it is calculated what the likelihood is that the GMM

has generated the test datapoint. GMM is also known as a ‘generative’ method.

Support Vector Machines (SVM) The basic principle of a Support Vector Machine

(Vapnik [197]) is that the algorithm aims to find the best separating hyperplane,

w · x − b = 0, between groups of datapoints x that maximizes the margins

between these two groups labeled by −1 or 1, i.e., to maximize the distance

between the data points of each class that are nearest to each other. The goal

of an SVM is to find w and b so that the margin between the parallel separating

hyperplanes is maximized such that w · xi − b ≥ 1 for xi of the first class,

or w · xi − b ≤ −1 for xi of the second class. This can be formulated as an

optimization problem that can be solved by quadratic programming. The vectors

found, that uniquely determine the largest margin between the two classes, are

called the support vectors. Hence, an SVM is also known as a maximum-margin

classifier and is also called a ‘discriminative’ method. In some cases, the data is

linearly separable. However, in general, non-linear classifiers are needed to deal

with low dimensional, real-world, noisy data. SVMs can use a (possibly non-

linear) kernel function that implicitly maps the data to a higher dimensional
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feature space. The idea behind this is that separation may be easier in higher

dimensions.

Support Vector Regression (SVR, Smola and Schölkopf [178]) is based on the

same principles as SVM: SVR is a kernel-based method and allows the use of the

kernel trick to transform the original feature space to a higher-dimensional fea-

ture space through a (non-linear) kernel function. In the case of SVR, a margin

ǫ is introduced and SVR tries to construct a discriminative hyperplane that has

at most ǫ deviation from the original training samples. Similar to linear regres-

sion, SVR finds relations between a set of independent variables and dependent

variables. In contrast with SVM, these dependent variables are scalar values

rather than discrete categories.

Recently, researchers have combined the concepts of the ‘generative’ GMMs and

‘discriminative’ SVMs into a method known as ‘GMM supervector based SVM’

(Campbell et al. [33, 34]). The basic idea behind this method is to use the

means of a GMM for SVM classification. In short, the mean of each Gaus-

sian component of each speech sample is stacked in a ‘supervector’ and forms

the input for SVM classification. We used this method for the development of

a speech-based affect recognizer described in Chapter 4; hence, more details

about this method are given in that Chapter.

AdaBoost AdaBoost (Freund and Shapire [64]) is one of the many boosting algo-

rithms. Boosting is in fact a meta-algorithm that can be used in combination

with many other learning algorithms to improve their performance. It is an

iterative algorithm that is based on the principle of combining many simple,

weak classifiers (learners) into a single, strong classifier. These weak learners

can be any type of classifier; for example, one implementation of boosting called

Boostexter (Shapire and Singer [175]) employs one-level decision trees as weak

learners. In a series of rounds, weak learners are repeatedly called to produce

weak hypotheses. AdaBoost is an adaptive boosting algorithm in that it adapts

to the error rates of the individual weak hypotheses. As the boosting process

progresses, importance weights increase for training samples that are hard to

predict and decrease for training samples that are easy to classify. In this way,

future weak learners concentrate on those examples that are hardest to classify.

2.4.4 Evaluation metrics

Various performance metrics have been used in emotion classification studies. The

most widely metric used in emotion classification is probably classification accuracy,

although this metric is sensitive to inhomogeneously distributed evaluation classes.

Classification accuracy is suited for a classification task: how well can a number of

different classes (where this number can be larger than 2) be discriminated from each

other? In a classification task, the question can be of the kind “Does the speech of this

person belong to the classes Anger, Sadness, or Frustration?”. Confusion matrices are

very handy for investigating classification errors, see Fig. 2.9. In our evaluation, we

mainly adopt performance metrics from the detection framework. Detection, however,
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is slightly different from classification. In detection, one wants to answer the ques-

tion: “Does the speech of this person belong to the class Anger or not?”. Furthermore,

detection is a binary-decision task while classification can be multiclass. The types

of error a binary classifier can make are given are shown in Fig. 2.8. Unfortunately,

few researchers have evaluated their emotion recognizers in the detection evaluation

framework. Therefore, in order to allow other researchers to compare their perfor-

mances to our performances, we have used a range of different performance metrics

which will be described in this section.

Figure 2.8: Error types for a 2 class

problem.

Figure 2.9: Confusion matrix for a

multi-class (>2) problem.

Classification accuracy The (overall) classification accuracy is a widely used mea-

sure that expresses how well a classifier works, and that can be computed rela-

tively easy. It can be defined as the number of correct classification divided by

the total number of test samples. In a K ×K class confusion matrix (Fig. 2.9),

the diagonal represents the number of correctly classified samples, while the off-

diagonals contain numbers of incorrectly classified samples. Hence, a confusion

matrix gives insight in the type of confusions that are made between classes.

Classification is therefore more diagnostic of character.

F1 The F1 score is often used in information retrieval to measure the performance

of a search system. It is defined as the harmonic mean between precision and

recall.

F1 =
2× precision × recall

precision + recall
(2.1)

In the context of information retrieval, precision and recall can be explained as

follows. Precision is the number of relevant documents retrieved divided by the

total number of retrieved documents. Recall has a different denominator: recall

is the number of relevant documents retrieved divided by the total number of

relevant documents that should have been retrieved. In the context of classifi-

cation, precision and recall can be defined in terms of different error types. In

2-class classification problems, there are four types of classifications possible,

see Fig. 2.8. In this context, precision and recall can be defined as follows:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
= 1− Pmiss (2.2)

Affect recognition can thus also be approached as a retrieval problem (see also

section 2.3): given a query for a specific emotion, the search system’s task is to

retrieve all speech samples that contain this emotion.
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Femo In Batliner et al. [19], Schuller et al. [172, 173] a performance measure was

used that is defined as the harmonic mean of the overall classification accuracy

and the averaged per-class recognition rate. This measure will be referred to as

Femo throughout this thesis and is only reported to allow for comparison.

Equal Error Rate (EER) In several research areas, e.g., speaker, language recogni-

tion, it is very common to evaluate classifiers in a so-called detection evaluation

framework. Equal Error Rate is one of the popular metrics used in this frame-

work. In a 2-class classification problem, there are 2 classes that need to be

discriminated from each other: one target class and one non-target class. The

assumption that is made is that when a classifier outputs scores, e.g., decision

scores, likelihood ratios, the higher scores are associated with target samples

whereas lower scores are associated with non-target samples. In order to make

a final decision on class membership a threshold must be placed in this distri-

bution of scores. When a threshold is placed, errors can be count, see Fig. 2.10.

The classifier can make two types of errors as shown in Fig. 2.8:

1. False alarms, i.e., a non-target sample is classified as belonging to the target

class. The false alarm rate is computed as FP
FP+TN

.

2. Misses, i.e., a target sample is classified as belonging to the non-target

class. The miss rate is computed as FN
FN+TP

= 1− Recall.

The tradeoff between the false alarm rate and miss rate can be made visible

in a Detection Error Tradeoff (DET) curve which is a helpful visual evaluation

tool. By stepping through all the scores which serve as ‘temporal’ thresholds,

error rates can be computed and plotted which result in a DET curve. The DET

curve can be summarized into one single performance figure: EER represents

the operating point where the false alarm rate is equal to the miss rate. The

disadvantage is that EER is based on a decision threshold that is set a posteriori:

what would the false alarm and miss rate be if the threshold was set at this

value?

Cost of Detection (Cdet) When a decision threshold is set a priori (obtained through

a difficult process known as threshold calibration), the performance can be mea-

sured through the Detection Cost Function (DCF) that is defined as:

Cdet = CmissPmissPtar + CfaPfa(1− Ptar) (2.3)

Cmiss and Cfa are the costs that one can attribute to a certain type of error.

Ptar is the a priori probability that a target sample occurs. And Pmiss and Pfa

are the miss and false alarm rates respectively. In a specific case where the

cost parameters Cmiss and Cfa are equally 1, and where there is equal prior

probability Ptar = 0.5, Cdet is also called Half Total Error Rate (HTER) (which

is in fact the mean of Pmiss and Pfa, and hence the name HTER is misleading).
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Figure 2.10: Score distributions for target and non-target samples. The grey areas left

and right of the threshold represent Pmiss and Pfa respectively (reproduced from van

Leeuwen and Brümmer [196]).

2.5 Conclusions

In this Chapter, we have given a concise introduction into the research area of speech-

based affect recognition. First, we gave an overview of speech-based affect recog-

nition studies and described development processes that are involved in the devel-

opment of an affect recognizer. We identified development processes namely ‘data

acquisition and annotation’, ‘feature extraction and model learning’, and ‘evaluation’.

Each of these processes were described and terms and concepts associated with these

processes were explained. Finally, we presented our own materials, methods, fea-

tures, and performance metrics used in our current study during these development

processes. It is clear that automatic speech-based affect recognition is a relatively

young research area. One of the developing research directions is the use of more

realistic, natural emotion data that is one of the topics under investigation in this

thesis.
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Capturing and measuring real affect

in the field

In the emotion recognition research community, there is a growing need for labeled

natural emotion data. In addition to capturing the natural emotion data, the emo-

tions in the data also need to be measured and described: these are difficult tasks

which will be discussed in this Chapter. This Chapter is about ways to capture and

measure people’s emotions in the field. When actors are used in the lab, capturing and

measuring emotion is rather straightforward since actors can be hired and directed

to express a specific emotion: actors can be directed to act angry, act happy etc. and

the emotional label can thus be directly acquired. But when one wants to capture

and measure natural emotions in the field, one needs to find and specify the emotion.

Since the annotation of discrete emotion categories is rather straightforward, the ma-

jority of the tools that have been developed to measure emotion are more flexible and

offer ways to describe and annotate emotion according to a dimensional model of

emotion. The most popular measures and tools are described in Section 3.1, and can

be applied to natural emotion data. In Section 3.2, we describe three attempts that we

have undertaken to capture and measure natural emotional expressions in the field.

Natural emotions were measured on board of a naval ship, during time-pressured

crisis meetings, and during a virtual reality game. We discuss our experiences and

‘lessons learned’ acquired from these efforts1.

3.1 Measures of affect

Here, we describe some popular instruments/tools to measure affect. These measure-

ments of emotion are in fact all variants from each other and differ mostly in the way

these measures are presented. Some of these measures are more verbally oriented

while others are more graphically oriented.

Osgood’s Semantic Differential Osgood’s Semantic Differentials (Osgood [128]) are

rating scales that were originally developed to measure the “meaning” of partic-

ular concepts. The idea of Semantic Differentials is that the “meaning” of each

1The work described here was (partly) previously discussed in Truong et al. [192]
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concept can be characterized by a number of 7-point scales, each of which has

bipolar adjectives, as shown in Fig. 3.1. The set of adjectives used in the scales

can be large since almost each adjective can be used as a descriptor of a ‘con-

cept’. In agreement with other researchers, Osgood found that there were three

recurring factors that people use to evaluate words: evaluation, potency, and

activity. Evaluation can be rated by the adjective pair ‘good vs. bad’, potency

can be rated by ‘strong vs. weak’, and activity can be rated by ‘active vs. pas-

sive’. These three dimensions have frequently been applied to emotion research

to describe and measure emotion.

Figure 3.1: Example of Semantic Differential scales for measuring the “meaning” of the

concept ‘polite’.

Feeltrace Feeltrace is an emotion annotation instrument based on the two emotion

dimensions of Arousal (also known as Activity) and Valence (also known as

Evaluation) developed by Cowie et al. [45], see Fig. 3.2. Feeltrace was de-

signed to let observers track the emotional content as they perceive it in time.

It incorporates the notion that the emotion space is naturally circular (Plutchik

[137]). The circumference is defined by states that are at the limit of emo-

tional intensity. These states are equally distant from an emotionally neutral

point, i.e., the center which represents neutrality. In the circle, landmarks that

mark key emotional states, are drawn to help the observers’ orientation in this

Arousal-Valence space. When the mouse button is held down, the trace of the

mouse movements in time in the circle is drawn and recorded. The trace con-

sists of little circles that are associated with the mouse cursor’s position on the

screen and the dimension of time: the circles gradually shrink in the course of

time, leaving behind a trail of diminishing and vanishing circles. The circles are

colored according to a color scheme derived from Plutchik [137] which subjects

find reasonably intuitive. The circle is colored pure red when the cursor is at

the most negative position, and neutral in Arousal. It is pure green when the

cursor is at the most positive position, and neutral in Arousal. It is pure yellow

or pure blue when the cursor is in most active or passive position respectively,

and neutral in Valence. The circle is white in neutral position.

Affect Grid The Affect Grid (Russell et al. [154]) was designed as a quick means to

measure affect along the dimensions of pleasure vs. displeasure (Valence) and

arousal vs. sleepiness (Arousal). The aim was to have an instrument that would

be short and easy to fill out and that could, therefore, be used rapidly and re-

peatedly. In contrast with Feeltrace, the Affect Grid is square and does not track

affect in time, see Fig. 3.3. The dimensions pleasure-displeasure and arousal-

sleepiness are considered independent from each other: the two dimensions are
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Figure 3.2: Example of a Feeltrace tracking session: the circles represent a person’s

emotional state who is gradually going from a disgusted state to a state of serenity (figure

adopted from Cowie et al. [45]).

conceptually separate.

Figure 3.3: Affect Grid: in this 9 × 9 square grid, subjects can place an ‘X’ to mark a

specific affect in this ‘map of feelings’.

SAM The Self Assessment Manikin (SAM, Lang [101]) is a tool to measure affect on

the scales of happy vs. unhappy (Valence), excited vs. calm (Arousal), and

control vs. controlled (Dominance). Instead of using adjectives to describe

the scales, SAM uses graphical, symbolic representations of affect, see Fig. 3.4.

For the Valence scale, a broadly smiling face is gradually changing to a tragic

mask. The Arousal scale is represented by figures that change from having

their eyes wide open and showing rapidly body movement to figures that have

their eyes closed. The Dominance scale is represented by figures that grow

from tiny to gigantic. The SAM method has been used relatively frequently
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to assess perceived emotion. The main advantage of the SAM is the symbolic

representation of the three emotion dimensions. This makes the SAM method a

language-independent instrument that can also be used with children.

Figure 3.4: Self Assessment Manikin: the top row of figures represents the Valence scale,

the middle row represents the Arousal scale, and the bottom row represents the Domi-

nance scale.

The PANAS scales Watson et al. [205] have developed two scales with textual de-

scriptions of different feelings and emotions for the measurement of mood, see

Fig 3.5. Although mood is currently not investigated in this thesis, we neverthe-

less briefly describe these scales because they show some similarities with the

other affect measures. The PANAS scales are based on two mood factors that

been used more extensively in the self-report mood literature. The first scale

measures the mood factor Positive Affect (PA). PA can be described as the ex-

tent to which a person feels enthusiastic, active, and alert. High PA is a state of

full energy, full concentration, and pleasurable engagement, whereas low PA is

characterized by sadness. The PA scale is described by 10 terms: attentive, in-

terested, alert, excited, enthusiastic, inspired, proud determined, strong and active.

NA can be described as unpleasurable engagement that subsumes a variety of

aversive mood states, including anger, contempt, disgust, guilt, fear, and ner-

vousness, with low NA being a state of calmness and serenity. The NA scale is

described by the following 10 terms: distressed, upset (distressed), hostile, irrita-

ble (angry), scared, afraid (fearful), ashamed, guilty, nervous and jittery. The two

scales proved to be a reliable, valid, and efficient means for measuring Positive

Affect and Negative Affect of mood Watson et al. [205].

The tools described here offer ways to describe natural emotion in verbal or symbolic

descriptions. Although these tools have proven their success in other studies, the

annotation of natural emotion occurring in the field with these tools is not at all a

straightforward process. It remains difficult to specify the naturally occurring emo-

tions observed and to fit these into annotation schemes offered by the tools described.
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Figure 3.5: The PANAS scales for measuring mood on Positive Affect and Negative Affect

dimensions.

3.2 Acquiring natural emotion data in the field

This Section elaborates on how to measure naturally occurring emotions in the field

and how to establish a description of these emotions with the aim to develop au-

tomatic emotion recognizers: three data collection attempts in three different real-

world, natural environments will be presented. Three experiments were carried out

by TNO, DECIS lab and the V2 institute who all had their own goals defined, and

did not specifically have the intention to capture vocal and facial expressions for the

purpose of developing an affect recognizer. Since the scenarios used in these exper-

iments could evoke a substantial amount of naturally occurring emotional behavior

(although these experiments were not specifically designed to evoke affect), we de-

cided to participate in these experiments and record vocal (and where possible facial)

expressions. The disadvantage was that we had to adhere to the original experimen-

tal setup of the hosts of the experiments, and hence, no additional changes could be

made upon our request. For example, using headsets with a close-talk microphone

to make high-quality individual speech recordings instead of using a desktop micro-

phone was not an option in the experiment about crisis meetings. We describe the

experiments and discuss our experiences and ‘lessons learned’ in acquiring emotion

data in the field.
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3.2.1 Measuring task load during emergency situations on a naval ship

In Grootjen et al. [71], an experiment is described in which the goal was to measure

cognitive task load by processing several measurements, including vocal and facial ex-

pressions. The task of the operator in the ship control center was to deal correctly with

the emergency situations that occurred on the naval ship, e.g., fire or platform system

failures. The type and frequency of these emergencies were controlled via several

scenarios that were designed to evoke low, medium or high task load with the op-

erators. High-quality webcams and head-mounted microphones were used to record

video and audio. After each scenario, the operators (each minute) had to rate task

complexity and subjective effort on a five point scale. The idea was to find correlations

between task load (or stress) and vocal and facial measurements. However, this was

easier said than done. Firstly, the audio and video signals were initially recorded for

the purpose of monitoring, not for speech processing or facial analysis (with the goal

to develop affect recognizers), and were therefore noisier than expected. The speech

signal was sometimes clipped and contained interfering background noises and cross-

talk (i.e., softer speech from other speakers). The recordings of the facial expressions

could not always be processed with automatic facial recognition software, such as

the FaceReader (see den Uyl and van Kuilenberg [51] and [61]). Lighting conditions,

moving head poses, clutter in the background etc. made it difficult for the FaceReader

to analyze these faces reliably, see Fig. 3.6. Secondly, after viewing a couple of the

recorded sessions that were each approximately 15 minutes long, it became clear that

there were very few vocal and facial emotional expressions observed. In addition,

with a rate of 1 rating per minute, the ratings were difficult to relate to vocal and fa-

cial expressions which can occur and change with a much higher rate. Therefore, the

recordings of this experiment were rendered unfit for the development of automatic

affect recognizers.

Figure 3.6: A video still of a facial expression during an experiment on task load, pro-

cessed by the FaceReader.
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3.2.2 Measuring affect during time-pressured crisis meetings

In this exercise, that was set up by TNO and the DECIS lab2 (Delft Cooperation on

Intelligent Systems), the goal was to investigate how the stream of incoming and out-

going messages in different cooperating teams was handled by professionals in a crisis

situation. The crisis situation was simulated with a 1-day scenario. The experiment

took place in the city hall of a small town in The Netherlands. The crisis situation

simulated was a flood disaster caused by a dyke breach. Emergency centers and pro-

tocols were activated and were led from a distance by a crisis policy team that resided

in the city hall. The crisis policy team had to make time-pressured decisions and deal

with issues that arose as a consequence of the dyke breach, e.g., flooded highways,

drowning cattle, possible evacuations, worried citizens etc. The team consisted of

8 main participants including the mayor, heads of the fire and police departments,

the head of public safety and an employee of the department of public relations and

communication. Each half hour, the team members reported on updates from their

departments in a 15-minute long meeting. The meetings were led by the mayor who

made the final decisions. Five meetings were recorded using an 8-channel circular

microphone array that was positioned at the middle of the meeting table. Due to the

realistic setting of the exercise, there were a few conditions that had an impact on

the recording of the audio: firstly, no head-mounted microphones could be used for

the recordings, and secondly, real names of citizens were used during the exercise

which limits the usage and the distribution of the data recorded. The author of this

thesis was present to observe and to perform a rough, first step annotation of vocal

emotional expressions.

In crisis situations where decisions are made under time pressure, we expected

to find emotion-related expressions, e.g., stress or frustration, in the speech or facial

expressions of the participants. However, this appeared to be less apparent than ex-

pected. Only a few mild instances of frustration or irritation or laughter were found,

on the average less than 6 per meeting session. This is not sufficient for the devel-

opment of an automatic affect recognizer or a reliable statistical vocal analysis. The

meetings were firmly led by the mayor who was strict and clear. Obviously, the task of

the leader is to lead the meeting in a structured manner and to make decisions based

on the facts he/she has. There simply was no time for emotions. However, the data

recorded could still be of interests for researchers working in the domain of discourse

and dialog act analysis.

3.2.3 Measuring affect with players in a virtual reality game

In the context of the MultimediaN project, one of the project partners V2 lab (Institute

for the Unstable Media3) created Exercise in Immersion 4 in cooperation with the artist

Marnix de Nijs4. Exercise in Immersion 4 (EI4) is a virtual reality art-game played in an

existing physical space. In order to achieve this mix of reality, each game-player wears

2http://www.decis.nl
3http://www.v2.nl
4Marnix de Nijs (see http://www.marnixdenijs.nl) is an artist who explores the dynamic clash be-

tween bodies, machines and other media. The interface between the body and technology forms an

important basis for his work.
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a VR (virtual reality) head-mounted display and a so-called crash suit, specifically

designed for this game, see Fig. 3.7. The player is “in between” two worlds, the virtual

one and the physical one: the objects in the game correspond to real physical objects.

Gradually, the virtual environment in the game shifts and changes, which leads to

an increasingly disorienting experience because the senses no longer correspond to

each other. One would expect to find emotional behavior from players who undergo

this experience and who immerse in the game. Therefore, during the DEAF07 festival

where EI4 was showcased, participants who played the game were asked to wear a

wireless head-mounted microphone (in addition to the head- mounted display) and to

“think aloud” and express their feelings and emotions freely. Afterwards, the players

filled in two questionnaires that were related to the emotions felt and the amount of

presence (i.e., the subjective sense of being in a virtual environment) experienced.

With respect to emotions, the participants were asked to fill in how aroused, and

how positive or negative they felt. In total, 9 players participated in this experiment.

Unfortunately, the number of spoken emotional expressions found with the players

was relatively low. More importantly, the players did not sound natural due to the

“think aloud” procedure, some of them reported that it was awkward to “think aloud”,

even though for other disciplines, e.g., psychology, this procedure appears to work.

Figure 3.7: Exercise in Immersion 4: a virtual reality game.

3.3 Summary and conclusions

In this Chapter, the experiences from three data collection efforts, situated in real-

world environments in which affect was expected to play a role, were described. The

data collected did not prove to be useful for the study of this thesis, but can be valu-

able as “lessons learned”. The main conclusion is that in real-life professional working

environments and situations such as a control center on a naval ship or a crisis meet-

ing held at city hall, affect is not frequently overtly expressed, even though these

are environments in which affect was expected to play a role. Possible reasons for

this ‘lack of affect’ are that in professional working environments such as the ones
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assessed, the people involved are professionals who are trained to deal with emer-

gencies and crisis situations. In these situations, they are probably taught to suppress

their emotions. In addition, the quality of the signals recorded in these environments

is usually low which complicates the analysis of these signals. In the case of measur-

ing user experience in a virtual game, the ‘think aloud’ procedure produced unnatu-

ral speech with the participants. As an alternative to these unfortunate attempts to

collect naturally occurring speech data, we suggest that an intermediate method to

collect emotion data, such as emotion elicitation or Wizard-Of-Oz experiments, could

be a solution for solving the ‘lack of affect’ and the bad signal quality. As part of our

goal to develop a speech-based affect recognizer with spontaneous emotion data, we

collected spontaneous emotional speech data that was elicited with subjects playing

videogames. This corpus is described in Chapter 6.
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Chapter 4

Emotion recognition in acted speech:

adopting the detection evaluation

framework

The main goal of this Chapter is to present existing evaluation methodologies from

similar recognition technologies and to apply these to the field of emotion recogni-

tion where a benchmark style evaluation is still an underexposed topic. We evaluate

our emotion recognizers in a detection evaluation framework which is not very com-

monly used in the emotion recognition community, but that is commonly used in sim-

ilar recognition technologies such as speaker and language recognition. Conceptually,

a detection evaluation approach fits the ‘real’ task of an affect recognizer very well: as

explained in section 2.3 and Banse and Scherer [12], an affect recognizer should aim

at ‘true’ affect recognition rather than emotion discrimination among a small number

of alternatives. Using a relatively commonly used database, the BERLIN emotional

speech database (Burkhardt et al. [25]), and state-of-the-art detection technology,

we show what the performances of today’s emotion classifiers are when clean, acted

emotional speech is used. We compare several types of acoustic features and several

types of classifiers to each other and fuse the best performing classifiers in order to

optimize detection performance.

The second goal of this Chapter is to improve the ecological validity of lab clas-

sification experiments that are traditionally carried out with non-exhaustive sets of

discrete emotion categories containing acted emotional speech samples. We show

how this improvement can be achieved in a detection evaluation framework.

The motivation to adopt the detection evaluation framework is explained in Sec-

tion 4.1. In Section 4.3, the material used in the classification experiments is de-

scribed. Several state-of-the-art machine learning methods used are described in Sec-

tion 4.4. We explain the detection evaluation methodology adopted in this study and

applied to emotion recognition in Section 4.5. The results of the classification exper-

iments are presented in Section 4.6. We also touch upon a fairly new and emerging

emotion recognition approach that aims at prediction of emotion in terms of the emo-

tion dimensions Arousal, Valence and Dominance (Section 4.7). Furthermore, we

present an ‘open-set’ evaluation procedure that simulates the occurrences of ‘new, un-
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known’ emotions that are ‘unseen’ by the classifier (Section 4.8) which will render

the performance results of this evaluation less dependent on the types of emotions

available in the database. This procedure presents a way to evaluate an emotion rec-

ognizer in a manner that is closer to real-life situations where ‘out-of-set’ emotions

(i.e., emotion classes that were not present in the database and hence, were not mod-

eled) can occur. Finally, we take full advantage of the characteristics of the detection

framework and show how similarities between emotions, as defined in the detection

framework, can be visualized in a ‘map of emotions’ (Section 4.9).

4.1 Motivation for emotion detection

Why are we so keen on using a detection framework for emotion classification? First

of all, this is given in by the growing need from application domains to develop single-

emotion detectors that are tuned to specific emotions. For example, call centers are

interested in detecting frustrated or angry people. They often formulate their ques-

tions as binary choices such as “Is this person frustrated or not?” or “We want to know

if this person is angry or not?” rather than “Is this person angry, sad, happy or neu-

tral?”. These types of binary tasks fit the detection framework very well. Secondly,

these formulations of binary recognition tasks in the detection evaluation methodol-

ogy have as advantage that these tasks better reflect the concept of ‘true’ recognition

than the traditional classification paradigm. Rather than emotion discrimination be-

tween a small number of classes, where the outcome is much dependent on the types

of emotion classes used, we want to move towards ‘true’ emotion recognition (see

also section 2.3 and Banse and Scherer [12]). Furthermore, in detection, the prior

is taken out of the problem. In classification, the prior is implicitly known. Thirdly,

there is a need for a more sound and shared evaluation methodology. For similar

recognition technologies such as speaker recognition (“Is this person Bill Clinton or

not?”) and language recognition (“Is this English or Mandarin or Dutch?”), shared

evaluation protocols already exist and international benchmarks are being organized

by NIST (the National Institute of Standards and Technology1). The task of language

recognition in particular seems to be somewhat similar to that of emotion recogni-

tion: given a speech sample, detect the emotion/language where an N number of

emotions/languages are possible. In essence, this is a multiclass classification prob-

lem, but in the detection framework, this problem can be presented in binary tasks as

is done in language recognition. So by adopting this detection framework that pro-

vides sound and shared evaluation methods and tools, we hope to advance towards

a more standardized and shared task for automatic emotion recognition. The evalua-

tion procedure of our emotion classifiers is shortly explained in section 4.5, for a more

detailed explanation of the detection evaluation methodology the reader is referred

to van Leeuwen and Brümmer [196].

1http://www.nist.gov



4.2. Related work | 55

4.2 Related work

We selected the BERLIN Emotional Speech database (Burkhardt et al. [25], and see

Section 2.4.1) that has been used relatively frequently by other researchers as well

to make comparison possible. We attempted to compare the performances of various

speech-based emotion recognition studies using the same database, and summarized

the results in Table 4.1. It still appears to be difficult to compare these performances

since the data sizes differ and in some cases, information about the test protocol is

missing. In Table 4.1, the accuracy is computed as the number of correct classification

divided by the total number of trials. The Femo in this table refers to a performance

measure used in e.g., Schuller et al. [173], which is calculated as 2 ∗CL ∗RR/(CL +

RR), where RR is the accuracy as defined above, and CL is the mean of the per-

class-accuracy.

Study Data size SI A Femo

Xiao et al. [213] 286 ? 65.7 -

Vlasenko et al. [202] 494 yes 89.9 -

Schuller and Rigoll [170] 488 ? 96.6 -

Schuller et al. [173] 494 yes 72.3 69.8

Shami and Verhelst [174] 494 ? 75.5 -

Lugger and Yang [111] 694 yes 72.8 -

Table 4.1: Speech-based emotion recognition studies that have used the Berlin Emotional

Speech database, SI=Speaker-Independent, A=accuracy (number of correctly classified

samples divided by total number of samples), Femo.

Vlasenko et al. [202] achieved an accuracy of 89.9%. Frame-level spectral features

(MFCCs) were used in combination with GMMs. Turn-level features were used with

SVMs. A combination of frame-level and turn-level information was accomplished

by adding the final GMM scores as features to the turn-level feature vector. Finally,

speaker normalization was applied which contributed to this relatively high upper

benchmark accuracy.

On a different subset of the BERLIN database, Schuller and Rigoll [170] were able

to achieve an accuracy as high as 96.6%. They compared different segmentation

schemes and classifiers and constructed a ‘super feature vector’ from different levels

of segmentations which appeared to work best. However, we do not know whether

the classification experiments were performed speaker-independently.

Shami and Verhelst [174] extracted series of pitch, intensity, lowpass intensity,

highpass intensity and MFCCs and calculated statistics over these series which re-

sulted in a feature vector of 200 features. Employing these features in an SVM, an

accuracy of 75.5% was achieved. However, there is no information about whether the

classification experiments were carried out speaker-independently or not.

Schuller et al. [173] used approximately 4000 acoustic features extracted at ut-

terance level in combination with Random Forests. With speaker-independent classi-

fication experiments, they achieved an accuracy of 72.3%, and an Femo of 69.8%. The

experimental setup in this study seems to be best comparable to our current study.
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Campbell et al. [33] developed a method that employs a GMM ‘supervector’ for

SVM learning and that was applied to speaker recognition. The GMM supervector

based SVM system appeared to be very competitive with a standard GMM UBM sys-

tem. In Hu et al. [81], the GMM supervector based SVM method was applied to emo-

tion recognition in acted emotional speech. The GMM supervector based SVM method

outperformed the standard GMMs substantially. In our study, we used this GMM su-

pervector based SVM method in combination with RPLP features, see Section 4.4, and

we adopted a detection approach to recognize acted emotions in speech.

4.3 Data used in experiments

The BERLIN Emotional Speech database (Burkhardt et al. [25] and Section 2.4.1)

contains emotional speech (German) from five female and five male actors, uttered

in seven different ‘basic’ emotions namely Anger (An), Joy (Jo), Fear (Fe), Disgust

(Di), Boredom (Bo), Sadness (Sa), and Neutral (Ne). The whole database comprises

816 utterances. In a validation test (carried out by the makers of the database them-

selves), 20 subjects were asked to classify the utterances and to rate their naturalness.

In our analyses, we used only those utterances that had a human recognition accu-

racy of more than 80% and a rated naturalness of more than 60%. This decreased the

number of utterances used in the current study to 494 (see Table 4.2). We can ob-

serve in Table 4.2 that a large proportion of Disgust, Sadness, and Fear samples were

judged less natural or not recognizable by human listeners. The averaged human

recognition accuracy for this selected set of speech utterances (N = 494) is 94.9%

(an Femo of 94.2%). The averaged human recognition accuracy calculated over the

whole database (N = 816) is 85.4% (Femo of 85.3%).

Emotion Norig Nfiltered %removed

Anger (An) 137 127 7.3

Joy (Jo) 115 64 44.3

Fear (Fe) 122 55 54.9

Disgust (Di) 105 38 63.8

Boredom (Bo) 112 79 29.5

Sadness (Sa) 121 53 56.2

Neutral (Ne) 104 78 25.0

Total 816 494 39.5

Table 4.2: BERLIN Emotional Speech database, Norig =original number of utterances,

Nfiltered =number of utterances filtered by criterion (more than 80% correct human

recognition and more than 60% rated naturalness) and used in the current study,

%removed =percentage of utterances removed.

4.4 Method and features

We employed several modeling techniques in combination with frame-level and utterance-

level acoustic features. Frame-level features (spectral) were used in combination with
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Gaussian Mixture Modeling (GMM), and utterance-level features in combination with

SVMs. Linear Discriminant Analysis (LDA) served as either a back-end to the binary

detectors or as a fuser. Another fuse method we applied was a linear combination of

the separate scores. In Fig. 4.1, an overview of all methods and features used in this

chapter is given. Finally, we explain how we performed multiclass classification with

our binary emotion detectors developed in a detection framework.

System
I. Standard GMM
II. GMM supervector
based SVM
III. SVM

sum−rule
V. LDA fusion

IV. Linear weighted

Features
Short−term RPLP
Short−term RPLP

Long−term Prosodic

Decision−level fusion between II. and III.

Decision−level fusion between II. and III.

Figure 4.1: Overview of methods used in this chapter to recognize basic emotions.

4.4.1 Three ‘single’ systems

Here, we describe the three ‘single’ systems that were developed:

I. Standard GMMs using frame-level spectral features

Gaussian Mixture Modeling (GMMs, see also Section 2.4.3) is a very popular machine

learning technique in speech technology and stands at the basis of many good results.

The GMMs are trained using the Expectation Maximization (EM) algorithm (five iter-

ations). A binary emotion classification scheme is adopted. For each target emotion,

a pair of GMMs is trained: a target GMM (i.e., trained with the emotion that one

would like to detect, e.g., Anger) and a non-target GMM (i.e., all the other emotions

that are not the target emotion, e.g., not-Anger). In testing, the log ratio between the

likelihoods of the two GMMs are used as ‘soft decision’ scores. A visualization of this

method is given in Fig. 4.2.

As speech features, RASTA-PLP features (RPLP, Hermansky and Morgan [78], see

also SPRACHCORE [3] and Section 2.4.2) are used that are extracted each 16 ms over

an analysis window of 32 ms. Twelve rasta-PLP features plus one log energy compo-

nent and their deltas (the first order derivatives of the 13 RPLP features) are com-

puted which gives a total of 26 features. The features are normalized to z-scores

per utterance such that µ and σ of all features are 0 and 1 respectively for each

utterance: z = (x − µ)/σ (this normalization procedure is also called z-scoring or

z-normalization). We will refer to this method as ‘Standard-GMM-rplp’.

II. GMM supervector based SVM using frame-level spectral features

More recently, the standard GMM approach has been extended with a Support Vec-

tor Machine (SVM) concept (Campbell et al. [33]), and improved results have been

achieved with this method in the area of language and speaker recognition (e.g.,
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Figure 4.2: Standard GMM method.

Campbell et al. [33]), and it has also been successfully applied to emotion recogni-

tion (Hu et al. [81]). The combination of a generative learning algorithm (GMM)

and a discriminative learning algorithm (SVM) appears to be very fruitful. The basic

idea is to use the means of a GMM for SVM learning (see also Section 2.4.3). First,

a Universal Background Model (UBM) is trained using the Expectation Maximization

(EM) algorithm (five iterations) with all the emotions that are available in the emo-

tion database. From this UBM, adapted GMMs are constructed (by MAP adaptation of

the means of the UBM, see Reynolds et al. [149]) for each emotional utterance. The

mean of each Gaussian component of each emotional utterance is stacked in a super-

vector and forms the input for SVM learning. Using the GMM KL divergence kernel

according to Campbell et al. [33]
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N
∑
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(4.1)

where wi, µi and Σi are the Gaussian parameters of the ith centroid, a score can

be obtained by computing a single inner product between the target model and the

GMM supervector. We used the same speech features as in the Standard-GMM-rplp

approach (13 RPLP features and their derivatives, extracted each 16 ms over an anal-

ysis window of 32 ms). We refer to this method as the ‘GMM-SV-SVM-rplp’ method,

i.e., a GMM supervector SVM based method trained with RPLP features. In Fig. 4.3,

a graphical summary of this approach is given.

III. SVM using utterance-level prosodic features

GMMs seem to work best with frame-level spectral features in which the average

log likelihood per frame gives a robust estimate of the likelihood of the data given

the model. In Truong and van Leeuwen [187], we have used GMMs in combination
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Figure 4.3: GMM Supervector based SVM method.

with local pitch and energy values. However, our results showed that these types of

prosodic features were better modeled in a Support Vector Machine (SVM). Prosodic

features usually have slow-varying acoustic characteristics and can be more infor-

mative when computed over a meaningful unit (in our case, a meaningful unit is a

sentence). Therefore, we used utterance-level prosodic features in combination with

SVM.

SVMs (see also Section 2.4.3) can be typically used for binary classification prob-

lems (multiclass classification for SVMs is also available). In our case, we trained

seven SVMs, for each target emotion one SVM, for which the task is to discriminate

the target emotion from the non-target emotion (the rest of the other emotions). We

used libsvm [37] for our detection and classification experiments. Based on previous

emotion recognition studies, see e.g., Schuller et al. [172], Vogt and André [203], Pit-

tam et al. [135], we selected a number of acoustic features. All acoustic features were

extracted with Praat (Boersma and Weenink [23]) and normalized to z-scores, with

µ and σ calculated over a development set of utterances. The SVM RBF (radial basis

function) kernel was used of which the cost and gamma parameters were optimized

on the development set. Table 4.3 lists the features used in this method. The scores

Pitch-related standard deviation, range (max − min), mean absolute

slope

Intensity-related standard deviation, range (max − min), mean absolute

slope

Spectrum-related slope LTAS, Hammarberg index (difference in max LTAS

energy between 0–2 kHz and 2–5 kHz), center of gravity

of spectrum, skewness of spectrum

Speech rate articulation rate (#nuclei/total duration nuclei)

Table 4.3: Acoustic features used in SVM-Praat method.

that are produced with the SVM are used as soft decisions. We will refer to this

method as ‘SVM-Praat’.
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4.4.2 Two fused systems

In order to achieve higher performance, two systems were fused: the GMM-SV-SVM-

rplp system (II.) and the SVM-Praat system (III.) (since these two single systems ap-

peared to perform best). Since each of the two systems is based on different tech-

niques and uses different information available from the speech signal, it makes sense

to combine the two systems and to see whether the performance can be improved.

Firstly, the GMM supervector SVM based system uses both generative (GMM) and dis-

criminative modeling techniques, while the SVM-Praat system is based on discrimi-

native learning alone. Secondly, the GMM-SV-SVM system uses frame-level (spectral)

features, while the SVM-Praat system uses statistics of prosodic features calculated

over the whole sentence. Previous studies have already shown that using both spec-

tral and prosodic features can improve classification performance (e.g., Barra et al.

[14], Vlasenko et al. [202]). Fusion is performed on decision-level: this means that the

score output of both systems are combined rather than the features. Fusion on feature-

level is also an option but the advantage of decision-level fusion is that each detector

can be optimized separately. In this Section, the decision-level fusions between sys-

tems II. and III. are presented: one fusion employs a relatively simple linear weighted

sum-rule (system IV.), while the other fusion uses Linear Discriminant Analysis as a

fuser (system V.).

IV. Fusion using a linear weighted sum-rule

We first employed a linear combination of the soft decision scores (see Fig. 4.4 and

Eq. 4.2), sometimes also called the ‘sum-rule’:

Sfused = (1− α) ∗ SsystemA + α ∗ SsystemB (4.2)

Prior to this fusion, we have to take into account the fact that the scores from the

two systems do not necessarily have the same scale or range, which means that a

form of normalization needs to be applied. So first, prior to any form of fusion, the

scores were normalized to µ = 0 and σ = 1 as we have done for our speech features

(‘z-norming’).

System A System B

(1-α)JoA +αJoB

(1-α)AnA +αAnB

AnB JoB ... EBAnA

(1-α)EA +αEB

JoA ... EA

Figure 4.4: Decision-level fusion using linear sum-rule.
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V. Fusion using Linear Discriminant Analysis

As an alternative to linear fusion, Linear Discriminant Analysis (LDA) was used as a

fuser to find the best linear weighted combination of the 2N number of scores (see

Fig. 4.5). Similar to linear fusion, the scores were first normalized to z-scores before

fusion takes place.

LDA FUSION: 2N dimensional input

System A System B

AnB JoB ... EBAnA ... EAJoA

Figure 4.5: Decision-level fusion with LDA as fusion mechanism.

4.4.3 From detection to classification: a comparison

In detection, a binary classification is made between a target emotion and a non-

target emotion. In this way, an N number of emotion detectors can be developed

independently from each other and each detector gives an independent judgment

about whether the sample belongs to the target or non-target emotion (in our case

N = 7). However, the classical approach in emotion recognition is based on forced

choice classification, i.e., the machine makes a forced choice between N (usually > 2)

number of emotion classes.

In order to make comparison possible between our detection results and the more

traditionally reported classification results, we will also perform classification with

our binary detectors and report classification results. There are several ways to go

from binary decision scores to multiclass classification.

The first method is relatively simple. For each binary detector, a score is obtained

that indicates the amount of support for a certain emotion. At decision level, we

compare these soft decision scores of the N separate emotion detectors to each other

and maximum likelihood determines the final class. Prior to this comparison, the

scores need to have the same scale and thus need a form of normalization. The

most straightforward method is to normalize the scores (individually for each target

emotion detector) such that µ = 0 and σ = 1 (‘z-norming’). Another normalization

option is to use the optimal decision thresholds (that were found on an independent

development set) belonging to each emotion detector and subtract these from the

scores; we call this normalization option ‘threshold-norming’.

A second method to go from binary soft decision scores to multiclass classification

is to use Linear Discriminant Analysis (LDA) as an back-end that finds an optimal

weighted linear combination of the soft decision scores. Then the emotion class with

the highest posterior probability is chosen, at uniform prior distribution. Note that

LDA here has been used for two different purposes: a) for the purpose of fusion, and

b) for the purpose of going from decision scores to final multiclass classification.
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4.5 Evaluation

As performance measures, we report Equal Error Rates (EER) and detection costs

with equal priors and equal costs (Cdet). For reference and comparison, we also

report the traditional classification accuracy A and Femo. In section 2.4.4, we have

explained how EER, Cdet, A, and Femo are calculated. For the reader’s convenience,

the calculation of the evaluation metrics EER an Cdet are shortly recapitulated here.

4.5.1 Detection performance measures

One of the goals of evaluation is to assess a system’s performance and compare its

performance to the performances of other systems. It is very convenient to be able

to summarize and express the performance in a single figure. In traditional emotion

classification studies, classification accuracy, defined as the number of correctly clas-

sified test samples divided by the total number of test samples, is usually given. One

of the disadvantages of this measure is that it depends on the number of test samples

in each emotion class, i.e., it is sensitive to evaluation priors (skewed class distribu-

tions), and the number of target classes. Therefore, we favor the use of detection

evaluation measures which we will explain below (for a more thorough introduction

in detection evaluation measures readers are referred to van Leeuwen and Brümmer

[196]).

For each test sample that is tested against a detector, a score (e.g., log likelihood

ratio, posterior probability) can be computed; the higher the score, the more support

there is for the hypothesis that the test sample belongs to the target class (and vice

versa). Deciding to which class the sample belongs, involves setting a well-chosen

threshold, a process known as calibration. When a threshold is set, the two types of

errors can be count and a false alarm rate (Pfa) and miss rate (Pmiss) can be computed.

Changing the threshold will also change the false alarm and miss rate: this tradeoff

between the rates (as a consequence of changing the threshold) can be visualized in

a Detection Error Tradeoff (DET) plot (see for example Fig. 4.10). A performance

measure of discriminability that is widely used to summarize the DET curve is the

Equal Error Rate (EER); the point where the false alarm rate is equal to the miss rate.

However, the EER is based on an optimal decision threshold which is set a poste-

riori. In a more realistic situation, a threshold has to be set a priori. In that case, we

can measure the performance by the Detection Cost Function (DCF):

Cdet = CmissPmissPtar + CfaPfa(1− Ptar) (4.3)

Cmiss and Cfa are the costs that one can attribute to a certain type of error. Ptar is the

prior probability that the target emotion occurs. In our evaluation, we set the cost

parameters Cmiss = Cfa = 1 to have equal costs, and we set equal prior probability

Ptar = 0.5. This specific case of Cdet is also known as the Half Total Error Rate (HTER).

For the calculation of Cdet, the decision threshold was optimized at EER obtained with

development data. Note that these are error rates: the lower EER and Cdet, the better

the performance.



4.5. Evaluation | 63

4.5.2 Other performance measures

In many emotion recognition studies, the performance of an emotion classifier is usu-

ally assessed by showing a confusion matrix that gives insight in what types types

of misclassifications (confusions) frequently occur. As a performance measure, the

accuracy (A) is computed that is defined as the number of correct classifications (the

diagonal in the confusion matrix) divided by the total number of test samples. In

addition, an accuracy per emotion class can be given. In order to make comparison

possible, we will also use a so-called Femo measure, as used in e.g., Schuller et al.

[173] which is computed as the uniformly weighted harmonic mean of RR and CL:

2 ∗ CL ∗ RR/(CL + RR), where RR is the accuracy A as defined above, and CL is

the mean of the per-class-accuracy, see section 2.4.4. This is actually not the same F

measure as we know from fields as information retrieval.

4.5.3 Cross-validation evaluation procedure

In order to carry out the evaluation of the emotion recognizers as sound as possible,

we need three mutually exclusive independent datasets. For each speaker, the dataset

is partitioned into three subsets: a training set, a development set and a test set. This

was done a) to perform speaker-independent experiments, and b) to have indepen-

dent development sets for finding optimized decision thresholds, for normalization

of the decision scores and features, and for training an LDA (fuser). To achieve that

with a relatively small emotional speech database (as opposed to speaker or language

recognition where hundreds hours of speech data is available), we perform a dou-

ble cross-validation experiment in which each training fold not one, but two speakers

are left out for development and testing. In the inner-loop (nine ‘inner-jacks’), the

development takes place where classifiers are trained on a dataset excluding the de-

velopment speaker and the test speaker. Development tests are carried out on the

development speaker. The inner-loop rotates over the development speaker and col-

lects all the scores for assessing the performance of the development set. In the

outer-loop (ten ‘outer-jacks’), the actual test takes place using the test speaker that

has been left out of the training and development phase. The outer-loop rotates over

the test speaker. Note that this scheme is only applied in cases where a develop-

ment set is needed to find optimal parameters and optimal decision thresholds, to

perform normalization or to train an LDA back-end or fuser. If this is not necessary,

a single loop over the test speaker suffices, in each loop leaving out the test speaker

from the training set in order to perform the actual test on the test speaker (speaker-

independent-only experiment).

Note that this is the experimental setup for a closed-set detection experiment.

Closed-set assumes a fixed set of classes and that there are no out-of-vocabulary

classes. However, in real-life situations, especially in emotion recognition, chances

are high that ‘out-of-set’ emotions do occur. Therefore, we present in Section 4.8

another cross-validation scheme that emulates an ‘open-set’ situation.
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4.6 Results

To summarize, we have developed three basic systems, Standard-GMM-rplp, GMM-

SV-SVM-rplp and SVM-Praat. The three basic systems can be optionally supplemented

with an LDA backend for multiclass classification. Further, we have developed two

fused systems that are a fusion between the GMM-SV-SVM-rplp and the SVM-Praat

systems, based on either a linear or LDA fusion. We have defined several performance

measures, Cdet, A, and Femo (for the sake of completeness and compatibility with

other emotion recognition studies, we report all three of them). For readability, we

will present the most important results in this section. For all results, including all

performance figures, the reader is referred to the appendices.

One of the parameters that can be tuned in our systems is the numbers of Gaussian

mixtures. We first look at how the number of Gaussian mixtures influences the detec-

tion performances of systems developed with GMMs. In Fig. 4.6, we can observe that

the detection performances, expressed in Cdet, increase with a larger number of Gaus-

sians (the lower Cdet, the better the detection performance). It seems that the ideal

number of Gaussians used lies between 64 and 128. Therefore, in this section, we

show results from systems that were developed with 128 Gaussian mixtures. Fig. 4.6

also shows that the fused systems perform best.

Detection performance per number of Gaussians

Number of Gaussians

C
de

t

16g 32g 64g 128g
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25
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I. Standard−GMM−rplp
II. GMM−SV−SVM−rplp
III. SVM−Praat
IV. Linear fusion (a=0.5) between II. and III.
V. LDA fusion between II. and III.

Figure 4.6: Averaged detection performances as a function of number of Gaussians. The

straight dotted line is the detection performance of the SVM-Praat system which is drawn

for the reader’s convenience, but is not influenced by the number of Gaussians.

We also found that some emotions were better recognized with a specific system

and its associated acoustic features. In Fig. 4.7, the detection performances of the

five systems are shown per emotion. On the average, Sadness and Anger are the best

detectable emotions in this database. Interestingly, the relatively simple SVM-Praat

method appears to be very competitive with the GMM-SV-SVM-rplp system, except
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An Jo Fe Di Bo Sa Ne

Detection performances per emotion
C

de
t

0
10

20
30

40
50

I. Standard−GMM−rplp (128g)
II. GMM−SV−SVM−rplp (128g)
III. SVM−Praat
IV. Linear fusion (a=0.5) between II. and III.
V. LDA fusion between II. and III.

Figure 4.7: Detection performances of five newly developed systems, shown per emotion

(fusions were performed between the GMM-SV-SVM-rplp and SVM-Praat systems)

System Cdet AT Femo,T

I. Standard GMM (128g) 19.0 65.6 65.5

II. GMM-SV-SVM-rplp (128g) 16.6 69.0 68.4

III. SVM-Praat 18.8 64.8 61.5

IV. Linear fusion of II. and III. (α = 0.5) 12.4 75.1 74.1

V. LDA fusion of II. and III. 12.4 75.5 74.5

Table 4.4: Results of newly developed speech-based emotion recognition systems: detec-

tion and classification, AT and Femo,T are accuracy and F -measure respectively calcu-

lated using ‘threshold-norming’

for the emotions Disgust, Sadness and Neutral where SVM-Praat is performing worse

than GMM-SV-SVM-rplp. On the other hand, SVM-Praat performed much better than

GMM-SV-SVM-rplp in the case of Fear. It thus seems useful to treat each emotion

separately and to develop separate single-emotion detectors. In all cases, a fusion

of different systems has proven to be very effective: the stronger system can com-

pensate for the weaker performing system, and combined together, the fused system

outperforms the individual systems.

In Table 4.4, the performances of the five systems are shown in terms of Cdet,

accuracy AT (multiclass classification accuracy based on ‘threshold-norming’ of the

decision scores), and Femo. It is clear from Table 4.4 and Fig. 4.7, that the Standard-

GMM is much improved by GMM-SV-SVM-rplp, but the best performing systems are

the ones that are fused: the averaged Cdet obtained with SVM-Praat decreased from

18.8% to 12.4% when fused with GMM-SV-SVM-rplp. Note that we also tried different

values for α in the linear fusion (α = 0.25, α = 0.75) but α = 0.5 appeared to work

best.
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The confusion matrix of one of our best performing systems, system IV, is shown

in Table 4.5 (AT = 75.1%) in which we can observe what kind of misclassifications

have occurred. There seem to be confusions between Joy and Anger, and between

Boredom and Neutral. The confusion between Joy and Anger is a bit worrying since

the two emotions lie on opposite sides of the valence scale (we also found this confu-

sion in Truong and van Leeuwen [189]). From our studies in Truong and Raaijmakers

[185], it became clear that the discrimination between spontaneous positive and neg-

ative emotions is mostly based on lexical content information. Separating positive

from negative emotions based on acoustics only is still problematic.

Predicted as

An Jo Fe Di Bo Sa Ne

An 106 8 8 4 0 0 1

Jo 18 36 4 6 0 0 0

Fe 0 4 39 4 0 2 6

Di 0 8 3 24 1 1 1

Bo 0 1 1 3 63 5 6

Sa 0 0 1 0 2 48 2

Ne 0 3 1 6 9 4 55

Table 4.5: Confusion matrix of system IV, linear fusion between GMM-SV-SVM-rplp and

SVM-Praat, α = 0.5, 128 Gaussians.

Comparing our classification results to related studies that have used the same

database as well, see Table 4.1, we can observe that we achieve accuracies that are at

least as well as the ones reported in previous studies. More specifically, Vlasenko et al.

[202], Schuller et al. [173], Shami and Verhelst [174] used the exact same dataset

and achieved 89.9%, 72.3% and 75.5% accuracy respectively, where we achieve

75.5% accuracy. We should point out that the 89.9% of Vlasenko et al. [202] is

an ‘upper bound’ of the performance achieved (as the authors themselves have in-

dicated) since speaker normalization was applied to the features using the whole

speaker context: this is unrealistic since it would mean that each speaker has to utter

a range of different emotions before normalization can take place. The study de-

scribed in Schuller et al. [173] achieved an Femo of 69.8%. Using the same dataset,

we are able to obtain an Femo of 74.5%, achieved with a fused system consisting

of combinations of a) ‘standard SVM’ and a GMM supervector based SVM, and b)

utterance-level prosodic features and frame-level spectral features.

Comparing these results to the performance of humans, we can conclude that hu-

mans are much better in recognizing emotions (the specific types of emotions that are

under study): as shown in Table 4.1, humans are able to achieve accuracies between

85.4% and 94.4%.

4.7 Discrete emotions vs. emotion dimensions

Rather than adopting discrete emotion categories, a growing number of researchers

is adopting a dimensional approach to emotion recognition. Main advantages of the
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dimensional approach are that it allows a description of gradations of emotions, and it

allows a language-independent description of emotion. Recently, speech-based emo-

tion recognition systems have been developed that use regression techniques to pre-

dict emotions in terms of emotional dimensions such as Arousal, Valence and Dom-

inance, e.g., Grimm et al. [68]. In Grimm et al. [69], Support Vector Regression is

used to predict scalar values on Arousal, Valence, and Dominance scales. Detecting

emotion in terms of emotion dimensions is a promising and attractive approach: it

moves away from rigidly recognizing distinct emotion categories to predicting differ-

ent grades of emotions on continuous Arousal/Valence/Dominance scales. An addi-

tional advantage is that each of these dimensions can be modeled separately if nec-

essary. It has become apparent that Valence is difficult to model acoustically, while

the expression of Arousal is typically voice-based (see e.g., Truong and Raaijmak-

ers [185]). So for example, one could consider to use facial expression recognition

technology for the Valence dimension and voice-based recognition technology for the

Arousal dimension. In many ways, adopting the Arousal-Valence model offers much

more flexibility.

Similar to Grimm et al. [69], we used Support Vector Regression (SVR) (Smola

and Schölkopf [178]) to estimate emotion on continuous scales of Arousal and Va-

lence, and applied this method to the BERLIN database. We focused on the Arousal

dimension here because the Valence dimension is not well represented in the BERLIN

database (there is only one positive emotion present namely Joy). In addition to re-

gression, we also used ranking functions for emotion prediction. Ranking is based on

ordered categories. Using the BERLIN speech data, a comparison is made between dis-

crete emotion recognition techniques, regression and ranking techniques for speech-

based emotion recognition.

Database As material, we used the exact same dataset from the BERLIN database

(Burkhardt et al. [25]) as described in section 4.3, and Table 4.2. However, the

discrete emotion labels need to be associated with an Arousal value and a rank order.

We decided to use the locations of the Feeltrace (Cowie et al. [45]) landmarks as

reference Arousal ratings and rankings, see Table 4.6.

Emotion Arousal value Rank order

Anger 0.75 1
Joy 0.52 2

Fear 0.13 4
Disgust 0.25 3

Boredom −0.48 6
Sadness −0.48 6
Neutral 0 5

Table 4.6: Arousal value and ranking order adopted from the Feeltrace tool

Method and features Support Vector Regression (SVR) (Smola and Schölkopf [178])

was used for the estimation/ prediction of Arousal values. We used the SVM-regression
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function available from the libsvm toolbox (Chang and Lin [37]). As explained ear-

lier, SVR is a regression method based on Support Vector Machine modeling, see

section 2.4.3 and Smola and Schölkopf [178]. Rather than dealing with discrete out-

puts that are either +1 or −1, regression can deal with estimations of scalar outputs

that for example lie in a range [−1,+1]. This has also been applied to emotion recog-

nition, where there is a growing interest in predicting grades of emotions or grades

of Arousal, Valence and Dominance (Grimm et al. [69, 68]). As speech features, the

same set of features of the SVM-Praat method is employed. We refer to this method

as ‘SVM-Praat-regression’.

A disadvantage of having these real-valued outputs is that the estimation error is

highly dependent on the ground truth value that can now be any real number; but,

does Joy really have an exact Arousal value of zero point fifty-two? An alternative

would be to assume ordered categories and focus on estimating the correct ranking

of emotions on an Arousal scale. Ranking functions based on ordinal regression can

predict categories on an ordinal scale based on their ranking information. There-

fore, we also used ranking functions as implemented in libsvm (Chang and Lin [37]).

Rather than using the scalar values for regression modeling, ordinal regression uses

the ranking order of the scalar values. We used SVM-rank from libsvm to train a

ranking function for predicting ranks on an arousal scale. The ranking model was

trained with the same Praat features that were used in the SVM-Praat method. The

ground truth rank ordering of the seven emotions is given in Table 4.6. We refer to

this method as ‘SVM-Praat-rank’.

Evaluation and performance metrics As performance measures, we used relatively

simple error metrics. For SVM-regression, an error metric, Eregr, defined as

Ei =
∣

∣

∣
xpred

i − xtrue
i

∣

∣

∣
(4.4)

was used (which is also employed in Grimm et al. [69]): it measures the distance

between the predicted and the ground truth value. We report the Eregr averaged over

all test samples.

Similarly, the SVM-rank classifier can be evaluated by calculating the distance

between the predicted and ground truth rank using Eq. 4.4, Erank, but now x is a

rank number (an integer).

Results We performed speaker-independent experiments with the SVM-Praat-regres-

sion and SVM-Praat-rank methods. In Fig. 4.8, the output of the SVM-Praat-regression

model is plotted: although we can see that there is a trend of good Arousal estima-

tion, there is still a lot of spread in each emotion category. To assess the SVM-Praat-

regression model, a ‘regression’ error Eregr as defined in Eq. 4.4 was used. In order to

make comparison possible, we also computed Eregr for the other systems that assume

discrete emotion categories, such as SVM-Praat. In the case of systems that assume

discrete emotions, the ground truth and predicted discrete labels are substituted with

the corresponding Arousal values as provided in Table 4.6. In Table 4.7 the results are

shown in terms of Eregr. An averaged Eregr of 0.17 means that for each prediction on
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the Arousal scale, an averaged error of 0.17 is made on a scale of [−1, 1]. Based on the

results shown in Table 4.7, we can conclude that the SVM-Praat-regression method

performs slightly worse than the discrete systems SVM-Praat and the linearly fused

system in terms of the Eregr metric.
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Figure 4.8: The predicted Arousal scalar values (y-axis) of the SVM-Praat-regression

system with the reference Arousal values displayed as horizontal lines.

Approach System Eregr

Dimension SVM-Praat-regression 0.17

Discrete III. SVM-Praat 0.14

Discrete IV. Linear fusion α = 0.5, 128g 0.09

Table 4.7: Averaged regression-errors Eregr of systems assuming emotion dimensions or

discrete emotion categories.

A similar experiment was performed for SVM-Praat-rank. Here, Arousal is pre-

dicted on an ordered scale that uses rank information rather than scalar output. In

Table 4.8, a rank-error Erank of 0.70 means that on the average, a prediction on the

Arousal scale is made with a 0.70 shift in rank order on an Arousal scale with seven

ranks. Similar to the SVM-Praat-regression method, we can observe in Table 4.8 that

the SVM-Praat-rank method performs worse in terms of Erank than the ‘regular’ sys-

tems that assume unordered, discrete emotion categories.

The results of both experiments indicate that the regression and ranking meth-

ods that assume scalar values and ordered categories produce errors that are slightly

larger than methods that assume unordered, discrete categories. It suggests that, at

least in this context, adopting emotion dimensions or ordered categories is not ad-

vantageous and does not have an additive value over the use of unordered categories.

Further experiments with databases that are annotated on emotion dimensions should
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Approach System Erank

Ranking SVM-Praat-rank 0.70

Discrete III. SVM-Praat 0.66

Discrete IV. Linear fusion α = 0.5, 128g 0.39

Table 4.8: Averaged rank-errors Erank of different systems assuming ranked or unordered

categories.

be carried out to investigate in more detail how emotion prediction/estimation on

emotion dimensions can be advantageous to discrete emotion recognition. In Chap-

ter 6, we continue experimenting with Support Vector Regression and a spontaneous

emotional speech database that is annotated on Arousal and Valence dimensions.

4.8 An ‘open-set’ detection evaluation methodology

As it is possible in automatic speech recognition to have ‘out-of-vocabulary’ words, it

is also possible for an automatic emotion recognition system to encounter ‘out-of-set’

emotions. In other words, in real-life situations, the emotion recognition system can

encounter an emotion that has never been ‘heard’ or ‘learned’ before by the system

because it was not included in its training set. Especially in emotion recognition, it is

not unlikely that this can occur, since it is difficult to obtain an abundance of emotion

classes and emotion data. Most of the emotion databases available contain a relatively

small number of rather ‘arbitrarily chosen’ emotion categories (e.g., 3–12) so it is not

uncommon for an emotion detector that is trained on such small-sized databases to

encounter ‘new’ emotions that were not included in the database. In current perfor-

mance metrics and evaluation procedures, the possibility of encountering ‘unheard’

samples is disregarded, which implies that the performances reported do not always

reflect the real ‘application-readiness’ of a system. For example, we do not know how

an emotion recognition system that is trained to discriminate Anger from Joy reacts if

it encounters Sadness. Therefore, in this Section, we address the notion of ‘out-of-set’

emotions and present an evaluation methodology in the detection framework based

on a cross-validation scheme that simulates the existence of ‘out-of-set’ emotions. This

performance evaluation is expected to produce performance figures that more closely

reflect realistic situations, and hence, will increase the ecological validity of lab exper-

iments. In van Leeuwen and Truong [195], a so-called ‘open-set’ detection evaluation

methodology applied to language recognition was implemented to simulate the oc-

currence of ‘surprise’ languages. As the recognition task in language recognition is

very similar to that of emotion recognition, the same ‘open-set’ detection evaluation

methodology was applied here to emotion recognition2.

Data In contrast to the dataset used in the previous experiments and described in

section 4.3 and Table 4.2, the ‘open-set’ evaluation was performed on another subset

2The work described in this Section is based on our study that was previously published in Truong

and van Leeuwen [188], van Leeuwen and Truong [195]
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of the BERLIN database. This subset comprises of 535 utterances that fall under the

same criteria of 80% recognition accuracy and 60% naturalness that we have applied

previously. The difference is that this subset of the database has a number speech sam-

ples added to the filtered set of 494 samples in order to make the class distributions

less skewed, see Table 4.9.

Emotion N Emotion N

Anger (An) 127 Boredom (Bo) 81

Disgust (Di) 46 Fear (Fe) 69

Joy (Jo) 71 Sadness (Sa) 62

Neutral (Ne) 79

Table 4.9: Number of utterances used per emotion for the ‘open-set’ evaluation, total

number of samples is 535.

Method and features As speech features, we used Relative Spectral Transform - Per-

ceptual Linear Prediction (RPLP) features [78, 3]. Each 16 ms, 12 RPLP coefficients

plus 1 energy component were computed with a window width of 32 ms. In addi-

tion, delta coefficients were calculated by taking the first order derivatives of the 13

features over five consecutive frames. The features were normalized per utterance

to obtain zero mean and unit standard deviation. We used GMMs (trained with five

iterations of the Expectation-Maximization algorithm) as learning method to train the

acoustic models. Four Gaussian components were used by a ‘rule-of-thumb’ (approxi-

mately 50 data points required per estimated parameter). These are the same GMMs

as described in Fig. 4.2. In testing, a log likelihood ratio was obtained by subtracting

the log likelihood given by the target GMM from the log likelihood given by the non-

target GMM. This log likelihood ratio represents a degree of support for the target or

non-target class. We trained 7 pairs of GMMs: for each target emotion one pair in

a ‘1-vs-the-rest’ set-up. Since our primary aim here was to implement the ‘open-set’

evaluation, we did not further optimize the performance of these classifiers.

‘Open-set’ detection evaluation methodology To emulate an ‘open-set’ situation, we

implemented a cross-validation scheme that consists of several layers. In Fig. 4.9, the

scheme is explained in pseudo-code. There are two layers: the outer layer ensures

that the test is carried out speaker-independently by leaving out one speaker during

training. In this layer, a target emotion model is trained with ETAR samples that are

not uttered by test speaker s, so this layer rotates over all speakers. In the inner layer,

a non-target emotion model is trained on a subset of the rest of the emotional speech

examples: excluded are the samples uttered by test speaker s in emotion TAR, and ex-

cluded are the samples uttered by all speakers in a certain non-target emotion e (i.e.,

this is the so-called ‘surprise’ emotion). The inner layer rotates over the set of non-

target emotions (which always excludes the target emotion) so that each non-target

emotion has served as a ‘surprise’ emotion for a specific target emotion detector. This

‘double-layered’ cross-validation scheme ensures that for each test performed, a tar-

get model is paired with a non-target model where both models do not have prior
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information about the test samples that carry an ‘unknown’ emotion uttered by an

‘unknown’ speaker. This way, we obtained non-target scores for the ‘new’ emotion

samples which can be pooled into a single non-target score distribution. The target

scores cannot directly be pooled into a target score distribution; these need special

attention. We obtain multiple, correlated target scores for the same target trial due

to each iteration over the non-target emotions. We decided to take the minimum of

these target scores obtained for the same target trial and discarded the rest to emu-

late the most pessimistic situation (an alternative would have been to average these

scores). The performances were reported in EERs. In addition to the ‘open-set’ emo-

tion detection experiments, single-loop, speaker-independent (SI) emotion detection

experiments are performed too. In each fold of these 10-fold cross-validation exper-

iments, the test speaker is left out of the training set so that no prior information

about the test speaker is available during testing; this is a relatively straightforward

evaluation procedure (also known as LOSO which we have applied before, ‘leave-one-

speaker-out’).

{speakers} = set of all speakers

{emotions} = set of all emotions

{nonemotions} = {emotions} \ Etar

S = test speaker

Enon = the nontarget emotion

Etar = the target emotion

foreach S of {speakers}
train target model : ¬S ∧ Etar

foreach Enon of {nonemotions}
train nontarget model : ¬S ∧ ¬Etar ∧ ¬Enon

test : S ∧ (Etar ∨ Enon)
end

end

and this can be repeated for each Etar

Figure 4.9: ‘Open-set’ cross-validation scheme in pseudo code

Results First, speaker-independent (single-loop) emotion detection experiments were

performed. The performances of these SI emotion detection experiments can be seen

in Fig. 4.10, where the DET curves of the target emotions are plotted.

We can observe in Fig. 4.10 that Sadness has the lowest EER, while Fear and Dis-

gust have the highest EER. This is in concordance with the results, shown in Fig. 4.7,

that we obtained previously with more advanced systems as described in section 4.6.

Subsequently, we applied the proposed ‘open-set’ detection evaluation methodol-

ogy in which we test on a speech sample that is uttered by a ‘surprise’ speaker in

a ‘surprise’ emotion, both of which have not been ‘seen’ before by the models. Ta-

ble 4.10 presents the SI results in the left column and the ‘open-set’ results in the

right column. Not surprisingly, the EERs have increased in the ‘open-set’ case: with



4.9. Visualizing confusion in an acoustic map of emotions | 73

DET plot

false alarm probability (%)

m
is

s 
pr

ob
ab

ili
ty

 (
%

)

0.1 0.5 1 2 5 10 20 40

0.
1

0.
5

1
2

5
10

20
40

 37.7% Fear 
 32.4% Disgust 
 26.7% Joy 
 26.4% Neutral 
 23.4% Boredom 
 18.2% Anger 
 10.0% Sadness 

Figure 4.10: Speaker-independent results (EERs) obtained with Berlin Emotional Speech

database.

an average EER of 37.5%, it appears that emotions are very difficult to detect if we

do not have prior knowledge about the types of potential non-target emotions. As

an exception, Sadness seems to be a very distinct emotion that is relatively easy to

detect: even if there is no prior information about the non-target emotions, Sadness

can be detected with an EER of 12.9% which is a small increase of +2.9% points in

comparison with the SI experiment. Fear on the other hand, shows a very extreme

EER in the ‘open-set’ case; it suggests that the alternative emotions are very poor rep-

resentatives of the non-target emotion, and that Fear is not a very distinct emotion

and can be confused easily with other emotions. This has also become clear in our

‘acoustic map of emotions’, see Section 4.9, in which emotions are located closer to

each other when they are acoustically similar. For the visualization of confusions, we

constructed an ‘acoustic map of emotions’ by performing pair-wise discrimination ex-

periments. In this map, Fear lies ‘in the middle’, closely surrounded by other emotions

which suggests poor discriminability, see Section 4.9.

To summarize, an ‘open-set’ detection evaluation methodology is proposed to eval-

uate emotion recognizers in a more ‘realistic’ way and produce performance figures

that are less dependent of the emotions available in the database used. These ‘open-

set’ experiments showed that Sadness (in this database) is a very distinct emotion that

is relatively easy to detect.

4.9 Visualizing confusion in an acoustic map of emotions

In classification results, it is common to include a confusion matrix that provides in-

formation about the misclassifications made. Since we are following a single-emotion

(i.e., detection of one target emotion) detection approach in a detection framework,

this information is less visible in the results. As a way to compensate for this ‘missing’
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Emotion Berlin

SI ‘open-set’ ∆

Anger 18.2 25.2 +7.0

Boredom 23.4 36.0 +12.6

Disgust 32.4 46.1 +13.7

Fear 37.7 65.2 +27.5

Joy 26.7 35.5 +8.8

Neutral 26.4 41.7 +15.3

Sadness 10.0 12.9 +2.9

Mean 25.0 37.5 +12.5

Table 4.10: EERs of speaker-independent and ‘open-set’ detection experiments on Berlin

database

information, we constructed an ‘acoustic map of emotions’3 and visualized potential

confusions in this map by performing pair-wise discrimination experiments. The same

set of data and method and features are used as described in the previous section, sec-

tion 4.8. Since our primary aim here was to implement the ‘acoustic map of emotions’,

we did not optimize the performance of the classifiers used.

For reference: multiclass classification For reference, we performed multiclass clas-

sification with the same basic models used in the ‘open-set’ case. GMMs were trained

with 12 RPLP coefficients and 1 log energy component and four Gaussian compo-

nents. Training and testing is performed through a leave-one-speaker-out cross-

validation concept to ensure speaker-independency. Seven GMMs were trained, for

each target emotion one GMM. During testing, the predicted emotion class was de-

termined by maximum likelihood using the log-likelihood as a score. As a result, we

obtained the following confusion matrix, see Table 4.11. According to this confusion

matrix, Boredom and Neutral are often confused with each other, as well as Joy and

Anger.

Classified as

An Bo Di Fe Jo Ne Sa

An 63.8 3.1 7.9 7.1 13.4 4.7 0

Bo 1.2 45.7 3.7 6.2 1.2 35.8 6.2

Di 17.0 1.9 34.0 17.0 9.4 9.4 11.3

Fe 4.3 17.4 10.1 26.1 20.3 14.5 7.2

Jo 22.5 4.2 11.3 9.9 46.5 5.6 0

Ne 1.3 27.8 12.7 10.1 0 48.1 0

Sa 1.6 8.1 3.2 4.8 0 8.1 74.2

Table 4.11: Confusion matrix obtained with multiclass classification (expressed in per-

centages of the ‘true’ class).

3The work described in this section is based on our study that was previously published in Truong

and van Leeuwen [189]
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From EERs to (acoustic) distances How can we assess what types of emotions are

easily confused with each other in a detection evaluation framework? From the DET

curves in Fig. 4.10, we can infer that Sadness can be detected relatively easily while

Fear is very difficult to detect. But we do not know how the performances of these

single-emotion detectors relate to each other mutually and what type of misclassi-

fications were made. In that respect, a confusion matrix is a very helpful tool for

assessing misclassifications. There are ways to go from single-emotion detection to

multi-class emotion classification (see section 4.4.3) in order to obtain a confusion

matrix, but a more elegant way to learn more about confusions in a detection concept

would be to relate acoustic similarities between emotions to EERs. Luckily, one of the

nice properties of the detection evaluation framework is that EERs can be related to

(acoustic) distances. Subsequently, using Multidimensional Scaling, we can visualize

these acoustic similarities in an acoustic map of emotions where geometric distance

is related to acoustic similarity; the closer emotions lie to each other in that map, the

more similar these emotions are acoustically.

The first step in obtaining this map is to perform
(7
2

)

= 21 pair-wise emotion dis-

crimination experiments, e.g., Anger vs. Boredom, Anger vs. Disgust, Anger vs. Fear

etc. with the seven target GMMs. So in testing, only trials coming from the pair of

emotions under discrimination were tested. The log-likelihood ratios obtained with

the two GMMs were used as soft decision scores to determine EER. The EERs obtained

with these pair-wise discrimination experiments represent the discrimination perfor-

mance between the two emotions and can be interpreted as a similarity measure:

the higher the EER, the more similar two emotions are. However, an EER does not

have distance-like properties. Intuitively, a better distance representation of the EER

is a quantity known from signal detection theory as d′ (‘d-prime’). Assuming equal

variance of the target and non-target score distributions (the obtained log-likelihood

ratios of the target and non-target trials form these distributions), d′ is defined as

the difference (distance) in mean between the distributions expressed in terms of the

standard deviation, d′ = |µtar − µnon|/σ. Under the assumption of Gaussian score

distributions DET curves are straight lines perpendicular to the equal-probability di-

agonal. The EER PEER and d′ are related through the inverse cumulative normal

distribution, or probit function (see also van Leeuwen and Brümmer [196]):

d′ = −2 probit(PEER) = −2
√

2 erf−1(2PEER − 1) (4.5)

This probit function, expressed here in terms of the inverse error function, is just

the warping function of the DET axes, so that d′ varies linearly in the DET plot from 0

in the upper-right corner to about 6 in the lower-left corner. So through Eq. 4.5 and

pair-wise emotion discrimination experiments, we can calculate acoustic distances

between the 21 pairs of emotions. Table 4.12 shows these distances d′ computed on

the basis of PEER: the larger d′, the less acoustic similar the two emotions are.

Although d′ can be interpreted as a distance measure, the d′s given in Table 4.12

do not satisfy the triangle inequality theorem that is valid in a Euclidean geometric

space. Hence, we refrain from stating that d′ is a pure distance metric. Note that the

EERs are based on relatively small sets of target and non-target trials, 49–127 trials

(see Table 4.9), which may have rendered the EERs, and consequently the d′s, less
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An Bo Di Fe Jo Ne Sa

An

Bo 3.07

Di 2.07 2.22

Fe 1.88 1.29 1.02

Jo 0.77 2.43 1.58 1.35

Ne 2.29 0.74 1.74 0.48 2.28

Sa 4.29 1.87 2.44 2.12 4.33 3.05

Table 4.12: D-primes computed at EER.

accurate.

Visualization via Multidimensional Scaling We can use the d′s calculated to draw

a 2-dimensional plot, our so-called ‘acoustic map of emotions’, via Multidimensional

Scaling. Multidimensional Scaling (MDS, Venables and Ripley [198]) is a statistical

technique that can visualize distance-like data in a low-dimensional geometric picture

(for readability, the number of dimensions is usually 2 or 3). In non-metric MDS, the

goal is to minimize the differences between the reproduced distances dij in the map

and a monotonic transformation of the input distance data f(d′ij) (see Eq. 4.6). The

method uses the relative orderings of the given distances d′ij (hence the ‘non-metric’)

to construct the metric structure of the input data.

S2 =

∑

i6=j [f(d′ij)− dij ]
2

∑

i6=j d2
ij

, (4.6)

where S is the so-called stress measure. This stress measure is an indication of how

good the fit is of the MDS analysis on the data. The lower the stress, the better the fit.

A scree plot of the MDS analysis applied to our data is given in Fig. 4.11.
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Figure 4.11: Stress values plotted against number of dimensions of our non-metric MDS

analysis.

In Fig. 4.12, we can observe the 2-dimensional plot as a result of the non-metric

MDS analysis applied to the distance data in Table 4.12. In this ‘acoustic map of

emotions’, emotions that are difficult to discriminate from each other (i.e., high EER)
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Figure 4.12: Visualization of acoustic differences between emotions based on d′ and

scaled by MDS (number of dim=2), the arbitrary dimensions have been rotated to fit the

Feeltrace representation for the Arousal dimension.

lie next to each other while emotions that are easy to distinguish from each other

(i.e., low EER) lie far away from each other. This plot in fact nicely summarizes both

Fig. 4.10 and Table 4.12. We can now actually see what types of confusions between

emotions are made and how the EERs are related to these confusions. It appears that

Fear is difficult to detect (see Fig. 4.10) because it is surrounded by relatively close

neighbors in Fig. 4.12: Neutral, Boredom and Disgust appear to be acoustically similar

to Fear. Previously, we found that Sadness is a very distinct emotion (see Table 4.10,

Fig. 4.10); this is also reflected in our map (Fig. 4.12) where Sadness does not have

any close neighbors.

Note that Joy and Anger lie close to each other which implies that they are acous-

tically similar, although semantically, Joy and Anger are two opposites on the Valence

dimension. Clearly, acoustic discrimination on the Valence dimension is still prob-

lematic as was shown in earlier studies, e.g., Banse and Scherer [12], Schröder et al.

[169], Yildirim et al. [215]. Furthermore, in Truong and Raaijmakers [185], we found

that in spontaneous speech, Valence information is better captured in the lexical than

acoustic content. The acoustic map confirms that acoustic discrimination is easier on

the Arousal dimension: Sadness and Boredom (low Arousal) are very distant from

Anger and Joy (high Arousal).

4.10 Discussion and conclusions

The main goal of this Chapter was to present existing and accepted evaluation method-

ologies from similar recognition technologies and apply these to the field of emotion

recognition where shared evaluation is still an underexposed topic. We hope to have

raised increasing awareness on evaluation techniques specifically attuned to emotion

recognition. Furthermore, we have presented a way to improve the ecological validity

of lab classification experiments by implementing an ‘open-set’ detection evaluation

methodology. Also, we have shown what the current performances of emotion de-
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tectors are when clean and acted emotional speech and state-of-the-art recognition

techniques are used. Finally, by relating EERs to ‘acoustic distances’, we were able to

visualize acoustic similarities between emotions.

We developed three different emotion recognition systems and combined the two

best performing systems using a decision-level fusion strategy. The best perform-

ing system was developed with a GMM supervector SVM based method and spec-

tral frame-level RPLP features. The second best performing system was based on

supra-segmental prosody-related features trained with an SVM. Combining these two

systems on decision-level yielded the best results with Cdet between 4% and 25%.

Sadness was relatively easy to detect, while Fear, Joy and Disgust were much more

difficult to detect. Clearly, combining different systems and different types of features

on decision-level is advantageous; we suspect that the main contribution lies in the

supra-segmental information that is added to the frame-level spectral based system

since both systems share the similar SVM learning concept but differ in the types of

features used.

These speech-based emotion detectors were evaluated in a detection evaluation

framework which is very applicable to the field of emotion recognition, but not very

often used in this field. In this framework, the emotion recognition problem can

be much more approached as a ‘true’ emotion recognition task rather than an emo-

tion discrimination task. In addition, the detection evaluation framework is widely

accepted in fields like language recognition, that has a similar task definition as emo-

tion recognition, and offers common (international) benchmark style evaluation pro-

tocols. A relatively young research field like emotion recognition, in which results

and performances are reported fragmentally (mainly due to lack of standardization)

can take profit of these existing tools to advance towards more standardization and

a more structural (incremental) development of emotion recognition technology. In

this framework, we have implemented a cross-validation scheme that emulates an

‘open-set’ situation and that addresses one specific aspect of the ecological validity

of traditional lab emotion classification experiments. In these lab emotion classifica-

tion experiments, a closed set of emotion classes is assumed which is not a realistic

situation, especially in the case of emotion recognition since it is difficult to obtain

an abundance of emotion classes and emotion data. In order to obtain performance

figures and results that are more ‘realistic’ and less dependent on the number and

types of emotion classes available in the database, we implemented a cross-validation

procedure in which the detector is tested on ‘surprise’ non-target emotions uttered by

‘surprise’ speakers. Although the design is rather unpractical, it ensures that during

testing, the detector has no prior information about the potential non-target emotions

and speakers. Applying this procedure to the BERLIN database, we found (and con-

firmed) that Sadness is a very distinct emotion in this database; even when there is

no prior information about the possible non-target emotions, Sadness can be detected

with an EER of 12.9%.

In the traditional multiclass classification paradigm, the confusion matrix is ob-

tained as a by-product of the evaluation which gives information about erroneous

confusions made by the classifier. One disadvantage of the detection evaluation

framework is that it does not directly provide insight into the characteristics of the
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errors made by the detector. To compensate for this, we performed pair-wise emotion

detection experiments between all pairs of emotions and related the EERs obtained

to a similarity (distance) measure d′. Multidimensional Scaling was applied to these

distances in order to obtain ‘an acoustic map of emotions’ (see Fig. 4.12). The closer

the emotions are in this map, the more similar they are acoustically. In this map, Fear

lies ‘in the middle’ and is closely surrounded by Neutral, Boredom, and Disgust. This

suggests that Fear is difficult to detect (because it is acoustically similar to its close

neighbors Neutral, Boredom, and Disgust) which is in accordance with our detection

results shown in Table 4.10.

Finally, we have also compared a discrete emotion detection approach to a contin-

uous dimension emotion recognition approach. In the latter approach, a dimensional

model of emotion is adopted and regression techniques are used to estimate scalar val-

ues on scales of Arousal, Valence or Dominance. We applied a dimensional approach

to the Berlin database and used SVM regression and ranking to estimate values on the

Arousal scale. The labels of the discrete emotion categories in the BERLIN database

were replaced with the Feeltrace landmarks. A relatively simple error metric, that

measures the absolute difference between the predicted and reference value, was ap-

plied to both the discrete and continuous dimension approach. The error was higher

for the continuous dimension approach than for the discrete emotion approach. These

preliminary results suggest, that at least in this case, it is not advantageous to adopt

a dimensional approach. Note that the database was not annotated in a dimensional

way. In Chapter 6, we describe our experiments performed with regression techniques

to estimate scalar values on Arousal and Valence scales. In these experiments, a spon-

taneous emotional speech database was used that is annotated specifically on Arousal

and Valence dimensions.

The work presented in this Chapter is based on a database that is freely available

for research which is of great value for evaluation purposes. However, one major

disadvantage of this database is that it contains acted emotional speech. Obviously, it

would be more sound and ecologically valid to use a database that contains real, nat-

uralistic affective speech. Therefore, in the following Chapters, we present emotion

detection experiments carried out with spontaneous affective speech data.
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Chapter 5

Recognition of spontaneous affective

behavior in meetings

To increase the ecological validity of our studies, we advance towards the use of real

affective speech data and focus on the recognition of spontaneous affective conversa-

tional behavior. Nonverbal vocal sounds are often the most informative and commu-

nicative cues in conversational behavior (e.g., Campbell [29]). Cries, yawns, sighs,

coughs, etc. are examples of paralinguistic events that implicitly convey affective

information about the speaker’s affective state. Laughter is another well-known ex-

ample of a paralinguistic event (also called an ‘affect burst’ by Scherer [161], Schröder

[167]). Since laughter is a (relatively) distinct affective event that occurs relatively

frequently and that is often annotated in speech databases, we decided to investigate

the automatic detection of laughter in the context of meetings.

In the past few years, several large meeting corpora have been recorded and

enriched with different types of meta-information with the goal to support multi-

disciplinary research. These corpora form an important data source for natural lan-

guage and speech processing research. Partly motivated by the wealth of natural

meeting speech data available for research, and partly motivated by the demand for

means to browse through these speech data, we decided to investigate, in addition

to laughter detection, the recognition of subjective content, i.e., sentiments and

opinions, in the context of meetings. The assumption is that when people express

their opinions, they are more aroused and involved than when they express facts. In-

creased involvement may indicate so-called ‘hot spots’ in meetings, e.g., discussions

with heated arguments, points of excitement, which could be interesting for browsing

and summarization purposes.

In this Chapter, we describe detection experiments in which we compared several

types of features and classifiers for the detection of a) laughter1, and b) subjectivity2

in the context of meetings. Note that laughter and subjectivity are both implicit car-

riers of affective information, which seems to be characteristic of naturalistic affective

behavior.

1The work about laughter detection described in this Chapter is based on earlier work that was

published in Truong and van Leeuwen [186, 190, 187]
2The work about subjectivity detection described in this Chapter is based on earlier work that was

published in Raaijmakers, Truong and Wilson [143]
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This Chapter is structured as follows. In section 5.1, we describe what types of

affect can be found in meeting environments. Subsequently, we first describe the

laughter detection experiments. Section 5.2.1 summarizes the work of other stud-

ies on laughter (detection). In Section 5.2.2, we define the laughter detection and

segmentation tasks. Section 5.2.3 and Section 5.2.4 give descriptions of the material

and method and features used to develop the laughter detector. The results of the

laughter detection experiments are given in Section 5.2.5. The laughter segmenta-

tion experiment is described in Section 5.2.6. In Section 5.2.7, an interactive laughter

application that was developed by TNO and their projectpartners, using the method

developed here, is described. Finally, the laughter detection study is summarized

in Section 5.2.8. The second focus of this Chapter is on subjectivity detection. Re-

lated work on subjectivity research is summarized in Section 5.3.1. The subjectivity

detection task is defined in Section 5.3.2. The material, method and features used

for subjectivity recognition are described in Section 5.3.3 and Section 5.3.4 respec-

tively. The results and a summary of the subjectivity detection study are given in

section 5.3.5 and Section 5.3.6. Finally, we conclude with a discussion and conclu-

sions in Section 5.4.

5.1 What is happening in meetings?

For natural language and speech processing research, recorded meetings form a wel-

come source of data. Not only core technologies such as (far field) automatic speech

recognition, speaker detection and speaker segmentation, speech activity detection

etc. can use these data for development and evaluation, meeting data is nowadays

also frequently used in studies analyzing higher-level meeting structures. Dialogue

act analysis and detection (e.g., Shriberg et al. [176], Ang and Shriberg [7], Zim-

mermann et al. [220]), hot spot detection (Wrede and Shriberg [211]), disfluency

detection (Baron et al. [13]), detection of agreement and disagreement (Galley et al.

[65]), analysis of overlaps (Cetin and Shriberg [36]) and meeting summarization

(Murray et al. [121, 122]) are some of the topics investigated in meeting data.

Attempts have also been made to model and recognize emotions in meetings.

This has appeared to be difficult due to the naturalistic nature of the data. One of

the first difficulties encountered is that of description and annotation of the speech

data: how and what types of emotions should be annotated in the context of meet-

ings? For example, Laskowski and Burger [103] proposed an emotion annotation

scheme for the ISL Meeting Corpus (Burger et al. [24]) that describes more closely

how humans behave rather than how they feel. Emotional valence was annotated in 3

classes (Negative, Neutral and Positive) and subsequently, classifiers were trained to

detect emotional valence in meetings (see Neiberg et al. [124]). Reidsma et al. [146]

and Heylen et al. [79] initially used Feeltrace (Cowie et al. [45]) for the annotation of

emotions in the AMI Meeting corpus (Carletta [35]). However, the inter-rater agree-

ment obtained with this method was low. One of the reasons why this did not work

as well as expected, was that the annotators felt that most of the changes in the men-

tal states of the participants could not be described in terms of Arousal and Valence

dimensions. Therefore, another annotation procedure was proposed in which anno-
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tators were asked to segment and label when there was a clear change in the mental

state type and a clear change in intensity of the mental state. The labels describe

a ‘mental state’ which is defined by ‘a feeling’ in a broad sense, including not only

the typical emotion categories such as ‘irritated’ or ‘amused’ but also so-called meta-

cognitive states and processes such as ‘paying attention’ or ‘interest’ (Reidsma et al.

[146], Heylen et al. [79]). So-called ‘hot spots’ in meetings can also be considered

‘affective’ events: a ‘hot spot’ is defined in Wrede and Shriberg [211] as a ‘region in a

meeting where there is high involvement on the part of two or more participants’, e.g.,

discussions with heated arguments, points of excitement etc. Finally, the topics under

investigation, laughter and subjectivity, are also frequently encountered phenomena

in meetings which will be discussed in subsequent sections.

It is clear from the studies mentioned above, that the type of ‘emotions’ we can

encounter in meetings are not so much the typical ‘basic’ ones such as Anger or Sad-

ness, but rather are different types of mental and cognitive states that fall under the

broader definition of ‘emotion’ and that are more related to the way people behave

and interact in multiparty conversation.

5.2 Automatic detection of laughter in meetings

In this Section, we focus on the development of automatic laughter detectors for

meeting speech data. The detection task is kept clear and simple, and hence, we do

not take contextual factors into account, and we do not interpret the laughter, i.e.,

we do not attach a meaning to the laughter. The task is purely based on the acoustic

characteristics of laughter. We defined two tasks, see Section 5.2.2: 1) laughter vs.

speech discrimination, and 2) laughter segmentation. As speech material, we used

the ICSI Meeting corpus (Section 5.2.3). Classifiers developed with several types of

features were trained and tested in the detection framework, see Section 5.2.4. The

results of these detection experiments are presented in Section 5.2.5. Furthermore,

we show an example application of real-time laughter detection in Section 5.2.7. But

first, in Section 5.2.1, we give a summary of related work on the acoustics of laughter

and automatic laughter detection.

5.2.1 Related work

Earlier studies on laughter involved the acoustics of laughter which were compared

to that of speech, e.g., Mowrer et al. [120], Bachorowski et al. [11], Trouvain [184],

Bickley and Hunnicutt [21], Rothganger et al. [152], Nwokah et al. [126], Campbell

et al. [30] . One of the largest studies on the acoustics of laughter is the one described

in Bachorowski et al. [11]. In Bachorowski et al. [11], 1024 naturally produced

laugh bouts from 97 young adults were recorded as they watched funny video clips.

They noted that cues of individual identity can be conveyed in laughter acoustics

and that laughter can thus be an aid to automatic speaker recognition (Knox and

Mirghafori [94], Knox et al. [95]). The most important conclusion from the study

by Bachorowski et al. [11] is that laughter is a highly complex and variable vocal

signal, rather than a stereotyped vocal signal. The high complexity and variability of

laughter is also reflected in the mixed results that were obtained by several studies on
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the acoustics of laughter. For example, Bachorowski et al. [11] and Rothganger et al.

[152] both reported a higher F0 for laughter than (modal) speech, and they concluded

that speech is rather monotonic, lacking a strongly varying melodic contour that is

present in laughter. On the contrary, Bickley and Hunnicutt [21] reported that mean

F0 and amplitude measures of laughter are rather speech-like. However, Bickley and

Hunnicutt [21] also reported an important difference between laughter and speech

in the durations of the voiced portions: a typical laugh reveals an alternating voice-

unvoiced pattern in which the ratio of the durations of unvoiced to voiced portions is

greater for laughter than for speech.

The complexity and variability of laughter also reveals itself in contextual and cul-

tural dependency. For example, Smoski and Bachorowski [179] found that laughter

varies with social factors such as the gender of and familiarity with one’s social part-

ner. Although Rothganger et al. [152] did not find any significant differences in the

acoustics of laughter sounds from Italian and German students, other studies did find

differences in the expressive behavior of laughter. For instance, Ekman [56] found in

his experiment that the Japanese subjects, more than the American subjects, masked

their negative expressions with smile.

In Schröder [167], the perceived emotional content of so-called ‘affect bursts’, in-

cluding laughter, was investigated. Affect bursts are defined as ‘very brief, discrete,

nonverbal expressions of affect in both face and voice as triggered by clearly identifi-

able events’. It was concluded that these affect bursts can convey a clearly identifiable

emotional meaning, although laughter could not be related to a prototypical emotion.

The main view that arises from these studies, is that laughter is a very variable

and complex acoustic signal that carries affective information and that is affected by

factors like context, culture, and personality. Due to its complexity, in most automatic

laughter detection studies, these factors are not taken into account. In the majority of

laughter detection studies, the aim is to detect laughter without having to specify or to

interpret the laughter, e.g., Kennedy and Ellis [90], Laskowski and Schultz [104], Cai

et al. [27], Lockerd and Mueller [110], Campbell et al. [30], Laskowski and Schultz

[104], Reuderink et al. [147], Knox and Mirghafori [94], Knox et al. [95], Petridis

and Pantic [130, 131, 132], Truong and van Leeuwen [186, 190, 187], see Table 5.1.

In Table 5.1, where short summaries of laughter detection studies are given, it can

be observed that laughter detection has often been investigated in the context of meet-

ings. The study by Kennedy and Ellis [90] was one of the first that investigated laugh-

ter detection in meetings: an SVM was trained with MFCCs, their deltas, spatial cues

and modulation spectra coefficients, and a correct accept rate and false alarm rate of

87% and 13% respectively were achieved. Knox and Mirghafori [94], Knox et al. [95]

used neural networks and HMMs in combination with MFCCs and prosodic features

for laughter segmentation. Laskowski and Schultz [104] used a multiparticipant 3-

state vocal activity recognition module to detect so-called laughter-in-interaction. Re-

cently, audiovisual approaches to laughter detection have been undertaken by Reud-

erink et al. [147] and Petridis and Pantic [130, 131, 132]: according to their work,

fusion between the visual and auditory modalities helps, but it remains unclear how

this fusion between visual and auditory information should work.

Note that in automatic speech recognition, laughter is considered non-speech,
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Study Focus Data Method & Features Performance

Cai et al.
[27], 2003

laughter seg-
mentation

102 hours
tv shows

(laughter,

applause,
cheer)

HMM & short-term
energy, zero- crossing

rate, sub-band energies,

MFCCs

Recall: 93%,
Precision:

87%

Lockerd

and Mueller
[110], 2002

segmentation

and laughter
vs. speech

discrimina-

tion

40 laugh-

ter and
210 speech

segments,

single user

HMM & spectral coeffi-

cients

Correct:

88%

Kennedy and
Ellis [90],

2004

localization
of simultane-

ous laughter
(tabletop

recordings)

ICSI Meeting
Corpus

SVM & MFCCs+deltas,
spatial cues, modulation

spectrum

Correct Ac-
cept rate:

87%, False
Alarm rate:

13%

Campbell

et al. [30],
2005

classification

of different
types of

laughter

Japanese

ESP corpus
(Campbell

[28]), 3000

laughs

HMM & MFCCs (?) Correct:

75%

Truong and

van Leeuwen

[186], 2005

laughter vs.

speech dis-

crimination

ICSI Meeting

corpus, CGN

(Dutch)

GMM & PLP, pitch, energy,

voicing features, modula-

tion spectrum

EER: 7.1–

15.6%

Knox and
Mirghafori

[94], 2007

laughter seg-
mentation

ICSI Meeting
corpus

Neural networks & MFCCs
pitch, energy

EER: appr.
8%

Truong and
van Leeuwen

[190], 2007

laughter seg-
mentation

ICSI Meeting
corpus

GMM, Viterbi, LDA & PLP,
prosodic features

EER: appr.
10%

Truong and

van Leeuwen
[187], 2007

laughter vs.

speech dis-
crimination

ICSI Meeting

corpus, CGN
(Dutch)

GMM, SVM, MLP, fusion

& PLP, pitch, energy, voic-
ing features, modulation

spectrum

EER: appr.

3%

Knox et al.

[95], 2008

laughter seg-

mentation

ICSI Meeting

corpus

hybrid MLP/HMM, Viterbi

& MFCC, pitch, energy,
prosodics, modulation fil-

tered spectrogram

Precision:

79%, Recall:
85%

Laskowski
and Schultz

[104], 2008

laughter seg-
mentation

ICSI Meeting
corpus

HMM & MFCCs Precision:
25%, recall:

55%

Reuderink
et al. [147],

2008

audiovisual
laughter vs.

non-laughter
discrimina-

tion

AMI corpus GMM, HMM, SVM, fusion
& Video: 20 2-d facial

points, tracking, PCA, Au-
dio: RLP

EER: 14%

Petridis and

Pantic [130],
2008

audiovisual

laughter vs.
speech dis-

crimination

AMI corpus AdaBoost, neural net-

works, fusion & Video: 20
2-d facial points, tracking,

PCA, Audio: PLP

Precision:

77%, recall:
87%

Table 5.1: Overview of (audiovisual) laughter detection studies.
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and hence, it is considered not interesting. Possibly, because of the main interests of

the speech research community for the automatic recognition of speech, rather than

non-verbal speech elements, laughter detection has been a somewhat underexposed

area. The work described here (Truong and van Leeuwen [186, 187, 190]) were

among the first laughter detection studies that extensively compared several recog-

nition techniques and acoustic features, and that acknowledged the importance of

laughter detection with respect to automated higher-level understanding of meetings

and automatic affect recognition.

5.2.2 Defining the discrimination and segmentation tasks

As noted earlier, laughter is a nonverbal vocalization with various social, communica-

tive functions (e.g., Campbell et al. [30], Bachorowski and Owren [10]). As an ef-

fective means to express emotion (Schröder [167]), laughter is often associated with

pleasant feelings and zygomatic activity (i.e., smiling, Russell et al. [155]). However,

the relation between laughter and emotion is too complex to state that laughter is al-

ways associated with happiness. In fact, happiness is neither necessary nor sufficient

for smiling. Laughs can also be produced out of anger and anxiety feelings (see Dar-

win [47]). Moreover, context plays an important role in producing different types of

laughs; laughter varies with social factors such as the gender of and familiarity with

one’s social partner (Smoski and Bachorowski [179]). Although we are well aware

of the fact that laughter can have several meanings and interpretations, the current

tasks in this laughter detection study do not involve any interpretation of the laughter.

Hence, the laughter detection tasks are defined as follows:

Task I. Discrimination between pre-segmented laughter and speech segments

The first task for the detector is to discriminate between laughter and speech, i.e.,

to classify a given pre-segmented acoustic signal as either laughter or speech. We

decided to keep the discrimination problem clear and simple. Firstly, we used pre-

segmented laughter and speech segments whose segment boundaries are determined

by human transcribers. Automatically specifying the onset (i.e., the beginning) and

offset (i.e., the ending) of a laughter event is thus not part of this task. Secondly, we

only use (homogeneous) signals containing solely audible laughter or solely speech;

signals in which laughter co-occurs with speech are not used. Consequently, ‘smiled

speech’ is not investigated in this study. And thirdly, we use close-talk recordings from

head-mounted microphones rather than far-field recordings from desktop/table top

microphones.

Task II. Laughter segmentation

The second task for the classifier is to localize (i.e., to segment) laughter in a given

acoustic signal. Thus, in contrast with Task I., the detector also has to position the

start and end time of a laughter event.
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5.2.3 Laughter and speech material: ICSI Meeting Corpus and CGN corpus

As speech and laughter material, we used the ICSI Meeting Recorder Corpus (Janin

et al. [85]) and the Dutch CGN corpus (Oostdijk [127]). In this Section, we describe

the amount of data used in our laughter detection experiments.

ICSI Meeting Recorder corpus

We used the ICSI Meeting Recorder Corpus (Janin et al. [85]) that includes man-

ually transcribed annotations of spontaneous laughter, see Section 2.4.1 for a brief

description of the database. There are simultaneous recordings available of up to

10 close-talking microphones of varying types and four high quality desktop micro-

phones. We only used the close-talk recordings in our detection experiments. The

data was divided in training and test sets: the first 26 ICSI ‘Bmr’ (‘Bmr’ stands for

the type of meeting, in this case ‘Berkeley’s Meeting Recorder’ weekly meeting) sub-

set recordings were used for training and the last three ICSI ‘Bmr’ subsect recordings

were used for testing. The ‘Bmr’ training and test sets contain speech from sixteen

(fourteen male and two female) and ten (eight male and two female) speakers re-

spectively. Because the three ICSI ‘Bmr’ test sets contained speech from speakers who

were also present in the 26 ICSI ‘Bmr’ training sets, another test set was added to per-

form speaker-independent detection experiments. Four ICSI ‘Bed’ (‘Berkeley’s Even

Deeper Understanding’ weekly meeting) sets with eight (six male and two female)

unique speakers that were not present in the ‘Bmr’ training were selected as speaker-

independent test material. Laughter segments were in the first place determined from

laughter annotations in the human-made transcriptions of the corpus. The laughter

annotations were not carried out in fine detail, it is comparable to word-level an-

notation. After closer examination of some of these annotated laughter segments in

the corpus, it appeared that not all of them were suitable for our classification ex-

periments: for instance, some of the annotated laughs co-occurred with speech and

sometimes the laugh was not even audible. Therefore, we decided to listen to all

annotated laughter segments and made a quick and rough selection of laughter seg-

ments that do not contain speech or inaudible laughter. Furthermore, although we

are aware of the fact that there exist different types of laughter (see e.g., Campbell

et al. [30]), e.g., voiced, unvoiced, ‘snort-like’, we decided not to make distinctions

between these types of laughter. Speech segments were also determined from the

transcriptions: segments that contained only vocalized sounds (excluding laughter)

were labeled as speech. In total, from the ICSI corpus, we used 3264 speech segments

with a total duration of 110 minutes (mean duration µ = 2.20 s and standard devi-

ation σ = 1.87 s) and 3574 laughter segments with a total duration of 108 minutes

(mean duration µ = 1.80 s and standard deviation σ = 1.25 s), see Table 5.2.

Spoken Dutch Corpus (Corpus Gesproken Nederlands CGN)

In addition to the ICSI meeting recorder corpus, the Spoken Dutch Corpus (Oostdijk

[127]), Corpus Gesproken Nederlands, CGN) was used as a language and speaker-

independent test set, see Section 2.4.1 for a brief description. The Spoken Dutch Cor-

pus contains speech recorded in the Netherlands and Flanders and comprises a variety
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Training Test

26 ICSI ‘Bmr’

meetings

3 ICSI ‘Bmr’

meetings

4 ICSI ‘Bed’

meetings

14 CGN con-

versations

dur/N dur/N dur/N dur/ N

Speech

segments

81 min/2422 10 min/300 15 min/378 4 min/164

Selected

laughter

segments

83 min/2680 10 min/279 11 min/444 4 min/171

Table 5.2: Amount (duration in minutes) of laughter and speech data used in our laugh-

ter detection research.

of speech types such as spontaneous conversations, interviews, broadcast recordings,

lectures and read speech. We used speech data from the spontaneous conversations

(‘face-to-face’) recordings and selected laughter segments that were annotated as non-

speech sounds. Note that the CGN recordings originate from table top microphones,

while from the ICSI corpus, we used the close-talk recordings. The amount of laughter

and speech data used from the CGN corpus is displayed in Table 5.2.

5.2.4 Method and Features

In the following Section, we discuss several types of features that were investigated in

combination with several types of modeling techniques. The features are divided into

frame-level and utterance-level features. Frame-level features consisted of PLP, pitch,

and energy features. Utterance-level features consisted of pitch and voicing features,

and modulation spectrum features. The main modeling techniques used were GMM

and SVM. For decision-level fusion, a multi-layer perceptron and a sum rule fusion

were used.

Features

Frame-level spectral features (PLP) Spectral or cepstral features, such as MFCC

and PLP (see Section 2.4.2 for a brief description), are often successfully used in

speech and speaker recognition to represent the speech signal. We chose PLP features

(mainly for practical reasons, but MFCCs would also have been good candidates)

to model the spectral properties of laughter and speech. Each 16 ms, twelve PLP

coefficients and one energy feature were computed over an analysis window of 32

ms. In addition, delta features were computed by calculating the deltas of the PLP

coefficients (by linear regression over five consecutive frames) which resulted in a

total of 26 PLP features. Furthermore, the features were normalized by performing z-

normalization per utterance. This means that after normalization, for each utterance,

the features have a mean of 0 and a standard deviation of 1 (x̂frame = (xframe −
µutterance)/σutterance).
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Frame-level Pitch & Energy features (P&E) Several studies, e.g., Williams and

Stevens [207], Banse and Scherer [12] have shown that with increased Arousal, for

instance, when one is laughing, the speech measurements show an increased F0 vari-

ability or range, with more source energy and friction accompanying increased inten-

sity of effort. Furthermore, Bachorowski et al. [11] found that the mean pitch in

both male and female laughter was considerably higher than in modal speech. There-

fore, pitch and energy features would be good candidates for laughter vs. speech

discrimination. Hence, each 10 ms, pitch and Root-Mean-Square (RMS) energy were

measured over a window of 40 ms using Praat (Boersma and Weenink [23]). In Praat,

we set the pitch floor and ceiling in the pitch algorithm at 75 Hz and 2000 Hz respec-

tively. Note that we changed the default value of the pitch ceiling of 600 Hz, which is

appropriate for speech analysis, to 2000 Hz since studies have reported pitch measure-

ments of over 1000 Hz in laughter. If Praat could not measure pitch for a particular

frame (for example if the frame is unvoiced), we set the pitch value at zero to ensure

parallel pitch feature streams and energy feature streams. The deltas of pitch and

energy were calculated and z-normalization was applied as well which resulted in a

total of four P&E features.

Utterance-level Pitch & Voicing features (P&V) In addition to pitch measurements

per frame, we also measured some more global, higher-level pitch features to cap-

ture better the fluctuations and variability of pitch in the course of time: we em-

ployed the mean and standard deviation of pitch, pitch excursion (maximum pitch–

minimum pitch) and the mean absolute slope of pitch (the averaged local variability

in pitch) since they all carry (implicit) information on the behavior of pitch over a

period of time. Furthermore, Bickley and Hunnicutt [21] found that the ratio of

unvoiced to voiced frames is greater in laughter than in speech and suggest this

as a method to separate laughter from speech: “. . . A possible method for separat-

ing laughter from speech, a laugh detector, could be a scan for the ratio of unvoiced

to voiced durations . . . ”. Therefore, we also calculated the fraction of locally un-

voiced frames (number of unvoiced frames divided by the number of total frames)

and the degree of voice breaks (the total duration of the breaks between the voiced

parts of the signal divided by the total duration of the analyzed part of the sig-

nal). A total of six global P&V features per utterance were calculated using Praat

(Boersma and Weenink [23]). The features were normalized by an ‘utterance-based’

z-normalization. In contrast with the z-normalization applied on the frame-level fea-

tures where µ and σ were calculated over one utterance, µ and σ are now calculated

over the whole training set (since we have one fixed-length feature vector per utter-

ance): (x̂utterance = (xutterance − µtraining)/σtraining)

Utterance-level Modulation spectrum features (ModSpec) We tried to capture

the rhythm and the repetitive syllable sounds of laughter, which may differ from

speech: Bickley and Hunnicutt [21] and Bachorowski et al. [11] report syllable rates

of 4.7 syllables/s and 4.37 syllables/s respectively in laughter, while in normal speech,

the modulation spectrum exhibits a peak at around 3–4,Hz, reflecting the average syl-

lable rate in speech (Drullman et al. [55]). Thus, according to these studies, it seems
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that the rate of syllable production is higher in laughter than in conversational speech.

Modulation spectrum features for laughter detection were also previously investigated

by Kennedy and Ellis [90] who found that the modulation spectrum features they used

did not provide much discriminative power. We calculated our modulation spectra of

speech and laughter by first obtaining the amplitude envelope via a Hilbert transfor-

mation. The envelope was further low-pass filtered and downsampled. The power

spectrum of the envelope was then calculated and the first 16 spectral coefficients

(modulation spectrum range up to 25.6 Hz) were used as input features. The 16

ModSpec features were also normalized by an ‘utterance-based’ z-normalization.

Modeling techniques

Gaussian Mixture Modeling (GMM) We trained ‘laughter’ GMMs and ‘speech’ GMMs

with the four different sets of frame-level and utterance-level features. The GMMs

were trained using five iterations of the Expectation Maximization (EM) algorithm

and with varying numbers of Gaussian mixtures (varying from 2 to 1024 Gaussian

mixtures for different feature sets) depending on the number of extracted features.

In testing, a maximum likelihood criterion was used. Similar to the ‘Standard GMM’

method summarized in Fig. 4.2, a ‘soft detector’ score is obtained by determining

the likelihood ratio of the data given the ‘laughter’ and ‘speech’ GMMs respectively.

For a brief description on Gaussian Mixture Modeling, the reader is referred to sec-

tion 2.4.3.

In addition, as is frequently done in speaker recognition, we trained a Universal

Background Model (UBM, see Reynolds et al. [149]) that represents all alternative

classes (or speakers in the case of speaker recognition). We pooled together all laugh-

ter and speech data to train a UBM and derived a laughter model by adapting the

parameters of the UBM to laughter. The tighter coupling between the laughter model

and the background model could possibly improve performance.

Support Vector Machine (SVM) Support Vector Machines (Vapnik [197]) have be-

come popular among many different types of classification problems, for instance

face identification, bioinformatics and speaker recognition (for a brief description on

SVMs see section 2.4.3). For the laughter detection experiments, we used the toolkit

SVMTorch II, developed by the IDIAP Research Institute [42]. Three different kernels

were employed: a linear, Gaussian, and a Generalized Linear Discriminant Sequence

(GLDS) kernel (Campbell [31]). The latter kernel was used to transform the variable-

length frame-level feature vectors (PLP and P&E) to static-length feature vectors. The

GLDS kernel expanded the feature vectors explicitly into a higher-dimensional fea-

ture space. Subsequently, these expanded feature vectors were trained in SVM using

a linear or Gaussian kernel.

Multi Layer Perceptron (MLP) For fusion of the classifiers, a Multi Layer Percep-

tron (MLP) was used (which has successfully been applied before, e.g., El Hannani

and Petrovska-Delcretaz [60], Campbell et al. [32]). This popular type of feedfor-

ward neural network consists of an input layer (the input features), possibly several

hidden layers of neurons and an output layer. The neurons calculate the weighted
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sum of their input and compare it to a threshold to decide if they should “fire”. As

MLP implementation, the LNKnet Pattern Classification software package was used,

developed at MIT Lincoln Laboratory (Lippmann et al. [107]). Note that the MLP

was used as a fuser; the scores obtained with the individual GMM and SVM classifiers

were used as input for the MLP.

Fusion techniques

We applied two different fusion techniques on decision-level. This means that the

output (e.g., log-likelihood ratios, posterior probabilities) of several classifiers were

combined to obtain a final decision score. The first fusion method applied is the

relatively simple ‘sum-rule’:

Sfuse = αSA + (1− α)SB (5.1)

where α is a weight that can be optimized on a development set. In our case, we

did not optimize α, instead we set a fixed α = 0.5 so that each classifier, A and B,

is equally important. Prior to this fusion, we normalized the scores by applying an

adjusted form of T(est)- normalization (Auckenthaler et al. [9], Campbell et al. [32]).

This was done by using a fixed set of non-target scores as a basis (in our case the ‘Bmr’

test set) from which µ and σ were calculated; these were used to normalize the target

and non-target scores of the other two test sets (‘Bed’ and CGN) by subtracting µ from

the score and dividing by σ.

Secondly, as an alternative fusion method, a second-level classifier was applied

to ‘learn’ the fusion between the scores. As fusers, SVM and MLP were used. The

training of these fusers was performed on the scores obtained with the ‘Bmr’ test set.

Fig. 5.1 gives an overview of the fusion combinations that were carried out.

Figure 5.1: Combinations of fusions of feature sets and classifiers for laughter vs. speech

discrimination.
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5.2.5 Evaluation and Results

In this Section, the evaluation metrics used for the laughter detection experiments are

described and the results are presented. First, the results of the individual detectors

are presented. Subsequently, we present the results of the fused detectors.

Evaluation metrics

As evaluation metrics, we report EER (false alarm rate is equal to miss rate) and Cdet.

For the calculation of Cdet we assume equal prior probabilities (= 0.5) and equal costs

(= 1). Furthermore, the decision threshold for the calculation of Cdet is determined

at EER. Brief descriptions of EER and Cdet are given in section 2.4.4.

Results of individual classifiers

To recapitulate, we have extracted four different sets of features PLP, P&E, P&V, and

ModSpec, and we have employed two classification techniques namely GMM and

SVM. For the GMMs, we varied the number of Gaussians from 2–1024. The results

obtained with the GMMs are presented in Table 5.3 where the numbers of mixtures

that produced the lowest EERs for that feature set are reported.

Frame-level features Utterance-level features

GMM PLP GMM P&E GMM P&V GMM ModSpec

1024 Gauss. 64 Gauss. 4 Gauss. 2 Gauss.

Bmr 6.4 14.3 20.0 37.7

Bed 6.3 20.4 20.9 38.7

CGN 17.6 32.2 28.1 44.5

Mean 10.1 22.3 23.0 40.3

Table 5.3: Equal Error Rates (in %) of GMM classifiers trained with frame-level or

utterance-level features and with different numbers of Gaussians

The results in Table 5.3 show that GMM PLP outperforms all other GMM classi-

fiers, whereas GMM ModSpec performs worst. As expected, the EERs increase as the

degree of mismatch between training and test set increases. We also trained a Uni-

versal Background Model, as is often done in speaker-recognition, and build adapted

GMMs but the performance did not improve (and hence were not reported) which

was probably due to the small number of non-target classes: our UBM was trained

with only twice as much data compared to the class-specific GMMs.

The results obtained with the SVMs are presented in Table 5.4. For the PLP

and P&E features, a GLDS kernel was used to expand and transform the variable-

length feature vectors into static-length feature vectors. Subsequently, the SVMs were

trained with a linear or Gaussian kernel. Table 5.4 reports results of SVMs trained

with a Gaussian kernel since that appeared to perform best.

We can observe in Table 5.4 that the SVM GLDS PLP outperforms the other SVM

classifiers. Note that the second-best performing feature set for SVM is the P&V fea-

ture set. Taking into consideration the number of features, 26 PLP features per frame
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Frame-level features Utterance-level features

SVM GLDS

PLP

SVM GLDS

P&E

SVM P&V SVM Mod-

Spec

Bmr 2.6 14.0 9.0 28.7

Bed 7.2 18.0 11.4 32.9

CGN 19.4 29.3 23.3 29.3

Mean 9.7 20.4 14.6 30.3

Table 5.4: Equal Error Rates (in %) of SVM (Gaussian kernel) classifiers trained with

frame-level or utterance-level features.

as opposed to 6 P&V features per utterance, it is quite impressive for the SVM P&V

method to achieve these results.

On the overall, when we compare the GMM and SVM methods to each other, it

appears that SVMs perform slightly better. This can probably be mainly attributed to

the GLDS kernel and the fact that our utterance-level features work much better in

combination with SVMs than GMMs.

Results of fused classifiers

Since PLP and P&V are the two best performing feature sets (according to the results

presented in Table 5.3 and 5.4), we performed fusion with these two feature sets and

discarded the P&E and ModSpec features. Fusions were carried out on decision-level

using a) the sum rule, or b) a SVM or MLP classifier. We first performed fusions within

classifier-type and between feature sets, see Fig. 5.1, A1–A3 and B1–B3. The results

are presented in Table 5.5 (for the SVM and MLP fusion methods we do not have

results for the Bmr test set since this set was used for training of the SVM and MLP).

The A0 and B0 classifiers represent the best performing individual (baseline) classi-

fiers GMM PLP and SVM GLDS PLP respectively. The significance of improvement was

assessed through a McNemar test (Gillick and Cox [66]) with a significance level of

0.05. Table 5.5 shows that the addition of a P&V classifier to a PLP classifier in many

cases significantly increases performance, especially in the case of the SVM classifiers.

The method of fusion does not seem to have much influence, although the linear fu-

sion ‘sum-rule’ method seems to perform slightly worse (but note that the weight α

was not optimized).

Subsequently, we performed ‘cross’ fusions between classifier-type and between fea-

ture sets, see Fig.5.1 fusions C1–C2 and D1–D2. Since the ‘sum-rule’ performed worse

than the second-level classifiers, we only tested a second-level SVM and MLP as fusers.

The results are presented in Table 5.6 in which we can observe that these ‘cross’ fu-

sions are very powerful, achieving the best performances for the ‘Bed’ and CGN test

sets.

Instead of placing thresholds ‘virtually’ a posteriori to report EER, we also placed

thresholds a priori to know the actual performance of a classifier. In this case, the

threshold was determined by choosing the score threshold where the probabilities of

error are equal (EER); this threshold was then used to classify new samples resulting
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Classifier Features Fusion EERs (%) Compare

method Bmr Bed CGN to

A0














GMM×
PLP none 6.4 6.3 17.6 -

A1 (PLP+P&V) sum rule 8.6 11.7* 22.7 A0

A2 (PLP+P&V) SVM - 5.8 13.4* A0

A3 (PLP+P&V) MLP - 6.1 12.8* A0

B0














SVM ×
PLP none 2.6 7.2 19.4 -

B1 (PLP+P&V) sum rule 2.6 5.6 12.2* B0

B2 (PLP+P&V) SVM - 5.2* 12.2* B0

B3 (PLP+P&V) MLP - 4.7* 11.6* B0

Table 5.5: EERs of fused classifiers within classifier-type and between feature-sets (∗
indicates whether the difference in performance is significant with respect to the single

classifier, A0, B0, displayed in the last column, × and + indicate fusion combinations).

Classifiers Features Fusion EERs (%) Compare

method Bmr Bed CGN to

C1
}

(GMM+SVM) × PLP
SVM - 3.2* 11.6* A0, B0

C2 MLP - 3.7* 11.0* A0, B0

D1
}

(GMM+SVM) × (PLP+P&V)
SVM - 3.2 8.7* C1

D2 MLP - 2.9 7.5* C2

Table 5.6: EERs of fused classifiers between classifier-type and between feature-sets (∗
indicates whether the difference in performance is significant with respect to another

classifier displayed in the last column, × and + indicate fusion combinations).

in an evaluation of the actual performance of the system. This threshold was cali-

brated using the scores of the ‘Bmr’ test set. This was done for the best performing

classifier D2, and as we can observe in Table 5.7, the actual performances are worse

than the EERs reported, especially in the case of the CGN test set. It shows the diffi-

culty of determining a threshold based on one data set and subsequently applying this

threshold to another data set (threshold calibration). In addition, the unequal error

rates, especially in the case of the CGN test set, are also an indication of mistuned

thresholds.

Classifier Test set EER Minimum

Cdet

Actual

Cdet

Actual

Miss

rate

Actual

False

Alarm rate

Fusion D2

(Table 5.6)

Bed 2.9% 0.028 0.045 1.8% 7.1%

CGN 7.5% 0.075 0.173 31.6% 3.0%

Table 5.7: Actual decision performances of fused classifier obtained by Fusion D2, see

Table 5.6.
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5.2.6 Laughter segmentation

The second task concerned laughter segmentation rather than laughter vs. speech dis-

crimination. Knox and Mirghafori [94], Knox et al. [95] performed laughter segmen-

tation on the ICSI corpus using neural networks and a combination of spectral and

prosodic features. They achieved relatively low frame-based EERs. However, note

that they only used annotated vocalized segments; silence and other sounds were

thus discarded. Laskowski and Schultz [104] segmented laughter based on three dis-

tinct states, namely laughter, speech and non-vocalizations. Their system is not only

based on the acoustic characteristics of laughter, but also makes use of the vocal ac-

tivity of multiple participants by constraining the number of simultaneous speakers

and the number of simultaneous laughter.

For this laughter segmentation task, one could also use an automatic speech rec-

ognizer that can segment laughter as a by-product. However, since the aim of an

automatic speech recognizer is to recognize speech, it is not specifically tuned for

detection of non-verbal speech elements as laughter. Further, a speech recognition

system employing a full-blown transcription may be a bit computationally inefficient

for the detection of laughter events. Therefore, we rather built a relatively simple

detector based on a small number of acoustic models.

In this Section, we discuss our work on automatic laughter segmentation (see

Truong and van Leeuwen [190]). We characterized meetings with three distinct

states, namely laughter, speech and silence. The task of the detector is to localize

laughter, i.e., to specify beginning and ending of a laughter event, in an audio stream.

Data

As training material, we used the same data as presented in Table 5.2, i.e., the laugh-

ter and speech segments from the 26 ‘Bmr’ meetings were used to train the laughter

and speech models. Approximately an equal amount of silence was extracted from

these meetings to model silence. For testing, the 3 ICSI ‘Bmr’ meetings as described in

Table 5.2 were used.

Features and Method

The laughter, speech and silence GMMs were trained in a similar way as was done for

the laughter vs. speech task. In order to determine the segmentation of the acous-

tic signal into segments representing the N defined classes (in our case N = 3), we

used a relatively simple Viterbi decoder (Rabiner and Juang [144]). In an N -state

parallel topology the decoder finds the maximum likelihood state sequence. The state

sequence was used as the segmentation result. The number of state transitions, or the

segment boundaries, were controlled by using a small state transition probability. The

state transition probability aij from state i to state j 6= i was estimated on the basis

of the average duration of the segments i and the number of segments j following

i in the training data. The self probabilities aii were chosen such that
∑

j aij = 1.

After the segmentation into segments {si}, i = 1, . . . Ns, we calculated the average

log-likelihoods Lim over each segment i for each of the models m. We defined a
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log-likelihood-ratio as Llaugh −max(Lspeech, Lsilence). These log-likelihood-ratios de-

termined final class-membership.

Evaluation and Results

One of the reasons to define log-likelihood ratios for the segments found by the de-

tector, is to be able to compare the current results based on segmentation to other

results that were obtained with given pre-segmented segments and that were evalu-

ated with a trial-based DET analysis (Detection Error Tradeoff, Martin et al. [112]).

In this analysis we could analyze a detector in terms of DET plots and post-evaluation

measures such as Equal Error Rate and minimum decision costs. In order to make

comparison possible we extended the concept of the trial-based DET analysis to a

(frame-based) time-weighted DET analysis for two-class decoding (van Leeuwen and

Huijbregts [194]). The basic idea is (see Fig. 5.2) that each segment in the hypothesis

segmentation may have sub-segments that are either

• correctly classified (hits and correct rejects)

• missed, i.e., classified as speech (or other), while the reference says laughter

• false alarm, i.e., classified as laughter, while the reference says speech (or other)

We can now form tuples (λi, T
e
i ) where T e

i is the duration of the sub-segment of

segment i and e is the evaluation over that sub-segment, either ‘correct’, ‘missed’ or

‘false alarm’. These tuples can now be used in an analysis very similar to the DET

analysis. Define θ as the threshold determining the operating point in the DET plot.

Then the false alarm probability is estimated from the set Tθ of all tuples for which

λi > θ

pFA =
1

Tnon

∑

i∈Tθ

TFA
i (5.2)

and similarly the miss probability can be estimated as

pmiss =
1

Ttar

∑

i6∈Tθ

Tmiss
i (5.3)

Here Ttar and Tnon indicate the total time of target class (laughter) and non-target

class (e.g., speech or silence) in the reference segmentation. This is basically a frame-

based (or time-weighted) DET- analysis.

The laughter segmentation experiments were carried out on a total of 18 full-

length individual channels of the close-talk recordings taken from the three ICSI ‘Bmr’

test meetings. The scores (i.e., the log-likelihood ratios) from these separate audio

channels were pooled together to obtain EERs. In order to enable better comparison

between the laughter vs. speech discrimination and the laughter segmentation re-

sults, we have also performed a segmentation experiment on a chain of laughter and

speech segments that consisted of the pre-segmented laughter and speech segments

concatenated to each other randomly. The results are presented in Table 5.8 and

Fig. 5.3.
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1 = laughter, 0 = non−laughter
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Reject
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Figure 5.2: Definitions of correct classifications and erroneous classifications in time.

Laughter segmentation

Concatenated laughter/speech Whole meetings

GMM PLP GMM PLP

8.2 10.9

Table 5.8: EERs of laughter segmentation performed on concatenated laughter and

speech segments, or on whole meeting audio streams (tested on 3 ICSI Bmr meetings).
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Figure 5.3: Time-weighted DET curves of laughter segmentation, tested on 3 ICSI Bmr

meetings.
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The ‘time-weighted’ EER was 10.9% for the ‘real’ segmentation task and 8.2% for

the concatenated laughter-speech segments. The difference in performance is mainly

caused by the presence of other non-vocalized sounds, e.g., silence, in meetings. Note

that this time-weighted DET curve does not take into account the absolute number of

times there was an error, and that it is sensitive to priors since it is time-based.

5.2.7 Example of applied laughter recognition: Affective Mirror

Automatic voice-based laughter recognition can be useful for a range of various ap-

plications. For instance, for automatic summarization, data mining, or meta-data

generation purposes, laughter can be an important event that signals expressive hu-

man behavior. For interactive human-machine communication systems, the social

function of laughter can be utilized to create better mutual understanding or more in

general, better human-machine communication. One example of a real-time laughter

recognition application is that of LAFCam, Leveraging Affective Feedback Camcorder

(Lockerd and Mueller [110]) which detects laughter from the camera operator with

the goal to enhance the user interface (and experience) during video editing.

In the framework of the Dutch BSIK project MultimediaN, so-called Golden Demos

were developed and build that use state-of-the-art multimedia technology to create

unique user experiences. In collaboration with our project partners Waag Society3,

V2: Institute for the Unstable Media4, and VicarVision5, TNO developed the ‘Affective

Mirror’ (build by Willem Melder, see Melder et al. [117]). The ‘Affective Mirror’ uses

recognition technology and models developed in the work described above to sense

laughter in real-time. The goal of this virtual carnival mirror is to deliver a fun and

positive experience to the user by sensing and eliciting laughter. Its uniqueness lies

in the fact that the ‘Affective Mirror’ is able to influence the user’s state by first sens-

ing the user’s emotional state and subsequently, generate appropriate feedback that

affects the user, who in turn, will react to that feedback. This way, an interactive loop

between user and machine is established. Currently, the system is based on a visual

and vocal subsystem that can detect facial expressions and vocal laughter. The mirror

detects and reacts to the user’s laughter, and then provides visual feedback by distort-

ing the user’s face in the virtual mirror, just like a traditional carnival mirror would

do. The more one laughs, the further one proceeds in different levels of distortions.

The distortions are driven by the amount of laughter, detected by the facial or vocal

subsystem. One possible ‘Affective Mirror’ scenario is presented in Table 5.9. After

each session with the mirror, which lasts for a couple of minutes, the user receives a

score card with his/her laughter statistics and a photo (see Fig. 5.4).

Several different groups of people have undergone the ‘Affective Mirror’ experi-

ence: playful children, curious parents, and serious scientists have all sat in the front

of the mirror. Some visitors started to laugh very quickly and others were more sensi-

tive to the way their behavior influenced the mirror behavior. This resulted into user-

mirror cooperative behavior to produce funny distorted faces and reciprocal user-

mirror action-reaction cycles in which the user is expressing weird facial and vocal

3http://www.waag.org
4http://www.v2.nl
5http://www.vicarvision.nl
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Entering . . .

User walks to the mirror, is curious and does not know what to expect
Mirror detects the user’s presence and tries to attract the user

User is intrigued by the mirror and comes closer to see what is going

on
Mirror detects the user’s face and highlights the face

Interacting . . .

User is surprised by the adaptive mirror and waits for the mirror to

change
Mirror classifies the facial expression as ‘surprised’ and starts a visual

effect ‘blow up eyes’

User sees his mirror image being distorted and starts to look happy
Mirror classifies the facial expression as ‘happy’ and starts a visual effect

‘raise mouth corners’

User notices that the mirror plays with his facial expression and starts
to laugh

Mirror detects the vocal laughter and starts a visual effect ‘swirl’
User is amazed by the interaction and tries to look disgusted

Mirror classifies the facial expression as ‘disgust’ and starts an audio ef-

fect ‘wobble’

Leaving . . .

User looses interest and walks away
Mirror looses track of the face and fades away

Table 5.9: A possible single user interaction scenario, adopted from Melder et al. [117]

You laughed 22 % of the total time
 of which 33 % was vocal and 67 % was facial.
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MultimediaN N2: Affective Mirror Scorecard

Figure 5.4: Affective Mirror: an interactive virtual carnival mirror. Left: the mirror,

middle: manipulated mirror image, right: the score card.

behavior. Most visitors found it a positive and fun experience, especially children

were very enthusiastic about the mirror. Although the facial and vocal subsystems

might not work perfectly under ‘real-world’ conditions, the mirror has proven to be

robust enough to deliver these fun experiences. Moreover, in future research, the ‘Af-

fective Mirror’ will be used a research tool to investigate, for instance, the effect of

other people’s presence on the expression of laughter.

5.2.8 Conclusions

In this first half of this Chapter, we investigated laughter vs. speech discrimination

and laughter segmentation. For laughter vs. speech discrimination, we experimented

with potential discriminative features and modeling techniques. We employed GMMs
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and SVMs in combination with PLP, P&E, P&V, and ModSpec features. The two best

performing feature sets were PLP and P&V. After several careful fusion combinations,

it appeared that a fusion between different classifier and feature-types performs best

(i.e., cross-fusions between GMM and SVM methods, and PLP and P&V features):

EERs obtained with these combinations ranged between 3% and 9% for speaker-

independent test sets. It became clear from these results that the use of different

feature types, e.g., spectral and prosodic, in combination with different classifiers

boosted performance. For laughter segmentation, we used GMMs trained with PLPs

and a relatively simple Viterbi decoder: the task was to localize laughter events in

(whole) meetings. In order to be able to express our segmentation results in terms

of EER, we evaluated our laughter segmentation with ‘time-weighted’ (i.e., frame-

based) DET curves: the time-weighted EERs obtained ranged between 8% and 11%.

Many of the errors made in laughter segmentation were introduced by breath sounds,

cough sounds, background noises or crosstalk (softer speech from other participants).

Finally, the implementation of our laughter recognition technology in a real-time ap-

plication namely the ‘Affective Mirror’ has shown that laughter detection can lead

to a fun and positive interactive user experience. The fact that laughter is a rela-

tively frequently occurring affective event that can be detected with an acceptable

real-time performance opens up many research and application-oriented opportuni-

ties in the field of affective computing. The growing interest for laughter detection

in the context of affect recognition, following our initial work on laughter vs. speech

discrimination, proofs that laughter is not just a non-speech event.

5.3 Multimodal subjectivity analysis in meetings

In this Section, we report on our investigations on feature and classifier combinations

for the recognition of subjective content in meetings. Opinions, sentiments and other

types of subjective content can play an important role in meetings. Meeting partic-

ipants express their pros and cons about ideas and they may agree or disagree with

opinions. This type of higher-level information can be of value for meeting summa-

rization purposes and can enhance the functionality of meeting browsers. On textual

level, a substantial amount of research has been carried out on automatic subjectivity

and sentiment recognition in all kinds of (on-line) media, such as blogs, news and

reviews. On acoustic level however, little or no work has been carried out on subjec-

tivity recognition. However, terms like ‘subjectivity’ and ‘sentiment’ entail phenomena

like agreement/disagreement, involvement/hot spots and affect, which have gained

much interests on acoustic level. A logical step would be to combine these two modal-

ities, acoustic and textual, to aim for better performance in subjectivity recognition.

Here, we will focus on two tasks: 1) the recognition of subjective utterances, and

2) the discrimination between positive subjective utterances and negative subjective

utterances. For these tasks, we used both acoustic and textual information sources.

This Section is structured as follows. In Section 5.3.1, we describe related work on

subjectivity and sentiment analysis. The goals and tasks of the subjectivity classifica-

tion experiments are defined in Section 5.3.2. The material used in the classification

experiments is described in Section 5.3.3. In Section 5.3.4, descriptions of the lex-
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ical and acoustic features, and the modeling techniques used in the experiments is

given. We present our results in Section 5.3.5, and we summarize the conclusions in

Section 5.3.6.

5.3.1 Related work

On textual level, there has been a significant amount of research on subjectivity and

sentiment recognition, ranging from work at the phrase level to work on classify-

ing sentences and documents. Works on sentence-level subjectivity classification by

e.g., Riloff and Wiebe [150], Yu and Hatzivassiloglou [218], and works on senti-

ment classification by e.g., Yu and Hatzivassiloglou [218], Kim and Hovy [92], Hu

and Liu [82], Popescu and Etzioni [139], are most related to our work on subjectiv-

ity and polarity classification. Raaijmakers and Kraaij [142] compared wordspanning

character n-grams to word-internal character n-grams for subjectivity classification

in news data. They found that character n-grams spanning words perform the best.

In the context of meetings or multiparty conversation, subjectivity research include

works by Somasundaran et al. [180] who recognized sentiments and arguing in meet-

ings. Somasundaran et al. [180] used lexical and discourse features to recognize sen-

tences and turns where meeting participants express sentiments or arguing. They also

used the AMI corpus but different annotations and task definitions. Wilson and Raai-

jmakers [209] compared the use of word n-grams, character n-grams, and phoneme

n-grams in the AMI corpus for recognizing subjective utterance in multiparty con-

versation, and showed that character n-grams from a manual reference transcription

performed best.

In acoustics, subjectivity as a topic has not been investigated frequently, however,

sentiments and emotions (related to subjectivity) in meetings have. Neiberg et al.

[124] used spectral features (MFCCs) and pitch features and lexical n-grams for rec-

ognizing emotions in the ISL Meeting Corpus (Burger et al. [24]). Agreement and

disagreement recognition (using both lexical and prosodic cues), and hotspot detec-

tion in meetings were investigated by e.g., Hillard et al. [80], Galley et al. [65], Hahn

et al. [72], and Wrede and Shriberg [211] respectively. Hotspots are events in meet-

ings where the participants are highly involved in a discussion. Although high in-

volvement does no necessarily equate subjective content, in practice, we expect more

sentiments, opinions, and arguments to be expressed during heated discussions.

In our work, we follow-up the study carried out by Wilson and Raaijmakers [209]

and extend it with new research questions. Wilson and Raaijmakers [209] showed

that very shallow character and phoneme representations yield promising results for

subjectivity detection. We extended this work and added another information source

to the textual information source, namely prosody. In our study we made all possible

combinations of these multimodal information sources and fused these sources in

several different ways. In addition to subjectivity recognition, we also performed

polarity classification, i.e., we classified whether the subjective sentence is positive or

negative.
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5.3.2 Defining the tasks and goals

We analyzed subjectivity in the context of multiparty conversation in meetings, but

how exactly is subjectivity defined in this context? For this work, we used the AMI

Meeting Corpus (Carletta [35], see section 5.3.3 for a brief description of the data).

The AMI Meeting Corpus has been annotated for subjective content using an AMIDA

annotation scheme described in Wilson [208]. There are three main categories of

annotations, namely Subjective Utterances, Subjective Questions, and Objective Polar

Utterances, see Table 5.10.

Subjective Utterances positive subjective, negative subjective, uncertainty,

other subjective, positive and negative subjective
Subjective Questions positive subjective question, negative subjective ques-

tion, general subjective question

Objective Polar Utterances positive objective, negative objective

Table 5.10: AMIDA subjectivity annotation types.

A Subjective Utterance is a span of words where a private state is being expressed ei-

ther through a choice of words or through prosody in the voice. A private state (Quirk

et al. [140]) is an internal mental or emotional state, including opinions, beliefs, sen-

timents, emotions, evaluations, uncertainties, and speculations, among others. Ex-

amples of Subjective Utterances are given in (1) and (2) (Wilson and Raaijmakers

[209], Wilson [208]):

(1) so I believe the the advanced functions should maybe be hidden in a

drawer, or something like that from the bottom of it

(2) people uh additionally arent arent liking the appearance of their prod-

ucts

Positive Subjective Utterances include agreements, positive sentiments (emotions,

evaluations and judgments), positive suggestions, arguing for something or beliefs

from which positive sentiments can be inferred. Negative Subjective Utterances are

typically comprised of disagreements, negative sentiments, negative suggestions, etc.

Example (3) contains two Positive Subjective Utterances and one Negative Subjective

Utterance (indicated by a pair of angle brackets):

(3) Um <POS-SUBJ it’s very easy to use>. Um <NEG-SUBJ but unfortu-

nately it does lack the advanced functions> <POS-SUBJ which I I quite

like having on the controls>.

The Positive And Negative Subjective category is for marking cases of positive and

negative subjectivity that are so closely interconnected that it is difficult or impossible

to separate the two. For example, some subjective words or phrases inherently evoke

both a positive and negative sentiment. An example of such a word is bittersweet.

The category Uncertainty includes utterances from individuals who express their

uncertainty, or utterances that indicate undecided things. An example of Uncertainty

is given in (4):
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(4) Um I’m not entirely sure what the corporate color is.

Subjective Questions are questions in which the speaker is eliciting the private state

of someone else. In other words, the speaker is asking about what someone else

thinks, feels, wants, likes etc., and the speaker is expecting a response in which the

other person expresses what he/she thinks, feels, wants, or likes etc. If the person

is specifically trying to elicit a positive or negative private state of someone else, this

is annotated as a Positive or Negative Subjective Question. Subjective Questions that

do not specifically ask for a positive or negative state of someone else are General

Subjective Questions. For example, (5) and (6) are General Subjective Questions:

(5) Do you like the large buttons?

(6) What do you think about the large buttons?

Objective Polar Utterances are utterances that describe positive or negative factual

information about something without conveying a private state. Examples are given

in (7) and (8). Generally, breaking something the first time it is used is not good, so

this is marked as Negative Objective. (8) is an example of Positive Objective.

(7) The camera broke the first time I used it.

(8) The camera lasted for several years past its warranty.

Wilson [208] performed an agreement study and measured agreement for each class

separately at the level of dialogue act segments. Table 5.11 gives the Kappa (Co-

hen [41]) and % agreement for Subjective Utterances, Positive Subjective Utterances,

Negative Subjective Utterances, and Subjective Questions.

Kappa % Agree

Subjective Utterances 0.56 79

Positive Subjective Utterances 0.58 84

Negative Subjective Utterances 0.62 92

Subjective Questions 0.56 95

Table 5.11: Inter-annotator agreement for the AMIDA subjectivity annotations.

We defined two main binary decision tasks in this study. The first task is to discrim-

inate between Subjective and Non-Subjective utterances. An utterance is considered

Subjective if it falls in the category Subjective Utterances or Subjective Questions.

The second task is to discriminate between Positive Subjective Utterances and Negative

Subjective Utterances. For this task, the utterances that are both Positive and Negative

Subjective are excluded.

Using multimodal information sources, lexical and acoustic, we investigated sub-

jectivity recognition in the context of meetings and we focused on the following ques-

tions:

• Given multiple acoustic and lexical features, which of these sources are particu-

larly valuable for subjectivity analysis in multiparty conversation?
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• Does the combination of these sources/features lead to further improvement?

• What are the optimal representations of these sources/features from a machine

learning point of view?

5.3.3 Material: AMI Meeting Corpus

We used 13 meetings6 from the AMI Meeting Corpus (Carletta [35]). Each meeting

has four meeting participants and is approximately 30 minutes long. The participants

play specific roles (e.g., Project Manager, Marketing Expert) and together function

as a design team. Within the set of 13 meetings, there are 20 participants, with each

participant taking part in two or three meetings as part of the same design team. For a

brief description of the AMI corpus, the reader is referred to Section 2.4.1. Table 5.12

lists the number of utterances (and their mean durations) used in the classification

experiments.

N mean and standard deviation duration

Task 1
Subjective 6226

µ = 1.9 s, σ = 2.0 s
Non-Subjective 8707

Task 2
Positive Subjective 3157

µ = 2.6 s, σ = 2.3 s
Negative Subjective 1052

Table 5.12: Material used in classification experiments.

5.3.4 Method and Features

For the subjectivity recognition tasks, we used prosodic features and three different

text representations: word, character and phoneme-level transcriptions. These fea-

tures were used in combination with the boosting algorithm AdaBoost.

Lexical (textual) features

We employed three types of textual features which are all based on a manual tran-

scription of the speech on different levels: word-level (WORDS), character-level

(CHARS), and phoneme-level (PHONES). The PHONES were produced through dic-

tionary lookup on the words in the reference transcription. Both CHARS and PHONES

representations include word boundaries as informative tokens. The textual features

for a given utterance are simply all the WORDS, CHARS or PHONES in that utter-

ance. Selection of n-grams is performed by the learning algorithm. Examples of these

representations are given in Table 5.13.

Acoustic features

Based on earlier research on the acoustics of emotion (e.g., Banse and Scherer [12])

and ‘hot spots’ (e.g., Wrede and Shriberg [211]), we extracted prosodic features

6ES2002b, ES2002c, ES2002d, ES2008b, ES2008c, ES2009b, ES2009c, ES2009d, IS1003c, IS1003d,

TS3005b, TS3005c, TS3005d
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WORDS yeah i like the idea

CHARS WB y e a h WB i WB l i k e WB t h e WB i d e a WB

PHONES y eh ax sil ay sil l ay k sil dh ax sil ay d iy ax sil

Table 5.13: Examples of different feature representations.

(PROS) that are mainly based on pitch, energy, and the distribution of the energy

in the Long-Term Averaged Spectrum (LTAS), see Table 5.14. These features were ex-

tracted at word-level and aggregated to the dialogue-act level by taking the average

over the words per dialogue act. We then normalized the features per speaker per

meeting by converting the raw feature values to z-scores (xz = (xraw − µ)/σ). The

program Praat (Boersma and Weenink [23]) was used to extract the acoustic features.

Pitch mean, standard deviation, minimum, maximum,

range, mean absolute slope

Intensity (energy) mean, standard deviation, minimum, maximum,
range, RMS energy

Distribution energy in LTAS slope, Hammarberg index, center of gravity, skew-

ness

Table 5.14: Acoustic features PROS.

Learning method: AdaBoost

The AdaBoost algorithm was used as classification method. As described in Sec-

tion 2.4.3, AdaBoost is an iterative meta-algorithm that combines many simple weak

learners or rules into one single, strong classifier. For our classification experiments,

we used BoosTexter (Shapire and Singer [175]), an implementation of the AdaBoost

algorithm that is specifically attuned to text categorization tasks. In the case of Boos-

Texter, these weak rules have the same basic form as that of a one-level decision tree.

The test at the root of this tree is a simple check for the presence or absence of a term

in the given text. In case of continuous values, the test checks if a value is above or

below a certain threshold. We chose to use BoosTexter because, in addition to it hav-

ing a proven track record for working well for many NLP tasks, the tool’s parameters

allow for easy trial of many different n-gram configurations. An additional advantage

of BoosTexter is that it can deal with both continuous-valued input (e.g., age) and

textual input (e.g., a text string) at the same time.

5.3.5 Evaluation and results

In this Section, we discuss the experimental setup and present our results. We dis-

cuss how we trained and tested the single-source classifiers, and how these classifiers

were combined via weighted linear combinations to investigate what combination of

features and classifiers are most valuable for subjectivity recognition.
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Experimental setup

The experiments were performed using 13-fold cross validation. Each meeting con-

stitutes a separate fold for testing, e.g., all the segments from meeting 1 make up

the test set for fold 1. Then, for a given fold, the segments from the remaining 12

meetings were used for training and parameter tuning, with roughly a 85%, 7%, and

8% split between training, tuning, and testing sets for each fold. The assignment

to training versus tuning set was random, with the only constraint being that a seg-

ment could only be in the tuning set for one fold of the data. As main performance

measure, we report Cdet with equal prior probabilities (= 0.5) and equal costs (= 1)

(see also Section 2.4.4). In addition, we report the False Rejection Rate (FRR), False

Alarm Rate (FAR), F1 (harmonic mean between precision and recall), and accuracy.

Note that threshold calibration was not performed. For significance tests, we used

Wilcoxon Signed Rank test, two-sided, p < 0.05.

The classification experiments performed involved two steps. First, we trained

and optimized a classifier for each type of feature separately using BoosTexter; we

call these the ‘single-source’ classifiers. Then, we investigated the performance of all

possible combinations of features using linear combinations of the individual feature

classifiers.

Single-Source Classifiers Four single-source classifiers were trained using BoosTex-

ter, one for each type of feature. For the WORDS, CHARS, and PHONES, we optimized

the classifier by performing a grid search over the parameter space, varying the num-

ber of rounds of boosting (100, 500, 1000, 2000, 5000), the length of the n-gram (1,

2, 3, 4, 5), and the type of n-gram. BoosTexter can be run with three different n-gram

configurations: n-gram, s-gram, and f -gram. For the default configuration (n-gram),

BoosTexter searches for n-grams up to length n. For example, if n = 3, BoosTexter

will consider 1-grams, 2-grams, and 3-grams. For the s-gram configuration, BoosTex-

ter will in addition consider sparse n-grams (i.e., n-grams containing wildcards), such

as the * idea. For the f -gram configuration, BoosTexter will only consider n-grams of

a maximum fixed length, e.g., if n = 3 BoosTexter will only consider 3-grams. For the

PROS classifier, only the number of rounds of boosting was varied. The parameters

were selected for each fold separately; the parameter set that produced the lowest

error rate (we used Cdet) on the tuning (development) set is used to train the final

classifier for that fold.

Classifier combination After the single-source classifiers have been trained, they

were combined into an aggregate classifier. To this end, we decided to apply a simple

linear interpolation strategy. Linear interpolation of models is the weighted combi-

nation of simple models to form complex models, and has its roots in generative lan-

guage models (Jelinek and Mercer [86]). Raaijmakers [141] has demonstrated its use

for discriminative machine learning. In the present binary class setting, BoosTexter

produces two decision values, one for each class. For each individual single-source

classifier (i.e., PROS, WORDS, CHARS and PHONES), separate weights were esti-

mated that were applied to the decision values for the two classes produced by these

classifiers. These weights express the relative importance of the single-source classi-
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fiers. The prediction of an aggregate classifier for a class c is then simply the sum of

all weights for all participating single-source classifiers applied to the decision values

these classifiers produce for this class. The class with the maximum score wins, just

as in the simple non-aggregate case.

Formally, then, this linear interpolation strategy finds for n single-source classifiers

n interpolation weights λ1, . . . λn that minimize the empirical loss (measured by a loss

function L), with λj the weight of classifier j (λ ∈ [0, 1]), and Cj
c (xi) the decision

value of class c produced by classifier j for datum xi (a feature vector). The two

classes are denoted with 0, 1. The true class for datum xi is denoted with x̂i. The loss

function is in our case based on Cdet, measured on heldout development training and

test data.

The aggregate prediction x̃i for datum xi on the basis of n single-source classifiers

then becomes

x̃i = arg max
c

(
n

∑

j=1

λj · Cj
c=0(xi),

n
∑

j=1

λj · Cj
c=1(xi)) (5.4)

and the lambdas are defined as

λn
j = arg min

λn
j ⊂[0,1]

k
∑

i

L(x̂i, x̃i;λj, . . . , λn) (5.5)

The search process for these weights can easily be implemented with a simple

grid search over admissible ranges. In the experiments described below, we investi-

gated all possible combinations of the four different sets of features (PROS, WORDS,

CHARS, and PHONES) to determine which combination yields the best performance

for subjectivity and subjective polarity recognition.

Results

Results for the two tasks are given in Table 5.15. We report the results of two baseline

classifiers: one that randomly chooses a class based on class priors (BASE-RAND) and

one that always chooses the target-class (BASE-SUBJ for subjectivity recognition and

BASE-POSS for Positive Subjectivity detection). The bullets in a given row indicate

the features that were evaluated for a given experiment. All values in Table 5.15 are

averages over 13 folds.

We can observe in Table 5.15 that the combination of different sources of informa-

tion is beneficial, and in general, the more information sources are used, the better

the performance. The best results for Task 1 were obtained with all four information

sources, achieving a Cdet of 26.7. For Task 2, the best results were also obtained

with the four information sources, except PROS (including PROS did not significantly

improve performance), achieving a Cdet of 26.6.

The effects of adding more information to the single-source classifiers was also

measured. From Table 5.16, it seems that, of the various feature types, prosody PROS

seems to be least informative for both subjectivity recognition and polarity classifica-

tion. In all cases, except for PROS, adding an extra information source yields signifi-

cantly better performance. In addition, all other single-source classifiers significantly

outperform the single-source classifier based on PROS, see Table 5.17 and 5.18. Fur-
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TASK 1: SUBJECTIVE VS. NON-SUBJECTIVE

PROS WORDS CHARS PHONES Cdet FRR FAR F1 A

UNI

• 38.2 45.6 30.8 54.6 63.0
• 31.5 45.7 17.3 60.4 71.0

• 31.0 42.9 19.0 61.7 71.2
• 31.8 44.4 19.2 60.5 70.5

BI

• • 28.9 43.1 14.7 63.9 73.6

• • 28.0 40.0 16.1 65.5 74.1

• • 28.4 41.8 14.9 64.8 74.0
• • 27.3 40.5 14.2 66.1 75.0

• • 27.9 41.5 14.2 65.4 74.6

• • 27.4 40.0 15.2 66.3 74.8

TRI

• • • 27.2 40.3 14.1 66.3 75.2

• • • 27.7 41.2 14.1 65.6 74.8

• • • 27.1 39.3 15.0 66.6 75.0
• • • 26.8 39.5 14.2 66.9 75.4

QUADRI • • • • 26.7 39.3 14.0 67.1 75.6

BASE-SUBJ 50.0 0 100 60.3 43.4

BASE-RAND 48.9 56.9 40.9 43.5 52.0

TASK 2: POSITIVE SUBJ. VS. NEGATIVE SUBJ.

PROS WORDS CHARS PHONES Cdet FRR FAR F1 A

UNI

• 49.7 8.9 90.1 82.0 70.5
• 35.5 10.3 60.8 85.2 77.0

• 34.7 12.5 57.0 84.5 76.3
• 35.6 10.7 60.5 85.0 76.8

BI

• • 29.1 7.7 50.6 88.2 81.5

• • 28.6 9.1 48.1 87.8 81.0

• • 29.3 7.9 50.7 88.1 81.3
• • 27.3 7.0 47.6 89.0 82.8

• • 28.0 6.8 49.2 88.9 82.5
• • 27.5 7.8 47.3 88.6 82.3

TRI

• • • 27.1 6.8 47.5 89.1 83.0

• • • 27.9 6.4 49.4 89.0 82.8

• • • 27.5 7.5 47.4 88.7 82.4
• • • 26.8 6.7 46.8 89.2 83.2

QUADRI • • • • 26.6 6.5 46.7 89.4 83.4

BASE-POSS 50.0 0 100 85.6 75.0

BASE-RAND 50.1 26.4 73.8 74.1 61.7

Table 5.15: Results Task 1 and Task 2. Reported are Cdet, FRR (False Rejection Rate aka

Miss Rate), FAR (False Alarm Rate), F1 (harmonic mean between recall and precision),

A (accuracy=number of correct classifications/total number of utterances).

thermore, the single-source classifier PROS achieves a better performance for Task 1

than Task 2; PROS is thus more useful for subjectivity recognition than for polarity

classification. The best performing feature types are both CHARS and WORDS: from

the single-source classifier results in Table 5.17 and 5.18, we can observe that CHARS

are not significantly better than WORDS.

A possible question that remains is what the effect is of classifier interpolation on

the results. To answer this question, we performed two additional classification exper-
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+PROS + WORDS +CHARS +PHONES
1 2 1 2 1 2 1 2

PROS + + + + + +

WORDS + + + + + +

CHARS - + + + + +
PHONES + + + + + +

PROS+WORDS + + + +

PROS+CHARS + + + +
PROS+PHONES + + + +

WORDS+CHARS + - + +

WORDS+PHONES + - + +
CHARS+PHONES + - + +

PROS+WORDS+CHARS + +

PROS+WORDS+PHONES + +

PROS+CHARS+PHONES + +
WORDS+CHARS+PHONES + -

Table 5.16: Addition of features separately (for Task 1 and 2). ‘+’ for a row- column

pair (r, c) means that the addition of column feature c to the row features r significantly

improved r’s F . ‘-’ indicates no significant improvement.

WORDS CHARS PHONES
PROS < < <
WORDS = =
CHARS >

Table 5.17: Task 1: significance single-

source classifiers.

WORDS CHARS PHONES
PROS < < <
WORDS = =
CHARS =

Table 5.18: Task 2: significance single-

source classifiers.

iments for both tasks. First, we investigated the performance of an uninterpolated

combination of the four single- source classifiers, that is, λ1 = λ2 = λ3 = λ4 = 1.

In essence, this combines the separate feature spaces without explicitly weighting

them. Second, we investigated the results of training a single BoosTexter model using

all the features, essentially merging all feature spaces into one agglomerate feature

space at once (feature-level fusion). The results in Table 5.19 and 5.20 show that

interpolation significantly outperforms the uninterpolated model for both tasks. The

interpolated model outperforms the feature-level fusion significantly only in Task 2.

The uninterpolated model appears to be performing similar to the feature-level fusion.

Task Combination Cdet FRR FAR F1 A

1
interpolated 26.7 39.3 14.0 67.1 75.6
uninterpolated 28.7 41.7 15.8 64.4 73.6

feature-level 27.7 38.8 16.7 66.0 74.2

2

interpolated 26.6 6.5 46.7 89.4 83.4
uninterpolated 32.7 4.2 6.1 8.5 8.1
feature-level 30.8 9.2 52.5 86.9 79.6

Table 5.19: Results interpolated, uninterpolated and feature-level fusion.
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uninterpolated feature-level

Task 1
interpolated > =
uninterpolated =

Task 2
interpolated > >
uninterpolated =

Table 5.20: Comparing performances between interpolated, uninterpolated and feature-

level fusion models (’<’ means significantly worse, ’>’ means significantly better, p <
0.05).

5.3.6 Conclusions

We compared the use of prosodic features, word n-grams, character n- grams, and

phoneme n-grams for subjectivity recognition and polarity classification. The clas-

sification experiments showed that prosody is outperformed by textual features in

both subjectivity and polarity detection. Prosody performed substantially worse in

polarity classification than in subjectivity recognition: as a single-source classifier

PROS achieves a Cdet of 49.7 as close as classification by chance. As an additional

feature, PROS does not always significantly improve performance in polarity classifi-

cation (see Table 5.16). WORDS, CHARS and PHONES on the other hand, appear to

be very competitive feature sets: word n-grams, character n-grams and phoneme n-

grams all achieve similar performances, with a small advantage for character n-grams

since these, in the single-source classifier case, significantly outperformed phoneme

n-grams in Task 1 subjectivity recognition (see Table 5.17). Combining all informa-

tion sources available yielded the best performances, except for Task 2 where the

addition of PROS to WORDS, CHARS and PHONES did not significantly improve per-

formance. We have also shown that interpolation outperforms the unweighted and

the feature-level fusion combination significantly, at least for Task 2 (see Table 5.20).

To conclude, we can answer the questions posed in Section 5.3.2 as follows: a)

textual representations in the form of words and characters are relatively valuable in-

formation sources for subjectivity recognition and polarity classification, b) the com-

bination of these sources carried out by an interpolation strategy yields significantly

better performances, and c) the optimal representation of features for subjectivity

recognition includes CHARS, WORDS, PHON, and PROS features, while for polarity

classification, PROS can be excluded.

5.4 Discussion and conclusions

This Chapter dealt with the recognition of spontaneous emotionally colored behav-

ioral phenomena in a meeting context. The first topic focused on the detection and

segmentation of laughter. The second topic focused on subjectivity analysis and po-

larity classification of subjective utterances. We discuss ideas for further research and

elaborate on possible explanations for the results found.

For laughter vs. speech discrimination, a combination of spectral and prosodic

features and different learning algorithms yielded the best performances. The errors

made by the classifier suggest that it might be a good idea to define different types of
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laughter and develop separate laughter-type-dependent classifiers. A first division in

laughter types could be that of voiced laughter vs. unvoiced laughter since they not

only differ significantly from each other acoustically, they also elicit different emotions

(Bachorowski and Owren [10]). Furthermore, a study by Campbell et al. [30] indeed

showed that laughters can be classified into several types of classes.

Our laughter research has focused on the acoustics only, but when one laughs,

one obviously also uses facial muscles. Audio-visual laughter detection has recently

gained much attention by the works of e.g., Ito et al. [84], Reuderink et al. [147],

and Petridis and Pantic [130, 131, 132]. Both Reuderink et al. [147] and Petridis and

Pantic [130, 131, 132] use AMI Meeting data and perform decision-level fusion which

yielded the best performance. Future research can for example focus more closely

on the inter-relations between the vocal and visual act of laughing in the temporal

domain.

Furthermore, it has been suggested that laughter can reveal someone’s identity

and can enhance speaker recognition systems. Research has shown that people can

use laughter as a cue to someone’s identity (e.g., Bachorowski et al. [11]). Knox and

Mirghafori [94], Knox et al. [95] have developed laughter detection systems with the

aim to enhance speaker recognition systems, but no speaker recognition performance

results have been reported yet. Hence, future work can focus on the integration of

automatic laughter detection in speaker recognition systems with the aim to improve

performance.

Finally, as an expression of emotion or paralinguistic event or ‘affect burst’ as

Schröder [167] calls it, laughter carries important cues for someone’s emotional state.

Note that in our work, we have only detected laughter without giving an interpreta-

tion to it. We foresee that a laughter detector can serve as one of the input modules

for meta-analyzers that can give an interpretation of the laughter or a prediction of

someone’s emotional state based on separate modules/detectors, e.g., raised voice

detector, harsh voice detector, cough detector etc. (see Fig. 5.5).

Figure 5.5: Emotion detection based on low-level event detectors.

In the second part of this Chapter, we investigated the use of shallow linguis-
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tic representations such as character n-grams and phoneme n-grams for subjectivity

recognition and polarity classification. It appeared that these representations work

at least as good as (or even better than) word n-grams. Phoneme n-grams are in-

teresting because now that we know that they perform similar to word n-grams,

this opens up interesting possibilities for the development of real-time subjectivity

recognition systems. Automatic phoneme recognition has a lower latency than ASR

which is currently much slower than real-time. A system based on phoneme n-grams

can make a halt at phoneme level, which speeds up subjectivity classification since

phoneme recognition comprises one of the first levels in ASR. However, the reason

why phoneme n-grams and character n-grams perform so well remains a bit unclear.

Character n-grams have previously been used successfully in named-entity recogni-

tion (Klein et al. [93]) and subjective sentence recognition (Raaijmakers and Kraaij

[142]). We suspect that character n-grams are flexible enough to capture several

types of linguistic information useful for subjectivity recognition. For example, part-

of-speech information that can be correlated with subjective language use can be

captured in the character 4-gram ould which covers modal verbs like would, could,

should or in the character 3-gram ly# which covers the set of adverbs ending in -ly.

In addition to textual features, we also used prosodic features for subjectivity

recognition and polarity classification. Subjectivity has not been investigated yet (to

the best of our knowledge) in the context of prosody. However, phenomena that are

closely related to subjectivity such as involvement, (dis-) agreement and ‘hot spots’,

have been studied in the context of prosody and have shown that prosody can be pre-

dictive of the aforementioned phenomena. Our experiments have shown that prosody

can also be predictive for subjectivity, although its predictive power is smaller than

textual features. Note that we used a relatively small set of prosodic features and

that this set can be extended to the use of e.g., spectral features. Also, the boosting

algorithm used here might not be the best learning algorithm for acoustic features.

Hence, the performance of the acoustic subjectivity recognizer could be improved by

the use of extra features or other learning algorithms (which fell outside the scope

of this work). For polarity classification, we expected that prosody would be outper-

formed by textual features. It remains a challenge to find acoustic features that are

predicative of positiveness and negativeness in speech. More (fundamental) research

is needed to uncover the acoustic characteristics of polarity classification (Positive vs.

Negative emotions) in speech.

The results obtained in this Chapter prove that a combination of several different

information sources and algorithms can boost performance significantly. For laughter

and subjectivity recognition, most of the time it is better to combine several infor-

mation sources on decision-level and to weight separately developed classifiers or

to use an algorithm that can learn and attribute weights to the decision values of

the separate classifiers. The fusion strategies we used in this Chapter are relatively

straightforward. When more multimodal information streams, e.g., facial expression

recognition, gesture recognition, posture recognition etc., become available, more

complex fusion strategies will be needed to cope with the several streams of data and

all its difficulties: what to do if one or two of the information streams are missing,

how to define a common unit of analysis and how to synchronize these units, how to
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deal with incongruent decisions etc. We have not tackled these complexities in this

current work, but it certainly needs to be tackled in the future, especially since the ex-

pression of emotion involves multimodal processes which may behave asynchronously

and incongruently.

Finally, it has become clear that affect in naturalistic data, in this case meetings,

can express itself in subtle ways that is more related to conversational behavior rather

than primary basic emotions. Even in natural speech data, the performance was

relatively good for laughter detection (EER 3%–9%) which can probably be attributed

to the fact that laughter is a relatively distinct event. For subjectivity and subjective

polarity recognition, error rates were much higher with EERs around 27%. From an

affective perspective, subjectivity is a less distinct concept that is only indirectly linked

to affect; we assume that people are more affectively expressive when people express

their personal opinions rather than factual statements, but it is not a prerequisite.

Subjectivity is perhaps too broadly defined and it is perhaps expressed in very subtle

ways that is not ‘detectable’ enough by our current affect recognition technology. It

seems that relatively distinct non-verbal vocal events such as laughter are interesting

events to detect for affect recognition since 1) recognition technology appears to be fit

for this detection task, and 2) they carry low-level affective information. The logical

next step would be to analyze this low-level information, using the conversational

context, to grasp a higher-level understanding of meetings or conversations (see e.g.,

Fig. 5.5).
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Chapter 6

Arousal and Valence prediction: felt

versus perceived

Assigning labels to natural affective signals is a complex and time-consuming process

that is susceptible to subjectiveness. The main difficulty in natural emotion anno-

tation is the absence of a ‘ground truth’; what does one consider as an appropriate

emotion label of a specific signal? One obvious possible consideration is to ask per-

sons who have undergone the emotion to describe what they felt. An alternative is to

ask observers to describe what emotional expressions they perceive from the person

who is undergoing the emotion; this procedure is currently the most common one in

emotional speech research.

In this Chapter, the challenge is taken up to develop a speech-based emotion rec-

ognizer that can detect felt emotions. A speech-based emotion recognizer that can

detect perceived emotions has been developed in parallel so that these two recog-

nizers can be compared. The underlying assumption that we make, is that emotion

annotations made by the persons who have undergone the emotions themselves are

‘more true’, and more closely approximate ‘ground truth’ than the annotations made

by naive observers ‘More true’ in the sense that these labeled expressions better reflect

the emotional meaning that the sender intended to send. In order to develop these

recognizers, spontaneous affective audiovisual data was collected with subjects who

are playing a videogame. All data was annotated by the subjects themselves (felt),

and a subset was also annotated by a group of naive observers (perceived/observed).

With these data, two experiments were performed. The first experiment involved

a relatively small perception experiment that aimed at investigating how observers

agree on emotion when unimodal or multimodal information is provided, and how

annotations made by the gamers themselves differ from annotations made by ob-

servers. In the second experiment, we compared the use of the annotations made

by the gamers themselves and the annotations made by the observers for the de-

velopment of speech-based emotion recognizers. Furthermore, these machine per-

formances were compared to human performance. One of the key elements of the

emotion recognizers developed is that these are developed to predict Arousal and

Valence scalar values rather than to detect emotion categories.

This Chapter is structured as follows. The development and annotation proce-
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dures of the audiovisual emotion database of gamers are described in Chapter 6.2.

Chapter 6.3 describes the experimental setup and the results of the first experiment.

In Chapter 6.4, we describe the second experiment and we present an analysis on the

use of ‘felt’-annotations vs. ‘perceived’-annotations for the development of speech-

based affect recognizers. Finally, we discuss important findings of both studies in

Chapter 6.5.

6.1 Emotion labeling: felt vs. perceived emotions

In emotion recognition research, ‘ground truth’ labels to be used for the development

of emotion recognizers, are difficult to acquire and are to a certain extent subjective.

There is (usually) no discussion about who is speaking or what language he or she

is speaking, but people do not always agree on what emotional state a person is

in. Hence, the labeling (annotation) of spontaneous expressive corpora remains a

major topic in emotion research. A frequently adopted approach to acquire ‘ground

truth’ labels for expressive signals, is to have several (naive) humans to label these

signals. When these annotators (or a majority of annotators) agree with each other,

we can consider their judgments as ‘ground truth’. We can distinguish two types of

annotators: one that is a naive observer who annotates the observed or perceived

emotion, and one who labels his/her own felt (‘self’) emotions that he/she has just

undergone. From an emotion recognition perspective, it is important to know how the

emotion signals were labeled and by whom. If the labels are annotated by observers

who label perceived emotion, the machine will learn to recognize perceived emotion.

For some people, the ultimate goal is to develop a machine that can recognize a

person’s felt emotions. So far, we have not seen results of speech-based emotion

recognizers (to the best of our knowledge) that are developed with felt emotion labels

to detect felt emotions, although the literature does report some studies on the use of

‘self’ labeling for emotion corpora.

The majority of emotion corpora contain emotion annotations that are made by

(naive) observers. Only a small number of studies has investigated the use of an-

notations that are made by the subject who has undergone the emotion him/herself

for expressive corpora. Aubergé et al. [8] proposed to use ‘auto-annotation’, annota-

tion performed by the subject him/herself, as an alternative method to label expres-

sive corpora. The subjects were asked to label what they felt rather than what they

expressed. There were no conclusive results: they concluded that ‘felt’-annotations

or ‘expressed’-annotations both have their strengths and weaknesses. In Busso and

Narayanan [26], the expression and perception of emotions were studied and ‘self’-

assessments of emotion were compared to assessments made by observers. In that

study, they found a mismatch between felt and perceived emotions. The ‘self’-raters

appeared to assign their own emotions to more specific emotion categories which led

to more extreme values in the Arousal-Valence space.

In the current study, we analyze differences between felt and perceived emo-

tion annotations and investigate what the consequences of these observations are

for the development of automatic speech-based affect recognizers. To that end, we

first recorded an audiovisual emotion database of subjects playing videogames.
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6.2 The TNO-GAMING corpus: a corpus of gamers’ vocal and

facial expressions

In this Section, it is described how we elicited and recorded spontaneous audiovisual

emotion data with subjects playing a videogame. Furthermore, we describe results

obtained with the ‘self’-annotation, performed by the gamers themselves.

6.2.1 Participants

Seventeen males and eleven females with an average age of 22.1 years (2.8 standard

deviation) participated in the gaming experiment. Participants played a videogame

against each other in teams of two against two. We asked each participant to bring

along a friend as team mate. A compensation was paid to all participants. Fifteen

participants were relatively experienced gamers, while thirteen participants hardly

ever or never played videogames (see Table 6.1).

How often do you play videogames?

number of participants

each day 5

1–3 times a week 10

hardly ever 8

never 5

Table 6.1: Gaming experience of participants.

6.2.2 Recordings

Speech recordings were made with high quality close-talk microphones that were at-

tached near the mouth to minimize the effect of crosstalk (speech from other speak-

ers) and other background noise. Recordings of facial expressions were made with

high quality webcams (Logitech Quickcam Sphere). The webcams were placed at ap-

proximate eye-level on top of the monitor such that a frontal view of the face was

captured under an angle that was acceptable for reliable automatic facial recognition.

Further, lighting and background conditions were controlled by adjusting the light

when needed and by placing evenly colored dark curtains behind the participants to

avoid clutter and noise in the background. Noldus’ FaceReader (by VicarVision [4],

an automatic face recognition software application) was used to test the quality of

the video recordings under these environmental settings and conditions. The game

content itself was also stored by capturing the frames (per 1 second) of the video

stream during game play.

6.2.3 Procedure

At the beginning of the gaming experiment, the participants received general instruc-

tions and training sessions to get acquainted with the game and the annotation task.

Each participant played the game twice (2 × 20 minutes). Each gaming session was
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followed by a break and the annotation tasks. Between the first and the second game

session the participants had a long break.

6.2.4 The game

The participants played a multiplayer first-person shooter videogame called Unreal

Tournament 2004, developed by Epic Games. The gamemode ‘Capture the flag’ was

selected in which the goal was to capture each other’s flag as many times as possible.

6.2.5 Eliciting emotions

The goal was to evoke a broad range of different emotions, including emotions like

Frustration, Joy, Amazement and Malicious Delight. We employed several strategies

to evoke these emotions and to stimulate vocal and facial expressive behavior:

1. each participant had to bring a friend as team mate.

2. bonuses were granted to the winning team, and the team with ‘best collabora-

tion’.

3. surprising events were generated in the game, for example, sudden deaths, sud-

den appearances of monsters, and hampering keyboard or mouse controls, were

inserted in the game (at an approximate rate of one event per minute).

6.2.6 Annotation procedure

After each game session, the participants watched their own videos recorded and

judged their own emotions in two different ways: one based on emotion categories

and the other one based on emotion dimensions. In addition next to the video

recorded, the video stream of the game itself was also provided as context infor-

mation. The participants annotated the running video and could not pause or rewind

the video. Prior to the annotation task, the participants had received a training of 20

minutes long.

Categories: event/category-based

Participants were asked to select and de-select emotion labels whenever they felt the

emotion that they experienced at that moment in the game: in other words, they had

to click to select an emotion label and to mark the beginning of the corresponding

emotion and click again on the same label to de-select and to mark the ending of that

emotional event. The twelve emotion labels from which the participants could choose

are based on the ‘Big Six’ (universal basic) emotions and are supplemented with typ-

ical game-related emotions as described in Lazarro [105]. We expected that these

labels, shown in Table 6.2, would cover most of the emotions that could occur dur-

ing gaming. The selection of multiple emotion labels at the same time was allowed,

which made it possible to have ‘mixed’ emotions. The participants also had the option

to come up with their own emotion label that was not listed in the alternatives, but it

appeared that the participants had not used this option.
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Happiness (Blijdschap) Fear (Angst)

Boredom (Verveling) Anger (Boosheid)

Amusement (Amusering) Relief (Opluchting)

Surprise (Verbazing) Frustration (Frustratie)

Malicious Delight (Leedvermaak) Wonderment (Verwondering)

Excitement (Opgewondenheid) Disgust (Walging)

Table 6.2: The emotion categories used in the category-based annotation task (with the

Dutch labels that were offered to the participants in brackets).

Continuous emotion dimensions: continuity/dimension-based

The participants were asked to rate their emotions felt on two emotion scales namely

the Arousal scale (Active vs. Passive) and the Valence scale (Negative vs. Positive).

The third scale Dominance was not used in this study. As opposed to the category-

based approach where the participants had to mark the beginning and ending of an

emotional event, the participants now had to give ratings on emotion scales running

from 0 to 100 (with 50 being neutral) each 10 seconds separately (thus not simulta-

neously as is done with some annotation tools such as Feeltrace (Cowie et al. [45]).

Each 10 seconds, an arrow appeared on the screen to signal the participants to give

an Arousal and Valence rating, see Fig. 6.1.

Figure 6.1: The emotion scales offered to the participants in the dimension-based anno-

tation task.

6.2.7 Analyses of the ‘felt’ emotion annotations

The emotion data collected were not (immediately) ready to use for analysis, and

required some post-processing as explained here.

Post-processing the emotion annotations

After the annotation tasks were completed by the gamers themselves, we needed to

post-process the annotated emotion data which was performed in several steps:
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1. first, speech activity was detected and segmented with a relatively simple

energy-based silence detection algorithm (available in Praat [23])

2. the speech segments obtained with the silence detection algorithm were tran-

scribed manually at the word level by the current author

3. since delays are possible between the moment one decides to click and the

actual emotion event, and since we are only interested in the speech segments,

the speech segments needed to be synchronized with the category-based and

dimension-based emotion annotations

The silence detection algorithm determined the units of analysis, i.e., the segments

that will be used for further analysis and experiments. The synchronization process

between the emotion annotations and the speech segments is explained below.

In the category-based approach, participants marked the beginning and ending of

an emotional event. We assumed that the marker of the beginning is more reliable

than the ending marker. One of the reasons is that we noticed that some of the emo-

tional events were extremely long; we suspect that participants might have forgotten

to de-select the emotion label to mark the ending. Also, we allow for a delay between

the real occurrence of an emotional event and the moment that an emotion label was

selected. Fig. 6.2 shows how we associated speech segments with emotional events

in the category-based annotation task: check for a maximum number of N segments

(we chose N = 5) prior to the moment that an emotion label was selected whether

1) the segment ends within a margin of T seconds (we chose T = 3) before the label

was selected, and 2) the segment is labeled as non-silence by the silence detection

algorithm.

Figure 6.2: Procedure for finding speech segments that can be associated with an emo-

tional event.

In the continuous dimension-based approach, a similar synchronization procedure

was applied. Each 10 seconds, an arrow appeared to signal the participants to give

an Arousal and Valence rating (see Fig. 6.1). We allow for a delay between the mo-

ment that the arrow appeared and the moment that participants gave their ratings:

for a maximum of N segments (we chose N = 5), check whether 1) the segments

starts within a margin of T seconds (we chose T = 3) from the moment that the

arrow appeared, and 2) the segment is labeled as non-silence by the silence detection

algorithm.
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Results after post-processing

The procedure as described above resulted in a set of speech segments that are labeled

with an emotion category label and/or an Arousal and Valence label. In Fig. 6.3, we

can observe the frequency of emotion category labels as used by the gamers them-

selves. It seems that Frustration, Excitement, Happiness, Amusement and Surprise

are frequently occurring emotions, while Boredom, Fear and Disgust are hardly ex-

perienced by the gamers. Also note that a lot of emotional events co-occurred with

silent segments (the white areas in the bars).
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The results of the dimension-based annotation task are presented in Fig. 6.4

and 6.5. The figures show that the majority of speech segments is annotated as

Neutral. The Positive-Active area is also relatively well-filled with speech segments,

followed by the Negative-Active area in the Arousal-Valence space. There are appar-

ent blank spots in the Positive-Passive and Negative-Passive areas. It appears that

the participants did not often feel very Positive or Negative in a Passive way which is

imaginable. This relation between Valence and Arousal has also been encountered in

previous emotion rating studies, Lang [102], Hanjalic and Xu [74], where a similar

‘boomerang’-shape was found in the Arousal-Valence space when subjects were asked

to rate certain stimuli along Arousal and Valence scales. Finally, the participants men-

tioned that they sometimes had trouble interpreting the Arousal scale: they had some

trouble rating something as Passive or Neutral.

Number of

speech seg-

ments

Total length of speech segments

in minutes (mean and standard

deviation in seconds)

Number

of unique

words

Category-based 2830 78.6 m (1.67 s, 1.26 s) 1322

Dimension-based 7473 186.2 m (1.50 s, 1.12 s) 1963

Table 6.3: Amount of emotionally labeled speech data according to the gamers’ emotion

labeling.

In summary, this gaming experiment resulted in a substantial amount of labeled

speech data (see Table 6.3) that can be used for the training and development of

automatic emotion recognizers. Due to the spontaneous character of this gaming

experiment, we have obtained emotional speech data that do not always contain ex-

treme emotions, and we do not have an equally well-balanced dataset in the sense

that not all areas in the Arousal-Valence space are uniformly covered with speech

segments. One important novelty of the data collected in this gaming experiment, is

the fact that all data is annotated by the gamers themselves. We will refer to these

annotations as SELF-annotations (or SELF-ratings). The participants (i.e., the gamers)

who have labeled their own felt emotions after playing the videogame are referred to

as the SELF-raters. In subsequent experiments, we investigated the relation between

these SELF-annotations and annotations made by other observers. We also used the

data to train and test emotion recognizers. The database collected and described here

will be referred to as the TNO-GAMING corpus. In Fig. 6.6 and Table 6.4 some exam-

ples of emotional expressions are shown that were captured while the subjects were

playing the videogame.

6.3 Experiment I: ‘felt’ and ‘observed’ emotions in unimodal and

multimodal conditions

In this Section, we describe our first experiment carried out with TNO-GAMING data.

In this perception experiment1, movie clips from the TNO-GAMING database were used

1Part of the work described in this Section was previously published in Truong et al. [191].
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Figure 6.6: Some video stills of emotional expressions observed in the TNO-GAMING

corpus.

Val Aro Transcription

NA

0 99 urgh wat zijn dat voor monsters?

‘urgh what are those type of monsters?’

1 100 nee jaa klote klote! no! rennen! no no!

‘no yes shit shit! no! run! no! no!’
3 80 zoo irritant

‘soo irritating’

NP

10 31 ja ik ik probeer daar heen te gaan

‘yes I I try to go there’

13 5 ik wil die klotewapens niet hebben

‘I don’t what those shit weapons’
13 33 na ik zie helemaal niks

‘na I don’t see anything’

PA

97 99 oh dat ben jij sorry [lach]

‘oh that’s you sorry [laughter]’

81 98 rennen rennen rennen ja goed zo

‘run run run yes good job’
97 83 maak een punt maak een punt [lach]

‘score a point score a point [laughter]’

PP

71 8 oke dan gaan we nu een punt scoren

‘OK now we are going to score a point’
77 18 we gaan voor de twintig he ik heb de blauwe vlag

‘we are going for the twenty right I have the blue flag’
74 29 ik heb ze ik maak ze dood loop maar

‘I have them I kill them just walk’

Table 6.4: Examples of gamers’ word transcriptions and emotion annotations (with

an English translation), Val=Valence, Aro=Arousal, NA=Negative Active, NP=Negative

Passive, PA=Positive Active, PP=Positive Passive

and provided to naive observers in several different unimodal and multimodal listen-

ing conditions. The task of the observers was to rate these movie clips on Arousal

and Valence scales, similar to what the gamers themselves had done. In this way, we

could compare the SELF-ratings to the observers’ ratings. Additionally, we analyzed

the emotion ratings obtained from the several unimodal and multimodal conditions

to see what type of information leads to higher inter-rater observer agreement.

6.3.1 Related work

In areas of research where human labelers are used for data annotation, the quality

of the annotation can be assessed through an agreement analysis (aka reliability anal-
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ysis). The usual procedure involves a number of annotators (raters) who annotate

overlapping pieces of data such that inter-rater agreement can be assessed: the more

raters mutually agree with each other, the higher the quality (and reliability) of the

annotation. The annotation of natural emotion is known to be a complex and difficult

process, e.g., Laskowski and Burger [103], Reidsma et al. [146], Douglas-Cowie et al.

[54]. Laskowski and Burger [103] proposed an annotation scheme that describes

how people are behaving rather than how they are feeling. They reported inter-rater

κ agreements (Cohen [41], this is Cohen’s Kappa which ranges from 0 meaning no

agreement to 1 meaning perfect agreement) between 0.15 and 0.67 for three anno-

tators who annotated Valence in meeting speech data. Similarly, Reidsma et al. [146]

proposed an annotation procedure that is more attuned to a behavioral description of

emotion. In a first trial that was performed with Feeltrace (Cowie et al. [45]), car-

ried out on spontaneous AMI audiovisual meeting data (Carletta [35]), they obtained

relatively low averaged pair-wise agreement figures between 0.07 and 0.18. Douglas-

Cowie et al. [54] performed an agreement analysis on a natural multimodal emotion

database, the EmoTV database (Douglas-Cowie et al. [54]), and report inter-rater

agreement figures κ between 0.37 and 0.54, achieved with a category-based anno-

tation. More precisely, κ was 0.37, 0.43, and 0.54 when audiovisual, video only

and audio only information respectively was provided. Surprisingly, agreement was

lowest in the audiovisual condition. Busso and Narayanan [26] compared emotion

assessments of ‘self’ versus ‘other’. They found that in a category-based labeling ap-

proach, annotations made by the subjects themselves judging their own emotions

(‘self’) differed from the ones made by observers (‘other’). In a continuous-based la-

beling approach (labeling on Valence, Activation and Dominance scales), they found

no differences between ‘self’ and ‘other’.

In the current study, we assessed human emotion judgments under audio-only,

video-only, audiovisual, and audiovisual plus context information conditions. In addi-

tion, we compared ‘self’ vs. ‘other’ emotion assessments (Experiment I) and evaluated

their usefulness for automatic affect recognition (Experiment II).

6.3.2 Defining the goals of Experiment I

The goal of an agreement (reliability) analysis is to assess how reliable the labels

given by the annotators are. ‘Reliable’ can be defined in terms of level of agreement:

if many people agree upon a label, this label can be considered ‘reliable’. In our

study, we defined two groups of annotators and their corresponding annotations: we

compared SELF-annotations, i.e., ‘felt’ emotion ratings of the gamers themselves, to

OTHER-annotations coming from ‘other’ people, i.e., perceived emotion ratings from

external (naive) observers.

With the data collected, we performed a perception experiment. In Experiment I,

we are interested in two aspects: we aim to assess

• how well observers agree on the perception of spontaneous emotions when au-

dio only, video only, audiovisual or audiovisual plus context information is pro-

vided

• the reliability of SELF-ratings of emotion in comparison with OTHER-ratings of
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emotion.

6.3.3 Participants: observers

Twelve female and six male participants with an average age of 21.9 years were asked

to participate in a small perception experiment. These 18 people had not participated

in the previous gaming experiment. We will refer to this group of 18 participants as

the observers who produced the OTHER-ratings. The gamers who played the video

game and who rated their own emotions are referred to as SELF-raters.

6.3.4 Experimental setup

For the selection of the stimuli, movie clips from six gamers were selected by a

number of criteria: the move clips had to contain a sufficient amount of vocal and

facial expressions, and the aim was to have movie clips originating from different

regions in the Arousal-Valence space. These regions are the four well- known quad-

rants: Positive-Active (PA), Negative-Active (NA), Positive-Passive (PP), and Negative-

Passive (NP). In addition, we selected movie clips that have a large emotion change in

Arousal (CA) and a large change in Valence (CV). This makes a total of 6 × 6 movie

clips that were presented to each observer. However, it appeared to be difficult to

satisfy all of these criteria. As a result, not all emotion quadrants were equally well

represented in the set of stimuli offered to the observers, see Fig. 6.7. Each movie clip

has a length of 55 seconds and 4 rating moments. At each rating moment, an arrow

appeared to signal the observer to give an Arousal and Valence rating, similar to the

rating task that was performed by the gamers themselves.
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Figure 6.7: The averaged locations of the 36 movie clips that were offered to observers

in Experiment I.

The movie clips were presented to the observers in six different conditions: au-

dio only (A), video only (V), audiovisual (AV), audio+context (AC), visual+ context

(VC), and audiovisual+context (AVC). With ‘context’, we mean the game content

video stream that was recorded during game play. The AVC condition is best com-

parable to the gamers’ rating task in which the SELF-annotations were collected (the
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gamers too had the audiovisual and the context information available during annota-

tion).

In a within-subject design, the 36 movie clips were distributed over 36 cells in a

6 (conditions) by 6 (‘emotion regions’) matrix and presented to the observers in a

balanced design such that each movie clip of a specific gamer with a specific ‘emotion

region’ was rated in each condition by at least two observers (see Table 6.5 for one

example design of one observer).

‘emotion region’

cond PA NA CA CV PP NP

A gamer1 gamer2 gamer3 gamer4 gamer5 gamer6

V gamer1 gamer5 gamer4 gamer2 gamer3 gamer6

AV gamer4 gamer2 gamer3 gamer1 gamer5 gamer6

AC gamer2 gamer6 gamer3 gamer5 gamer1 gamer4

VC gamer1 gamer6 gamer2 gamer3 gamer5 gamer4

AVC gamer3 gamer6 gamer5 gamer2 gamer4 gamer1

Table 6.5: Example of distribution of movie clips over conditions and ‘emotion regions’

for one observer.

6.3.5 Agreement computations: Krippendorff’s α

We used Krippendorff’s α as agreement measure. Although Cohen’s κ is frequently

used by researchers, it is not as flexible and generic as α as explained below. For

example, κ can only be calculated between 2 raters (for more than 2 raters, Fleiss’ κ

can be used), and cannot deal with missing data values.

Krippendorff’s Alpha

For all agreement computations, Krippendorff’s α (Krippendorff [98, 97], Hayes and

Krippendorff [76]) was used. It was proposed in Hayes and Krippendorff [76] as the

standard reliability measure. According to Hayes and Krippendorff [76], an index of

reliability should have the following properties:

1. It should assess the agreement between two or more observers who describe

each of the units of analysis separately from each other. For more than two

observers, this measure should be a) independent of the number of observers

employed, and b) invariant to the permutation and selective participation of

observers. Under these two conditions, agreement would not be biased by the

individual identities and number of observers who happen to generate the data.

2. The index should not be confounded by the number of categories or scale points

made available for coding.

3. The index should constitute a numerical scale between at least two points with

sensible reliability interpretations. By convention, perfect agreement is set to

1.00. The absence of agreement is typically set at 0.00 and should represent a
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situation in which the units of analysis bear no statistical relation to how they

end up being identified, coded, or described.

4. It should be appropriate to the level of measurement of the data.

5. Its sampling behavior should be known or at least computable.

Krippendorff’s α satisfies all of the conditions discussed above, and hence, is the

measure preferred. α counts pairs of categories or scale points that observers have

assigned to individual units. It is defined on a scale from -1 to 1 where 1 means perfect

reliability, 0 means absence of reliability, and a negative α means disagreement. α can

measure agreement for nominal, ordinal, interval and ratio data. Furthermore, it can

deal with data that contain missing values.

Krippendorff’s α (see Krippendorff [98] for a step-by-step description of its com-

putation) is generally computed as:

α = 1− D0

De
= 1− observed disagreement

expected disagreement
(6.1)

The general form of the observed disagreement Do is:

Do =
1

n

∑

c

∑

k

ock metricδ
2
ck (6.2)

The disagreement that one would expect when the coding of units is attributable

to chance, De, can be computed as:

De =
1

n(n− 1)

∑

c

∑

k

nc × nk metricδ
2
ck (6.3)

o is a so-called coincidence matrix that can be computed from a reliability matrix.

The reliability data matrix is an m × r matrix, filled with the judgments from m

observers for r units. From this matrix, a coincidence matrix o can be constructed,

see Fig. 6.8. nc and nk are the numbers of c− k pairs for c and k respectively.
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Figure 6.8: A coincidence matrix.

In the coincidence matrix in Fig. 6.8, ock is computed as ock =
∑

u
Number of c - k pairs in unit u

mu−1 ,

where mu is the number of judgments given for unit u. δ2
ck is a difference function
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that depends on the metric of the data, i.e., nominal, ordinal, interval or ratio. Our

data is ordinally scaled so we can use the ordinal difference function that is defined

as:

ordinalδ
2
ck =

nc

2
+

g<k
∑

g>c

ng +
nk

2
, (6.4)

where c < k, and g is the rank running between c and k.

Finally, Krippendorff’s α can be computed as follows:

α = 1− Do

De

= 1− (n− 1)

∑

c

∑

k>c ockδ
2
ck

∑

c

∑

k>c nc × nkδ
2
ck

(6.5)

Procedure

We used Krippendorff’s Alpha α [98] on an ordinal scale to assess the agreement

between multiple (>= 2) raters. For each emotion dimension, there are 144 ratings

(36 movie clips with each 4 ratings). We chose to have a within-subjects design that is

balanced but incomplete in the sense that not each movie clip is rated by all observers.

Each movie clip is rated by at least two observers. In assessing the reliability of content

data where multiple raters are used to annotate the data, it is not uncommon that

raters code different subsamples of the data. Krippendorff’s α is flexible enough that

it can deal with N raters >= 2, and it can accommodate for ‘missing values’. Prior

to calculating α, all ratings were discretized into 5 classes with boundaries on 20, 40,

60, and 80. These ‘raw’ ratings will be referred to as RAW-ratings.

Furthermore, we also computed so-called ‘delta’ ratings (referred to as DELTA-

ratings), i.e., changes between subsequent emotion ratings, to evaluate whether peo-

ple judge emotion better in a relative manner than an absolute manner. These DELTA

ratings were computed by subtracting the previous rating from the current rating in

each movie clip, see Fig. 6.9.

1 2 3 4

δt

0

100

t

R(t)

D1

D2

D3

D1 = R(2)−R(1)/δt
D2 = R(3)−R(2)/δt
D3 = R(4)−R(3)/δt

Figure 6.9: Computation of DELTA-ratings for each movie clip, in this case δt is 1 because

each rating R(t) is given at a fixed interval δt (R(t) is an emotion rating given at moment

t.).

Finally, to adjust for personal differences between observers and personal differ-

ences of the gamers, e.g., some observers or gamers tend to use the whole scale while

others only use a small part of the scale, we linearly re-scaled all the Arousal and

Valence ratings such that each person has a minimum and maximum of 0 and 1 re-

spectively. These scaled ratings will be referred to as SCALED-ratings.
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6.3.6 Results: inter-observer agreement in unimodal and multimodal condi-

tions

The movie clips were presented to the observers under various unimodal and multi-

modal conditions; we report results obtained in the A (audio-only), V (video-only), AV

(audiovisual), and AVC (audiovisual+context) conditions. The results are presented

in Fig. 6.10 and Fig. 6.11. The inter-observer agreement figures based on RAW ratings

range from 0.12 in the audio only condition to 0.48 in the audiovisual condition, see

Fig. 6.10. For both Arousal and Valence, the highest αs are obtained in the AV condi-

tion when the ratings are RAW. Apparently, observers do benefit from the multimodal

information that is made available to them, although the addition of context does not

seem to help, at least not in the RAW case. The visual channel seems to provide more

information than the acoustic channel. Furthermore, the inter-observer agreement on

the Arousal scale is systematically worse than on the Valence scale in the RAW case.

However, in the DELTA case, α has increased considerably for Arousal, but not for

Valence: this suggests that people are better able to judge changes in Arousal rather

than absolute Arousal.

Condition

K
rip

pe
nd

or
ff’

s 
al

ph
a

A V AV AVC

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Arousal (raw)
Valence (raw)
Arousal (deltas)
Valence (deltas)

Figure 6.10: Krippendorff ’s α inter-

observer agreement: RAW-ratings and

DELTA-ratings.
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Figure 6.11: Krippendorff ’s α inter-

observer agreement: RAW-ratings and

SCALED-ratings.

In Fig 6.11, we can observe that when we linearly scale all the ratings to [0, 1],

we obtain a substantial improvement of α for Arousal. For Valence, this improvement

is small. The αs for the scaled ratings range from 0.32 to 0.52. Finally, similar to

the raw case, Arousal is less agreed upon than Valence, multimodal information is

(usually) beneficial, and visual information is stronger than acoustic information.

6.3.7 Results: agreement between SELF-ratings and OTHER-ratings

One way to assess how SELF-ratings compare to OTHER-ratings, is to add the SELF-

rater’s ratings to the group of the OTHER-raters’ ratings, calculate inter-rater agree-

ment, and compare this outcome with the α computed without the SELF-rater. If α

does not decrease, it indicates that the SELF-rater did not influence the inter-rater

agreement negatively. If this is the case, then this could imply that the observers
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agree equally well with the SELF-rater, and that observers have the ability to perceive

‘felt’ emotion. However, in Table 6.6, we can observe that the addition of the SELF-

rater to the OTHER-raters’ ratings affects α negatively. This is an indication that there

is a discrepancy between SELF-ratings and OTHER-ratings.

RAW-ratings DELTA-ratings SCALED-ratings

+SELF +SELF +SELF

Arousal 0.24 0.23 0.30 0.21 0.39 0.36

Valence 0.43 0.37 0.31 0.29 0.49 0.40

Table 6.6: Krippendorff ’s α inter-rater agreement between 3 (=OTHER) or 4 annotators:

either without or with the SELF-rater (+SELF), for the AVC condition.

Another way to assess the reliability of SELF-ratings is to compute pair-wise agree-

ments between an observer and a SELF-rater. The averaged, minimum and maximum

agreement α between an observer and a SELF-rater are shown in Table 6.7. In the raw

case, the averaged pair-wise α is 0.16 and -0.09 for Arousal and Valence respectively

which indicates very low agreement between the SELF-raters and the OTHER-raters.

In the SCALED case, the averaged pair-wise agreement is improved. The large differ-

ences between minimum and maximum pair-wise agreements indicate that there are

(large) differences between the observers: some observers do agree with the SELF-

raters while others disagree.

Arousal Valence

mean min max mean min max

RAW 0.16 -0.27 0.51 -0.09 -0.45 0.34

DELTA 0.13 -0.37 0.48 0.24 -0.29 0.69

SCALED 0.34 -0.07 0.70 0.30 -0.21 0.62

Table 6.7: Krippendorff ’s α for pair-wise agreement between an observer and the SELF-

raters in the AVC condition.

6.3.8 Conclusions

With this perception experiment, we have investigated to which degree observers

agree on the assessment of spontaneous emotions that were shown in audio-only,

video-only, audiovisual and audiovisual+context conditions, and we have compared

the reliability of SELF-judgments of emotions to those of observers. With αs ranging

from 0.32 to 0.52 (after scaling the ratings), we achieved agreement figures that are

in line with results from other studies, see Laskowski and Burger [103], Reidsma et al.

[146], Douglas-Cowie et al. [54]. We found that agreement is consistently higher on

the Valence scale than on the Arousal scale. Improvements on the Arousal scale can

be achieved when the relative changes are taken into account instead of the absolute

values. This does not seem to apply for the Valence scale. In general, agreement was

higher in the multimodal conditions AV and AVC, than in the unimodal conditions A

and V. These results are somewhat different from what was found in Douglas-Cowie
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et al. [54] who found in their study that agreement was lowest in the multimodal

audiovisual condition. However, it should be noted that their study was based on TV

clips and a category-based annotation method. Furthermore, visual-only information

was usually stronger than audio-only information. Finally, adding context information

to audiovisual information did not always result in higher agreement.

The reliability of the SELF-ratings were assessed by computing agreement when

the SELF-rater was added to the OTHER-ratings, and by computing pair-wise agree-

ments between the SELF-ratings and individual observers’ ratings. We found indica-

tions that SELF-ratings and OTHER-ratings differ, sometimes substantially, from each

other disadvantageously. We conclude this based on our observations that the inter-

rater agreement was lowered when the SELF-rater was added to the OTHER-ratings.

In addition, the pair-wise agreement between the SELF-raters and the OTHER-raters

were relatively low.

These findings indicate that the assessment of spontaneous emotion involves a

complex multimodal interpretation process that is not quite well described yet given

the mixed findings of several studies. Furthermore, emotion annotation and labeling

are not straightforward processes, and the eventual goal, namely to develop an affect

recognition system, depends much on how the labeled emotion data is structured and

annotated, and by whom the annotations have been carried out. An affect recogni-

tion system developed with SELF-labeled data most likely will learn to recognize ‘felt’

emotions, while an affect recognition system that is developed with OTHER-labeled

data will learn how to recognize ‘expressed’ or ‘perceived’ emotions. In the following

experiments, we compared the use of SELF-rated and OTHER-rated data for the devel-

opment of an automatic affect recognition systems that aim to predict Arousal and

Valence values in the Arousal-Valence space.

6.4 Experiment II: speech-based emotion prediction in the

Arousal-Valence space

In this Section, we describe Experiment II carried out with the TNO-GAMING cor-

pus. We describe two different speech-based affect recognition systems: one that was

trained to detect ‘felt’ emotions, and one that was trained to detect ‘perceived’ emo-

tions. The main characteristics of these systems are that they are trained to predict

scalar values on Arousal and Valence scales, rather than to classify emotions in cate-

gories. We discuss the results of the detection experiments and its implications. Sub-

sequently, the performances of the machines are compared to human performance.

Furthermore, we show what type of features are most predictive of the Arousal and

Valence scale.

6.4.1 Related work

The majority of speech-based emotion recognition systems reported in the emotion

literature are trained to classify emotion categories, while few have adopted the

Arousal-Valence space to predict scalar values on Arousal and Valence scales. Re-

cently, Grimm et al. [69, 68] have presented methods to predict scalar values on
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Valence, Activation (Arousal), and Dominance scales. In Grimm et al. [69], the VAM

corpus was used as speech material, which contains data from a German TV talk-

show in which several guests talk about personal issues. The emotion annotation

of this database was based on the Self-Assessment-Manikin method (see Lang [101]

and Section 3.1). The regression method Support Vector Regression (SVR) was used

to train the continuity-based emotion prediction model. This method was compared

to Fuzzy k-Nearest Neighbor and Rule-based Fuzzy Logic. The SVR performed best

with an average error (which was defined as the absolute difference between refer-

ence and prediction) of 0.13, 0.15, and 0.14 for Valence, Activation, and Dominance

respectively. In Grimm et al. [68], more extensive estimation experiments were per-

formed with Rule-based Fuzzy Logic. The averaged errors obtained varied from 0.17

to 0.28 for the VAM corpus.

Our current work differs from theirs in that we not only use observers’ perceived

annotations (as is commonly done in the majority of studies), but we also use the

gamers’ ‘felt’ emotion annotations as reference to predict ‘felt’ emotion. Further, in

addition to acoustic features, we also used lexical features to model affect. Finally,

machine performance was compared to human performance in terms of agreement:

to what degree do machines agree with human annotators?

6.4.2 Defining the goals of Experiment II

In Experiment I, we found that there are differences between SELF-annotations made

by the gamers themselves, and the OTHER-annotations made by observers. In Exper-

iment II, both types of annotations for the development of emotion recognizers were

used. Rather than detecting categories of emotions, the task of the emotion recogniz-

ers is to predict scalar values on Arousal and Valence scales which run from [−1, 1].

Rather than referring to ‘classification’ or ‘detection’ experiments and ‘classifiers’ or

‘detectors’ we prefer to use terms as ‘prediction experiments’ or ‘emotion predictors’

to emphasize the fact that we are not working with emotion categories here. For the

development of our emotion predictors, we used acoustic and lexical information.

The expectation is that Arousal is better modeled with acoustic information and that

Valence is better modeled with lexical information in spontaneous emotional speech.

Also, since we are most interested in the use of acoustic information, we investigate

what types of acoustic features are most predictive of which emotion dimension in

spontaneous emotional speech. Finally, the results obtained with the machines were

compared to human performance. The research questions of Experiment II can be

summarized as follows:

• What are the effects of the use of ‘felt’ emotion annotations versus ‘perceived’

emotion annotations in the development of automatic emotion predictors?

• What types of features can best be used to model what emotion dimension?

• How does machine performance compare to human performance in predicting

Arousal and Valence in spontaneous emotional speech?
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6.4.3 Material

Here, we describe the speech material used in the emotion prediction experiments.

From the TNO-GAMING corpus, we selected speech material to be re-annotated by

a group of observers (which was not the same group of observers that participated

in Experiment I) such that a part of the corpus was annotated with both ‘felt’ and

‘perceived’ affect.

SELF-annotation

As explained above, part of the TNO-GAMING corpus was annotated by both the

gamers themselves and naive observers. Because the number of segments of the

whole corpus is relatively large, we decided to make a selection of 2400 segments,

out of the original set of 7473 segments, that was offered to a group of naive ob-

servers. The selection procedure of these 2400 movie clips that were offered to the

observers was partly randomized, partly restricted by our criterion to roughly main-

tain the same proportions of the segments in the Arousal-Valence space of the original

set (see Fig. 6.4 and 6.5), and partly driven by the need for a larger number of seg-

ments in the lower Arousal area to adjust for this strongly imbalanced distribution on

the Arousal scale. The distribution of the segments selected for re-annotation in the

Arousal-Valence space is displayed in Fig. 6.12 and 6.18. The total length of the whole

set of 2400 segments is approximately 76 minutes. The mean duration and standard

deviation of a segment is 1.9 and 1.2 seconds respectively. The scales of the Arousal

and Valence dimensions are linearly re-scaled from [0,100] to a range of [-1,1] which

allows for comparison with previous studies (the linear re-scaling will not affect the

analyses or results), e.g., Grimm et al. [69].

Figure 6.12: The distribution of the 2400 selected speech segments in the Arousal-Valence

space based on the SELF-annotations, expressed in percentages.

Histograms of the Arousal and Valence ratings selected for re-annotation (based

on the SELF-annotations) are displayed in Fig. 6.13 and 6.14. We can observe that on

the Arousal dimension, there is a relative scarcity of low Aroused speech segments,

which could be a consequence of our emotion elicitation method.
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Figure 6.13: Histogram of the Arousal

SELF-ratings of the 2400 selected

speech segments.
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Figure 6.14: Histogram of the Va-

lence SELF-ratings of the 2400 selected

speech segments.

Re-annotation by a group of observers

The set of 2400 emotion segments were (audiovisually) presented to six annotators

who were not involved in Experiment I. The six annotators have an average age of

25.4 years. Similar to Experiment I and the SELF-rating procedure, the annotators

were asked to rate each audiovisual segment on the Arousal and Valence scale that

run from 0 to 100, with 50 being Neutral (afterwards we re-scaled to [-1,1]). The

differences with the SELF-annotation procedure are that 1) the audiovisual segments

are already segmented, 2) the annotators now can re-play the segment if they like,

and 3) no context information was given. We will refer to the emotion annotations of

the six annotators as OTHER.3 (’3’ because each segment is annotated by 3 different

annotators, this will be explained below), so note that these OTHER.3-ratings are

different from the OTHER-ratings used in Experiment I.

Each observer (TH, PI, CO, RA, FR, and AT) annotated different parts (A, B, C, and

D) of the dataset that overlapped with parts that were annotated by other observers

(see Fig. 6.15). This ensured that each segment was annotated by three different

annotators (in order to obtain more reliable reference annotations that can be used

for the emotion prediction experiments). The dataset was divided into four parts,

each part consisting of 624 segments. Each observer was assigned to two parts of

the database, and thus annotated in total 2×624 segments, see Fig. 6.15. Of the

624 segments in each part, 24 segments occurred twice and were used to assess

the rating consistency of the observer (intra-rater agreement) him/herself. For each

observer, it took approximately 4 to 5 hours to complete the annotation of all 1248

segments, including breaks. That means that the annotation was carried out at a rate

of approximately 6 times real-time.

The OTHER.3 annotations represent the annotations of 3 separate annotators (a

3 × 2400-matrix). In order to have a reference annotation of the OTHER.3-ratings

that can be used for the prediction experiments, the ratings of the three annotators

were averaged for each segment. We will refer to these ratings as OTHER.AVG: ‘AVG’
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Figure 6.15: Division of dataset into several overlapping parts, each observer annotated

two cells (each cell contains 624 segments) such that each segment is annotated by 3

different observers.

stands for ‘averaged’. These OTHER.AVG-annotations (a 1×2400-matrix) were used as

reference annotations in the prediction experiments. The histograms in Fig. 6.16 and

Fig. 6.17 show the distributions of the averaged ratings OTHER.AVG: it seems that the

majority of the segments were judged, on average, as Neutral (or in Neutral’s vicinity)

by the observers, more than the SELF-raters have done. The differences between the

SELF-annotators and the OTHER.AVG-annotators become even more clear when we

compare the 2-dimensional histograms based on SELF-annotations and OTHER.AVG-

annotations, shown in Fig. 6.18 and Fig. 6.19. The SELF-annotators appear to have

selected more extreme values for their own felt emotions than the observers who

seemingly did not perceive these emotions as such and who mostly selected values in

the vicinity of Neutrality. In addition, the pull towards Neutrality is also be caused by

averaging the annotations.
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Figure 6.16: Histogram of the Arousal

OTHER.AVG-ratings for the 2400 se-

lected speech segments.
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Figure 6.17: Histogram of the Va-

lence OTHER.AVG-ratings for the 2400

selected speech segments.

6.4.4 Reliability of SELF-annotations, OTHER.3-annotations and OTHER.AVG-

annotations

In this Section, we describe how the SELF-annotations, OTHER.3-annotations and

OTHER.AVG-annotations were compared to find out how these types of annotations
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Figure 6.18: 2D Histogram: the dis-

tribution of the 2400 selected speech

segments in the Arousal-Valence space,

based on the SELF-ratings.
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Figure 6.19: 2D Histogram: the dis-

tribution of the 2400 selected speech

segments in the Arousal-Valence space,

based on the OTHER.AVG-ratings.

relate to each other.

Similar to Experiment I, we used Krippendorff’s α (Krippendorff [98]) (ordinal)

to calculate intra-rater and inter-rater agreement figures. Surprisingly, scaling or nor-

malizing (normalizing to µ = 0 and σ = 1) all ratings increased agreement minimally

(1%–4%) or even decreased agreement, so we decided to use the RAW-ratings. We

also report the correlation coefficient Pearson’s ρ to allow for comparison with other

studies; ρ runs in the range of [-1,1]. In addition, if the number of observers is 2,

Kappa κ (equal weights) is reported as well. For the computation of α and κ, the

ratings were discretized into 5 classes with boundaries at -0.6, -0.2, 0.2, and 0.6.

Krippendorff’s αord,5 Pearson’s ρ κequal,5

Rater Valence Arousal Valence Arousal Valence Arousal

TH 0.90 0.44 0.91 0.55 0.79 0.35

PI 0.78 0.42 0.84 0.46 0.60 0.27

CO 0.81 0.52 0.87 0.64 0.71 0.42

RA 0.78 0.45 0.84 0.56 0.62 0.33

FR 0.66 0.55 0.73 0.54 0.53 0.36

AT 0.85 0.49 0.91 0.64 0.71 0.37

mean 0.80 0.48 0.85 0.57 0.66 0.35

Table 6.8: Intra-rater agreement, based on 48 double-rated segments.

In order to assess the rating consistency of individual annotators, we inserted

2×24 segments that were rated twice by the annotators. The intra-rater agreement

figures of each annotator are presented in Table 6.8. Similar to the findings in Exper-

iment I, we found that Valence is easier to rate than Arousal when audiovisual seg-

ments are provided. In general, the annotators were relatively consistent: α ranges

from 0.66 to 0.90, and from 0.42 to 0.55 for Valence and Arousal respectively. Given
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these relatively good intra-rater agreement figures, we considered the annotators re-

liable and hence, none of the annotators were replaced.

The results for the inter-rater agreement among the observers analyses are shown

in Table 6.9, Table 6.10, and 6.11. Firstly, we focused on the OTHER.3-annotations:

Table 6.9 shows how the inter-observer agreement is affected among the 3 or 4 an-

notators when the SELF-rater is added. Table 6.9 presents the alphas obtained with

different discretization steps (3, 4, 5 or 10) on ordinal and nominal scales. Since we

work with ordinal Arousal and Valence scales, we can adopt an ordinal α computa-

tion, and we continue to base α on a discretization of 5 classes (similar to Experiment

I). Similar to the results in Experiment I, see Table 6.6, we observe in Table 6.9 that

when the SELF-rater is added to the group of OTHER.3-raters, α5 decreases slightly for

Arousal (-0.03) and more substantially for Valence (-0.13). In order to have a feeling

for the range of α when an annotator is added, we show in Table 6.10 the behavior of

α when an annotator is added who perfectly agrees or disagrees with one of the 3 an-

notators. These figures suggest that the SELF-rater indeed slightly disagrees with the

three annotators: in any case, the SELF-rater does not contribute to more agreement

among the annotators.

OTHER.3

Dim. α3 α4 α5 α10

+SELF +SELF +SELF +SELF

ordinal
Arousal 0.23 0.20 0.25 0.23 0.28 0.25 0.30 0.26

Valence 0.45 0.36 0.50 0.39 0.57 0.44 0.58 0.45

nominal
Arousal 0.12 0.11 0.09 0.08 0.09 0.08 0.04 0.04

Valence 0.31 0.25 0.23 0.18 0.27 0.19 0.11 0.09

Table 6.9: Human inter-rater agreement among OTHER.3-raters, without and with the

SELF-raters, for several discretization steps (3, 4, 5, and 10), and on an ordinal or

nominal scale.

OTHER.3 OTHER.3 + 1 per-

fect agreement

OTHER.3 + 1 per-

fect disagreement

OTHER.3 +

SELF

Arousal 0.28 0.37/0.42/0.41 -0.11/-0.14/-0.18 0.25

Valence 0.57 0.64/0.63/0.65 -0.14/-0.15/-0.15 0.44

Table 6.10: Behavior of αord,5 (ordinal α with 5 discretization steps) when 1 annotator

is added who perfectly agrees or disagrees with 1 of the 3 annotators.

Secondly, we focused on the OTHER.AVG-annotations that were derived from the

OTHER.3-annotations, by taking the average over the 3 observers’ ratings (per seg-

ment). Consequently, the inter-rater agreement between the SELF-ratings and OTHER.AVG-

ratings is relatively low as can be seen in Table 6.11. The plots in Fig. 6.20 indeed

show that there is low correlation between the SELF-ratings and OTHER.AVG-ratings.

These observations confirm our findings of Experiment I, namely that there is a dis-

crepancy between self-judged and observed (perceived) emotions. In the following
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Sections, we investigated what the effects are of using self-judged emotion annota-

tions (=SELF) or observed emotion annotations (=OTHER.AVG) for the development

of speech-based emotion recognizers.

Krippendorff’s αord,5 Kappa κequal,5 Pearson’s ρ

Arousal 0.27 0.16 0.33

Valence 0.36 0.25 0.41

Table 6.11: Inter-rater agreement between the SELF-ratings and the OTHER.AVG-ratings.
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Figure 6.20: OTHER.AVG-annotations plotted against SELF-annotations, left=Arousal,

right=Valence.

6.4.5 Features and Method

In this Section, we describe the speech features and methods used to model affect in

terms of scalar Arousal and Valence values. Support Vector Regression was used as a

learning method in combination with acoustic and lexical features.

Method: Support Vector Regression

Since our goal is to predict real-valued output rather than discrete classes, we used a

learning algorithm based on regression. Support Vector Regression (SVR, see Smola

and Schölkopf [178] and Section 2.4.3) was employed to train regression models that

can predict Arousal and Valence scalar values on a continuous scale. Similar to SVMs,

SVR is a kernel-based method and allows the use of the kernel trick to transform the

original feature space to a higher-dimensional feature space through a (non-linear)

kernel function. We used ǫ-SVR available in libsvm ([37]) to train our models. In SVR,

a margin ǫ is introduced and SVR tries to construct a discriminative hyperplane that

has at most ǫ deviation from the original training samples. In our emotion prediction

experiments, the RBF kernel function was used, and the parameters c (cost), ǫ (the ǫ
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of the loss function), and γ were tuned on a development set. The parameters were

tuned via a simple grid search procedure that evaluates all possible combinations

of c (with exponentially growing values between 2−4 and 24), ǫ (with exponentially

growing values between 10−3 and 100), and γ (with exponentially growing values

between 2−10 and 22).

Features: acoustic features

The acoustic feature extraction was performed with Praat (Boersma and Weenink

[23]). Prior to feature extraction, a voiced-unvoiced detection algorithm (available in

Praat) was applied to find the voiced units. To avoid the use of ASR, that can provide

word alignments, the features were extracted over each voiced unit of a segment.

We made a selection of features based on previous studies (e.g., Batliner et al. [18],

Banse and Scherer [12]), and grouped these into features related to pitch information,

energy/intensity information, and information about the distribution of energy in the

spectrum. The spectral features MFCCs as commonly used in ASR were also included.

And finally, global information calculated over the whole segment (instead of per

voiced unit) about the speech rate and the intensity and pitch contour was included.

An overview of the features used is given in Table 6.12.

Level Features Nfeat

voiced

unit

Pitch (PITCH) mean, standard deviation, range (max-

min), mean absolute pitch slope

4

voiced

unit

Intensity (IN-

TENS)

Root-Mean-Square (RMS), mean, range

(max-min), standard deviation

4

voiced

unit

Distribution

energy in

spectrum

(ESPECTR)

slope Long-Term Averaged Spectrum

(LTAS), Hammarberg index, standard de-

viation, center of gravity (cog), skewness

5

voiced

unit

MFCC (MFCC) 12 MFCC coefficients, 12 deltas (first or-

der derivatives)

24

whole

segment

other speech rate1, speech rate2, mean positive

slope pitch, mean negative slope pitch,

mean positive slope intensity, mean neg-

ative slope intensity

6

Table 6.12: Acoustic features used for emotion prediction with SVR.

Pitch and energy/intensity information are known to be useful in emotion recog-

nition and are thus very commonly used. MFCCs are powerful speech features and

are commonly used in ASR and speaker and language recognition technologies. The

distribution of energy in the spectrum can give information about the vocal effort: in

general, when speakers increase their vocal effort, the energy in the higher frequency

regions of the long-term spectrum increase which results in a less steep spectral slope.

The Hammarberg index is a measure that measures differences of the energy in differ-

ent frequency regions of the long-term spectrum: it is defined here as the maximum

energy measured in the frequency region 0–2000 Hz minus the maximum energy
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measured between 2000 and 4000 Hz. The features ‘speech rate1’ and ‘speech rate2’

are calculated per segment and are defined as the number of voiced units divided by

the segment duration without and with silences respectively. The mean positive and

negative slopes of pitch and intensity are calculated by summing and averaging all

the positive and negative changes in pitch and intensity measured framewisely over

the voiced parts.

The majority of our acoustic features were measured per voiced unit. The features

extracted on voiced-unit-level were aggregated to segment-level by taking the mean,

minimum, and maximum of the features over the voiced units. Hence, we obtain

per segment a feature vector with (3× (4 + 4 + 5 + 24)) + 6 = 117 dimensions. These

features were normalized by transforming the features to z-scores: z = (x − µ)/σ,

with µ and σ calculated over a development set.

Features: lexical features

As SVMs (and SVRs) do not take raw text (words) as input, we used lexical features

that are based on a continuous representation of the textual input. The textual in-

put in our case is a manual word-level transcription made by the author herself. A

fairly standard method to build features from textual input, and that has successfully

been applied to text and document classification/retrieval (see e.g., Salton and Buck-

ley [156], Joachims [87]) was employed, namely a tf-idf weighting scheme (term

frequency-inverse document frequency). The term frequency tfw,s is defined as the

number of times a given word w appears in a segment s (i.e., an utterance) and re-

flects its importance to that specific segment. The document frequency dfw is defined

as the number of segments containing word w. The tf-idf weight for each word w is

then computed by:

tf-idfw,s = tfw,s × idfw = tfw,s × log(
N

dfw

) (6.6)

where N is the total number of segments in the training set. The weights tend to

filter out common words. Words that appear frequently in one utterance (= tf), but

rarely in the whole collection of utterances (= idf) are more likely to be relevant

to that utterance and thus have a high tfidf weight. In addition, to adjust for dif-

ferences in utterance length, the feature vectors were normalized to unit length by

L2-normalization.

xn =
xn

√

N
∑

i=0
x2

i

(6.7)

where xn is a value in a vector with N dimensions. To give an idea of the size of N ,

the number of unique words in the whole corpus is 1963.

6.4.6 Experiments and Results

We first describe the experimental setup and performance metrics used. Subsequently,

the results obtained with the emotion predictors developed are presented. In addition,

we present results of a comparison made between acoustic feature sets, results of a
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Gender Nsegments Nfold Splits (approximately) in training-

development-testing sets

Female 1048 11 80%-10%-10%

Male 1352 17 87%-8%-5%

Table 6.13: Experimental setup of the material for N -fold cross-validation experiments.

comparison between human and machine performance, and results of a comparison

between acted and spontaneous emotional speech.

Experimental setup

The automatic emotion prediction experiments were carried out speaker-independently,

but separately for female and male speakers. We performed N -fold cross-validation,

where in each fold, we leave out one specific speaker for testing. In each fold, the

data set was divided into three sets: a training, development and test set (see Ta-

ble 6.13), where the training and test sets are disjoint. The test set consists of speech

segments from a specific speaker that is excluded from the training and development

set. The development set is comprised of randomly picked segments, drawn from the

remaining segments after the test speaker has been filtered out.

The development set is used for parameter tuning and z-scoring. The features

were normalized by z-scoring (z = (x − µ)/σ) where the µ and σ were calculated

on the development set. In parameter tuning, the parameter set that achieved the

lowest error rate, averaged over N folds, was selected to use in the final testing. The

computation of the error rate is explained in Chapter 6.4.6, and is shown in Eq. (6.9).

We performed two types of prediction experiments. One is based on the SELF-

annotations, and the other one is based on the OTHER.AVG-annotations. The SELF-

annotations refer to the annotations that were made by the gamers themselves which

are most likely to reflect ‘felt’ emotions. The OTHER.AVG-annotations refer to the av-

eraged annotations of 3 different observers who annotated the ‘observed’ emotions of

the gamers. With these two experiments, we compared the added value of annotation

of felt emotion versus annotation of perceived emotion.

Evaluation metric

Because there are various evaluation metrics applicable to this emotion prediction

task, we report several evaluation metrics. Firstly, we used a relatively simple eval-

uation metric (similar to Grimm et al. [69]) that measures the absolute difference

between the predicted output and the reference input:

ei = |xpred
i − xref

i | (6.8)

eavg =
1

N

N
∑

i

ei (6.9)

and we report the e that is averaged over a total of N segments. The lower eavg, the

better the performance. Secondly, we calculated Krippendorff’s α between the human
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reference and the machine predictions in order to evaluate machine performance in

terms of human-machine agreement. Thirdly, Pearson’s ρ correlation coefficient was

also reported. Finally, if possible, equally weighted Kappa κ was calculated.

Results acoustic and lexical emotion predictors

Here, we present the results of our emotion prediction experiments which were per-

formed separately for female and male data, and separately for Arousal and Valence

dimensions. One experiment employs SELF-annotations as reference, and the other

one employs OTHER.AVG-annotations as reference. The emotion predictors were de-

veloped with either acoustic information or lexical information. The main evaluation

metrics are eavg and αord,5. The results for the acoustic and lexical Arousal and Va-

lence predictors are presented in Table 6.14 and 6.15.

Gender Reference TestSVR Baseline

eavg αord,5 κequal,5 ρ eavg αord,5

ARO

F SELF 0.46 0.09 0.05 0.11 0.46 -0.03

M SELF 0.36 0.32 0.19 0.37 0.44 -0.10

F OTHER.AVG 0.20 0.37 0.27 0.48 0.32 -0.28

M OTHER.AVG 0.22 0.44 0.31 0.57 0.31 -0.12

ALL SELF 0.41 0.22 0.13 0.25 0.45 -0.07

ALL OTHER.AVG 0.21 0.42 0.30 0.55 0.31 -0.18

VAL

F SELF 0.37 0.07 0.04 0.12 0.37 0.00

M SELF 0.34 0.12 0.08 0.20 0.35 -0.02

F OTHER.AVG 0.25 0.23 0.17 0.35 0.25 0.00

M OTHER.AVG 0.27 0.31 0.22 0.45 0.29 0.00

ALL SELF 0.36 0.10 0.06 0.18 0.36 -0.01

ALL OTHER.AVG 0.26 0.28 0.20 0.41 0.28 0.00

Table 6.14: Results of the acoustic Arousal and Valence predictors: the last two columns

under ‘Baseline’ represent results from a baseline predictor that always predicts Neutral-

ity.

According to the results shown in Table 6.14, the Arousal scale is better modeled

than the Valence scale with acoustic information. Furthermore, performance is consis-

tently higher when OTHER.AVG-annotations were used rather than SELF-annotations.

There seems to be a small advantage for the male data which is most of the time

slightly better modeled than the female data. Finally, although the performances are

relatively low, the predictors developed at least perform better than a baseline predic-

tor that always chooses Neutrality, see the last two columns in Table 6.14.

In contrast with the acoustically based predictors, the lexically based predictors

appear to be able to model Valence better than Arousal, see Table 6.15. Similar to

the acoustically based predictors, performance is higher with OTHER.AVG-annotations

than with SELF-annotations, and performance is above baseline.

In Fig. 6.21, the machine predicted output is plotted against the human reference

input. These plots reflect the human-machine agreement and correlation figures as
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Gender Reference TestSVR Baseline

eavg αord,5 κequal,5 ρ eavg αord,5

ARO

F SELF 0.48 -0.07 -0.05 -0.06 0.46 -0.03

M SELF 0.40 0.03 0.01 0.08 0.44 -0.10

F OTHER.AVG 0.23 0.18 0.13 0.27 0.32 -0.28

M OTHER.AVG 0.26 0.16 0.09 0.27 0.31 -0.12

ALL SELF 0.44 -0.01 0.01 0.01 0.45 -0.07

ALL OTHER.AVG 0.24 0.19 0.12 0.29 0.31 -0.18

VAL

F SELF 0.37 0.07 0.04 0.16 0.37 0.00

M SELF 0.35 0.08 0.05 0.11 0.35 -0.02

F OTHER.AVG 0.20 0.47 0.38 0.61 0.25 0.00

M OTHER.AVG 0.23 0.48 0.36 0.62 0.29 0.00

ALL SELF 0.36 0.07 0.04 0.14 0.36 -0.01

ALL OTHER.AVG 0.21 0.48 0.37 0.62 0.28 0.00

Table 6.15: Results of the lexical Arousal and Valence predictors:the last two columns

under ‘Baseline’ represent results from a baseline predictor that always predicts Neutral-

ity.

can be observed in Table 6.14 and Table 6.15: the figures and plots show that there

is relatively low agreement and correlation between human and machine.

The main reason that we have reported several different performance metrics,

is that we wanted to be able to make comparisons with other studies. Grimm et al.

[69] and Grimm et al. [68] report mean absolute errors between 0.13 and 0.28, and

Pearson’s ρ correlation coefficients of 0.75–0.82 and 0.28–0.46 for Arousal and Va-

lence prediction respectively. Laskowski and Schultz [104] report human inter-rater

agreement κ between 0.15 and 0.67 for 3 human annotators, and Douglas-Cowie

et al. [54] report human inter-rater agreement κ between 0.37 and 0.54, based on

category emotion annotation. Although real valid comparisons are not possible, e.g.,

due to different databases used, different annotation procedures used etc., a com-

parison with our results can give us a rough idea of how our results relate to other

studies. With the emotion predictors developed, we obtained mean absolute errors

eavg ranging from 0.21 to 0.26 (see Table 6.14 and 6.15). The correlation coefficients

ρ between man and machine obtained lie in the range 0.29–0.55 and 0.41–0.62 for

Arousal and Valence respectively (with kappas between 0.12 and 0.37). These results

suggest that the machine performances achieved in our experiments lag behind that

of the machine and human performance reported in other studies.

The main results are summarized in Fig. 6.22 where the female and male re-

sults are combined together, and where the performances based on the OTHER.AVG-

annotations are shown. To summarize, performance was higher with the OTHER.AVG-

annotations than with the SELF-annotations, which suggest that ‘felt’ emotions are

more difficult to recognize than ‘perceived’ emotions. We further discuss this ob-

servation and its implications in Section 6.5. Secondly, in spontaneous emotional

speech data, Valence information can be best captured and modeled by lexical fea-

tures (rather than acoustic features). Arousal can be better modeled by acoustic fea-
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Figure 6.21: Human reference plotted against MACHINE-predictions for acoustic (top)

and lexical (bottom) predictors on Arousal (left) and Valence (right) scales.

tures. Thirdly, the machine performance and human-machine agreement is relatively

low. However, note that the prediction experiments were carried out on relatively

short segments of speech (averaged duration of 1.50 s). In the following experi-

ments, we compared several types of feature sets for Arousal and Valence prediction,

and we tried to improve machine performance with a reduced set of acoustic features.

In addition, we compare machine performance to human performance, and interpret

machine performance in terms of human-machine agreement.

Comparison types of acoustic feature sets

In order to investigate what types of acoustic features contribute the most to the mod-

eling of Arousal and Valence, we carried out prediction experiments with the sepa-

rate feature sets, described in Table 6.12: PITCH, INTENS, EPSPECTR, and MFCC
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Figure 6.22: eavg (left) and αord,5 (right) performances of female and male results to-

gether, based on OTHER.AVG-annotations. Baseline is based on a predictor that always

predicts Neutrality.

(‘other’ was not included because it consists of several different types of acoustic fea-

tures). Rather than performing an extensive search on individual acoustic features,

we preferred to bundle closely related features and perform prediction experiments

with these groups of features. We are more interested in the importance of types of

features rather than the selection of important individual features that, to a certain

extent, is data-dependent. However, an extensive search on individual acoustic fea-

tures may improve prediction performance, hence, we also applied a stepwise method

in order to obtain a reduced set of acoustic features (referred to as REDUCED) with

the aim to improve performance.

Traditionally, in acted emotional speech, the literature reports that intensity and

pitch features are most important for modeling emotions, more specifically Arousal.

For Valence, quality-related features like MFCCs usually perform better. Since there

appear to be differences in the production of acted and spontaneous emotional speech

(Wilting et al. [210]), it is likely that the importance of feature types also differs

between acted and spontaneous emotional speech (Vogt and André [203]).

Gender Dim. Features

ALL ARO ESPECTR > INTENS > MFCC > PITCH

0.40 > 0.40 > 0.33 > 0.25

ALL VAL MFCC > ESPECTR > PITCH = INTENS

0.25 > 0.19 > 0.16 = 0.16

Table 6.16: Ranking of feature sets by αord,5.

Table 6.16 and Fig. 6.23 show the ranking of the acoustic features for Arousal and

Valence. It appears that Arousal can be best modeled by energy-related features like

ESPECTR and INTENS, while Valence can be best modeled by MFCCs and ESPECTR.

Surprisingly, PITCH features are less important than expected. This is in line with
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the results as reported in Vogt and André [203]: they found that for spontaneous

emotional speech, MFCCs rather than pitch-related features, are more important for

automatic emotion classification.

To see whether the performance of the emotion predictors could be improved

by feature selection, we applied a stepwise regression method (Venables and Ripley

[198]) to select the best features. Based on a regression model, stepwise regression

at each stage adds or removes a variable according to some criterion, in this case,

the Akaike Information Criterion (AIC, see Venables and Ripley [198]). During our

K-fold cross-validation prediction experiments with the development sets, we collect

K number of different feature sets, selected by the stepwise regression method. Since

we aim to have 1 fixed feature set that is applied to all K folds, we derive from

the K different feature sets 1 fixed feature set. The size N of this fixed feature set is

determined by the averaged size of the K feature sets that were obtained via stepwise

regression. Subsequently, the frequency of each individual acoustic feature that is

selected by the stepwise procedure is counted over all K folds, and the top N of most

frequently selected features are included in the fixed feature set which will be referred

to as the REDUCED feature set. In Fig. 6.23 and Table 6.17, we can observe that the

REDUCED set of acoustic features obtained with stepwise regression outperforms all

other feature sets, including the full set of features.

Feature sets

α o
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5

PITCH INTENS ESPECTR MFCC REDUCED FULL

0.
0

0.
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4

0.
5
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Figure 6.23: αord,5 obtained with several types of acoustic feature sets, based on

OTHER.AVG-annotations as reference.

Comparison between human-machine agreement and human-human agreement

So far, we have mainly considered the emotion predictors’ performances from a ma-

chine learning point of view: given a set of labeled data, what is the lowest error rate

we can achieve and is it better than another predictor’s performance? We have con-

cluded that machine performance was relatively low from a classifier’s perspective.

Another way to assess performance is to compare machine performance to human

performance. In Table 6.18 and Fig. 6.24, we show the human-machine agreement

obtained with the automatic emotion predictors, next to the human-human agree-

ment, obtained with the human annotation process.

Although the comparison is not completely fair in Table 6.18 (the human-human
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Feature set Nfeat Gender Dim. eavg Pearson’s ρ αord,5 κequal,5

REDUCED

37 F ARO 0.19 0.52 0.38 0.27

34 M ARO 0.20 0.61 0.51 0.36

48 F VAL 0.23 0.43 0.32 0.24

54 M VAL 0.25 0.46 0.33 0.26

37, 34 ALL ARO 0.20 0.58 0.47 0.33

48, 54 ALL VAL 0.25 0.44 0.33 0.25

FULL
117, 117 ALL ARO 0.21 0.55 0.42 0.30

117, 117 ALL VAL 0.26 0.41 0.28 0.20

Table 6.17: Results obtained with a reduced acoustic feature set, using OTHER.AVG-

annotations as reference.

Krippendorff’s α
Human-machine

agreement between

OTHER.AVG-ratings

and MACHINE-

predictions

Human-human

agreement among

OTHER.3-ratings

Human-human

agreement between

SELF-ratings and

OTHER.AVG-ratings

Acoustic

(REDUCED)

Lexical

Arousal 0.47 0.19 0.28 0.27

Valence 0.33 0.48 0.57 0.36

Table 6.18: Human-machine agreement and human-human agreement, female and male

results combined.

agreement shown in the second column of Table 6.18 is based on OTHER.3-ratings

rather than OTHER.AVG-ratings), it gives an idea of how machines perform in com-

parison with humans. For example, in Table 6.18, if we compare the human-machine

agreement shown in the first column, to the human-human agreement shown in the

last column, we can observe that an acoustic Arousal predictor shows more agree-

ment with OTHER.AVG-annotations than a human SELF-rater does. Similarly, a lexical

Valence predictor outperforms a human SELF-rater. When we compare the human-

machine agreement figures to the human-human agreement figures shown in the

middle column, we find that the machine predictors can produce emotion predictions

that approach or even surpass the levels of agreement among humans. In the case of

acoustic Arousal prediction, our system can give predictions that surpass the level of

human-human agreement. In the case of lexical Valence prediction, the system’s pre-

dictions approach human-level performance. These observations have also been made

visible in Fig. 6.24. In Fig. 6.24, the inter-rater agreement among OTHER.3-raters is

plotted, including the agreement when the SELF-ratings, or the MACHINE-predictions

are added. In addition, 3 upper and 3 lower inter-rater agreement boundaries are

plotted which represent the highest agreements possible (when 1 annotator is added

who perfectly agrees with 1 of the OTHER.3-raters, ‘best-case’ scenario) and the low-
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Figure 6.24: Inter-rater agreement among OTHER.3-ratings plus SELF-ratings, or plus

MACHINE-predictions (top: Arousal, bottom: Valence).

est agreements possible (when 1 annotator is added who ‘perfectly’ disagrees with 1

of the OTHER.3-raters, ‘worst-case’ scenario) respectively. In the case of Arousal, we

can observe that when the acoustic machine’s predictions are added to the OTHER.3-

ratings, the inter-rater agreement does not decrease while in the case of Valence,

when the lexical machine’s predictions are added to the OTHER.3-ratings, the inter-

rater agreement does decrease. These observations support our previous ones, namely

a) that our acoustic Arousal predictor can perform at human-level performance in

terms of agreement, and b) that our lexical Valence predictor can approach human

performance in terms of agreement, but still needs improvement.

In summary, from a machine learning perspective, the emotion predictors devel-

oped have a relatively low performance. However, from a human’s perspective, it

seems that machines predict emotions (almost) just as badly (or as well) as humans

do.

6.4.7 Comparison with acted emotional speech

In order to show that this SVR method combined with the features selected can work

under other conditions, the method was also applied to an acted emotional speech

database, the BERLIN Emotional Speech database (Burkhardt et al. [25]). However,

the BERLIN database contains emotional speech that is organised in discrete emotion

categories, and hence, lacks Arousal and Valence ratings. Therefore, in order to ob-

tain these ratings, each discrete emotion category was replaced by an Arousal and
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Valence landmark rating as given by the Feeltrace tool (the squared version), see

Fig. 6.25 (note that this Section shows some resemblance with Section 4.7, however,

the purpose of this experiment is different from the one described in Section 4.7).

The emotion Disgust was discarded because there are no Feeltrace landmark ratings

available for this emotion.

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Feeltrace landmarks

Valence

A
ro

us
al

Anger

Joy

Fear

Sadness Boredom

Neutral

Figure 6.25: Discrete emotion categories from the BERLIN database with their corre-

sponding Feeltrace ratings.

The exact same SVR method, acoustic features and development procedures were

applied to the BERLIN database. Female and male models were trained and tested

separately, and speaker-independently. The distribution of the samples is as follows:

Anger Joy Fear Neutral Sadness Boredom Total

Female 67 40 29 40 36 45 257

Male 60 24 26 38 17 34 199

Table 6.19: Number of samples from the BERLIN database used in SVR experiment.

The results of the SVR experiments carried out on the BERLIN database are shown

in Table 6.20 and in Fig. 6.26. According to the figures in Table 6.20, Arousal is

much better modeled in the Berlin database than in the TNO-GAMING database. This

is not the case for Valence. But this can be explained by the fact that the spread

of positive and negative emotions is poor in the BERLIN database (as can be seen in

Fig. 6.26): there is only one positive emotion class in the BERLIN dataset, namely Joy.

These results imply that when the emotional speech data is neatly arranged, i.e., acted

full-blown emotions, good spread of various emotions, clean speech signal etc., the

SVR method in combination with the features selected can be used to predict Arousal

with a relatively good performance, in comparison with a spontaneous database like

TNO-GAMING.
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TestSVR

eavg αord,5 Pearson’s ρ

Berlin (acoustic

FULL)

Arousal 0.19 0.81 0.87

Valence 0.38 0.17 0.35

TNO-GAMING

(acoustic FULL)

Arousal 0.21 0.43 0.56

Valence 0.26 0.28 0.40

Table 6.20: Comparing results from prediction experiments with acted emotional

speech (BERLIN and spontaneous emotional speech (TNO-GAMING, based on OTHER.AVG-

annotations).
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Figure 6.26: Predictions of the SVR method applied to BERLIN database for Arousal (left)

and Valence (right) prediction.

6.4.8 Conclusions

In Experiment II, we developed and tested emotion recognizers that can predict

Arousal and Valence scalar values using acoustic and lexical speech features. A sub-

set of the dataset (= 2400 segments) was re-annotated by 6 observers such that

each segment of the subset was annotated by 3 observers and the SELF-rater. As

reference, we used the SELF-annotations of the gamers themselves or the annota-

tions of the 6 observers (OTHER.AVG-annotations). In a reliability analysis, we found,

similar to the findings in Experiment I, that there are differences between SELF-

raters’ emotion judgments and emotion judgments from several observers. Conse-

quently, these differences affected the performances of the automatic emotion predic-

tors. It appeared that the emotion recognizers achieve a better performance with the

OTHER.AVG-annotations than with the SELF-annotations: this can be seen as an indica-

tion that emotion recognizers can model observed emotions better than felt emotions.

Furthermore, we confirmed that in spontaneous emotional speech, Arousal can be

better modeled by acoustics and Valence can be better modeled by lexical features.

Moreover, Arousal was best modeled by the acoustic feature sets ESPECTR and IN-

TENS, while for Valence, the MFCCs outperformed the other acoustic feature sets.
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Unexpectedly, PITCH was the worst performing feature set. A reduced set of acoustic

features comprised of features selected by stepwise regression yielded slightly better

results than the FULL set of features. Finally, although from a machine learning point

of view, the emotion recognizers seem to perform moderately, these performances are

not so poor from a human’s perspective: the human-machine agreement for Arousal

prediction based on acoustic features is on par with the human-human agreement,

while the human-machine agreement for Valence prediction based on lexical features

lags slightly behind that of human-human agreement.

6.5 Discussion and conclusions

The human assessment of spontaneous emotion is a complex process, and to a cer-

tain extent, subjective given the relatively low agreement scores reported in previous

studies and the current study. It is expected that agreement among humans increases

when there is more ‘information’ available, i.e., when more multimodal sources are

available to base the emotion assessment on. In Experiment I, we found that this is in-

deed the case: the agreement figures were higher in the audiovisual condition than in

the audio only or visual only conditions. However, when context information (i.e., the

video stream of the game itself) was added, the agreement did not always increase.

One of the reasons why the addition of context information did not consistently in-

crease agreement, might be that we provided context information in a way that did

not help the observers but rather made the task slightly more difficult. The game

content was shown next to the visual channel with the consequence that the observer

had to divide his/her attention between two screens. In addition, the movie clips

provided to the observers were cut from their ‘contextual flow’, so that it may have

been difficult to place the video clips in their exact context. The value of an additional

source for emotion assessment seems to depend much on what type of information

is added and how it is added. However, it is not clear yet how these multimodal

sources interact with each other and how emotion is processed in a multimodal way,

especially in cases where multimodal emotional expressions are incongruent.

We also found in Experiment I that there are differences between SELF-annotations

and OTHER-annotations. A minor drawback of this analysis is that we do not have

information about the annotation skills of the SELF-raters and the OTHER-raters in

Experiment I (due to practical limitations). In other words, we do not know their

intra-rater reliabilities. It would have provided more insight into whether humans are

capable of judging their own emotions.

In Experiment II, automatic speech-based emotion recognizers were developed

with SELF-annotations and OTHER.AVG-annotations. One of the main conclusions of

Experiment II is that the MACHINE performance obtained with the predictors were

worse when these were trained with SELF-annotations as reference, than when trained

with OTHER.AVG-annotations as reference. There are several explanations possible

for this result. Firstly, it is possible that ‘felt’ emotions cannot be captured through

acoustic and lexical features, while ‘observed’ emotions can. This suggests that the

recognition technology is not mature and advanced enough to recognize ‘felt’ emo-

tions, and that we should aim at the recognition of perceived emotions first. Secondly,
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we have to note that in the SELF-condition, the experiments were performed speaker-

independently and ‘annotator-independently’ since in this condition, the speaker is

the same person as the annotator. Whereas in the OTHER.AVG-condition, the anno-

tators were drawn from the same pool in training and testing. Thirdly, we have to

keep in mind that the SELF-annotations and OTHER.AVG-annotations were carried out

in slightly different ways which may have resulted in ‘noisier’ SELF-annotations. The

SELF-annotators were provided with all possible information available, audiovisual

recordings of the webcam and contextual information (the video stream of the game),

but they could not pause or re-wind the video. The annotation took place right after

the game was finished because we wanted the gamers to be able to remember how

they felt during the game. Therefore, there was no time to segment the video into

smaller segments. The observers on the other hand could pause or re-view the pre-

segmented video segments and were provided audiovisual information only. It may

appear as if the observers were advantaged in their annotation procedure but is it not

more advantageous when one can judge his/her own emotion that she/he has just ex-

perienced? It remains a debate how to annotate emotion, but from our experiments,

we have learned that the SELF-annotations have lead to worse machine performance

than the observers’ annotations.

Another conclusion of Experiment II is that in terms of agreement, the automatic

emotion recognizer performs on human-level. For Arousal, α for human-human

agreement among OTHER.3-raters is 0.28 whereas the emotion predictor based on

acoustic features achieves a human-machine agreement of 0.47. So the machine

agrees better with a human than other humans among each other do. From a machine

learning point of view, this performance is rather moderate, because on an α-scale

from [-1,1], the score is 0.43. For Valence, α for human-human agreement among

OTHER.3-raters is 0.57 whereas the predictor based on lexical features achieves a

human-machine agreement of 0.48: the predictor seems to lag behind human perfor-

mance. A possible way to improve the human-machine agreement for Valence is to in-

clude a predictor based on facial expressions. Recall that the OTHER.AVG-annotations

were based on audiovisual information; the visual part, which we have not dealt with

at all, could supplement and improve the current human-machine agreement. From

a machine learning point of view, the Valence predictor based on lexical features per-

forms moderately. But how badly is it really for the automatic emotion recognizers

to perform moderately? Because compared to human performance, which is rather

low, the machine performance does not seem too bad. In addition, the machine per-

formance seems to depend on the type of data used. In acted emotional speech data,

where the annotation is given, machine performances are much better. But in sponta-

neous emotional speech, where emotions are more ‘shadier’ than in acted emotional

speech, humans do not easily agree about the observed emotions. If humans are bad

in judging real affect, then how can we expect from a machine to do it better? Yet,

in human-human communication we do not seem to have any problems interpreting

social or emotional cues. Perhaps an automatic emotion analyzer should aim at rec-

ognizing those social and affective cues in human-human conversation, taking into

account the unwritten conversational rules that serve as a ‘context’.
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Conclusions

From Terminator 2 (1991):

——–

The Terminator: “It has to end here.”

John Connor: “I order you not to go. I order you not to go, I ORDER YOU

NOT TO GO!”

[John starts to cry]

The Terminator: “I know now why you cry,” [Terminator wipes Johns tears]

The Terminator: “but it is something I can never do.”

——–

At the end of the movie Terminator 2, the Terminator appears to have acquired some

emotional intelligence: it now understands why John, the human, cries. Somehow,

the affective system built within the cyborg must have learned why humans cry.

Our work described in this thesis was focused on a specific aspect of building

affective systems: we investigated the effects of using real affective speech data on

affect recognition in speech. By performing affect recognition experiments on sev-

eral different types of emotional speech data, we acquired knowledge about how the

use of natural affective data affects the way affect recognizers can be developed. In

Section 7.1, we summarize our findings, acquired by experimenting, and recapitulate

the research questions stated in Section 1.4.1, and we discuss the conclusions drawn.

Finally, in Section 7.2, we give recommendations for future research.

7.1 Research questions

The main aim of the work described in this thesis was to develop speech-based affect

recognizers for real affective speech. Using spontaneous speech material, we have de-

veloped affect recognizers for the detection of laughter, and sentiments and opinions

in the context of meetings (see Chapter 5). In the context of gaming, speech-based

affect recognizers were developed that can predict Arousal and Valence scalar val-

ues (see Chapter 6). Since the use of acted emotional speech for the development

of affect recognizers is still an attractive option that has been frequently chosen by

researchers, we employed acted emotional speech to illustrate alternative evaluation
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methodologies, borrowed from other similar recognition technologies, that are also

very well applicable to the emotion recognition task and that have the possibility to

emulate ‘real-life’ situations (see Chapter 4). Finally, since the way in which the spon-

taneous emotional speech data is acquired and annotated plays an important role in

the development of affect recognizers, efforts were taken to acquire such data in the

field (see Chapter 3), and a new corpus containing spontaneous emotional speech

was recorded to explore how differences in annotation may affect the recognizer’s

performance (see Chapter 6). Along with the development of these speech-based

recognizers of real affect, several interesting research questions that were stated in

Chapter 1 could be addressed.

More than for other similar recognition technologies, such as speaker or language

recognition, the development of affect recognition techniques is strongly dependent

on the nature of the available speech material. Since most of the affect recognition

systems are most likely to be exposed to natural affect, the use of acted emotional

speech data in emotion classification experiments reduces the relevance of the out-

comes for real-life data: natural affect contains much more subtle emotion expres-

sions that often cannot be classified in one of the Big Six universal emotion categories.

One of the major difficulties in emotional speech research is the scarcity of labeled real

affective speech material. It is a very time and labor consuming process to acquire a

substantial amount of natural affective speech data that is labeled, and that can be

used to develop automatic affect recognition systems. This is in contrast with speaker

or language recognition where there are hundreds hours of speech available for the

development of speaker and language recognition systems. An additional difficulty is

that there is no consensus on how to describe and annotate real affect, and that there

is no ‘ground truth’. We hypothesized that the type and strength of emotion expression

is strongly dependent on the naturalness of the context in which these emotions are

expressed, and that the description and annotation of affect is heavily dependent on

the naturalness of emotions expressed and the context in which these were expressed.

Hence, the first two research questions, that were stated in Chapter 1, are related

to the naturalness and the description of emotional speech data:

Research question 1: How does the speech data’s level of naturalness used in speech-

based affect recognition affect the task and performance of the recognizer?

Research question 2: How does the description and annotation of emotional speech

data that is used in speech-based affect recognition, affect the task and perfor-

mance of the recognizer?

In this research, several emotional speech databases were used in our emotion recog-

nition experiments. In terms of naturalness of emotions occurring in these databases,

the data used ranged from acted emotions (see Chapter 4), to emotions (see Chap-

ter 6), to natural emotions (see Chapter 5). For acted emotional speech, the emotion

labels given to the emotional speech signals are usually straightforward: it is the

emotion category that the actor was asked to perform. Usually, full-blown and basic

universal emotions (e.g., Anger, Joy, Fear, Disgust, Sadness, Boredom) are involved.

Human and machine recognition performances on these type of datasets are usually
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relatively good. In the context of basic emotions, our experimental results obtained

with the BERLIN database, see Chapter 4, indicate that Sadness appears to be well

detectable by machines. Anger is also relatively easy to detect, however, it is of-

ten confused with Joy. Similar to humans, machines have difficulty detecting Fear

and Disgust. Although the recognition of full-blown emotions is still not perfect, the

procedure we proposed for the development of such an emotion recognizer can run

relatively smoothly, and is relatively straightforward. This is in contrast with the effort

that is needed to build an affect recognizer that can recognize natural, spontaneous

emotions.

Subsequently, in Chapter 5, we performed emotion recognition experiments with

natural emotional speech data which, in this case, was extracted from natural meet-

ings. As is known, expressions of full-blown emotions are rare in natural, daily-life

situations. Researchers who have put an effort in annotating and describing natural

(meeting) data, have found very few occurrences of full-blown or basic emotions.

Hence, the description of natural (meeting) data requires a different approach. Re-

searchers have annotated meeting data in terms of ‘emotionally colored behavior’,

focusing more on human behavior and interaction that is most likely triggered by

some affective event during conversation. Assigning a good descriptive label to a

speech signal in these natural contexts is complex: who or what decides what a good

descriptive label is for a specific speech signal? These observations have inspired us

to employ a more ‘indirect’ description and annotation of emotion. We decided to

focus on emotionally colored phenomena that are somehow related to the expres-

sion of emotion. Firstly, we developed detectors for the recognition of laughter. The

task of the laughter detector was simply to detect laughter, without interpreting the

laughter, or without recovering the meaning and function behind the laughter (for

example, laughter can be expressed out of politeness or as a reaction to a joke). Ac-

cording to our detection experiments, laughter can be relatively easily discriminated

from speech: EERs and Cdet ranged between 3% and 10%. Secondly, we developed

detectors for the recognition of subjective content. The task of the subjectivity de-

tector was to detect subjective clauses, and to detect whether the subjective clause

was positively or negatively charged. The underlying assumption was that if some-

body has an opinion, he/she will utter it with more affect than when it is a factual

statement. Subjectivity and the polarity of subjectiveness was much more difficult to

detect: Cdet was around 26%. One of the reasons why laughter is easier to detect

than subjectiveness, could be that laughter is more directly linked to affective behav-

ior than subjectiveness. Subjectiveness comprises a relatively broad concept, that is

more expressed through linguistic than acoustic features, and that is only indirectly

linked to affective behavior: our assumption that subjectiveness is expressed with

more affect has appeared to be a very weak one.

As an intermediate between the use of very artificial, shorter and distinct emotions

and very natural, but mostly less distinct and more subtle emotions, we decided to

use elicited emotional speech data with gamers who annotated their own felt emo-

tions on emotion dimensions of Arousal and Valence. In Chapter 6, we presented

our results of emotion detection experiments carried out with emotional speech data

from our own collected TNO-GAMING corpus. Since the data was annotated on con-
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tinuous Arousal and Valence dimensions, the task of the recognizer was to estimate

real-valued Arousal and Valence scalars. The disadvantage is that the performance of

this regression-based method is difficult to compare with our discrete emotion recog-

nition methods. According to the results of our emotion recognition experiments,

the person who performs the annotation also plays an important role in the task de-

scription and performance of the affect recognizer. We found that the recognition

performance is much higher when the data is annotated by observers rather than

the gamers themselves. This suggests that it is more difficult to detect felt emotions

than expressed emotions. However, one can imagine that the ultimate goal is not only

to detect what is expressed but also to detect what is felt. In addition, our results

showed that Arousal can be much better predicted than Valence when only acoustic

features are used. Valence was much better modeled than Arousal using lexical fea-

tures. Further, our emotion prediction method performed better in acted emotional

speech than in spontaneous emotional speech, which supports the notion that acted

emotional speech is easier to model.

In short, with respect to RQ1 and RQ2, our emotion recognition experiments per-

formed on several sets of emotional speech data that differ in naturalness and emotion

description have given us insight in how much the task and performance of an affect

recognizer is dependent on the data that it is trained with. In general, acted emo-

tional speech implies expressions of emotions that are full-blown and perhaps even

exaggerated, which appear to be easier to recognize than spontaneous emotional ex-

pressions. The use of natural emotional speech data usually means that a more subtle

description of emotion is required which, most often, leads to emotion descriptions

that are less direct and more attuned to human behavior. In real-life, full-blown emo-

tions are replaced with subtle emotionally colored behavior, regulated by social rules,

that may or may not be suppressed. It appears that with the current technology, these

types of subtle emotions are hard to detect automatically with the exception of laugh-

ter, which could be detected with an acceptable accuracy. Furthermore, the task of

an affect recognizer is also determined by the person who annotated the data. If the

annotator is the same person who has undergone the emotion, the annotations will

very likely reflect felt emotions. Our experiments have shown that our current tech-

nology is not ready yet to detect felt emotions. If the annotator is not the same person

as the one who has undergone the emotional experience, the annotations will reflect

the emotions as perceived by the annotator. According to our experiments, perceived

emotions are much better to predict than felt emotions.

Our third research question is related to method and features used for the devel-

opment of speech-based affect recognition systems:

Research question 3: What features and modeling techniques can best be used to

automatically extract information from the speech signal about the speaker’s

emotional state?

In Chapters 4, 5, and 6 we have performed emotion recognition experiments in which

we systematically compared different sets of features and recognition techniques to

each other. In Chapter 4, we worked with acted emotional speech and basic emo-

tions to illustrate the workings of several recognition and fusion techniques for basic
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emotion recognition in a detection framework. We made several combinations of

features and modeling techniques, and combined the two best performing systems

with a linear weighted sum rule or an LDA. The three systems tested were: Stan-

dard GMMs using RPLP (‘Standard-GMM-rplp’), GMM supervector based SVM using

RPLP (‘GMM-SV-SVM-rlp’), and an SVM using a set of prosodic features (‘SVM-Praat’).

The best performing system was GMM-SV-SVM-rplp, followed by SVM-Praat. Hence,

these two systems were combined with each other on decision-level which yielded the

best performance. Our results obtained were in line with previously reported results

obtained with the same data set.

For laughter detection (see Chapter 5), the lowest EERs were achieved with a com-

bination of spectral and prosodic features, and a combination of GMMs and SVMs.

For subjectivity and polarity recognition (see Chapter 5), we also employed textual

features: we tested word n-grams, character n-grams, phone n-grams and prosodic

features. The prosodic features appeared to be less powerful than the textual features.

According to our recognition experiments, subjectivity seems to be more apparent in

the words used, than in the prosodics. A carefully linear weighted decision-level fu-

sion (rather than an unweighted feature-level fusion) between the separate detectors

yielded significantly lower error rates.

Lexical and acoustic features were both also used in the prediction of Arousal and

Valence in the speech of gamers, see Chapter 6. Lexical features were shown to be

better predictors of Valence information than acoustic features, while acoustic fea-

tures were better predictors of Arousal information than lexical features. In addition,

in a comparison between several types of acoustic features, energy-related features

and MFCCs proved to be the best predictors of Arousal and Valence respectively. Al-

though the literature cites pitch as one of the main features that carries information

about the speaker’s emotional state, our models trained achieve higher performances

with the other types of features, i.e. MFCC, INTENS, and ESPECTR.

In short, with respect to RQ3, it is clear that (decision-level) fusion between dif-

ferent types of systems and different types of features can improve recognition perfor-

mance significantly. Combining generative (GMM) and discriminative (SVM) learning

systems has shown to yield significantly better results. Short-term spectral features

(typically used in ASR) should be combined with long-term prosodic features that can

capture the typical slow varying emotional characteristics in prosody. These type of

fusions help, most of the time, because each separate system can provide uncorre-

lated, complementary information.

Our fourth research question was related to performance evaluation of speech-based

affect recognition systems:

Research question 4: How can the current evaluation methodology for affect recog-

nition in the lab be improved to match more closely the real-life, field situation

in which affect occurs?

In Chapter 4, we proposed to develop and evaluate emotion recognizers in a detec-

tion framework, similar to speaker and language recognition, that provides standard-

ized evaluation tools and performance metrics. Although we need to assume discrete

emotion categories in order for this evaluation framework to work, we believe that by
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adopting this evaluation, emotion recognition technology can profit from the many

advantages this type of framework offers. First of all, the detection framework fits the

typical emotion recognition problem better (conceptually) than the traditional multi-

class classification paradigm: most of the time, it is more realistic (with respect to the

application one has in mind) and advantageous to develop binary-class detectors that

detect if a person is for instance angry or not, than to force a multiclass classifier to

select one of the pre-fixed classes that may be chosen rather arbitrarily. For instance,

a multiclass classification experiment based on a database that contains Anger, Sad-

ness, Joy and Neutral, informs us about the discriminability between these emotions

rather than the recognizability in general of these emotions. Results of such multiclass

classification experiments are therefore highly dependent on the type and number

of emotion classes available in the database. Therefore, we introduced an evaluation

scheme that simulates a so-called ‘open-set’ situation. In this ‘open-set’ detection eval-

uation scheme, we tested how good a specific target emotion can be detected without

having prior information about the potential non-target emotions available. In other

words, for each target emotion, we tested on samples with ‘unseen’ emotions uttered

by ‘unseen’ speakers. These experiments have shown that Sadness, in the context of

the other basic emotions, is a very distinct emotion that is easy to detect, even when

there is no prior information available about the potential non-target emotions.

So, how does real affect affect affect recognition in speech? The use of real natural

affective speech data instead of artificial and acted emotional speech data has a sub-

stantial effect on every aspect in the development of a speech-based affect recognizer.

Real affect initiates the use of more complex annotation procedures and emotion de-

scriptions. The emotion annotation requires much human labor to reach consensus

on emotion labels. Simple category labels do not suffice and are not able to capture

the subtlety with which affect is expressed in real-life situations. In natural settings, it

is more appropriate to describe affect in terms of Arousal and Valence, or to describe

affect in terms of conversational behavior. Real affect triggers the use of different

acoustic features: feature selection methods in real affective speech have shown that

the type of features selected are different from the ones selected in acted emotional

speech. In addition, in real-life, the expression of affect is a multimodal process that

involves not only vocal expressions, but also involves, e.g., the choice of words or

facial or bodily expressions. For speech- based affect recognition, a combination of

lexical and acoustic information will improve recognition performance. Finally, one

needs to be aware that shared databases, tasks, and proper evaluation methodologies

can help affect recognition technology to advance to a higher level of innovation and

performance. Perhaps this can be achieved by adopting existing evaluation method-

ologies from similar recognition technologies, such as language recognition, like the

detection framework.

7.2 Future research

Based on our experiments, we can make some recommendations for future research.

It is clear that real affect recognition is still a research area under development. First

of all, one needs to be more aware of the fact that spontaneous affect involves multi-
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Figure 7.1: History of NIST Benchmark test, showing general decrease in Word Error

Rate (WER) on a logarithmic scale, as a function of date (figure adopted from Fiscus

et al. [63]).

ple modalities and that we do not know yet, how these modalities interact with each

other and what the relations between these modalities are. This is especially impor-

tant when people use multiple modalities to express incongruent emotions, which can

occur in real-life. If more is known about these interrelations, we can develop mul-

timodal affect recognizers that can cope with this and detect real multimodal affect.

Secondly, in comparison with automatic speech recognition, speaker and language

recognition, affect recognition is seemingly much more person dependent. Nowa-

days, personalization plays an increasingly important role, so it makes sense to in-

vestigate how speaker specific methods (e.g., speaker adaptation) can work for affect

recognition. Rather than trying to detect a ‘universal’ concept of affect that is the

same for each person, one can also try to fit personalized models to each person who

inherently expresses affect differently from another person. Thirdly, one of the main

application areas of affect recognition is that of intelligent interactive interfaces: af-

fect recognition can be employed to make man-machine interaction more intelligent

and effective. For that purpose, affect should be more investigated in its context in

its broadest sense, i.e., affect-in-interaction. For example, dialog acts like agreement

or disagreement are also related to affect. Laughter is a beautiful example of affect-

in-interaction: it (usually) occurs as a reaction to the person who you are socially

interacting with. From a methodology, and technology perspective, affective events

(or affect bursts Schröder [167]) like laughter are still interesting events to detect.

These events can be relatively distinctively defined, can be relatively good detected,

and are important bearers of affect information. Finally, we believe that having shared

databases, common tasks and common evaluation protocols will help to advance af-

fect recognition technology. Developing spontaneous affective speech databases is a

very time and human labor consuming process. But it would help the affect recogni-
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tion community substantially when these databases are also made publicly available.

Sharing research tools allows for much easier comparisons and consequently, will lead

to increased competition and motivation to develop improved recognition technology.

Affect recognition is a relatively young research area that is gradually advancing

towards maturity. Drawing the parallel with the history of automatic speech recog-

nition, we may conclude that affect recognition technology is in the stage where au-

tomatic speech recognition technology was about 20 years ago, see Fig. 7.1. About

20 years ago, ASR technology started with the recognition of read digits, and read

speech which had a relatively good performance. 20 years later, researchers have

moved towards the use of spontaneous speech, recognizing broadcast speech and

natural meeting speech, achieving decreased word error rates. Hopefully, in the near

future, a benchmark test chart can be created for speech-based affect recognition as

well, that shows positive developments in technology and performance.
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[14] R. Barra, J. M. Montero, J. Maćıas-Guarasa, L. F. D’Haro, R. San-Segundo, and
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munication. Speech Communication, 40:117–143, 2003.



162 | Bibliography

[16] A. Batliner, V. Zeissler, C. Frank, J. Adelhardt, R. P. Shi, and E. Nöth. We are not
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[91] J. Kim, E. André, M. Rehm, T. Vogt, and J. Wagner. Integrating information from speech

and physiological signals to achieve emotional sensitivity. In Proceedings of Interspeech,

pages 809–812, 2005.

[92] S.-M. Kim and E. Hovy. Determining the sentiment of opinions. In Proceedings of the

International conference on Computational Linguistics (COLING), page 1367, 2004.

[93] D. Klein, J. Smarr, H. Nguyen, and C. D. Manning. Named entity recognition with

character-level models. In Proceedings of the conference on Natural language learning at

HLT-NAACL, pages 180–183, 2003.

[94] M. T. Knox and N. Mirghafori. Automatic laughter detection using neural networks. In

Proceedings of Interspeech, pages 2973–2976, 2007.

[95] M. T. Knox, N. Morgan, and N. Mirghafori. Getting the last laugh: automatic laughter

segmentation in meetings. In Proceedings of Interspeech, pages 797–800, 2008.
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Summary

The automatic analysis of affect is a relatively new and challenging multidisciplinary

research area that has gained a lot of interest over the past few years. The research

and development of affect recognition systems has opened many opportunities for

improving the interaction between man and machine. Although affect can be ex-

pressed through multimodal means like hand gestures, facial expressions, and body

postures, this dissertation has focused on speech (i.e., vocal expressions) as the main

carrier of affect. Speech carries a lot of ‘hidden’ information. By hearing a voice only,

humans can guess who is speaking, what language he/she is speaking (or accent or

dialect), what age he/she is etc. The goal of automatic speech recognition (ASR) is

to recognize what is said. In automatic speech-based emotion recognition, the goal is

to recognize how something is said. In this work, several experiments are described

which were carried out to investigate how affect can be automatically recognized in

speech.

One of the first steps in developing speech-based affect recognizers involves find-

ing a spontaneous speech corpus that is labeled with emotions. Machine learning

techniques, that are often used to build these recognizers, require these data to learn

how to associate specific speech features (e.g., pitch, energy) with certain emotions.

However, collecting and labeling real affective speech data has appeared to be diffi-

cult. Efforts to collecting affective speech data in the field have been described in this

work.

As an alternative, speech corpora that contain acted emotional speech (actors are

asked to portray certain emotions) have often been used. Advantages of these cor-

pora are that the recording conditions can be controlled, the emotions portrayed can

be clearly associated with an emotion label, the costs and effort required to collect

such corpora are relatively low, and the recordings are usually made available to

the research community. In this work, an acted emotional speech corpus (contain-

ing basic, universal emotions like Anger, Boredom, Disgust, Fear, Happiness, Neutral,

and Sadness) was used to explore and apply recognition techniques and evaluation

frameworks, adopted from similar research areas like automatic speaker and lan-

guage recognition, to automatic emotion recognition. Recognizers were evaluated in

a detection framework, and an evaluation for handling so-called ‘out-of-set’ emotions

(unknown emotions that were not present in the training data, but which can occur

in real-life situations) was presented. Partly due to lack of standardization and shared

databases, the evaluation of affect recognizers remains somewhat problematic. While

evaluation is an important aspect in development, it has been a relatively underex-

posed topic of investigation in the emotion research community.
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The main objections against the use of acted emotional speech corpora are that

the expressions are not ‘real’ but rather portrayals of prototype emotions (and hence,

expressed rather exaggeratedly), and the emotions portrayed do not often occur in

real life situations. Therefore, in this work, spontaneous data has also been used

and methods were developed to recognize spontaneous, vocal expressions of affect,

like laughter. The task of the laughter detector was to recognize audible laughter

in meeting speech data. Using a combination of Gaussian Mixture Models (GMMs)

and Support Vector Machines (SVMs), and a combination of prosodic and spectral

speech features, relatively low error rates between 3%–12% were achieved. Although

the detector did not interpret the affective meaning of the laughter, the detection of

laughter alone was informative enough. Part of these findings were used to build

a so-called ‘Affective Mirror’ that successfully elicited and recognized laughter with

different user groups.

Other speech phenomena related to vocal expressions of affect, also in the con-

text of meeting speech data, are the expressions of opinions and sentiments. In this

work, it was assumed that opinions are expressed differently from factual statements

in terms of tone of voice, and the words used. Classification experiments were carried

out to find the best combination of lexical and prosodic features for the discrimina-

tion between subjective and non-subjective clauses. As lexical features, word-level,

phone-level, and character-level n-grams were used. The experiments showed that a

combination of all features yields the best performances, and that the prosodic fea-

tures were the weakest of all features investigated. In addition, a second task was

formulated, namely the discrimination between positive subjective clauses and neg-

ative subjective clauses. Similar results for this task were found. The relatively high

error rates for both tasks, Cdet = 26%–30%, indicate that these are more difficult

recognition problems than that of laughter: the relation between prosodic and lexical

features, and subjectivity and polarity (i.e., positive vs. negative), is not as clear as is

in the case of laughter.

As an intermediate between real affective expressions and acted expressions, elici-

ted affective expressions were employed in this dissertation in several human percep-

tion and classification experiments. To this end, a multimodal corpus with elicited

affect was recorded. Affective vocal and facial expressions were elicited via a mul-

tiplayer first-person shooter video game (Unreal Tournament) that was manipulated

by the experimenter. These expressions were captured by close-talk microphones

and high-quality webcams, and were afterwards rated by the players themselves on

Arousal (active-passive) and Valence (positive-negative) scales. After post-processing

the data, perception and classification experiments were carried out on this data.

The first experiment carried out with this unique kind of data tried to answer the

question how the level of agreement between observers on the perceived emotion is

affected when audio-only, video-only, audiovisual, or audiovisual + context informa-

tion clips containing affective expressions are shown. The observers were asked to

rate each clip on Arousal and Valence scales. The results showed that the agreement

among human observers was highest when audiovisual clips were shown. Further-

more, the observers reached higher agreement on Valence judgments than Arousal

judgments. Additionally, the results indicated that the ‘self’-ratings of the gamers



Summary | 177

themselves differed somewhat from the ‘observed’-ratings of the human observers.

This finding was further investigated in a second experiment. Six raters re-annotated

a substantial part of the corpus. The results confirmed that there is a discrepancy be-

tween what the ‘self’-raters (i.e., the gamers themselves) experienced/felt and what

observers perceive based on the gamers’ vocal and facial expressions. This finding

has consequences for the development of automatic affect analyzers that use these

ratings: the goal of affect analyzers can be to recognize ‘felt’ affect, or to recognize

‘observed/perceived’ affect. Two different types of speech-based affect recognizers

were developed in parallel to recognize either ‘felt’ or ‘perceived’ affect on continuous

Arousal and Valence scales. The results showed that ‘felt’ emotions are much harder

to predict than ‘perceived’ emotions. Although these recognizers performed mod-

erately from a classification perspective, the recognizers did not perform too bad in

comparison to human performance. The recognizers developed depend much on how

the affect data is rated by humans; if this data reflects moderate human judgments of

affect, then it can be difficult for the machine to perform well (in an absolute sense).

The work presented in this dissertation shows that the automatic recognition of

affect in speech is complicated by the fact that real affect, as encountered in real-

life situations, is a very complex phenomenon that sometimes cannot be described

straightforwardly in ways that can be useful for computer scientists (who would like

to build affect recognizers). The use of real affect data has led to the development of

recognizers that are more targeted toward affect-related expressions. Laughter and

subjectivity are examples of such affect-related expressions. The Arousal and Valence

descriptors offer a nice way to describe the meaning of these affective expressions.

The relatively high error rates obtained for Arousal and Valence prediction, suggest

that the acoustic correlates used in this research only partly capture the characteristics

of real affective speech. The search for stronger acoustic correlates or vocal profiles

for specific emotions continues. This search is partly complicated by the ‘noise’ that

comes with real affect which remains a challenge for the research community working

toward automatic affect analyzers.
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Samenvatting

The automatische analyse van emotie herkenning is een relatief jong en uitdagend

multidisciplinair onderzoeksgebied waar de laatste jaren veel interesse voor is. Het

onderzoek de ontwikkeling van systemen die emoties kunnen herkennen maken inno-

vatieve applicaties mogelijk die als doel hebben de interactie tussen mens en machine

te verbeteren. Hoewel emoties via verschillende modaliteiten getoond kunnen wor-

den, bijvoorbeeld via handgebaren, gezichtsexpressies, en lichaamshoudingen, wordt

er in deze dissertatie gefocused op spraak (de stem). In spraak zit veel ‘verborgen’

informatie. Aan iemands spraak kunnen mensen vaak een schatting maken van wie er

aan het woord is, in welke taal of dialect er gesproken wordt, wat de leeftijd is van de

spreker etc. Het doel van automatische spraakherkenning (ASH) is te herkennen wat

er gezegd wordt. Het doel van spraak-gebaseerde emotieherkenning is te herkennen

hoe iets gezegd wordt. In deze dissertatie worden enkele experimenten beschreven

die uitgevoerd zijn om te onderzoeken hoe emotie in spraak automatisch herkend kan

worden.

Een van de eerste stappen in de ontwikkeling van een spraak-gebaseerde emo-

tieherkenningssysteem is het verkrijgen van een spontane spraakdatabase die gela-

beled is op emotie. De algoritmes die vaak gebruikt worden om de herkenners te

ontwikkelen hebben deze gelabelde data nodig om te leren hoe bepaalde spraak

(bijv. toonhoogte, amplitude) elementen geassocieerd kunnen worden met specifieke

emoties. Helaas is gebleken dat het verzamelen en het labelen van spontane emo-

tionele spraak een moeizaam en complex proces is. In deze dissertatie zijn enkele

inspanningen om spontane emotionele spraak op te nemen en te labelen beschreven.

Als een alternatief worden er ook vaak spraakdatabases gebruikt die geacteerde

emotionele spraak bevatten (acteurs worden gevraagd om bepaalde emoties uit te

beelden). Aan het gebruik van dit soort databases zitten duidelijke voordelen: de

opnames vinden plaats in een gecontroleerde omgeving, de uitgebeelde emoties zijn

makkelijk te labelen, de inspanningen om een dergelijke database op te zetten zijn re-

latief laag, en de opnames kunnen meestal beschikbaar gemaakt worden voor de on-

derzoeksgemeenschap. In dit werk is ook gebruik gemaakt van een geacteerde emo-

tionele spraakdatabase (deze bevatte spraak uitgesproken in de basis en universele

emoties Boosheid, Verveling, Walging, Blijheid, Neutraal, en Droevigheid) om herken-

ningstechnieken en evaluatie schema’s uit soortgelijke onderzoeksgebieden, zoals au-

tomatische spreker- en taalherkenning, toe te passen op emotieherkenning. Herken-

ners werden geevalueerd in een detectie schema, en een evaluatie schema die reken-

ing houdt met ‘verrassings emoties’ (onbekende emoties die niet aanwezig waren in

de trainingsdatabase, en dus niet gemodelleerd zijn, maar die wel kunnen voorkomen
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in de werkelijkheid) werd in dit werk gepresenteerd. Deels door het ontbreken aan

standaardisering en gedeelde datasets is de evaluatie van emotieherkenningssyste-

men enigszins problematisch. Terwijl de evaluatie van emotieherkenningssystemen

een belangrijk onderdeel is van de ontwikkeling van deze systemen, is dit een relatief

onderbelicht onderwerp gebleven in de onderzoeksgemeenschap.

De belangrijkste bezwaren tegen het gebruik van geacteerde emotionele spraak

zijn dat de expressies niet ‘echt’ zijn maar stereotype uitingen van prototype emoties

(en mogelijk dus overdreven uitgebeeld), en dat deze uitgebeelde emoties niet vaak

voorkomen in de werkelijkheid. Daarom is er in deze dissertatie ook gebruik gemaakt

van spontane data, en zijn er methoden ontwikkeld voor de herkenning van spon-

tane, nonverbale expressies van emotie, zoals gelach. De taak van de lach detector

was het herkennen van gelach in vergaderingen. Een combinatie van Gaussian Mix-

ture Models (GMMs) en Support Vector Machines (SVMs), en een combinatie van

prosodische en spectrale spraakfeatures resulteerden in relatief lage fouten percent-

ages van tussen 3%–12%. Hoewel de lach detector de emotionele betekenis van het

gelach niet interpreteerde, was het detecteren van het gelach alleen al informatief

genoeg. Een gedeelte van deze bevindingen werd gebruikt voor het bouwen van een

‘Affective Mirror’ die gelach herkent en uitlokt bij gebruikers.

Andere spraakuitingen die emotioneel geladen kunnen zijn, zijn expressies van

opinies en sentiment in de context van vergaderingen. In dit werk is de aanname

gedaan dat opinies (subjectiviteit) anders worden ‘gebracht’ dan feiten in termen van

de wijze waarop een uiting wordt uitgesproken en de woorden die gebruikt worden.

Classificatie experimenten werden uitgevoerd om te onderzoeken welke combinatie

van lexicale en prosodische features de beste prestatie leverde in het onderschei-

den van subjectieve en niet-subjectieve uitingen. Als lexicale features werden woord,

foneem, en letter n-grammen gebruikt. De experimenten lieten zien dat een combi-

natie van alle features leidde tot de beste prestatie, en dat de prosodische features de

zwakste groep was die weinig onderscheidend vermogen toonde. De tweede taak be-

stond uit de discriminatie tussen positieve subjectieve en negatieve subjectieve uitin-

gen. Soortgelijke resultaten werden verkregen. De relatief hoge fouten percentages

voor beide taken, Cdet = 26%–30%, geven aan dat dit complexere herkenningstaken

zijn dan die van gelach: de relatie tussen prosodische en lexicale features, en sub-

jectiviteit en polariteit (positief vs. negatief) is minder sterk dan in het geval van

gelach.

Als een tussenliggend alternatief tussen spontane en geacteerde emotie uitin-

gen werd in deze dissertatie uitgelokte emotionele uitingen gebruikt in verschillende

perceptie en classificatie experimenten. Hiervoor werd een multimodale database

met uitgelokte emotie uitingen opgenomen. Affectieve spraakuitingen en gezichtsex-

pressies werden uitgelokt door mensen een ‘multiplayer first-person shooter’ video

game (Unreal Tournament) te laten spelen die gemanipuleerd was door de onder-

zoeker. Alles werd opgenomen met behulp van microfoontjes en webcams, en achteraf

werden alle opgenomen spraak en gezichtsexpressies beoordeeld op Arousal (actief-

passief) en Valence (positief-negatief) schalen door de spelers zelf. Het eerste exper-

iment uitgevoerd met deze unieke dataset richtte zich op het beantwoorden van de

vraag hoe mensen affectieve uitingen beoordelen, en in hoeverre mensen het met
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elkaar eens zijn over de waargenomen affectieve uitingen wanneer deze getoond

worden in verschillende condities: alleen audio, alleen video, audiovisueel of au-

diovisueel+context informatie. De mensen (=de observeerders) moesten elke clip

beoordelen op een Arousal en Valence schaal. De resultaten lieten zien dat mensen

het meer met elkaar eens zijn in de audiovisuele conditie, en mensen zijn het meer

met elkaar eens over de Valence beoordelingen dan de Arousal beoordelingen. Verder

lieten de resultaten zien dat de ‘zelf’-beoordelingen (van de spelers zelf) wat ver-

schilden van de ‘waargenomen’ beoordelingen van de observeerders. Dit resultaat

werd verder onderzocht in een tweede experiment. Zes andere observeerders hebben

een deel van de database opnieuw beoordeeld op Arousal en Valence schalen. De

resultaten bevestigden dat de ‘zelf’-oordelen van de spelers die aangaven wat ze

voelden, verschillen van de waargenomen oordelen van de observeerders, gebaseerd

op de spraak en de gezichtsexpressies van de spelers. Dit gegeven heeft gevolgen

voor de ontwikkeling van automatische emotieherkenners die deze Arousal en Va-

lence oordelen gebruiken: het doel van een automatische emotieherkenner kan zijn

het herkennen van ‘gevoelde’ emotie, of het herkennen van ‘waargenomen’ emotie.

Twee spraak-gebaseerde emotieherkenners werden in parallel ontwikkeld die als doel

hadden of ‘gevoelde’ emotie of ‘waargenomen’ emotie te herkennen op continue

Arousal en Valence schalen. The resultaten lieten zien dat ‘gevoelde’ emoties veel

moeilijker te herkennen zijn dan ‘waargenomen’ emoties. Hoewel de herkenners niet

erg goed presteerden vanuit een classificatie oogpunt, presteerden ze in vergelijk-

ing met menselijke prestaties redelijk. De prestatie van de ontwikkelde herkenners

hangt af van hoe de affectieve data beoordeeld is door mensen; als mensen weinig

overeenstemming hebben bereikt over de affectieve data, dan kan het moeilijk voor

de herkenner zijn om goed te presteren (absoluut gezien).

Het werk dat gepresenteerd is in deze dissertatie laat zien dat de automatische

herkenning van emotie in spraak bemoeilijkt wordt door het feit dat ‘echte’ emotie,

zoals het voorkomt in de werkelijkheid, een erg complex fenomeen is dat soms niet op

zo’n eenduidige manier beschreven kan worden dat het ook bruikbaar is voor infor-

matici (die automatische emotieherkenningssystemen willen bouwen). Het gebruik

van spontane affectieve data heeft geleid tot de ontwikkeling van herkenners die

meer gefocused zijn op emotie-gerelateerde expressies. Gelach en subjectiviteit zijn

voorbeelden van zulke emotie-gerelateerde uitingen. De Arousal en Valence schalen

bieden een flexibele manier aan om de betekenis van zulke emotieuitingen te beschri-

jven. De relatief hoge fouten percentages suggereren dat de akoestische correlaten die

gebruikt zijn in dit onderzoek niet sterk en volledig genoeg waren om alle karakter-

istieken van emotionele spraak te beschrijven. De zoektocht naar sterker akoestische

correlaten of akoestische profielen voor bepaalde emoties gaat door. Deze zoektocht

wordt enigszins bemoeilijkt door de ‘ruis’ die erbij komt kijken wanneer echte, spon-

tane affectieve data wordt gebruikt wat een een uitdaging blijft voor onderzoekers

die hun onderzoek wijden aan het ontwikkelen van automatische emotieherkenners.
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