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Neighbors‑based prediction 
of physical function after total knee 
arthroplasty
Chong Kim1, Kathryn L. Colborn1, Stef van Buuren2,3, Timothy Loar4, 
Jennifer E. Stevens‑Lapsley4,5 & Andrew J. Kittelson4,6*

The purpose of this study was to develop and test personalized predictions for functional recovery 
after Total Knee Arthroplasty (TKA) surgery, using a novel neighbors‑based prediction approach. We 
used data from 397 patients with TKA to develop the prediction methodology and then tested the 
predictions in a temporally distinct sample of 202 patients. The Timed Up and Go (TUG) Test was used 
to assess physical function. Neighbors‑based predictions were generated by estimating an index 
patient’s prognosis from the observed recovery data of previous similar patients (a.k.a., the index 
patient’s “matches”). Matches were determined by an adaptation of predictive mean matching. 
Matching characteristics included preoperative TUG time, age, sex and Body Mass Index. The optimal 
number of matches was determined to be m = 35, based on low bias (− 0.005 standard deviations), 
accurate coverage (50% of the realized observations within the 50% prediction interval), and 
acceptable precision (the average width of the 50% prediction interval was 2.33 s). Predictions were 
well‑calibrated in out‑of‑sample testing. These predictions have the potential to inform care decisions 
both prior to and following TKA surgery.

Total Knee Arthroplasty (TKA) is the most commonly performed inpatient elective surgery in the United States, 
at approximately 700,000 procedures per  year1. Although TKA is regarded as effective, the clinical course is 
highly  variable2. Depending on the patient, recovery of physical function can occur within weeks, or it can be an 
arduous months-long  process3,4. Moreover, the surgical population is remarkably heterogeneous. Some patients 
engage in sporting activities (e.g., tennis, skiing)5, while others struggle to ambulate at walking speeds sufficient 
for independence in the community. There is no such thing as the “average”  patient6.

To achieve the ideals of person-centered  care7–9, and also because TKA is an elective procedure, clinical deci-
sions should be anchored to the individual  patient10. Yet the determination of an individual patient’s functional 
prognosis is challenging. Prediction models have been developed in TKA, but these models have several limita-
tions: (1) they perform poorly in out-of-sample  testing11, (2) they are based on mathematical functions that are 
unlikely to be flexible enough to realistically portray the clinical course across all  patients12, or (3) they predict 
functional outcomes at discrete postoperative time points, which may not overlap with the time frame during 
which patients are undergoing postoperative care and clinical  monitoring13.

Neighbors-based predictions may overcome some of these limitations. In a neighbors-based approach, an 
index patient’s prognosis is estimated from the observed recovery data of previous similar  patients14. These pre-
vious patients are known as the index patient’s neighbors or “matches”. In this approach, the parameters of the 
prediction and the shape of the prognostic trajectory are allowed to vary substantially across individuals. Such 
flexibility may better accommodate the heterogeneity in recovery following  TKA15. This may also enhance the 
generalizability of the approach. The prediction is generated based only on a subset of patients with characteristics 
similar to the index patient; this contrasts with traditional prediction approaches where model parameters are 
heavily informed by the aggregated characteristics of the sample.

The purpose of this study was to develop and test a neighbors-based prediction approach for functional 
recovery after TKA  surgery16. The outcome of interest for this analysis was the Timed Up and Go (TUG) test, a 
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clinically feasible test of mobility and a surrogate of lower extremity strength. We utilized a combination of clini-
cal and research data, collected longitudinally over the first six months following surgery. We divided the patients 
temporally (by date of surgery) into a training set and test set. This split was made to mimic how the approach 
would be developed and tested in clinical practice. The training set was used to tune the neighbors-based pre-
diction, particularly to choose the optimal number of matches required to achieve optimal performance. The 
training set then also served as the donor dataset for an out-of-sample validation using patients from the test set.

Methods
Data sources. This analysis utilized two existing data sources involving patients with primary, unilateral 
TKA: (1) data collected in routine clinical practice and (2) data from previously published longitudinal research 
studies. Clinical data were obtained via routine quality improvement procedures at ATI physical therapy (Green-
ville, SC), with surgery dates between January, 2013 and June, 2017. Research data were obtained from four pre-
viously published studies, with surgery dates between June, 2006 and May, 2017. The inclusion/exclusion criteria 
for these research studies have been reported  elsewhere17–20. Clinical data were not selected based on patient cri-
teria (i.e., all patients with clinical visits were included in the dataset), although only patient records containing a 
preoperative and postoperative TUG assessment were utilized in this analysis. The combined dataset was divided 
temporally, based on surgical date, into a training set and a test set (Fig. 1). All participants provided informed 
consent. All records were de-identified prior to use in this study, and all methods were approved by the Colorado 
Multiple Institutional Review Board (COMIRB) and carried out in accordance with relevant regulations.

Timed up and go (TUG) test. The TUG is a brief test of mobility, where a patient rises from a chair, walks 
a distance of 3 m and returns to a seated position in the chair. Patients were instructed to perform the test, “as 
quickly but as safely as possible”. The TUG demonstrates high test–retest reliability and  responsiveness12,21,22. 
All testers involved with data collection for this analysis followed the same set of standardized instructions for 
performing the TUG  test22.

Matching characteristics. Variables used for selecting matches were patient factors common across all 
datasets: age (years), sex, Body Mass Index (BMI; kg/m2), and preoperative TUG time (seconds).

Statistical analysis. All analyses were conducted using R version 3.5.1. The steps to generate a neighbors-
based prediction by predictive mean matching are summarized in the following sections and also described in 
Supplementary Material (Box 1).

Figure 1.  CONSORT flow diagram of patient data included in the analysis.
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Selection of matches by predictive mean matching. Because the source datasets contained TUG 
assessments at irregular postoperative time-points, we estimated a 90-day postoperative TUG time for all 
patients using linear mixed effects models via the brokenstick package (R statistical computing etc.)23–25. The 
90-day time-point was used as the distal anchor for selecting matches by predictive mean  matching26. Briefly, a 
brokenstick model was fit to patients in the training data with 4 knots at specific timepoints after surgery (k = 0; 
14; 50; 90). Patients in the training data were then matched according to the 90-day predicted TUG time by 
building a linear model with matching characteristics as predictors and the 90-day brokenstick-estimated TUG 
time as the outcome variable.

Flexible modeling of observed data. For each patient in the training data, the observed postoperative 
TUG data of the patient’s matches were used to fit a Generalized Additive Model for Location Scale and Shape 
(GAMLSS)27. The GAMLSS model was chosen for its flexibility in modeling the median (location), variance 
(scale), skewness and kurtosis (shape) of the TUG as a smooth function of time (i.e., time since TKA). In par-
ticular, since TUG times are positively skewed it was preferable to employ a modeling framework that accommo-
dates flexibility in skewness over time. A cubic spline smoother with 3 degrees of freedom (df) for the location 
parameter and 1 df for the scale and shape parameters was employed.

Model tuning via within‑sample testing. The optimal number of matches (m) was chosen by the fol-
lowing procedure: (1) GAMLSS models were fit to the matches’ observed data for each of the 397 patients in the 
training set, with the number of matches ranging from 10 to 397 (i.e., the total number of available patients in the 
training data), (2) at each increment (i.e., 10 matches; 11; 12; : : : ; 397 matches), the average bias, coverage, and 
precision of the predictions were calculated, and (3) the optimal number of matches was determined globally by 
the solution that minimized bias and optimized precision whilst retaining accurate coverage (see Supplementary 
Material; Box 2).

Internal and external validation. To test the performance of the predictions, we compared predicted 
vs. observed TUG times via calibration plots. For both the training and test sets, we binned the predicted TUG 
times by deciles. Within each decile of predicted data, the median and the standard error (95% Confidence 
Interval) of the observed data were calculated. The median was a better measure of central tendency given the 
skewness of the TUG data.

Results
In the training data set we analyzed information on 397 patients with 1,339 post-operative TUG observations. 
We used information on 202 patients (604 observations) in the testing data. Patient characteristics from training 
and testing data are shown in Table 1. Although the sex distribution and BMI were similar across the two data 
sets, there were statistically significant differences in age and baseline TUG time. Compared to the patients in 
the training data, patients in the test data were approximately 2 years older on average, with 1 s slower baseline 
TUG times.

Selection of matches and model tuning. Predictive mean matching. Age (ß = 0.037; p = 0.001), sex 
(ß = 0.92; p < 0.001), BMI (ß = 0.037; p = 0.02), and preoperative TUG time (ß = 0.21; p < 0.001) demonstrated a 
statistically significant relationship with brokenstick estimates of the 90-day post-operative TUG time. Preop-
erative TUG time carried the biggest weight in selecting matches; the standardized coefficient for preoperative 
TUG time was 4.7 times larger than for BMI.

Examining the optimal number matches. The optimal number of matches was found to be m = 35 based on the 
low bias (0.005 standard deviations) and accurate coverage (proportion of realized observations within the 50% 
prediction interval: 0.50). Additionally, the average width of the 50% prediction interval with m = 35 matches 
was 2.33 s (Fig. 2). With m = 397 matches (i.e., the full training dataset), the average precision was 3.03 s. Thus, 
the neighbors-based prediction with m = 35 matches resulted in a 23% improvement in precision (Fig. 3).

Table 1.  Baseline characteristics of training and test datasets. a Continuous variables tested with one-way 
analysis of variance; Categorical variables tested with χ2 test. Preop TUG, preoperative timed up and go time; 
sd, standard deviation; BMI, body mass index.

Train Test

p-valuea(n = 397, 1339 observations) (n = 202, 604 observations)

Age, years; mean (sd) 64.04 (8.43) 65.90 (8.84) 0.012

Sex distribution, n (% male) 185 (46.6) 84 (41.6) 0.280

BMI, kg/m2; mean (sd) 31.33 (5.82) 31.98 (6.20) 0.208

Preop TUG, seconds; mean (sd) 9.98 (4.95) 11.00 (5.04) 0.018
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Performance via internal and external validation. Once the number of matches was fixed via tuning 
procedures in the training dataset, the within-sample and out-of-sample calibration was examined. The train-
ing dataset supplied donor data for both of these analyses. This mimics how the development and testing of the 
approach would work in practice. Model calibration was good, with close agreement between predicted and 
observed values of post-operative TUG times (Fig. 4).

Discussion
We developed and tested a novel, neighbors-based prediction for physical function following TKA. Via predic-
tive mean matching, Body Mass Index (BMI), sex, age, and preoperative TUG time were used to identify the 
matches for an index patient. In our approach, the observed data from these matches were then used to generate 
a prediction for a new patient’s TUG prognosis. One of our primary findings was the number of matches (m = 35) 
required to generate predictions with optimal bias, coverage, and precision. This solution demonstrated very 
low bias and accurate coverage. Additionally, the 50% prediction interval was 2.33 s, on average. This amounts 
to a 23% improvement in precision, compared to prognostic estimates derived from the whole sample (50% 
prediction interval = 3.03 s).

The predictions were well-calibrated in both the training and test datasets. In a temporally distinct test sample 
of patients with later surgical dates, the predictions performed accurately across all deciles of observed data. This 
was especially encouraging given the differences in patient characteristics between training and test datasets 
(Table 1). Moreover, national-level changes to TKA care and reimbursement occurred during the period of data 
 collection28. Such factors are likely to make external validation more challenging, but our initial analysis suggests 
the neighbor’s based prediction approach is at least somewhat robust. To our knowledge, this is the first study 
to successfully validate a prediction model for physical function in TKA.

Figure 2.  Performance metrics for neighbors-based predictions across increasing number of matches in the 
training dataset: (a) bias, (b) coverage, and (c) precision. The optimal number of matches (m = 35) is indicated 
with a red arrow.

Figure 3.  The 50% prediction interval (PI) for (a) the population-level estimate, is wider than the 50% 
prediction interval for (b) the neighbors-based prediction, for an example patient: a 55-year-old male with BMI 
of 30 kg/m2 and preoperative TUG time of 8 s.
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There are several features of the approach that may have contributed to the observed accuracy of the predic-
tions. First, estimates were based on flexible models of empirical observations, which may have allowed for more 
realistic representations of recovery compared to previous approaches. Second, the selection of neighbors and 
subsequent prediction were performed independently for each patient. Thus, each patient served as the nucleus 
of his or her own prediction. This may have improved external validity since each individual patient’s prediction 
was generated from similar patients’ observed recovery. Finally, matches were determined by an adaptation of 
predictive mean matching around estimated 90-day TUG times. Therefore, the matching characteristics were 
each weighted according to the strength of the relation to the outcome of interest. This differs from more con-
ventional sequential k-nearest neighbors’ approaches, where the measure to express distances between patients 
is pre-set without an explicit role for the outcome of interest.

Our analysis was limited to the matching characteristics available in our source data (i.e., age, sex, BMI, 
and preoperative TUG time). The use of additional matching characteristics might allow for a further-refined 
matching strategy, resulting in improvements to the precision of the predictions. For example, patients’ pain 
status, comorbidity status, or surgical variables (i.e., implant type, procedure type) might be expected to influence 
prognosis. Future analyses that incorporate these variables would be worth pursuing. However, it is likely that 
some unmeasured variables are co-linear with age, sex, BMI, and preoperative TUG time and are thus somewhat 
baked into the current analysis. Moreover, our results suggest that the neighbors-based predictions performed 
well even with a small number of matching characteristics.

A limitation of our study is the use of patient data from a small number of research and clinical datasets, as 
care paradigms and patient demographics may differ across settings and geographical locations. Additionally, 
our relatively high rates of missingness may be attributed to the challenges of performing rigorous data collection 
in the context of routine clinical practice. Thus, our study sample is likely to differ from other specific patient 
samples. Our calibration findings in a temporal validation are encouraging. Nevertheless, the prediction approach 
should be tested in prospectively enrolled participants to further examine the generalizability.

In conclusion, a novel neighbors-based prediction approach was used to estimate postoperative TUG times 
following TKA surgery, utilizing patient age, sex, BMI, and preoperative TUG time. Predictions performed 
accurately in estimating observed TUG times at any point during first six months following surgery, according 
to both within-sample and out-of-sample testing. This approach could be used to inform the understanding of 
functional prognosis for individual patients for this common elective surgery.
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