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We propose an efficient approximation to the nonlinear phase diversity (PD) method for wavefront reconstruction
and correction from intensity measurements with potential of being used in real-time applications. The new iter-
ative linear phase diversity (ILPD) method assumes that the residual phase aberration is small and makes use of a
first-order Taylor expansion of the point spread function (PSF), which allows for arbitrary (large) diversities in
order to optimize the phase retrieval. For static disturbances, at each step, the residual phase aberration is esti-
mated based on one defocused image by solving a linear least squares problem, and compensated for with a de-
formable mirror. Due to the fact that the linear approximation does not have to be updated with each correction
step, the computational complexity of the method is reduced to that of a matrix-vector multiplication. The con-
vergence of the ILPD correction steps has been investigated and numerically verified. The comparative study that
we make demonstrates the improved performance in computational time with no decrease in accuracy with re-
spect to existing methods that also linearize the PSF. © 2013 Optical Society of America

OCIS codes: (010.7350) Wave-front sensing; (100.5070) Phase retrieval; (110.1080) Active or adaptive
optics; (000.4430) Numerical approximation and analysis.
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1. INTRODUCTION
All optical measurements are subject to optical aberrations
either coming from exterior sources or intrinsic to the instru-
ment. If the aberrations can be estimated, they can be com-
pensated for either through adaptive optics during image
acquisition or postprocessing. One method that has been used
mostly in postprocessing is phase diversity (PD) [1]. PD esti-
mates wavefront aberrations using nonlinear optimization
techniques from multiple images of the same unknown scene
acquired simultaneously, which contain additional user-
introduced aberrations, the latter referred to as diversities.
To be able to uniquely estimate wavefront aberrations, more
than one in-focus image is needed [2], because rotating a
wavefront by 180° and flipping its sign produces the same
point spread function (PSF) as the original wavefront [3].
The resulting optimization problem is nonlinear and is known
to be computationally complex due to the repetitive evalua-
tions of Fourier transforms. In addition, the method is also
prone to converge to local optima [3]. As a consequence, non-
linear PD has a limited usage in real-time correction algo-
rithms [2], and different ideas have been presented to
decrease the complexity of the calculations. These ideas
can be split up into Fourier domain [4–7] and spatial domain
[8,9] techniques. The Gerchberg–Saxton [4] algorithm is one
of the oldest and best known Fourier domain techniques,
which is an iterative algorithm for retrieving the phase from
intensity measurements. Spatial domain techniques make use
of a local model for the PSF, but do not use the Fourier
transform. The common idea in decreasing the computational
complexity is the approximation of the PSF based on the
assumption that the total aberration is small [5,6,10]. This

small-phase assumption is associated in the literature with
the Born approximation [5,11,12], which implicitly assumes
that the diversity used is small.

Recently, in [6], it was shown that using a second-order ex-
pansion of the generalized pupil function (GPF), wavefront
retrieval algorithms give more accurate results than using
the Born approximation, which results from a linear expan-
sion of the GPF. The key assumption of these methods is that
the sum of the diversity and the aberration is small. However,
as has been shown in [13], the optimal diversity depends on
the present aberration and can generally not be considered
small. In the present paper, we overcome this shortcoming
by the use of an alternative approximation of the PSF. The
linearization of the PSF is done around zero aberration and
a (possibly large) diversity and it is suited for small values
(∼0.5 radians (rad) root mean square (rms) [11,12]) of the
phase aberration. The iterative manner in which the method
is applied compensates for this small-phase assumption. In
this context, the use of one image is enough for the uniqueness
of the phase estimate [14].

A similar approximation is used in [15] or [8]. Both [15] and
[8] use only one image for the phase retrieval. In [15], an analy-
sis is made for the best defocus measurement plane for robust
phase retrieval. The method in [8], the linearized focal-plane
technique (LIFT), performs several iterations using the same
recorded image. In the first step, the linearization of the PSF is
obtained from a Taylor expansion of the nonlinear PSF taken
around zero (aberration) and a least squares (LS) problem is
solved yielding an estimate of the wavefront aberration. For
the next iterations, the linearization of the PSF is taken around
the current estimate of the Zernike coefficients and again a

2002 J. Opt. Soc. Am. A / Vol. 30, No. 10 / October 2013 Smith et al.

1084-7529/13/102002-10$15.00/0 © 2013 Optical Society of America

http://dx.doi.org/10.1364/JOSAA.30.002002


linearization step is performed and a linear LS problem is
solved using the same image as in the previous step. The au-
thors mention that more than three iterations do not yield sig-
nificant improvements. Using only the PSF approximation in
the first iteration in [8], we present a novel iterative linear
phase diversity (ILPD) method, which consists in iteratively
collecting one defocused image with a fixed known defocus,
solving a LS problem obtained from the linearization of the
PSF around zero aberration and correcting for the wavefront
aberrations by the LS estimate. As opposed to LIFT, which can
estimate several modes from a full pupil image by approximat-
ing the PSF iteratively around the current estimate of the aber-
rations, we use the approximation around zero aberration and
collect one new image (which includes the previous correc-
tions) at each iteration. In this way, we speed up the algorithm
due to the fact that the linear coefficients of the PSF do not
change from iteration to iteration. The method reduces to a
matrix-vector multiplication and has computational complex-
ity a fraction of O��2m2 − 1�n�, where m2 is the number of
pixels, and n is the number of Zernike coefficients used in
the wavefront expansion. This is due to the fact that only a
part of the pixels can be used for the estimation. The gain in
computational time sets the premises for using this method in
a dynamic setting for time varying wavefronts.

The paper is organized as follows. In Section 2, we present
the general problem and introduce the PSF of the optical sys-
temand thenoisemodel. In Section3,we review four linear and
quadratic PSF approximations and show the advantages and
disadvantages of each of them, whichwe prove in Appendix A.
In Section 4, we use the previously mentioned approximations
and present the ILPD solution. In Section 5, we discuss results
of numerical simulations and compare them to the ones in [8].
We end with conclusions in Section 6.

Some mathematical notations used are standard: •T and •�

denote transposition and transpose conjugation, respectively,
⋆ denotes the convolution operator, ‖ • ‖ denotes the vector 2-
norm, O�•� describes the complexity of a function when the
argument tends toward a particular value, usually in terms
of simpler functions, O�‖ • ‖a� is the a-th order Lagrange res-
idue,R andC are the sets of real and complex numbers, respec-
tively, Rm×n and Cm×n are the sets of m × n matrices with
elements in the set of real or complex numbers, respectively.

2. OPTICAL SYSTEM
In this section, a model is presented for the image formation of
a point source in the presence of phase aberrations ϕ ∈ Rm2×1,
approximated using a normalized Zernike basis [16]

ϕ�uj; vj� � Z�uj; vj�Tα; (1)

where α ∈ Rn×1 contains the Zernike coefficients correspond-
ing to the unknown aberration and Z ∈ Rn×m2

is a matrix con-
taining the n Zernike polynomials evaluated in the pupil plane
coordinates �uj; vj�. Besides the “in-focus” image, PD uses ad-
ditional images with known diversities. The phase aberration
in the i-th diversity image is

ϕi�uj; vj� � Z�uj; vj�T �α� βi�; (2)

where βi ∈ Rn×1 is a known diversity. These phase aberrations
nonlinearly influence the PSF. The incoherent image forma-
tion of a point source is given by [17]

yi;j � μih�sj; tj; α; βi� � ni�sj; tj�; (3)

where yi;j denotes the j-th pixel of the i-th diversity image, μi
is the number of photons (the expected arrival rate multiplied
with the integration time of the camera), h denotes the spa-
tially invariant PSF expressed in the spatial coordinates
�sj; tj� with aberration α and user-introduced diversity βi,
and ni�sj; tj� is Gaussian white noise with standard deviation
σi;j , which we assume to be equal for all pixels by dropping the
index j. If only a defocus aberration is present, the schematic
representation of adding a defocus diversity is given in Fig. 1.

In ILPD, assuming that the aberrations do not change in
the time window considered, at time k in that time window
we obtain a LS estimate α̂k of αk as described in
Section 4. Next, we assume that we have a deformable mirror
(DM) that acts perfectly in the space of Zernike coefficients,
which we use to correct for the wavefront. The residual wave-
front Δαk � αk − α̂k, will be again estimated and corrected for
at the next step αk�1 � Δαk, until a desired tolerance is
reached.

In Subsection 2.A the aberrated PSF presented in Eq. (3) is
derived. Subsequently, in Subsection 2.B the measurement
noise is presented.

A. Image Formation
The spatially invariant PSF of the i-th optical path in Eq. (3) is
given by [17]

h�sj;tj;α;βi��F �Π�u;v�exp�iϕi�u;v����sj;tj�
×F �Π�u;v�exp�iϕi�u;v�����sj;tj�

�F ��exp�iϕi�u′;v′��Π�u′;v′�
⋆exp�−iϕi�−u′;−v′��Π�−u′;−v′���u;v���sj;tj�; (4)

where F �·� is the Fourier transform, �uj; vj� � �2πsj∕�f λ�;
2πtj∕�f λ��, f is the focal length, λ is the wavelength, ϕi is
the phase, and Π is the pupil function. Next, we define the
GPF as

p�uj; vj; α; βi� � Π�uj; vj� exp�iϕi�uj; vj��: (5)

Using Eq. (5), the optical transfer function (OTF) is given by

W�uj; vj; α; βi� � �p�u; v; α; βi�⋆p�−u;−v; α; βi����uj; vj�: (6)

Fig. 1. Optical system: focal plane (black), defocus plane (gray),
unknown small aberration Zernike coefficients (α), known arbitrary
diversity Zernike coefficients (βi).
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Next, we introduce the short-hand notations

pj�α; βi�≔p�uj; vj; α� βi�;
p−j�α; βi�≔p�−uj;−vj; α� βi�; (7)

and

Wj�α; βi�≔W�uj; vj; α; βi�;
hj�α; βi�≔h�sj; tj ; α; βi�: (8)

Using Eqs. (7), (8), and (4), the PSF becomes

hj�α; βi� � F �pj�α; βi�⋆p�
−j�α; βi���sj; tj�

� F �Wj�α; βi���sj; tj�; (9)

where, for simplicity, we drop the convolution brackets and
its new coordinates and only use the star operator.

B. Measurement Noise
We consider here two main noise processes that are depen-
dent on the exposure time and luminosity of the object,
namely the Gaussian read-out noise and the photon counting
noise. We approximate the photon noise by an additive zero-
mean Gaussian noise, with a variance equal to the flux. The
read-out noise is the same for each pixel and follows a
Gaussian distribution, which has the property that all the pix-
els are mutually uncorrelated. The SNR level is given by

SNR � 1
m2

Pm2

j�1 μihj�α; βi������������������������
1
m2

P
m2

j�1 σ
2
i

q
�
� μi

m2σi

�
; (10)

where μi and hj�α; βi� follow from Eq. (3) and σi is the stan-
dard deviation of the read-out noise in the i-th diversity image.
The total noise has zero mean and its variance is the sum of
the two variances. The approximation of the photon noise is
made only in the theoretical part of the paper. For the numeri-
cal simulations, photon noise is modeled using a Poisson dis-
tribution.

3. APPROXIMATIONS OF THE PSF
In the previous section, we have derived the relation between
the aberrations and the observed image. The resulting nonlin-
ear integral form in Eq. (4) is computationally expensive to
evaluate and needs to be approximated. The approximations
we use enable us to present the ILPD solution in the next sec-
tion. The generally used approach is the Born approximation,
which results into a valid mapping for a small phase of the
wavefront aberration (up to 0.5 rad rms) [12]. It has been
shown in [13] that the lower bound on the variance of any un-
biased estimator of the wavefront aberration is much lower
for large diversities. In [13], it was further shown that, e.g.,
a defocus with an rms of 2 rad on average results in the lowest
bound for Poisson noise. However, the Born approximation
relies on the fact that the diversities are also small. Therefore,
it is of high importance to investigate other approximations of
Eq. (4) that allow the use of large diversities. In this section,
we motivate our choice for a simplified model. We start by
describing four possible approximations of the PSF/OTF
and the disadvantages/advantages of each of them. The proofs
of the properties stated in this section are given in Ap-
pendix A.

A. First-Order Approximations
The approximations presented here are all based on a linear
Taylor expansion of the GPF or of the PSF, respectively. In
Subsection 3.A.1, the assumption is that both the wavefront
phase and the diversity used are small. We approximate the
GPF with a linear expression and compute the coefficients
of the resulting quadratic PSF. The approximation given in
Subsection 3.A.2 can be used for small wavefronts and a gen-
eral diversity. This is simply the Taylor expansion of the PSF.
It approximates the PSF around the diversity with a linear
expression.

1. Small Total Phase Approximation
The Born approximation assumes a small phase,
ϕi � ZT �α� βi�, such that the GPF can be approximated us-
ing only a first-order Taylor expansion around α� βi � 0. The
consequence is that the GPF can be written as

pj�α; βi� � pj�α; βi�jα�βi�0 �
∂pj�α; βi�
∂�α� βi�

����
α�βi�0

�α� βi�

�O�‖α� βi‖2�;
� Π�uj; vj��1� iZT �uj; vj��α� βi�� �O�‖α� βi‖2�:

(11)

Substituting this first-order (Born) approximation of the
GPF in Eq. (4) yields a quadratic PSF

hj�α; βi� � A0;j � A1;j�α� βi� � �α� βi�TA2;j�α� βi�
�O�‖α� βi‖2�; (12)

where

A0;j ≔F �pj�α; βi�⋆p�
−j�α; βi���sj; tj�jα�βi�0

� hj�α; βi�jα�βi�0;

A1;j ≔F
�
∂pj�α; βi�
∂�α� βi�

⋆p�
−j�α; βi�

�pj�α; βi�⋆
∂p�

−j�α; βi�
∂�α� βi�T

�
�sj; tj�jα�βi�0

� ∂hj�α; βi�
∂�α� βi�

����
α�βi�0

;

A2;j ≔F
�
∂pj�α; βi�
∂�α� βi�

⋆
∂p�

−j�α; βi�
∂�α� βi�T

� ∂pj�α; βi�
∂�α� βi�

⋆
∂p�

−j�α; βi�
∂�α� βi�T

�
�sj; tj�jα�βi�0: (13)

Property 3.1. The linear term of the approximated PSF in

Eq. (12) is invariant in the even aberrations.

Property 3.1 makes it impossible to neglect the quadratic
term of the PSF when the Born approximation is used to for-
mulate an estimation problem. This is also what [15] states—
the even modes are not observable in the “in-focus” intensity
image and you have to go out of focus in order to be sensitive
to them. This will turn out to be equivalent to the approxima-
tion we present in the next subsection. But we also go further
and present a quadratic approximation for an out-of-focus
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PSF. We do not solve the quadratic estimation problem here,
but this should increase the estimation accuracy. The down-
side would be an increase in the computational time for solv-
ing the quadratic problem if no structure is assumed on the
matrices involved.

2. Small Aberration Approximation
Another first-order model is obtained by directly approximat-
ing the PSF in Eq. (4) for small aberrations and nonzero diver-
sities. The first-order Taylor approximation of the PSF in
α � 0 is given by

hj�α; βi� � B0;j�βi� � B1;j�βi�α�O�‖α‖2�; (14)

where

B0;j�βi�≔hj�α; βi�jα�0;

B1;j�βi�≔
∂hj�α; βi�

∂α

����
α�0

: (15)

Property 3.2. The linear terms of the first-order approxi-

mation of the PSF and of the PSF resulting from the first-

order Taylor approximation of the GPF are equal.

Property 3.3. The approximation in Eq. (14) has the

property that for ϕ ≠ 0 the even modes do not cancel in the

linear term.

Remark 3.1.Note that this approximation is valid for any

diversity. Due to the fact that the linear term is not invariant

in the even modes, we can estimate the even and odd modes

with just a linear equation, as will be shown in a later

section.

B. Second-Order Approximations
In this section, we present two quadratic approximations of
the PSF, namely, starting from the second-order Taylor
approximation of the GPF, and the second-order Taylor
approximation of the PSF, respectively. As we mention in
the next section, second-order approximations could also
be used to formulate linear estimation problems. Another mo-
tivation for presenting them is that they give more accurate
phase estimates and can easily be used in a dynamic setting
where a Kalman filter [18] can be included.

1. Small Total Phase Approximation
It has been shown in [6] that an additional quadratic term
leads to a more accurate PSF approximation than using the
Born approximation. This term is obtained using a second-
order Taylor expansion of the GPF in ϕ � 0 and neglecting
the third and the fourth orders of the resulting PSF. The re-
sulting approximation is given by

hj�α; βi� � C0;j � C1;j�α� βi� � �α� βi�TC2;j�α� βi�
�O�‖α� βi‖3�; (16)

where

C0;j ≔hj�α; βi�jα�βi�0�� A0;j�;

C1;j ≔
∂hj�α; βi�
∂�α� βi�

����
α�βi�0

�� A1;j�;

C2;j ≔
∂2hj�α; βi�

∂�α� βi�∂�α� βi�T
����
α�βi�0

� A2;j � F
�

∂2pj�α; βi�
∂�α� βi�∂�α� βi�T

⋆p�
−j�α; βi�

�p−j�α; βi�⋆
∂2p�

−j�α; βi�
∂�α� βi�∂�α� βi�T

�
�sj; tj�jα�βi�0: (17)

Property 3.4. The expression in Eq. (16) is also obtained

when the PSF is approximated using a second-order Taylor

expansion around ϕ � 0.

2. Small Aberration Approximation
The second-order Taylor approximation of the PSF is given by

hj�α; βi� � D0;j�βi� � D1;j�βi�α� αTD2;j�βi�α�O�‖α‖3�;
(18)

where

D0;j�βi�≔hj�α; βi�jα�0�� B0;j�βi��;

D1;j�βi�≔
∂hj�α; βi�

∂α

����
α�0

�� B1;j�βi��;

D2;j�βi�≔
∂2hj�α; βi�
∂α∂αT

����
α�0

:

Property 3.5. The second-order Taylor approximation of

the PSF in ϕ � 0 is more accurate than the PSF obtained

from the first-order GPF approximation in ϕ � 0, while

the quadratic form remains.

Property 3.6. The second-order Taylor approximation of

the PSF in ϕ ≠ 0 has the property that the even modes do not

cancel in the linear term of the PSF.

4. ITERATIVE LINEAR PHASE DIVERSITY
In the previous section, we have presented different first- and
second-order approximations of the PSF. In this section, we
study static aberration estimation and correction techniques
based on linear LS.

Apart from Eq. (14), all the other approximations of the PSF
derived in Section 3 given by Eqs. (12), (16), and (18) are quad-
ratic in the unknown aberration, as represented by α. Here, we
aim to obtain a linear relationship between the measured in-
tensity and the unknown aberration due to the fact that a lin-
ear model has low computational complexity and gives rise to
fast algorithms. The approximations in Eqs. (12) and (16) are
based on the Taylor series expansion of the GPF, first order
and second order, respectively, and only the terms of the PSF
up to the second order are retained. This means that Eq. (16)
is more accurate than Eq. (12), which motivates its preferred
use. In order to obtain a linear formulation using the approxi-
mation in Eq. (16), we could take the difference of two mea-
surements as done in [12]. Note that this artifice cannot be
performed on Eq. (18), because the coefficients D0;j , D1;j , and
D2;j are functions of the diversities βi and they do not cancel
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when two measurements are subtracted, such that the only
solution when using this type of approximation is to retain
only the linear term as in Eq. (14). Nevertheless, subtracting
two measurements, first of all implies obtaining two measure-
ments, which we want to avoid in this work, and second, the
numerical estimation problem is not well conditioned when
noise is also subtracted. Also, the SNR decreases when taking
differences and the following property states this.

Property 4.1. Taking the difference between two images

significantly decreases the SNR.

In what follows, we form a linear system using the approxi-
mation in Eq. (14). For this, we use one defocused image. The
solution of ILPD using the previously mentioned approxima-
tion is compared with the solution given in [8].
The approximation in Eq. (14) is already linear and we have
as follows

Y 1 � bS � ASα� ΔbS�α� � n1; (19)

ΔbS�α�≔O�‖α‖2�; (20)

where Yi≔ �yi;1 … yi;j … �T , bS ≔ � ~bS;1 … ~bS;i … �T ,
with ~bS;i≔ �B0;i;1 … B0;i;j … �, AS ≔ � ~AT

S;1 … ~AT
S;i … �T ,

with ~AS;i≔ �Bi;1�βi�T … Bi;j�βi�T … �T , and B0;j�βi�,
B1;j�βi�aredefined inEq. (15).The index i is keptwhendefining
the quantities above to suggest that this method can easily be
generalized to more than one image if the optical system can
facilitate this, while still keeping the linear system formulation.

The main advantages of the first-order Taylor approxima-
tion of the PSF in Eq. (14) are that it is possible to approximate
the PSF at large diversities and that the first-order term is not
invariant in the even modes, which makes it possible to esti-
mate them (except for piston). Therefore, we do not have to
subtract images, which significantly decreases the SNR.

In ILPD, the residual aberration is repeatedly estimated and
compensated for with a DM using the residual aberration es-
timate. Assuming that the DM can fully compensate for the
estimated residual aberration, then, denoting the residual
aberration estimate at the k-th correction step by α̂k−1, and de-
noting the residual aberration at the k-th correction step by
αk−1, we obtain

αk � Δαk−1 � αk−1 − α̂k−1: (21)

At the k-th correction step, one image, Y 1;k, is recorded with
diversity β1 assuming the wavefront aberration does not
change. The additional index k of Y denotes the correction
step. From the new image, a new estimate of αk is obtained
via the solution of a LS problem based on Eq. (19). The algo-
rithm continues until the strength of the aberration decreases
under a certain threshold or a finite number of correction
steps has been performed. Let Eq. (19) (where the step index
k has been added) be rewritten as

bS;k − ΔbS�αk� � ASαk � nk; (22)

where bS;k≔Y 1;k − bS , nk � n1;k, and

ΔbS�αk� � O�‖αk‖2� � CS‖αk‖2;

with CS a constant defined by the Lagrange remainder. Then,
the LS problem that needs to be solved is

min
αk

‖bS;k − ASαk‖2: �23�

The solution of Eq. (23) after each correction step k (no cor-
rection for at the zeroth correction step) with the DM will be
indicated by the ILPD method for joint wavefront estimation
and correction.

A. Convergence Analysis
In this section, we study the convergence behavior of the ILPD
method in the absence of measurement noise. Using Eq. (21),
the relative residue after correction step k is given by

rLS≔
‖αk�1‖
‖αk‖

: (24)

The relative residue has to be smaller than one to ensure that
the rms value of the wavefront is reduced. If this is not the
case, the rms value increases or remains constant. Therefore,
the convergence can be quantified using this quantity. We val-
idate by Monte Carlo simulation that using the PSF approxi-
mation proposed in Eq. (14) we converge to an unbiased
estimate faster than the method in [8].

For the linear system in Eq. (22), in the noiseless case, we
can compute an approximate upper bound on the relative
error in the solution [19] as

‖α̂k − αk‖
‖αk‖

≲
‖ΔbS�αk�‖
‖bS;k‖

�
2κ�AS�
cos�θ� � tan�θ�κ�AS�2

�
; (25)

where κ�AS� denotes the condition number of AS and θ is the
acute angle between the vectors ASα̂k and bS;k. For a well-
conditioned matrix, the bound depends on ΔbS�αk�. As ‖αk‖
decreases, ‖ΔbS�αk�‖ decreases and the bound becomes zero
in the limit

lim
αk→0

CS‖αk‖2

‖bS;k‖

�
2κ�AS�
cos�θ� � tan�θ�κ�AS�2

�
� 0: (26)

Using the approximation in Eq. (14) to formulate our problem,
it is clear that the model error in Eq. (23) only depends on
the unknown aberration. This would be different when
differences of two PSFs modeled by the approximation in
Eq. (16) are taken, when the model error also depends on
the chosen diversity. Then, a compromise should be made be-
tween a small diversity which leads to a small model error and
a large diversity which ensures that the difference between
two images does not become zero and the information content
is lost.

5. SIMULATIONS
In this section, we present numerical simulations for the
iterative aberration correction problem using ILPD and LIFT.
We first describe the simulation setup. Second, we give one
example of ILPD. Next, we analyze the behavior of both
methods using a Monte Carlo simulation by varying the
noise level and the rms value of the initial aberration. The
computer employed for these simulations is a 2.67 GHz
quad-core Intel Core (TM)2 Quad CPU Q8400 with 4.0 GB
of RAM.
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We perform the comparison over five iterations for each
method. One important difference between the two methods
is that one iteration has a different meaning. LIFT collects
one image at iteration 1 and based on this image performs five
steps that lead to a phase estimate, which is then used for the
correction. On the other hand, ILPD collects a new image at
each of the five steps (image which includes the previous cor-
rections) and performs a correction of the wavefront by a DM
after each step. When estimating the wavefront using ILPD,
we take one image (per correction step) of the same point-like
object at defocus 2 rad. For a fixed diversity, like the one used
here, the linear coefficients in Eq. (15) can be computed in
advance. LIFT uses only one one image with an astigmatism
diversity of π∕8 rad as in [8] and computes at consecutive
steps the gradient of the PSF in a different point. The precom-
putation of the gradient makes our algorithm faster while pre-
serving the accuracy, which we will quantify in this section.
Of course, also the gradient for the first step of LIFT can
be precomputed.

We compute the corresponding nonlinear PSFs in Eq. (4)
and the coefficients of the linear Taylor expansion given in
Eq. (15). We consider a pupil of radius r sampled on a 32 ×
32 grid embedded in a 4r × 4r image to satisfy the Nyquist
sampling criterion. We ensure that the wavefront does not
contain jumps larger than π∕2, which would be problematic
for the sampling process. The SNR corresponding to the
read-out noise is calculated over the image (m � 32). Also,
all treatment is monochromatic. We assume that the DM is
able to produce known diversity shapes with an error that
is negligible compared to other sources. This assumption mo-
tivates our choice to model only the first n � 14 modes that
can be corrected by the DM. To obtain a PSF of unit surface,
the pupil function Π is chosen as

Π�uj; vj� �
�
1

���
S

p
u2
j � v2j ≤ r2

0 u2
j � v2j > r2

; (27)

where S is the physical surface of the pupil.
If the frame rates of the imaging camera and of the DM are

sufficiently fast, it is an acceptable approximation that a few

sequential wavefronts are assumed to be identical. The static
aberration consisting of n modes is generated using the
Kolmogorov model [20], which assumes aberrations with zero
mean and covariance matrix Cϕ. The parameters used to gen-
erate the Kolmogorov model are: diameter D � 1 �m�, outer
scale L0 � 42 �m�, Fried parameter r0 � 0.3 �m�.

First, we give an example of ILPD in Subsection 5.A. Sec-
ond, in Subsection 5.B, for the same aberration, in the noise-
less case, we show the convergence and the corresponding
rate of convergence in terms of residual wavefront error
and relative residual wavefront error. Subsequently, in Sub-
section 5.C, we study the convergence properties in terms of
the residual error for ILPD and LIFT as a function of increas-
ing read-out noise SNR, photon count, and wavefront rms.

A. One Example of Iterative Phase Diversity
We first show the convergence of the algorithms for a particu-
lar choice of the wavefront (with rms of 1 rad and intensity of
1000 photons per image) in the noiseless case in Fig. 2 and
Table 1, and for a particular choice of the read-out noise reali-
zation (with SNR = 3.16) in Fig. 3 and Table 2, respectively.
Starting from the initial aberration, we perform five correction
steps. The figures and tables mentioned before show both vis-
ually and numerically that the two methods converge to sim-
ilar small residual errors. One important difference, as we
show in the next subsection, is the convergence time, that for
ILPD is much shorter. Tables 1 and 2 list the residual rms val-
ues obtained after each iteration for the twomethods. Inspect-
ing the tables, it seems that ILPD is more robust to noise than
LIFT, but the error difference between them is not significant.
One advantage of LIFT is that it only uses one image, while
ILPD uses one image per iteration, but the later method is
faster. In order to quantify how much faster, we need to make
a Monte Carlo analysis. This is the subject of the next
subsection.

B. Iterative Linear Phase Diversity Without Noise
We now repeat the experiment in the previous section 128
times for random aberrations with 1 rad rms, intensity of
1000 photons per image, and no read-out/photon noise. We
use boxplots to visualize the results. On each box, the central
mark is the median, the edges of the box are the 25th and 75th
percentiles, the whiskers extend to the most extreme data

Fig. 2. Convergence in terms of wavefront error: 1 rad rms, no
read-out/photon noise, 1000 photons per image. LIFT (top), ILPD
(bottom).

Fig. 3. Convergence in terms of wavefront error: 1 rad rms, read-out
noise with SNR � 3.16, no photon noise, 1000 photons per image.
LIFT (top), ILPD (bottom).

Table 1. Rms Values of the Corrected Wavefronts

for No Read-Out/Photon Noise, 1000 Photons per

Image, and 1 rad Initial rms

Method

Iterations

0 1 2 3 4 5

LIFT 1 0.85 0.82 0.65 0.31 0.039
ILPD 1 0.45 0.067 0.0039 1e-5 3.4e-9

Table 2. Rms Values of the Corrected Wavefronts

for Read-Out Noise SNR � 3.16, No Photon Noise,

1000 Photons per Image, and 1 rad Initial rms

Method

Iterations

0 1 2 3 4 5

LIFT 1 0.85 0.8 0.66 0.31 0.061
ILPD 1 0.45 0.09 0.05 0.061 0.057
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points not considered outliers, and outliers are plotted indi-
vidually. The diamond signs represent mean values.

In Fig. 4 we plot the residual error in the aberration vector
‖αk − α̂k‖ at each iteration versus the number of iterations.
The residual error decreases with each step for almost all
the samples of LIFT and for all the samples considered for
ILPD at this particular rms value. In the noiseless case, ILPD
converges to a residual error ∼0. LIFT converges to a small
bias different from zero, but not as fast. There are also cases
when LIFT diverges.

In Fig. 5 we plot, for the same data as in the previous figure,
the relative residue �‖αk�1‖�∕�‖αk‖�. We have mentioned be-
fore, in Subsection 4.A, that the error bound on this relative
error depends on the model error for well-conditioned matri-
ces. The condition number of AS in this example is 4.1810,
such that Eq. (25) is valid. Therefore, the remark made using
Eq. (26) in the previous section is sustained by Fig. 5: ILPD
converges to a relative residual error equal to zero and it is

independent with respect to different realizations of ΔbS�αk�.
In both plots it can be seen that the error variance of ILPD is
smaller.

The computational time necessary for LIFT to complete
five iterations is 10.9978 s on average, while ILPD performs
them in 0.0028 s on average. Note that the integration time of
the CCD is not included in computing these times. This makes
ILPD 3927.8 times faster. When we also count the CCD inte-
gration time (of approximately 47.3 ms), ILPD is 40 times
faster. For a fair comparison with LIFT, we have used here
all the pixels in order to compute the estimate at each step,
but the computational time for ILPD further decreases when
using just a fraction of the pixels.

C. Error Residue in the Presence of Noise
In the previous section, we have only analyzed a wavefront
with rms equal to 1 rad and noise was not taken into account.
However, more information about the properties of the
proposed method can be obtained from a Monte Carlo simu-
lation if we vary the read-out noise SNR, the photon noise,
and the wavefront rms. We make a detailed analysis of the

Fig. 4. Residual error in the aberration vector. On each box, the cen-
tral mark is the median, the edges of the box are the 25th and 75th
percentiles, the whiskers extend to the most extreme data points
not considered outliers, and outliers are plotted individually. The dia-
mond signs represent mean values.

Fig. 5. Relative residue.

Fig. 6. Wavefront residual error versus increasing SNR.

Fig. 7. Wavefront residual error versus increasing photon count.
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convergence properties of the presented methods using the
residual error, which gives us a measure for how much of
the aberration we can correct for. The analysis is presented
in Figs. 6–8.

Figure 6 plots the residual error after five correction steps
versus increasing read-out noise SNR, considering 1000 pho-
tons per image and Poisson photon noise. For each SNR, we
repeat the experiment 128 times. The considered initial aber-
ration has 1 rad rms. For ILPD, the residual error decreases
with the increase of the SNR, which is what we expected. For
LIFT this behavior is not very visible. One reason is the high
value of the rms. In our simulations, we have noticed that for
smaller rms values, e.g., 0.5 rms, LIFT starts to show this de-
crease in bias for increasing rms, which shows that LIFT is
more appropriate for small rms values. ILPD has a lower error
variance and a lower error mean. Clearly, for ILPD, the error
variance would converge to zero for an SNR equal to ∞ if no
Poisson photon noise were considered.

Figure 7 plots the residual error after five correction steps
versus increasing photon count. For each photon count, we
repeat the experiment 128 times. The considered initial aber-
ration has 1 rad rms. Besides the Poisson photon noise, we
also added read-out noise with SNR � 3.16. The residual error
decreases with the increase of the photon count, which is
what we expected. ILPD has a lower error variance and a
lower error mean. Furthermore, it is visible in Fig. 7 that at
low photon counts LIFT diverges.

The same type of analysis is made in Fig. 8 for increasing
rms of the initial wavefront, a constant read-out noise level of
3.16 and Poisson photon noise. Both methods are based on a
small-aberration assumption, so the bias of the estimation in-
creases with increasing rms or it takes more iterations to con-
verge. It is visible that LIFT starts to diverge for rms values
larger than 0.5 rad, while ILPD still corrects for the aberra-
tion. This is due to the fact that with each iteration the aber-
ration becomes smaller and the linear model in Eq. (19) is
more and more accurate.

6. CONCLUSIONS
We have presented a novel method for wavefront estimation
and correction suitable for several applications in astronomy

or microscopy. Under the assumption of small-phase aberra-
tions, which is the typical situation in a control loop, the PSF
of an incoherent imaging system has been approximated with
a linear model, which can be precomputed if the diversity
used is a fixed one. This model allows for arbitrary phase di-
versities to be introduced in the system. Our iterative ap-
proach uses at each step one image of a point-like object,
which includes a known phase diversity, and estimates the
aberration using a LS approach. In this way we increase
the computational speed of phase retrieval methods that lin-
earize the PSF at each iteration around the current estimate of
the aberration. Also, as the residual aberration decreases, the
precomputed model of the PSF becomes a better fit to the real
one. This creates the premises for the method to be applied in
a real-time correction system.

APPENDIX A: PROOF OF PROPOSITIONS
In this appendix, the claims made in Sections 3 and 4 are
proved. The claims are invariant of the Fourier transform be-
tween the PSF and OTF; therefore, to shorten the proofs, the
approximations and their properties will be given in terms of
the OTF. For clarity we introduce the following short-hand
notations

pi;j ≔pj�α; βi�; Wi;j ≔Wj�α; βi�: (A1)

Proof of Property 3.1. We introduce the short-hand notation
γi � α� βi and for the small total phase approximation we
have γ0 � 0. Using Eqs. (12) and (13), the OTF is given by

Wi;j ≈
�
pi;j �

∂pi;j
∂γTi

�γi − γ0�
�
⋆

�
p�i;−j �

∂p�i;−j
∂γTi

�γi − γ0�
�����

γi�γ0

� pi;j⋆p�i;−jjγi�γ0

�
�
∂pi;j
∂γTi

⋆p�i;−j � p−j�α; βi�⋆
∂p�i;−j
∂γTi

�����
γi�γ0

�γi − γ0�

� �γi − γ0�T
�
∂pi;j
∂γTi

⋆
∂p�i;−j
∂γi

�∂pi;j
∂γi

⋆
∂p�i;−j
∂γTi

�����
γi�γ0

�γi − γ0�:

(A2)

The first-order term is

L≔

�
∂pi;j
∂γTi

⋆p�i;−j � p−j�α; βi�⋆
∂p�i;−j
∂γTi

�����
γi�γ0

: (A3)

To show that Eq. (A3) is invariant in the even modes we
reorder γi and ZT by even and odd parts and Eq. (A3)
becomes

L � iZT
j Πj⋆Π�

−j − Πj⋆iZT
−jΠ�

−j

� i�ZT
e;j ZT

o;j �Πj⋆Π�
−j − Πj⋆i�ZT

e;−j ZT
o;−j �Π�

−j ; (A4)

where the subindexes j and −j are short-hand notations for the
coordinates �uj; vj� and �−uj;−vj�. Next, because Π is even
and real, we have that

Fig. 8. Wavefront residual error versus increasing rms.
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L � i�ZT
e;j ZT

o;j �Πj⋆Πj − Πj⋆i�ZT
e;j −ZT

o;j �Πj

� i� 0 2ZT
o;j �Πj⋆Πj : (A5)

□
Proof of Property 3.2. The OTF is given by

Wi;j ≈ pi;j⋆p�i;−jjγi�γ0

�
�
∂pi;j
∂γTi

⋆p�i;−j � p−j�α; βi�⋆
∂p�i;−j
∂γTi

�����
γi�γ0

�γi − γ0� (A6)

and the linear term is equal to Eq. (A3). □
Proof of Property 3.3. We show that Eq. (A3) for γ0 ≠ 0 is

not invariant for even modes. We again reorder γi and ZT by
even modes ZT

e and odd modes ZT
o to obtain

L � iZT
j Πj exp�iZT

j γ0�⋆Π�
−j exp�−iZT

−jγ0�
− Πj exp�iZT

j γ0�⋆iZT
−jΠ−j exp�−iZT

−jγ0�
� i�ZT

e;j ZT
o;j �Πj exp�iZT

j γ0�⋆Π�
−j exp�−iZT

−jγ0�
− Πj exp�iZT

j γ0�⋆i�ZT
e;−j ZT

o;−j �Π−j exp�−iZT
−jγ0�

� i�ZT
e;j ZT

o;j � ~Πj⋆
~Π�
−j −

~Πj⋆i�ZT
e;−j ZT

o;−j � ~Π�
−j ; (A7)

where ~Πj ≔Π−j exp�−iZT
−jγ0�. Next, because ~Πj is neither even

nor real we have that the two terms are different and the even
modes do not cancel. □

Proof of Property 3.4. The second-order Taylor approxima-
tion of the GPF is

pi;j ≈ pi;jjγi�γ0
� ∂pi;j

∂γi

����
γi�γ0

�γi − γ0�

� 1
2
�γi − γ0�T

∂2pi;j
∂γiγTi

����
γi�γ0

�γi − γ0�: (A8)

Dropping terms of order 3 and higher, the resulting approxi-
mated OTF reduces to

Wi;j ≈ pi;j⋆p�i;−jjγi�γ0

�
�
∂pi;j
∂γTi

⋆p�i;−j � p−j�α; βi�⋆
∂p�i;−j
∂γTi

�����
γi�γ0

�γi − γ0�

� �γi − γ0�T
�
∂2pi;j
∂γi∂γTi

⋆p�i;−j � p−j�α; βi�⋆
∂2p�i;−j
∂γi∂γTi

� ∂pi;j
∂γTi

⋆
∂p�i;−j
∂γi

� ∂pi;j
∂γi

⋆
∂p�i;−j
∂γTi

�����
γi�γ0

�γi − γ0�; (A9)

which is exactly the second-order Taylor approximation. □
Proof of Property 3.5. The difference between the approxi-

mated PSF following from a first-order approximation of the
GPF in Eq. (A2) and the second-order Taylor approximation in
Eq. (A9) is given by

∂2pi;j
∂γi∂γTi

⋆p�i;−j � p−j�α; βi�⋆
∂2p�i;−j
∂γi∂γTi

: (A10)

The addition of the missing term from the first-order
GPF approximation results in a residue of order O�‖α‖3�

instead of O�‖α‖2�. Therefore, the second-order Taylor
expansion of the PSF is more accurate than the first-order
approximation of the GPF, while the quadratic form
remains. □

Proof of Property 3.6. Inspecting Eq. (A10), we observe
that the linear term is not affected; therefore, Property 3.1
and Property 3.3 still hold for the linear terms of
Eq. (A9). □

Proof of Property 4.1. The intensity of both signals is
positive and subtracting two images decreases the mean sig-
nal at each pixel. Recall that we assume that all the camera
pixels are mutually independent and that the measurement
noise is Gaussian distributed

μdiff � E�Δyj � � μ1h1;j − μ2h2;j : (A11)

In Eq. (A11), μdiff is smaller than either μ1h1;j and μ2h2;j . Next,
the variance of the signal increases

σ2diff � E��Δyj − μdiff�2� � σ21;j � σ22;j : (A12)

Therefore, the resulting SNR at pixel j is given by

SNRdiff �
μ1h1;j − μ2h2;j���������������������

σ21;j � σ22;j

q : (A13)

If we assume that the noise is the same for each pixel with
σi;j ≔σi, the total SNR is equal to

SNRdiff �
1

m2

Xm2

j�1

μ1h1;j − μ2h2;j�������������������������������������������������������
1
m2

Pm2

j�1 σ
2
1;j � 1

m2

Pm2

j σ22;j

q

� 1
m2

1����������������
σ21 � σ22

q Xm2

j�1

μ1�h1;j − μ2h2;j� �
1
m2

μ1 − μ2����������������
σ21 � σ22

q :

(A14)

□
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