
Scalable and Embeddable Data Logging for
Live, Virtual and Constructive Simulation:

HLA, Link 16, DIS and more

Björn Möller, Pitch Technologies, Sweden
Fredrik Antelius, Pitch Technologies, Sweden

Tom van den Berg, TNO, The Netherlands
Roger Jansen, TNO, The Netherlands

bjorn.moller@pitch.se
fredrik.antelius@pitch.se
tom.vandenberg@tno.nl

roger.jansen@tno.nl

Keywords:
Simulation, Training, After Action Review, Interoperability, Data logging, HLA, DIS, Link 16, Voice, Viking

ABSTRACT: One of the most important simulation assets is the data that is collected during executions.
Imagine being able to look back, analyze and reuse the data of simulations that have been run during the last
decade. However, data logging has a number of challenges, not the least in today’s environment where we need
to train jointly and combined and mix a number of Live, Virtual and Constructive simulators, using different
standards.

This paper summarizes some requirements for LVC data logging as well as replay. It also describes some early
experiences from developing and testing a data logger that can perform fully synchronized, simultaneous data
logging of HLA, DIS, Link 16 and other data streams. Some details are given on aspects like embedding, chase
play, ownership and import/export. Some challenges and limitations when mixing these different interoperability
and data link standards are also covered.

1. Introduction
Data is one of the most important results or outputs
of computer-based modeling and simulation. Even
though computer-based modeling and simulation is
a relatively young discipline, many models have
been executed over the years, a lot of data has been
produced and most of this output data is forever
lost, in many cases since it was not logged.

No matter if a simulation is executed in real-time or
using logical time, time-stamped simulation data
can be logged for later use, like analysis or after-
action review. This data will typically have a closer
connection to the original set of simulators that
produced the data than what a naïve user may
initially think. It will usually be necessary to
understand the goal, the assumptions and the
limitations of the original simulators and scenarios
to be able to play it back and use in a meaningful
way. Nevertheless, the simulation data can be
highly useful, both for the original purpose and for
new purposes, such as input to other simulations,
testing, training, and for new types of analysis.

1.1 An LVC perspective on data logging

Taking a Live-Virtual-Constructive [1] perspective
on data logging adds a number of additional aspects
to the above, for example:

• A challenging mix of simulation standards and
protocols may need to be supported, usually
together with a set of corresponding
information exchange data models (“FOMs”)
that may be more or less coherent. More
widely used types of data to be recorded
include HLA [2], often with the RPR FOM
[3], DIS [4] and voice (both as part of the
HLA/DIS communication and using other
ways of communication). Additional types of
data may include Link 16 [5], TENA [6],
streaming video, and proprietary protocols, for
example for Command and Control systems.

• In a virtual or constructive model the data
values in each model may define the ground
truth. In a live simulation we can only attempt
to capture measurements or perceived truth.
One example of this is positions measured
using a GPS where the inaccuracy may be
measured in meters and will vary over time.
The time stamps for data from different live

sources may also need to be adjusted when
data from different sources is merged.

• While a constructive or virtual simulation can
be re-run, you may only be given one, or a
very limited number of opportunities to
capture output data from a live simulation.
One example of this is the firing of a
prototype missile in a test range.

• Live simulations may require wireless data
connections to some of the players. This may
result in less reliable communication lines,
leading to gaps in logged data. Additional
precautions may need to be considered to
address this problem.

In many cases there may be no major differences
between the collection of data from a real life
system for LVC simulation purposes and for other
purposes.

Still, the ability to combine data from several Live-
Virtual-Constructive sources makes the potential of
this data even higher. It allows us to understand a
bigger picture than before, to train in a more
realistic and effective way, and to better analyze the
total impact of new concepts.

Figure 1: LVC Data Logging Challenges.

1.2 The role of the data logger in a simulation

A data logger is typically a software application
that is either built-in into a simulation application or
that is standalone. It may connect to one or more
applications using a network protocol like DIS or
interoperability services, like HLA. A data logger
for HLA or DIS is usually more reusable than a
built-in proprietary data logger but it may be

limited to recording the public data provided in the
FOM or the DIS protocol.

The most common functionality of a data logger
includes:

• Recording of time stamped data from a data
source like HLA or DIS into a file or a
database.

• Playing back all or selected parts of the
recorded data to a data sink of the same type
(HLA or DIS). This may be done at the
original speed, scaled to lower or higher
speed, or using a completely different time-
advance pattern, for example using HLA Time
Management and/or event driven time
advance.

• Support for human inspection of the data in a
user interface.

• Support for automated inspection and analysis
of the data through an API.

• Making the recorded data available in other
formats like databases and plain text formats.

• Managing the timeline, for example by setting
bookmarks or moving the playback time to a
bookmark or a specific time value.

• Filtering the data during recording or
playback.

• Adapting the data during playback, for
example DIS exercise id, DIS entity id or
HLA object instance name.

2. Use Cases for LVC Data Logging
There are many ways to benefit from data logging
in LVC simulations. Some of the more common
applications are described here. The use cases are
based on the experiences from a number of
simulation systems developed within TNO as well
as practical experiences provided by staff at Pitch.

2.1 Simulation for training

Simulation for training is a common application
where data logging is used. One particular class of
training applications is the virtual, man-in-the-loop
simulations, for example for training pilots, drivers,
forward air controllers or straddle carrier operators.

Figure 2: TNO Forward Air Controller simulator.

Data logging in these simulations is mainly used to
record and playback an exercise in real time, where
instructors use VCR type functions to control data
logging and playback.

The characteristics of these simulations are:

• The simulation is typically Virtual.

• It is a real time simulation where HLA Time
Management is not used.

• Data logging is used for simulation data
(ground truth), and sometimes also live voice
or video data.

• The execution is controlled via start, stop,
pause, and resume management messages.

• Simulation applications may join or leave the
simulation execution when they want.

• Real-time replay of the logged data is used for
after action review.

Since these simulations have been around for a
while, the required functionality for recording and
replay is generally well understood.

From a high-level point of view, three major states
can be identified for this kind of simulation.

• Preparation. In this state a training scenario is
prepared and previously recorded data may be
used for the construction of a new scenario.
Common simulator functions in this state are:
create new scenario, edit scenario, delete
scenario, load scenario and save scenario.
Editing a scenario involves many different
functions which will differ per training
application, such as entity placement on a 2D
map, route planning and entity behavior
configuration. When the scenario is started,
the prepared scenario becomes the initial
situation at the start of the scenario execution.

• Execution. In this state the scenario is
executed over time. Simulation data and other
relevant data are recorded for after action
review. It is possible to bookmark certain

events for use in after action review. When the
execution is stopped, the existing situation
may become a new scenario in the preparation
state.

• After Action Review. In this state a previously
recorded exercise can be replayed and
visualized in the original simulators or in 3D
or 2D viewers. It is possible to view the list of
available bookmarks, to jump to a bookmark
or to a certain point in time in the recording. It
is also possible to pause and resume the
replay. When the after action review is
stopped, the existing situation may become a
new scenario in the preparation state.

2.2 Simulation for analysis

There are many different types of analysis models.
Here we have chosen to focus on stochastic
simulation (Monte Carlo [7] simulation). Stochastic
simulation typically involves thousands or more
simulation runs, varying one or more parameters.
The simulation runs can be long lasting (in elapsed
time), and are executed in non-real time. In most
cases these simulations run as-fast-as-possible.
Analysis involves processing and aggregating large
amounts of data that has been recorded over the
various runs. Ad-hoc queries on the recorded data
may be needed to zoom in on certain aspects.
Analysis is usually performed afterwards when all
the data can be aggregated and searched.

Two examples where stochastic simulation is
applied are described in earlier papers [8][9]. In [8]
the effect of dynamic train management is studied,
using small stochastic variations in the train
schedule. In [9] a footprint analysis is performed to
determine the region that a ship can defend against
a missile, using stochastic variations in sensor
behavior.

In both examples a large amount of data is collected
during the simulation execution and transferred to a
dedicated analysis application. Stochastic
simulation also requires more extensive simulation
states to control simulation execution, such as states
for simulation initialization, warm-up, steady state
execution, iterations and shutdown. This is quite
different from the relatively simple simulation
states in the training case.

Figure 3: Study area to analyze dynamic train

management using Monte Carlo simulation [8].

We can summarize the characteristics of a
stochastic simulation as follows:

• The simulation is typically Constructive.

• It is a non-real time simulation where HLA
Time Management is used.

• Data logging is used for simulation data
(ground truth) as well as simulated operational
data, like the Link 16 BOM (perceived truth).

• Execution is controlled via synchronization
points and save/restore points

• All applications need to be present throughout
the simulation execution.

• Replay of certain runs may be possible, but
results may also just be charts such as bar or
line charts of aggregated data

2.3 Simulation for test and evaluation of live
systems

This use case involves connecting real-time
(operational, live) systems to a simulation for test
and evaluation. The idea behind this is to test and
evaluate a system early in the development cycle
and certainly before the system arrives in the target
environment. A simulation can provide, for
example, stimuli or ’ground truth input’ in order to
verify if the resulting behavior of the system is
correct. Alternatively a data logger may be used to
replay previously recorded data to stimulate a
system. The resulting system behavior may be the

transmittal of certain tactical (operational)
messages, which may be fed back in the simulation
for additional stimuli. Thus simulation for test and
evaluation involves simulation data, operational
data and real-time execution.

Analysis involves correlating simulation data with
operational data to verify if the right data was
generated at the right moment where timing of
certain messages may be important. For example,
which Link 16 track corresponds to which
simulation entity? Are the correct tactical messages
generated across all phases of a missile
engagement?

Figure 4: JROADS simulation integrated with live

systems via a tactical data link.

Analysis may be performed on-line (during
simulation execution) or off-line (after simulation
execution). With on-line analysis, both simulation
data and operational data are monitored during the
simulation execution. It is possible to pause the
monitoring in order to look at certain data, while at
the same time the recording of data continues. The
monitoring can be resumed and fast forwarded to
catch up with the ongoing execution, so called
chase play, just like modern hard-disk video
recorders that can record and play a film at the
same time, while jumping back and forth in the
film. Bookmarking may be used to jump to certain
important points that have been marked earlier in
the recorded data.

With off-line analysis the recorded simulation data
and operational data is reviewed after the execution
has finished. Data may be replayed in real time or
faster/slower than real time (n times real time).
Important to note is that the timing of messages that
are replayed can be important or even critical, due
to the correlation between simulation data and
operational data over time. Also, data from external
sources may need to be combined with the recorded
data, such as log files from command and control
systems. Data from external sources can be
provided in different formats (e.g. comma-

separated value file or xml file). An application for
off-line analysis is described in [10].

Again, we can summarize the characteristics of a
simulation for test and evaluation as follows:

• The simulation can be regarded as Live.

• It is a (hard) real-time simulation where HLA
Time Management is not used.

• Data logging is used for simulation data
(ground truth) as well as live/simulated
operational data, like Link 16 (perceived
truth).

• Execution is controlled via start/stop
management messages, monitoring via
pause/resume/jump messages

• Depending on the system, all applications in
the simulation environment need to be present
throughout the simulation execution

• Real time and non-real time replay of data is
used for after action review.

2.4 Federation development

Logged simulation data is highly useful to
minimize time, cost and risk during the
development of simulation software, in particular
when adding HLA or DIS interfaces. The output
data of a simulator can be logged, inspected and
checked against the expected output. Well-known,
correct simulation data can be fed into a simulator
from a data logger to check stability and correct
behavior. You may even exchange logged data
between several simulators before you connect
them for real. An integration leader may apply a
pre-integration methodology where all systems are
required to be tested against a well defined set of
test data before they are allowed to join the full
federation. Data logging for simulator development
is applicable to all the above types of simulation. It
generally shares all of the above requirements but
the requirement to be able to exchange data files is
prominent.

3. Requirements and Challenges for
Data Loggers
The different use cases all lead to a set of
requirements for recording and replay. Ideally
we’re looking for a multipurpose recording and
replay capability that can fulfill all requirements.
This section of the paper lists the requirements and
maps them to the use cases above that are most
relevant.

3.1 Data streams

Requirement 1: The data logger must support
several data streams (HLA, DIS, etc, as required by

the simulation), or be extendable with new data
streams.

Most applicable to: Training, Test and Evaluation

Today’s simulation environments are open and all
kinds of systems can be connected, generating
different types of data. A well known example in
the missile and air defense domain is Link 16.
Another example is voice. Recording should not
just be limited to simulation data.

3.2 Session management

Session management concerns the management of
recording sessions: create a recording session with
the required (DIS, HLA, etc) simulation connection
parameters; destroy a previously created recording
session; open a recording session for replay; close a
previously opened recording session; start, stop,
pause, resume the recording or replay within a
session; jump to bookmark or jump to time within a
session.

Requirement 2: The data logger must be able to
record data streams and store them as a recording
session. Recorded data streams (DIS, HLA, etc.)
must be stored together in a recording session.

Most applicable to: All use cases

Requirement 3: The data logger must be able to
retrieve a recording session and replay all or a
subset of the recorded data streams.

Most applicable to: All use cases

Data streams in a recording session should also be
replayed together. The precise timing of data stream
messages may be important. For example if in data
stream A messages are recorded at time 0, 5, 10, ...,
and in data stream B at time 2, 5, 8, ..., then these
should also be replayed exactly this way. Thus
during replay, data streams in a recording session
must remain synchronized in time.

Requirement 4: The data logger must be able to
replay a data stream in a different format than was
recorded.

This requirement implies that the data logger is
aware of the data being recorded. For example
record a DIS data stream and replay the DIS data
stream as an XML formatted data stream.

Most applicable to: Test and Evaluation

Requirement 5: The data logger must be able to
pause/resume/fast forward/fast backward a replayed
recording session.

Most applicable to: All use cases

Requirement 6: The data logger must support the
filtering of data from a data stream on recording
and on replay.

Most applicable to: All use cases

Requirement 7: The data logger must support the
concurrent recording and replay of a data stream.

Most applicable to: Test and Evaluation,
Federation development

Usually replay happens only when recording has
finished. But in some cases it must be possible to
view and analyze data streams while they are being
recorded. Thus data streams are replayed at the
same time as they are recorded (concurrently). Also
the requirements to pause/resume/fast forward/fast
backward, to jump to a bookmark or jump to a
point in time, and replay in a different format apply
on the replayed data streams. When a replayed data
stream lags behind on the recording, it is called
”chase play”.

The following figure shows the principle.

 Recorder application Analysis application

Recording and
Replay

Execution
Management

Simulation and
Operational data

Control
commands

Simulation and
Operational data

Analysis

Recorder application Analysis application

Recording and
Replay

Execution
Management

Simulation and
Operational data

Control
commands

Simulation and
Operational data

Analysis

Figure 5: Activity diagram for concurrent

recording and replay.

The data streams that come out of the Recording
and Replay activity should not be replayed on the
same DIS exercise or HLA federation where the
data is recorded from. Thus the data streams should
be replayed in a different DIS exercise or HLA
federation, or even in a different format, for
example as XML on a TCP connection.

Requirement 8: The data logger must support the
grouping of recording sessions and support the
addition of meta-data to each group.

Most applicable to: Analysis

With Monte Carlo simulations, each run results in a
recording session. Recording sessions of related
runs (for example where only the seed is different)
should be grouped and have the variation number
and other variable settings added as meta-data.

3.3 Bookmark management

Requirement 9: The data logger must support the
management of bookmarks (create, delete, update
bookmark; retrieve bookmarks).

Most applicable to: All use cases

Requirement 10: The data logger must be able to
jump to a bookmark or jump to a point in time in a
replayed recording session.

Most applicable to: All use cases

When jumping to a certain point in time (say time
T), it may be necessary to scan the data stream
backwards in time to build up a complete picture
for time T. For example, with a DIS data stream the
data logger may need to scan back up to 13 seconds
in order to find all entity state updates for time T.

3.4 Time management

Requirement 11: The data logger must be able to
record data in a real-time simulation (which does
not use HLA Time Management or similar
services).

Most applicable to: Training, Test and Evaluation,
Federation development

Requirement 12: The data logger must be able to
record data in a (real time or non-real time) HLA
time managed simulation.

Most applicable to: Analysis, Federation
Development

Time management concerns the use of HLA Time
Management services when the simulation is time-
managed. With a time-managed simulation a data
logger is usually a time constrained federate in
recording mode and, depending on the federation, a
time regulating federate in replay mode. Recording
and Replay needs to support HLA Time
Management.

Requirement 13: The data logger must be able to
replay a recording session at different speeds (real
time or faster/slower than real time).

Most applicable to: Test and Evaluation

Restrictions may apply for certain data streams in
certain situations. For example, a DIS data stream
may in some cases only be replayed real-time,
otherwise dead-reckoning models in applications
like viewers may not work correctly.

3.5 Ownership management

Requirement 14: The data logger must be able to
transfer ownership of object instances in a certain
data stream on a mode change (between recording
and replay).

Most applicable to: Training

Ownership management concerns a transfer of
ownership of HLA object instances when the mode
changes between recording and replay. In some
situations an ownership transfer is required, for
example when the state of the object instances
provided in replay mode is used as the initial state
for a new simulation execution. The data logger
needs to release ownership and the different
applications that model the object instances must
acquire ownership.

Recorder application Other application(s)

Recording and
Replay

Divest
ownership

Simulation

Acquire
ownership

Recorder application Other application(s)

Recording and
Replay

Divest
ownership

Simulation

Recorder application Other application(s)

Recording and
Replay

Divest
ownership

Simulation

Acquire
ownership

Recorder application Other application(s)

Recording and
Replay Simulation

Acquire
ownership

Recorder application Other application(s)

Recording and
Replay Simulation

Acquire
ownership

Divest
ownership

Figure 6: Ownership transfer on mode change: (1)

from After Action Review to Execution or
Preparation (top) and (2) from Execution or

Preparation to After Action Review (bottom).

3.6 Data management

Requirement 15: The data logger must support the
exchange (import/export) of recorded data with
other applications.

Most applicable to: Analysis, Test and Evaluation,
Federation development

For export, there are different options to consider,
for example: raw export (export the data streams as
they were recorded), structured export (export the
data streams to a structured format, e.g. a SQL
database where the schema matches the HLA
FOM).

3.7 Control and embedding

Requirement 16: The data logger must be
able to handle execution management messages that
are received via a data stream.

Most applicable to: Analysis

In some cases execution management messages
(such as HLA synchronization points, HLA
Save/Restore, and user defined simulation
management interactions) need to be interpreted by
the Recording and Replay activity. This can for
example be a certain HLA interaction that identifies

the end of a Monte Carlo simulation run. The
Recording and Replay activity must provide hooks
to handle these execution management messages. A
default hook could implement some default
behavior, like achieving an HLA synchronization
point.

Requirement 17: The data logger must be
embeddable in and completely controllable by
another application, concerning all of the earlier
mentioned requirements.

Most applicable to: Training, Analysis, Test and
Evaluation

This is an important requirement and allows
recording and replay to be integrated with virtually
any simulation application. The following figure
shows an example of embedded control.

Controlled application Controlling application

Recording and
Replay Execution

Management

Simulation and
Operational data

Control
commands

Execution Management messages,
Synchronization points and Save/Restore points

Controlled application Controlling application

Recording and
Replay Execution

Management

Simulation and
Operational data

Control
commands

Execution Management messages,
Synchronization points and Save/Restore points

Figure 7: Activity diagram for recording mode.

In this example the controlling application performs
the activity execution management. It controls the
controlled application (i.e. the data logger) that
performs the activity recording and replay. The
controlling application handles for example the
HLA synchronization points, HLA Save/Restore
and Execution Management messages (such as
start-resume and stop-freeze DIS PDUs in a DIS
exercise) and if needed initiates mode changes on
the controlled application. The controlled
application (i.e. the data logger) does not interpret
any Execution Management messages (these
messages are just recorded as any other data) and
achieves (by definition) any HLA synchronization
or HLA save/restore it is involved in.

Thus, with embedding, recording and replay is
dedicated to performing just this activity, while it is
part of some application.

3.8 Scalability

Requirement 18: For initial testing, the data logger
shall be able to operate on a regular computer
without extensive setup. When used with a full
federation, the data logger must be able to
record/replay many different data streams
concurrently and support long lasting and large
recording sessions with tens of thousands of
recorded events per second.

Most applicable to: All use cases

Note that there are advanced use cases where
several data loggers could be used concurrently, for
optimum scalability, or in different locations to
conserve bandwidth. Merging of the logged data
may introduce additional challenges that are not
covered in this paper.

4. Practical Experiences
This section summarizes our experiences from
extending a COTS data logger with an additional
LVC protocol.

4.1 About Pitch Recorder

Pitch Recorder, a COTS product, is a general
purpose data logger with a rich set of features [11]
targeted at LVC simulations. It provides parallel,
synchronized recording of the following data
streams:

• HLA data for any FOM with support for HLA
1.3, 1516-2000 and 1516-2010 RTIs.

• DIS version 4, 5 and 6 plus experimental
PDUs

• Audio (for example for voice recording).

• User defined data streams, for example
national C2 protocols

In addition to the concept of a data stream, the Pitch
Recorder introduces the concept of channels. For an
HLA data stream it is possible to configure
different channels, for example for land, sea and air
entities as well as fire, detonation and radio. Pitch
Recorder is not locked to any particular FOM and
has been used for military, security, space, and
civilian federations.

Figure 8: Channels in Pitch Recorder

All data streams can be recorded, played back,
filtered, inspected and exported to other programs.
Complete recordings can also be exported to a

package that can be sent by e-mail or other file
transfer methods. Pitch Recorder can be used stand-
alone or be embedded into a solution and externally
controlled by another software application.

One of the more recent features of this product is a
plug-in framework that allows the addition of new
kinds of data streams for recording and replay.

4.2 Scalability Experiences

Pitch Recorder can record to small local databases
for modest data flows. For large federations, high
end COTS databases on dedicated hosts can be used
for sustained logging of tens of thousands updates
per second. Typical performance for Pitch Recorder
in a lab test is more than 25 000 recorded HLA
updates per second on a regular desktop computer.

An interesting scalability experience from a real
training application is the recent Viking 11 exercise
[12]. This exercise was described in ITEC 2011
keynote as the world’s premier comprehensive
exercise, including civilian, military and police
participants. The exercise covered the planning and
execution of a UN mandated Chapter VII Peace
Operation/Crisis Response Operation. On the
civilian side approximately 35 Non-Governmental
Organizations participated. It was based on a
scenario called Bogaland that contains a large
number of challenges for example piracy, irregular
forces, refugees, children in armed conflicts and
reconstruction. Approximately 2500 persons from
31 nations were involved, participating from 9
different sites.

Examples of participating systems were JCATS,
ICC, Sitaware, Exonaut, TYR, ASCOT and VBS2.
The information exchange was based on an HLA
Evolved infrastructure using Pitch pRTI Evolved
version 4.2.5. Data was logged using Pitch
Recorder with a separate database host running
MySQL, saving data to a RAID-5 disk set. More
than 160 hours of exercise was recorded amounting
to more than 210 GB of data. The majority of this
data was position updates. Note that the data rate
varies a lot over time, with a typical “idle rate” of
8000 updates per second. Voice data was also
recorded using a separate Pitch Recorder since
voice was handled on a separate network to reduce
the risk of network overload.

One conclusion from this exercise is that it is
important to fully understand how to configure the
database manager (in this case MySQL) in order to
guarantee that the data base sessions don’t time out.
Another, more obvious conclusion is the
importance of powerful hardware to avoid overload
during busy periods of the exercise.

4.3 Experiences from adding Link 16 support

As an engineering feasibility demonstration, a new
data stream for Link 16 [5] recording and replay
was added to Pitch Recorder by TNO. Tactical Data
Link traffic like Link 16 is often emulated in
simulation environments. Several protocols and
wrappers are being used to provide the exchange of
Link 16 messages between federates. The Standard
Interface for Multiple Platform Link Evaluation
(SIMPLE) [13] is widely supported and was
selected for the engineering feasibility
demonstration. The Link 16 data stream was added
relatively easily to the Pitch Recorder, given that a
Link 16 software library for receiving and sending
Link 16 messages from/to a SIMPLE network was
already available.

The plug-in framework provides a set of Java
interface classes that a plug-in must implement, for
example for sending and receiving data, and for
providing a property window. Once the plug-in is
constructed and compiled to a jar file, it is just a
matter of dropping the jar file in the Pitch Recorder
plug-in folder.

Figure 9: Screenshot of Pitch Recorder Link 16

recording.

One of the reasons to choose SIMPLE Link 16 as a
first candidate plug-in is to create the ability to
record, replay and analyze DIS/HLA simulation
data in combination with Link 16 tactical data. This
data stream combination is often found in LVC air
and missile defense simulation exercises, like
JPOW (Joint Project Optic Windmill) [14].

The Link 16 plug-in for Pitch Recorder was
successfully tested in the JROADS (Joint Research
On Air Defence Simulation) simulation
environment at TNO. JROADS is an extensive
simulation tool to support air defense research and
CD&E for the Netherlands armed forces. At JPOW,
JROADS has been used for joint experimentation,
analysis, and mission training for many years.

5. Discussion
While generating requirements from the use cases,
a number of challenges became obvious as to how
these requirements should be implemented. This
section summarizes some of them.

5.1 What data do we need to collect?

For many purposes, like after action review or
analysis, there may be a requirement to use many
types of data from the simulation. Some of them
may be exchanged using HLA or DIS during the
execution. Others may be internal variables in
simulators or physical states of hardware. The
challenge is how to collect the later type of data.
Some approaches are to publish that data using
HLA or to introduce a separate data stream for that
data into the same or a different data logger. Using
several data loggers creates problems when re-
synchronizing the data. Sending additional data
using HLA may only be practical for a limited set
of data. Creating a specialized data stream for
internal data from an application means a fair
amount of work. The best approach has to be
decided from case to case.

5.2 Data loggers and data awareness

One of the more difficult questions when designing
a data logger is to what degree a data logger needs
to be aware of the data it handles. Playing back data
is usually more challenging than recording data and
will sometimes require additional functionality in
most participating simulators. Typical examples
include:

• Handling of the life cycle of a simulated
entity. If the playback of a DIS recording is
paused and no data is sent for an aircraft for a
certain time period, then listeners may delete
that aircraft (unless all systems implement the
freeze PDU). For HLA, a related problem is
that a data logger may send out data for an
aircraft that hasn’t been created or that has
attributes that are owned by another system.

• Handling of data where certain shared
algorithms have been agreed. One example is
dead reckoning where an aircraft has a certain
speed that participating systems use for
predicting its future position. When such data
is played back at scaled time or even paused
there is a risk that listeners may interpret the
data in an unintended way.

• Handling of data that needs to be adapted. An
example is the DIS exercise identification in a
DIS data stream. The DIS exercise
identification may be different on playback.
Another example is time information. Time
information may be adapted in order to replay

data at another simulation time than it was
recorded.

As can be seen from these examples a data logger
may need to have deeper insights into both the
simulation standard used and particular federation
agreements.

5.3 Exchanging data that has been logged

It is likely that different organizations may want to
use different data logging software. The same
organization may even want to use different
software over time or for different projects.
Therefore, it would be of great value if different
data loggers could exchange data using a
standardized file format. While the internal format
of a data logger may be optimized for fast search
and execution, a data interchange format would be
optimized for generality.

One strongly related topic is a long-term data
archival format that ideally would be the same as a
standardized data interchange format.

6. Conclusions
This paper has presented a number of use cases,
requirements and challenges for data logging in an
LVC environment. Although the different use cases
all have their own focus areas with respect to
logging, it should be possible to provide a solution
that fulfils all or most requirements. Such a solution
must be open and extendable, for example by using
a plug-in framework such as in Pitch Recorder. An
initial demonstrator based on the Pitch Recorder
plug-in framework has been described in this paper
and has shown that a new data stream such as
SIMPLE/Link 16 can relatively easily be added to
the Pitch Recorder.

One important conclusion is the need to record
several types of data in parallel to fully capture the
exercise in particular in LVC and training
applications. This may include both standardized
data streams, like HLA, DIS and voice as well as
proprietary data.

Future work on data logging and playback, in
particular work related to debrief, should not only
consider the requirements listed in paper, but also
look at the work of the SISO Distributed Debrief
Control Protocol (DDCP) Study Group [15]. The
aim of the DDCP Study Group is to evaluate
industry and government interest in developing a
distributed debrief control protocol standard. Some
of the requirements in this paper are related to this
work.

References
[1] A Henninger, et. al. “Live Virtual

Constructive Architecture Roadmap

(LVCAR) Final Report”, US DoD,
September 2008.

[2] IEEE: "IEEE 1516-2010, High Level

Architecture (HLA)", www.ieee.org, August
2010.

[3] SISO, “Real-time Platform Reference

Federation Object Model 2.0 ”, SISO-STD-
001 SISO, draft 17.

[4] IEEE: "IEEE 1278, Distributed Interactive

Simulation (DIS)", www.ieee.org.

[5] Link 16 is defined as one of the digital

services of the JTIDS / MIDS in NATO's
Standardization Agreement STANAG 5516.
MIL-STD-6016 is the related United States
Department of Defense Link 16 MIL-STD.

[6] “TENA - The Test and Training Enabling

Architecture, Architecture Reference
Document”, https://www.tena-
sda.org/public_docmanager/userdocuments/
TENA ARCHITECTURE
REFERENCE/TENA Architecture
Reference Document 2002.pdf.

[7] Metropolis, N. and Ulam, S. "The Monte

Carlo Method." J. Amer. Stat. Assoc. 44,
335-341, 1949.

[8] 08E-SIW-003: Application of HLA in the

Optimization of Rail Transport. Euro SIW
2008. T.W. van den Berg et al.

[9] 09S-SIW-008: Execution Management

Solutions for Geographically Distributed
Simulations. Spring SIW 2009. T.W. van
den Berg et al.

[10] 11E-SIW-010: Generic Reconstruction and

Analysis for simulations or live exercises.
Euro SIW 2011. R. Witberg et al.

[11] Pitch Recorder web page,

http://www.pitch.se/products/recorder

[12] Viking 11,

http://www.forsvarsmakten.se/en/About-the-
Armed-Forces/Exercises/Completed-
exercises-and-events/VIKING-11/

[13] Standard Interface for Multiple Platform

Link Evaluation (SIMPLE). STANAG 5602
(Edition 2). http://nsa.nato.int.

[14] Joint Project Optic Windmill,

http://www.globalsecurity.org/military/ops/o
ptic-windmill.htm.

http://en.wikipedia.org/wiki/JTIDS
http://en.wikipedia.org/wiki/Multifunctional_Information_Distribution_System
http://en.wikipedia.org/wiki/STANAG
http://en.wikipedia.org/wiki/MIL-STD-6016
http://en.wikipedia.org/wiki/United_States_Department_of_Defense
http://en.wikipedia.org/wiki/United_States_Department_of_Defense
http://en.wikipedia.org/wiki/MIL-STD

[15] SISO Distributed Debrief Control Protocol

(DDCP) Study Group,
http://www.sisostds.org/StandardsActivities/
StudyGroups/DDCPSGDistributedDebriefC
ontrolProtocol.aspx.

Author Biographies
BJÖRN MÖLLER is the vice president and co-
founder of Pitch, the leading supplier of tools for
HLA 1516 and HLA 1.3. He leads the strategic
development of Pitch HLA products. He serves on
several HLA standards and working groups and has
a wide international contact network in simulation
interoperability. He has twenty years of experience
in high-tech R&D companies, with an international
profile in areas such as modeling and simulation,
artificial intelligence and Web-based collaboration.
Björn Möller holds an M.Sc. in Computer Science
and Technology after studies at Linköping
University, Sweden, and Imperial College, London.
He is currently serving as the vice chairman of the
SISO HLA Evolved Product Support Group.

FREDRIK ANTELIUS is a Lead Developer at
Pitch and is a major contributor to several
commercial HLA products. He holds an M.Sc. in
Computer Science and Technology from Linköping
University, Sweden.

TOM VAN DEN BERG is scientist in the
Modeling, Simulation and Gaming department at
TNO, The Netherlands. He holds an M.Sc. degree
in Mathematics and Computing Science from Delft
Technical University. His research area includes
simulation systems engineering, distributed
simulation architectures and concept development
& experimentation.

ROGER JANSEN is a member of the scientific
staff in the Modeling, Simulation and Gaming
department at TNO, The Netherlands. He holds an
M.Sc. degree in Computing Science and a Master
of Technological Design (MTD) degree in Software
Technology, both from Eindhoven University of
Technology, The Netherlands. He works in the field
of distributed simulation and his research interests
include distributed computing and simulation
interoperability.

