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A healthy immune status is strongly conditioned during early life stages. Insights into

the molecular drivers of early life immune development and function are prerequisite

to identify strategies to enhance immune health. Even though several starting points

for targeted immune modulation have been identified and are being developed

into prophylactic or therapeutic approaches, there is no regulatory guidance on

how to assess the risk and benefit balance of such interventions. Six early life

immune causal networks, each compromising a different time period in early life

(the 1st, 2nd, 3rd trimester of gestations, birth, newborn, and infant period), were

generated. Thereto information was extracted and structured from early life literature

using the automated text mining and machine learning tool: Integrated Network and

Dynamical Reasoning Assembler (INDRA). The tool identified relevant entities (e.g.,

genes/proteins/metabolites/processes/diseases), extracted causal relationships among

these entities, and assembled them into early life-immune causal networks. These causal

early life immune networks were denoised using GeneMania, enriched with data from

the gene-disease association database DisGeNET and Gene Ontology resource tools

(GO/GO-SLIM), inferred missing relationships and added expert knowledge to generate

information-dense early life immune networks. Analysis of the six early life immune

networks by PageRank, not only confirmed the central role of the “commonly used

immune markers” (e.g., chemokines, interleukins, IFN, TNF, TGFB, and other immune

activation regulators (e.g., CD55, FOXP3, GATA3, CD79A, C4BPA), but also identified

less obvious candidates (e.g., CYP1A2, FOXK2, NELFCD, RENBP). Comparison of the

different early life periods resulted in the prediction of 11 key early life genes overlapping

all early life periods (TNF, IL6, IL10, CD4, FOXP3, IL4, NELFCD, CD79A, IL5, RENBP,

and IFNG), and also genes that were only described in certain early life period(s).

Concluding, here we describe a network-based approach that provides a science-based
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and systematical method to explore the functional development of the early life immune

system through time. This systems approach aids the generation of a testing strategy for

the safety and efficacy of early life immune modulation by predicting the key candidate

markers during different phases of early life immune development.

Keywords: biomarkers, immune networks, early life, machine learning, text mining

INTRODUCTION

The first 1,000 days of life is a period of growth and development
in which the foundations of lifelong immune homeostasis and
microbial colonization are established in humans (1). Alterations
during this period, due to environmental and host factors, are
considered to be potential determinants of health-outcomes later
in life (2–4). Therefore, risk reduction measures or immune
health interventions during these stages of life may be most
effective and efficient for improving health, increasing quality of
life, and lowering costs to society due to immune related diseases
and disorders.

When developing immune health interventions in early life,
the regulatory authorities (EFSA, JECFA) stress the need to
address the safety of such interventions. However, currently there
is no regulatory guidance about how to assess the risk and
benefit balance of such interventions. At the moment final safety
confirmation comes from expensive and lengthy clinical follow
up studies using a set of guidelines (5–7). Therefore, a need for
a science-based system approach to assess the safety and benefit
of nutritional immune interventions, with a special focus on early
life is clear.With such an approach animal testing can be reduced,
refined or replaced.

Key to understanding the potential of early life immunity to
shape lifelong immune health is the concept of ontogeny—the
immune system development from fetal life through adulthood.
Previously, our group made an inventory and compared the
maturation of the immune systems of human, mouse, rat, and
mini pig, based predominantly on existing (from literature) and
newly generated histologic data (8). Critical time windows of
immune organ development were identified in human and the
above mentioned experimental species. However, less is known
about the functional time frames of the developing immune
system in humans. This knowledge is crucial to identify factors
that need to be considered for assessing the safety and efficacy of
early life nutritional interventions and exposure.

As the immune system is an enormously complex system,
it is crucial to obtain more understanding about the biological
structures and processes to be able to improve human
(immune) health. However, due to the enormous wealth of
information available, it is extremely difficult to obtain a complete
picture of the biological basis of immune related diseases and
health. Individual researchers are often restricted to so called
“knowledge pockets” (9) covering only a small fraction of all
available knowledge, and that fractional information is spread
through literature or various databases. This fragmentation of
information clearly hampers our understanding of the molecular
processes underlying human health and disease. In order to

obtain a complete picture, data integration from different sources
is required.

Systems immunology combined with bioinformatics can
provide sufficient knowledge to identify factors to assess
the safety and efficacy of early life nutritional interventions
and exposure (10–12). Recent technological advances permit
collection and storage of large datasets at molecular and
cellular levels (genes, gene products, metabolic intermediates,
macromolecules, cells). So far, most studies or research groups
collected data sets from several—omics-platforms to understand
the larger (systems) picture by putting the pieces together, mostly
through association networks (e.g., Protein-Protein Interaction
network). Association networks are static and undirected
networks. They provide lesser information than a directed causal
network. However, creation of system-wide causal networks from
omics data is a task that is largely tedious, and not pragmatic.
This is because the amount of data spanning the molecular
changes in spatio-temporal space is too large to capture the
system knowledge within causal network in sufficient detail.
Nevertheless, the dynamics of the immune system are better
understood and characterized with the use of causal networks.
Our intention here is to create causal networks of the early life
immune system in a comprehensive and pragmatic manner.

Here, we generated causal immune networks in early life from
literature sources that correspond to the 1st, 2nd, 3rd trimester
of gestation (resp. EG, LG, MG), birth, newborn and infant
period as part of a bioinformatics workflow, which also included
subsequent network enrichment steps to generate comprehensive
causal early life immune networks. The network-based approach
developed here, enabled us to elucidate different phases of early
life immune development in a systematical way to predict and
prioritize biological functions and genes associated with immune
functioning in early life. Moreover, this systems approach aids the
development of a science-based testing strategy for assessing the
safety and efficacy of early life immune modulation by predicting
the key candidate markers during different phases of early life
immune development.

MATERIALS AND METHODS

Generation of the Basis of Early
Life-Immune Networks Using Text Mining
The entire bioinformatics workflow to generate human early
life networks is depicted in Figure 1. The first step was to
select relevant manuscripts describing immune mechanisms in
early life. An inventory of the available literature regarding
6 immune developmental periods [1st/2nd/3rd trimester of
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FIGURE 1 | Bioinformatics workflow to generate human early life networks. (A) Expert based selection of early life immune manuscripts were divided in 6 early life

time periods and subjected to INDRA text mining tool. This resulted in 6 causal INDRA network. (B) The gene-gene connections of the INDRA networks were

denoised and validated for the human situation by GeneMania. (C) DisGeNET and Gene Ontology tools (GO and GOslim) enriched the denoised early life networks by

adding gene-disease connections and gene-process/pathway connections. (D) Inference calculations enriched the early life networks further by adding

process-disease and disease-immune health endpoint connections. All steps together resulted in 6 human early life immune networks. The results of the different

programming steps are depicted in Tables 2–4 as indicated.

Frontiers in Immunology | www.frontiersin.org 3 April 2020 | Volume 11 | Article 644

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


van Bilsen et al. Network-Based Prediction Early-Life Immune Biomarkers

FIGURE 2 | Workflow to generate the basis of early life immune networks by literature. Six causal early life immune networks covering a different early life were

generated by selecting appropriate manuscripts from literature after which relationships between biological entities were extracted by the text mining tool INDRA. Next

INDRA assembled, de-duplicated and standardized all relationships into causal early life-immune networks each covering a different early life period. These INDRA

networks formed the basis of the early life immune networks. *Several unique articles cover multiple early life periods.

gestation, birth, newborn (0–28 days), infant (1–24 months)]
in human and experimental animals was made using Scopus
and Medline (Figure 2). These databases were searched between
1st of December 2016 and 2nd of December 2016 and updated
each half year (last update in March 2019). The search strings
are depicted in Table 1. In total 2,966 articles were selected
and manually screened on title, abstract and full text to select
appropriate articles. Next, all selected articles were classified
into the appropriate early life time period. The lengths of these
different time periods in humans and experimental animals have
been defined previously by Kuper et al. (8) and reported in
Table 2.

The text from the manuscripts was moderately preprocessed
to correct for obvious noise in text that interfered with the text
analyses. Noise correction included deletion of special characters
(except numbers, letters, punctuations and hyphens), “Materials

and Method” section, d.o.i., terms “fig.” and “table,” replacement
of Greek characters by Roman letters, references containing
“et al.,” and hyphenation if a word was split into two parts at
the end of a line of text. The Python code used to preprocess the
manuscripts can be found at https://github.com/TNO/immune_
health_textmining/blob/master/PDFminer.py.

After this preprocessing step, INDRA (Integrated Network
and Dynamical Reasoning Assembler) text mining platform
(www.indra.bio/) was used to extract relationships and structure
information on causal mechanisms among biological entities
from the selected articles. INDRA is an automated model
assembly system interfacing with NLP systems and ontology
databases to collect knowledge, and through a process of network
assembly, produce causal graph and dynamical models (13–15).

INDRA text mining platform rendered the
full texts of the selected articles computationally
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TABLE 1 | Search strings used to assess the available literature regarding the immune functional developmental stages in human and experimental animals was

performed by searching the databases Scopus and Medline.

Search terms Combined with species terms Combined with additional search terms

Thymus OR spleen OR lymph nodes OR Peyer’s patches OR

bone marrow OR liver

Human OR mini pig

OR rat OR mouse

• Functional AND developmental AND stages

OR

• Immune AND development AND birth

OR

• Immune AND development AND weaning

OR

• Immune AND development AND prenatal

OR

• Immune AND development AND postnatal

Cord blood Human OR mini pig

OR rat OR mouse

• Functional AND developmental AND stages

OR

• Immune AND development AND birth

OR

• Immune AND development AND prenatal

* Human OR mini pig

OR rat OR mouse

• Functional AND developmental AND stages AND

(amniotic fluid) OR placenta OR (in utero) OR intrauterine

OR

• Immune AND development AND (amniotic fluid) OR

placenta OR (in utero) OR intrauterine AND birth

OR

• Immune AND development AND (amniotic fluid) OR

placenta OR (in utero) OR intrauterine AND prenatal

*No additional organ/tissue-specific term used in this search string which is specifically aimed at the gestational phase.

TABLE 2 | Developmental early life stages in human, minipig, rat, and mouse [adapted from (8)].

Early life period EGa MG LG Birth Newborn Infant

Human GD0–GW12 GW13–28 GW29–40 – 0–28 days 1–23 months

Minipig GD0–GD37 GD38–75 GD76–113 – 0–15 days 2–4 weeks

Rat GD0–6 GD7–13 GD14–21 – 0–7/10 days 1/1.5–3 weeks

Mouse GD0–6 GD7–13 GD14–21 – 0–7/10 days 1/1.5–3 weeks

aStarts at fertilization/conception.

EG/MG/LG, early/mid/late gestational period.

GD, gestational day; GW, gestational week.

accessible, identified biologically relevant entities (e.g.,
genes/proteins/metabolites/bioprocesses/diseases) and extracted
relationships among these entities. Next, INDRA assembled, and
standardized all relationships among the entities with associated
evidence into causal early life-immune networks each covering a
different early life period. Neo4J (https://Neo4j.com/) was used
as a graph database management system to store, process and
visualize the INDRA literature information as two-dimensional
networks. This entire workflow is depicted in Figure 2.

Code used to generate the INDRA network is part of the
INDRA repository and can be found at https://github.com/TNO/
immune_health_textmining/blob/master/SRP_Neo4J.py.

Denoising INDRA Literature Networks
In order to eliminate noise from the INDRA literature networks
and only depict those relationships for which there is a
biological indication that the relationship is valid, all gene-gene
relationships in the INDRA literature network were subjected to
a denoising step using GeneMania (https://genemania.org/).

Genes coding for proteins described in the INDRA network
were entered in the GeneMania Cytoscape plugin (freely
available at http://genemania.org/plugin/) to identify human
gene-gene associations from its large collection of organism
specific functional association data that include protein and
genetic interactions, pathways, co-expression, co-localization,
and protein domain similarity. These GeneMania-identified
human gene-gene associations were compared to the gene-
gene associations from the noisy INDRA literature networks, to
identify and eliminate non-human specific associations between
genes in the INDRA network. In the denoising step the
edges (connections) between the genes were eliminated from
the network, but not the genes themselves; they remained
in the network as disconnected nodes. It must be noted
that this step possibly eliminates true early-life gene-gene
interactions if they are not represented in the human-specific
GeneMania databases, which are mostly based on adult data.
However, it is foreseen that this potential loss of information
was compensated by the following enrichment steps because
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FIGURE 3 | Overview of the steps used to enrich the INDRA networks. The genes described in early life literature (level 1). were entered in (i) DisGeNET to add

gene-disease relationships to the network (level 1–4) and (ii) Gene Ontology tools GO/GO-SLIM to add gene-sub bioprocess (level 1–2), sub bioprocess—parent

bioprocess (level 2–3) and gene-parent bioprocesses (level 1–3) relationships. Next the GO-terms linking to immune health features described previously in Meijerink

et al. (16) were added to the network (level 2–5; blue arrow). The associations between bioprocesses and diseases (level 3–4) and disease–immune health features

(level 4–5) were inferred (black arrows) based on the previous enrichment steps (orange arrows).

the disconnected genes remained part of the network. The
code used to denoise the INDRA literature networks can be
found at https://github.com/TNO/immune_health_textmining/
blob/master/SRP_filter_networks.py.

Network Enrichments (Figure 3)
The INDRA network derived from literature reflects only the
functionalities of the genes and processes described in literature
which provides an incomplete picture of the functionalities of
the described genes because the manuscripts usually focus on a
specific topic. Therefore, it was important to determine whether
the expressed genes are associated with a certain biological
process and/or molecular function and/or diseases which were
not addressed in the selected manuscripts. This knowledge was
retrieved from several databases and added to the networks
(enrichment). To enrich the INDRA early life immune literature
networks, the genes coding for the proteins in the network
were entered into the Gene Disease Association Database
(DisGeNET; http://www.disgenet.org/) to retrieve the gene-
disease associations using WebGestalt tool (17). The same sets
of genes were also entered in the Gene Ontology resource tools
(GO enrichment tools GO and GO-SLIM; http://geneontology.
org/) to retrieve gene-bioprocess associations (GO/GO-SLIM).

As a final step in the network enrichments, the associations
among bioprocesses, immune related diseases and immune
health endpoints (16) were inferred based on the enrichment tool
specific database knowledge of the number and similarity of the
genes related to each of the network entities in different layers in
the model (Figure 3). As described earlier, Neo4J (https://Neo4j.
com/) was used as a graph database management system to store
and process all network information, including the literature-
derived information by INDRA.

Codes used to generate these enriched networks can be
found at https://github.com/TNO/immune_health_textmining/
blob/master/SRP_Neo4J.py https://github.com/TNO/immune_
health_textmining/blob/master/SRP_add_endpoints_to_

disease_nodes.py and https://github.com/TNO/immune_
health_textmining/blob/master/SRP_calc_inference.py.

Prioritization Immune Markers in Early Life
In order to identify key early life genes (hub genes), the PageRank
centrality score was calculated in the early life networks. The
PageRank analysis was launched by Google (the web search
engine) to identify significant web pages (18–20) and has been
used for the analysis of networks in identifying the important
nodes in the network (21). Unlike simply calculating the
connections of each gene in the network, the PageRank score
measures the importance or popularity of a gene based solely
on the interaction (link) structure of the interaction network.
It selects the genes that exhibit a high degree, whilst also
maintaining the important low-degree genes, which link to other
important genes in the network. The underlying assumption is
that more important genes are likely to receive more associations
from other important genes/bioprocesses/diseases.

The PageRank algorithm code can be found at https://github.
com/TNO/immune_health_textmining/blob/master/SRP_calc_
pagerank_neo4j.py.

RESULTS

Generation of Early Life-Immune Literature
Networks Using Text Mining
The literature covering the information on mechanisms involved
in early life immune health is scattered across thousands of
scientific papers. Therefore, text mining was applied to enable
extracting and structuring information on causal mechanisms
to create early life immune networks. In total 2,966 articles
were selected using the search strings to explore literature
databases. After manual screening 451 original manuscripts and
378 reviews were considered relevant (total number of selected
829 articles). This resulted in a selection of 249 articles for the
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1st trimester of gestation, 296 articles for the 2nd trimester of
gestation, 344 articles for the 3rd trimester of gestation, 252
articles for birth period, 287 articles for newborn period and
215 articles for the infant period. Please note that some articles

covered multiple periods. From these full text articles, INDRA
extracted resp. 2,101, 3,234, 3,654, 1,568, 2,917, and 1,487 unique
relationships for the 1st, 2nd, 3rd trimester of gestation, birth,
newborn and infant period (Figure 2). Next INDRA assembled,

FIGURE 4 | Early life immune networks based on information from early life immune literature and enriched with info from databases and inference steps, each

covering a different phase during early life. (A–C) EG, MG, and LG; (D) birth; (E) newborn (0–28 days); (F) infant (1–24 months). (G) magnification of infant.
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de-duplicated and standardized all relationships into 6 large
early life-immune networks each covering a different early life
period. The Neo4j-based framework enabled the visualization
of the early life immune networks as depicted in Figure 4. As
the networks are very dense in terms of numbers of nodes and
edges, it is impossible to extract information directly from these
networks without bioinformatical tools. The reason to depict
these “unreadable” networks is to illustrate the complexity and
density of them. In our methodology we identified 107 genes that
have been described in the selected early life literature already
during gestation and remained expressed throughout the infant
period (Supplementary Figure 1).

Denoising Early Life-Immune Literature
Networks (Table 3)
Approximately 30% (range 27–32%, depending on early life
period) of the connections (edges) between the genes coding
for proteins described in the INDRA network were overlapping
with the human gene-gene interactions present in the GeneMania
consulted databases (Table 3), indicating that the denoising step
reduced ∼70% (depending on the early life network) of the

TABLE 3 | Number of edges between genes described in early life (literature info)

and their presence in the human GeneMania database.

Network #Genes/proteins* in

early life literature

extracted by text

mining

#Gene-gene edges in

early life literature

#Edges

confirmed in

GeneMania (%)

EG 440 228 72 (32%)

MG 477 278 84 (30%)

LG 508 319 90 (28%)

Birth 225 162 49 (30%)

Newborn 291 249 68 (27%)

Infant 232 174 51 (29%)

EG/MG/LG, early/mid/late gestation.

*Sometimes it was not possible to distinguish protein names from corresponding gene

names in literature. Therefore, all those names were annotated as being both a protein

and a gene and regarded as 1 node in the network.

gene-gene connections in our network. This large reduction may
be due to the fact that: (a) The gene-gene connection is solely
relevant in early-life situations, which are not reflected in the
GeneMania-consulted databases (which contain mainly adult
data); (b) The gene-gene connection is non-human specific as
the search strings for literature included guinea pig, rat, and
mice; (c) Only genes that could be linked to a unique HUGO
Gene Nomenclature Committee (HGNC) ID are recognized by
GeneMania; and (d) The gene-gene connection is nonsense and
should therefore be excluded. It must be noted that only the
edges between the genes are removed, but the genes themselves
remained part of the network. Although this elimination step
possibly also eliminates some of the true early-life gene-
gene interactions as suggested above, it is foreseen that this
potential loss of information was compensated by the following
enrichment steps.

Network Enrichments
The relationships of genes coding for the proteins that were
identified in the early life networks by text mining were enriched
by information retrieved from Gene Ontology and DisGeNET
databases, respectively, is depicted in Table 4. After enrichment,
the number of gene—bioprocess relationships were increased
60-fold (approximately). Of note, depending on the early-life
time frame, DisGeNET databases introduced numerous gene-
disease relationships (ranging from 1,719 to 4,568 relationships)
to the early life immune networks. Other than this, the
DisGeNET database not being specific to immune-related
diseases, numerous non-immune diseases were also added to the
early-life immune networks.

Subsequent addition of associations between bioprocesses
and immune health endpoints (autoimmunity, hypersensitivity,
resistance to neoplasms, resistance to infections) as previously
described (16), further enriched the early life immune networks.
As a final step in the network enrichments, the connections
between bioprocesses and immune related diseases and immune
health endpoints were inferred based on the knowledge of the
number and the similarity of genes shared among the entities in
different layers of the model (Table 4 and Figure 3). The total
number of nodes present in the early life immune networks

TABLE 4 | Results of enrichment/inference steps of the early life denoised INDRA immune networks.

#Gene-bioprocess edges #Gene-disease edges #Bioprocess-immune

endpoint edges

#Bioprocess-diseases

edges

#Disease—immune

endpoint edges

Source Literature GO-enrichment GO-SLIM

enrichment

DisGeNET

enrichment

Meijerink et al. (16) Inference Inference

EG 149 9,546 443 3,894 1,121 1,701 1,023

MG 160 10,195 517 4,089 1,132 1,908 1,029

LG 180 10,968 546 4,568 1,246 2,207 1,136

Birth 67 3,929 168 1,719 695 1,073 627

Newborn 102 6,159 231 2,759 832 1,215 752

Infant 86 4,980 296 2,233 770 823 706

Depicted are the number of connections (edges) between biological entities (genes, bioprocesses, diseases, immune endpoints) added to the INDRA immune networks. EG/MG/LG,

early/mid/late gestation.
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TABLE 5 | Enriched early life immune network nodes.

Type of nodes EG MG LG Birth Newborn Infant

Proteins/genes* 440 477 508 225 291 232

Protein families 101 110 114 62 72 55

Chemicals 175 189 211 93 128 106

Bioprocesses** 51 56 58 36 39 34

GO processes 3,709 3,868 3,988 1,947 2,751 2,289

GOslim processes 55 55 55 59 60 59

Diseases 351 352 400 245 282 257

Immune health endpoint 4 4 4 4 4 4

Depicted are the number of nodes in the networks after all enrichment/inference steps.

These networks formed the basis of the gene prioritization (see Table 6). EG/MG/LG:

early/mid/late gestation.

*Using text mining, it was not always possible to distinguish genes from proteins (often

same name used).

**Bioprocesses identified by ontology of INDRA text mining tool.

after the enrichment and inference steps are depicted in Table 5,
indicating the complexity of the resulting 6 human early life
immune networks.

Gene Prioritization to Identify Key Markers
in Early Life
The enriched complex human early life immune networks
formed the basis to identify the key markers in early life. The
PageRank score of all nodes was calculated in the 6 human early
life immune networks which resulted in 6 lists of prioritized
immune markers each covering a different early life period
(Table 6).

In general, the genes coding for the “commonly used immune
markers” were highly ranked in all early life periods such
as the cytokines including chemokines (e.g., CXCL8, CXCL11,
CXCL13), interferons (IFN), interleukins (IL1B, IL2, IL4, IL5,
IL6, IL7, IL10, IL13, IL15, IL17A), tumor necrosis factor
(TNF), transforming growth factor (TGFB), and other immune
activation regulators (e.g., CD55, FOXP3, GATA3, CD79A,
C4BPA) directly involved in the immune response.

Comparison of the prioritized genes between the different
early life periods (Figures 5A,B) showed that 36 genes were
shown to be central in the network only during the gestational
period, whereas others were more prominent in the periods
birth, newborn and infant (6 genes: RBP4, IL2, HAMP, env,
ALG1, and IL1B) or only in the infant period (14 genes:
TJP1, IL3, PIGS, ANPEP, CXCL11, CLCA3P, JAG1, NTAN1,
CYYP1A2, CYP2E1, MADCAM1, VCAM1, GH1, and SCB).
Moreover, 11 genes were central in the early life immune
networks covering all time periods: TNF, IL6, IL10, CD4, FOXP3,
IL4, NELFCD, CD79A, IL5, RENBP, and IFNG. Most of these
genes are immune related, however RENBP, renin binding
protein, is an important regulator in the renin–angiotensin–
aldosterone system. Moreover, NELFCD, Negative Elongation
Factor Complex Member C/D, is an essential component of
the NELF complex, which negatively regulates the elongation of
transcription by RNA polymerase II.

Some of the top 50 genes were organ-specific such as
CPA1 (pancreas), CRH (neuronal), and CDX2, MGAM,

TABLE 6 | List of prioritized genes per early life time period.

The PageRank score of all nodes was calculated for each gene in order to identify the

most “central” genes in the networks. The top 50 genes (i.e., highest PageRank score)

per network are depicted, including their PageRank score. EG/MG/LG, early/mid/late

gestation. Descriptions of the genes are described in Supplementary Table 1. The light

to dark green-gradient reflects the increase in PageRank score.

SI (intestine). Other genes were specifically involved in
pregnancy such as ERVW-1, CSH1, PAEP, or involved
in early life growth, and maturation (e.g., bone/cartilage
CA2, cell cycle related proteins CAV1, PRC1; matrix
modulation FGF4, MMP9, MMP2) were also identified as
central markers.

Interestingly, also a few non-human genes were selected in
the top 50 lists (lectin, cscK, lacZ, rpoD, dop, AtJ1, lanA1,
env, ptc), representing plant, bacterial or viral specific proteins
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FIGURE 5 | Venn diagram depicting unique and shared sets of genes from the top 50 gene lists of the different early life phases (Table 6); (A) number of genes and

(B) gene names. For the gestational phases, the top 50 gene lists of early, mid and late period were combined, resulting in 67 unique genes. EG/MG/LG,

early/mid/late gestation.

as key markers. So although the GeneMania denoising step
eliminated the gene-gene edges of non-human genes, these
non-human genes got central positions in the enriched early
life networks.

Concluding, the PageRank analyses resulted in the
identification of key early life genes with overlapping genes

between the different early life periods, but also genes which
were only described in a certain early life period. Moreover,
the PageRank analyses confirmed the central role of the
“commonly used immune markers” (cytokines, chemokines)
in the early life networks, but also identified less obvious key
marker candidates.
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DISCUSSION

In this paper, we describe an approach to construct early life
immune networks to identify and prioritize factors to assess
safety and efficacy of early life immune modulation. As an
alternative to expensive, hand-built models which can take
months to years to construct, a workflow was created to
generate causal early life immune networks. Literature-based
interactions were used to form the basis of the network. These
literature networks were denoised using GeneMania databases
and enriched with data from comprehensive databases, such as
Gene Ontology and DisGeNET. Thereafter, PageRank algorithm
was applied to prioritize candidate genes in the early life
networks. The entire pipeline is interpretable and intervenable in
a way that domain experts can use our tools to greatly reduce the
time required to identify relevant immune markers in early life.

Early life in humans is associated with large developmental
milestones in the immune system.

Innate and adaptive immune cells are present early in the
fetus during gestation and then expand significantly (8, 22).
However, though the innate and adaptive immune cells are
already present early during fetal development in the first
trimester of gestation, the strength of their effector functions
differ considerably from the adult situation. For instance,
mature neutrophils are moderately present at the end of the
first trimester, and increase steeply in number shortly before
birth. Their number then returns to a stable level within days,
but they show weak bactericidal functions, poor responses to
inflammatory stimuli, reduced adhesion to endothelial cells and
diminished chemotaxis (23).

Compared with the adult immune system, which has
matured and evolved after years of exposure to antigens and
environmental stimuli, the newborn immune system comes from
a relatively sterile environment and is then rapidly exposed
to microbial challenges (10). It is well-established that these
differences in exposure to antigens and environmental stimuli
have consequences when examining disease susceptibility. Severe
infections remain a leading cause of neonatal morbidity and
mortality. The immaturity of the immune system is thought to be
an important factor for the increased rate of neonatal infections
especially when born preterm but the basis for this is not fully
understood (12), although the maturation of the neutrophil
and endothelial adhesion function are thought to contribute
significantly to the high risk of life-threatening infections in
premature infants (23).

Many of our preventive strategies for neonates rely upon
our understanding of the adult immune system, because of our
limited knowledge of early life immunity. Therefore, there is no
consensus regarding which factors should be covered to evaluate
the safety and/or efficacy of the early life interventions and how
all the available data should be interpreted appropriately. Our
bioinformatics approach assumes that the functions of genes
and proteins do not change over time. Instead, the biological
balances between gene-sets expressed in early life and adult are
assumed to change e.g., lower FOXP3 and CTLA-4 expression in
activated regulatory T cells from human neonates compared to
the adult situation (24). Therefore, the enrichment steps using
information from databases (GO and DisGeNET) containing

mostly data from adult situations, are assumed to be suitable to
enrich the networks with functionalities of the genes/proteins
that are described in early life literature. As input for these
databases, only genes shown to be expressed in a specific early life
period were entered to exclude the possibility that genes/proteins
that are not (yet) expressed in that specific time frame would be
introduced in the network. As others, we suggest that not the gene
function as such, but the context in which the genes are expressed
in early life determines the impact of the gene expression
on the biological processes, cellular responses and/or cellular
phenotype of the immune cell. Especially the microbial context
has been suggested to be important: the interactions between
the developing immune system and the microbes colonizing the
intestine, skin and airways of a newborn child has been suggested
by several groups (11, 25, 26). Olin et al. (11) showed that the
microbiome diversity increased after birth but children with
exceptionally lower diversity indicating bacterial dysbiosis (and
high level of activated T cell populations) showed an increased
immunological heterogeneity at 3 months of age. Several key
immune cell populations (DCs, B cells, NK cells), reach adult-
like phenotypes during the first 3 months of life, which suggests
that environmental exposures during this period could have
influence later in life. For example, differential susceptibility to
autoimmunity and asthmamay relate to DC exposure to bacterial
antigens early in life, which could lead to more tolerogenic DCs
later in life (27–29).

Currently only a few biomarkers of inflammation have been
developed into biomarker assays approved and recommended
by regulatory bodies for use in clinical studies, which includes
CRP, TNF-α, serotransferrin and erythrocyte sedimentation rate
(30). Although many candidate markers are identified based
on preclinical and clinical studies (as listed in the Thompson
Reuters IntegritySM Biomarkers Database), only a few are further
validated and used for assay development highlighting the
classical to clinical biomarkers gap. Moreover, in early life the
identification of suitable markers is even more limited due to the
fact that immunological studies on newborns tend to be small-
scale and focus only on few factors because of limited sample
volumes and low-throughput techniques as noted by Schaffert
at al. (10). The early life immune networks generated in our
approach enabled us to identify and rank genes that have themost
central role in the early life immune networks. This is in contrast
to earlier identified candidate markers for (pre-) clinical studies
which are not specifically aimed at early life and not necessarily
prioritized in a biological context.

There are multiple ways to prioritize genes in a biological
network (31, 32). In computing network scores, most of the
current approaches yield the limitation that the full network
topology (systems approach) is not taken into account. Instead,
such scoring methods focus on direct links or the most
direct paths (shortest paths) within a constrained neighborhood
around genes, ignoring potentially informative indirect paths. By
applying PageRank algorithm, the full topology of the immune
networks is taken into account.

Comparing the top 50 genes of the early life networks of
the different time frames shows that many genes are already
described in literature early in gestation. In general, the genes
coding for the “commonly used immune markers” were highly
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ranked in all early life periods such as the cytokines including
chemokines and other immune activation regulators directly
involved in the immune response. Interestingly, transcription
factors GATA-3 and FOXP3 that regulate Th2 and T regulatory
cell development are highly ranked in the networks, whereas
the gene coding for T-bet (TBX21), the transcription factor for
Th1 differentiation, was in the lower regions of the priority
lists. It has been shown that these 3 transcription factors cross
regulate one another: T-bet modulates GATA-3 function and
Th2 cytokines block Th1 differentiation (33–36). Additionally,
GATA-3 has been shown to inhibit FOXP3 transcription by
binding to the FOXP3 gene promoter (37). The low priority
ranking of the gene coding for T-bet is in line with the current
view of an unbalanced Th1/Th2 neonatal immunity resulting in
skewing toward Th2 immunity. Moreover, the genes related to
Th17 responses [transcription factor gene coding for RORγT
(RORC) and IL17A, IL17F, and IL22], are also of low priority
(not in top 50) in the networks. In the context of the neonatal
Th2-biased immune response, the inhibitory effect of IL-4 on
the development of inflammatory Th17-type responses has been
described to represent a major regulation mechanism (38) which
may explain the low priority of Th17 related genes and the high
priority of IL-4 in the early life networks.

Several non-human genes (lanA1, cscK, dop, rpoD, lacZ,
env, ptc, lectin) were ranked in the top 50, which might
seem unexpected or perhaps even suggest a flaw in the
bioinformatics approach. However, their presence and relevance
may well-explained. In our workflow in the denoising step using
GeneMania, we removed the connections between genes that
were not of human origins, but we did not exclude the non-
human genes from the early immune networks: the non-human
genes remained in the network as disconnected nodes.

The next step in the generation of early life immune networks
was the addition of connections (edges) between the human and
non-human genes to human pathways/diseases/bioprocesses
(input DisGeNet and GO databases). Genes from
rat/mouse/guinea pig will likely not be connected to human
processes, so these genes will stay disconnected to the network
and therefore have a very low priority in the PageRank scoring.
However, some of the non-human genes from mainly viral
or microbial origin could be connected in our workflow to
multiple human processes/diseases and therefore turned out
to be in the top 50 of the PageRank scoring. The relevance of
the role of these non-human genes in immune responses could
be confirmed by literature: lanA1 (viral protein LanA1; role in
host-virus interaction) (39), cscK (bacterial fructokinase; role
in TLR4 activation) (40), dop (bacterial pup deamidase; role
in resistance to infection) (41), rpoD (bacterial sigma factor
for RNA polymerase; role in exponential growth bacteria) (42),
lectin (role in activation of innate immune system) (43), lacZ
(bacterial beta-galactosidase; Th1-associated) (44), env (viral
envelope glycoprotein gp160; role in immune evasion) (45).

Several genes, which are usually not regarded as immune-
related, got a prominent position in our early life immune
networks such as genes involved in pregnancy, growth, and
maturation (e.g., ERVW-1, CSH1, PAEP, CA2, CAV1, PRC1,
FGF4, MMP9, MMP2). Several intestinal digestion related genes

(MGAM, ANPEP, SI) were present in the top 50 in the
birth-newborn-infant networks, which might be related to start
of oral diet after birth. These examples emphasize the role of the
immune system on so many other non-immune bioprocesses,
which should be taken into account during assessment of possible
(side-)effects of immune modulation in early life. Indeed,
several chemokines and cytokines selected in our workflow,
such as CXCL8, IL-10, TNF, IL1B, TGFb are multifunctional
molecules initially described as having a role in endometrial
functions and play a role in appropriate embryo implantation or
placental functioning (46, 47). Moreover, TNF and TGFb have
been identified as core activators of epithelial to mesenchymal
transition, which is essential for embryonic development (48, 49).
Although our approach to collect and structure and prioritize all
available information from literature and databases to identify
candidate markers is exhaustive, it also has its limitations
due to the natural limitations in the curation process of the
usage of enrichment tool-dependent auxiliary databases, and to
inaccuracies derived from text mining. Others being annotation
issues, such as the incomplete annotation of genes to GO terms
and diseases (50, 51). Furthermore, the approach might be
subjected to a reporting bias as it can be difficult to distinguish
the absence of a gene in early life or a relationship between
molecules/pathways from a lack of evaluation. In addition, we do
not take the context of the gene expression into account whereas
it is known that the context determines greatly the impact of the
genes on biological processes, cellular responses and/or cellular
phenotypes of the immune cells. Also, the networks are not
organ-specific, although organ-specific genes are in the top 50
of prioritized genes, such as CPA1 (pancreas), CRH (brain), and
CDX2, MGAM, SI (intestines).

The strength/weight of the relationships in the network were
not taken into consideration, but merely 6 association networks
have been generated of possible biological relationships in early
life immunity. The next important step for the applicability of
this approach would be to validate these relationships based on
gene expression data, which will guide us to validate the networks
and moreover enable us to finetune the weighing of the various
relationships in the network. Thismay result in a re-prioritization
of the most important genes in a specific period in early life.
Moreover, by using gene expression data, it becomes possible
to identify critical time frames for specific immune modulation,
because depending on the exposure, different pathways/processes
may be activated. Even taking into account these current
limitations, to the best of our knowledge, this is the first global
overview of the early life immune system that can be used
as a starting point to select putative markers to monitor the
functioning of the early life immune system.

The future step would be to enrich the early life immune
networks with early life gene-expression data to generate a
quantitative early life immune network for (i) the analysis of
mechanisms underlying immune health and disease in early life
and (ii) the validation of candidate markers of disease and health.

In conclusion, we describe a network-based approach that
provides a science-based and systematic method to explore the
functional development of the early life immune system in time.
This systems approach aids the generation of a testing strategy for
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assessing the safety and efficacy of early life immune modulation
by predicting the key candidate markers during different phases
of early life immune development.
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