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A B S T R A C T   

The importance of spatial resolution for energy modelling has increased in the last years. Incorporating more 
spatial resolution in energy models presents wide benefits, but it is not straightforward, as it might compromise 
their computational performance. This paper aims to provide a comprehensive review of spatial resolution in 
energy models, including benefits, challenges and future research avenues. The paper is divided in four parts: 
first, it reviews and analyses the applications of geographic information systems (GIS) for energy modelling in the 
literature. GIS analyses are found to be relevant to analyse how meteorology affects renewable production, to 
assess infrastructure needs, design and routing, and to analyse resource allocation, among others. Second, it 
analyses a selection of large scale energy modelling tools, in terms of how they can include spatial data, which 
resolution they have and to what extent this resolution can be modified. Out of the 34 energy models reviewed, 
16 permit to include regional coverage, while 13 of them permit to include a tailor-made spatial resolution, 
showing that current available modelling tools permit regional analysis in large scale frameworks. The third part 
presents a collection of practices used in the literature to include spatial resolution in energy models, ranging 
from aggregated methods where the spatial granularity is non-existent to sophisticated clustering methods. Out 
of the spatial data clustering methods available in the literature, k-means and max-p have been successfully used 
in energy related applications showing promising results. K-means permits to cluster large amounts of spatial 
data at a low computational cost, while max-p ensures contiguity and homogeneity in the resulting clusters. The 
fourth part aims to apply the findings and lessons learned throughout the paper to the North Sea region. This 
region combines large amounts of planned deployment of variable renewable energy sources with multiple 
spatial claims and geographical constraints, and therefore it is ideal as a case study. We propose a complete 
modelling framework for the region in order to fill two knowledge gaps identified in the literature: the lack of 
offshore integrated system modelling, and the lack of spatial analysis while defining the offshore regions of the 
modelling framework.   

1. Introduction 

Efforts to reduce greenhouse gas (GHG) emissions are taking place 
worldwide. On the global scale, the Paris Agreement was signed by 195 
nations in 2016, aiming to ‘‘Hold the increase in the global average tem-
perature to well below 2◦C above pre-industrial levels and pursuing efforts to 
limit the temperature increase to 1.5◦C above pre-industrial levels, 

recognizing that this would significantly reduce the risks and impacts of 
climate change’’ [1]. On the European scale, the European Commission 
has also set different goals and milestones, for example the European 
Green Deal, presented in 2020, which outlines the necessity to eliminate 
emissions of greenhouse gases by 2050 [2], or the ‘Clean energy for all 
Europeans strategy’, updated in 2019 and targeting different areas such 
as energy efficiency, renewable energy or electricity market design [3]. 

Abbreviations: CCS, Carbon Capture and Storage; ESM, Energy System Model; GDP, Gross Domestic Product; GHG, Greenhouse Gas; GIS, Geographic Information 
System; HVAC, High Voltage Alternating Current; HVDC, High Voltage Direct Current; LP, Linear Programming; MILP, Mixed Integer Linear Programming; MIP, 
Mixed Integer Programming; MIQCP, Mixed Integer Quadratically Constrained Programming; NLP, Non Linear Programming; NSR, North Sea Region; O&G, Oil and 
Gas; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses; PtG, Power to Gas; VRE, Variable Renewable Energy; WEO, World Energy 
Outlook. 
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According to the World Energy Outlook (WEO) 2018 [4], in 2017 the 
power, transport and industry sectors represented 85% of the total 
energy-related CO2 emissions (42%, 24% and 19% respectively). The 
importance of the power sector in this contribution is expected to in-
crease in the following decades, due to the electrification of other energy 
sectors, mainly heat and transport. Thus, in order to reduce the emis-
sions related to the power sector, large deployments of low-carbon en-
ergy sources are required in short, medium and long term. Indeed, 
according to the ambitious ‘sustainable development scenario’ of the 
WEO 2018, the contribution of wind to the electricity generation will 
increase from 1085 TWh in 2017 to 7730 TWh in 2040, and the 
contribution of solar PV will increase from 435 TWh to 6409 TWh. Even 
in more conservative scenarios, for example the ‘current policies’, the 
increase of Variable Renewable Energy (VRE) is considerable (3679 
TWh of wind and 2956 TWh of solar in 2040) [4]. This expected increase 
of the penetration of VRE sources poses a major challenge to the anal-
ysis, design and implementation of energy systems. The global energy 
production system has traditionally been highly centralized and 
(almost) deterministic, with large power plants supplying energy with 
low levels of uncertainty. However, future energy systems dominated by 
wind and solar will be intermittent, meteorologically and spatially 
dependent, and will have high levels of uncertainty associated. As a 
consequence, large deployments of flexibility resources are expected in 
order to properly balance supply and demand. System integration (i.e. 
power to gas, power to liquids, power to heat, gas to power, electric 
vehicles) [5,6], seasonal storage [7] and the use of flexible generators 
with Carbon Capture and Storage (CCS) [8] have been analysed as 
promising technologies to provide this flexibility in low-carbon systems. 

As a consequence of this turnaround, the importance of spatial 
granularity for energy planning, modelling and analysis has increased in 
the last years and it is expected to play a major role in the future. As an 
example, Fig. 1 shows the search results in the Scopus database using the 
keyword ‘Renewable Energy’ combined with either ‘Spatial resolution’ 
or ‘GIS’ (Geographic Information System) in the last two decades. 
Integrating these spatial aspects in energy system models (ESMs) is not a 
straightforward issue. Traditionally, the main trade-off in ESMs was 
between temporal resolution and technological resolution. Hence, ESMs 
focused on a single energy sector tend to have higher temporal resolu-
tion (i.e. power system models with hourly resolution such as PLEXOS), 
while integrated ESMs tend to include more energy sectors using time- 
slicing methods (i.e. the approach used in most TIMES models). When 

adding the spatial resolution to the mix, the trade-off between these 
three dimensions (spatial, temporal and technological resolution) be-
comes less obvious, and to balance them in order to improve the quality 
of the modelling framework becomes a huge challenge. 

In this context, the North Sea region (NSR), shown in Fig. 2, emerges 
as a perfect example of a region where the spatial component influences 
the energy planning, model and analysis, as it combines a large amount 
of planned deployments of VRE; and multiple aspects in which spatial 
resolution can affect modelling results: meteorological data used, 
infrastructure costs including power and gas networks, allocation of 
supply and demand and spatial planning of different offshore activities 
(for example fisheries, maritime transport or sand extraction). 

In terms of population, the NSR area contains around 200 million 
inhabitants, representing around a 40% of the total population of the 
European Union [9]. The aggregated GDP of the countries around the 
NSR adds up to 9.6 billion of euros, representing 60% of the GDP of the 
EU [9]. In contrast, in terms of land this region represents only 15% of 
the surface of the EU. In terms of energy, since the late 19th and early 
20th century the North Sea has been a key player in terms of Oil and Gas 
(O&G) extraction. As of today, more than 300 O&G fields, 5000 wells, 
500 platforms and a network of around 10,000 km of pipelines can be 
found offshore [10]. As a result of this long exploitation, the current 
mapping of the North Sea available in the literature (including spatial 
and geophysical information) is pretty comprehensive. As an example, 
in Ref. [10] a compilation of oil and gas fields, pipelines (both existing 
and proposed) and terminals can be found with a resolution of around 
20 km. 

Moreover, current trends, in line with European and worldwide 
policies, point out that in the following years the NSR will play a crucial 
role in the decarbonisation of the energy sector, due to the large 
deployment of offshore renewable energy sources. Offshore and onshore 
wind energy, wave energy, micro algae production, ocean thermal en-
ergy conversion or tidal energy are examples of sources planned to be 
relevant in the future in the NSR [11]. 

Additionally, the coexistence of large deployments of renewables 
and O&G infrastructure in the last step of its life cycle brings an op-
portunity to analyse and investigate synergies between activities. 
Decommission scenarios are widely analysed in the literature (see 
Ref. [12] and references therein). Interactions between activities have 
been also widely investigated, including electrification of gas platforms, 
power to gas conversion (PtG) in offshore platforms, carbon capture and 

Fig. 1. Evolution of search results in Scopus with the keywords GIS, spatial resolution and renewable energy in title, abstract or keywords.  
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storage (CCS) in offshore fields and caverns and energy storage [12]. 
More recently, a large number of studies have discussed how offshore 
VRE could be connected to shore, including case studies about different 
offshore grids [13]. 

Regarding spatial claims, there are multiple coexisting activities 
competing for space. The energy sector related activities are predomi-
nant, including O&G extraction and infrastructure, offshore de-
ployments of renewables, and pipelines and power cables to connect 
these activities to mainland. But aside of that, the NSR harbours a wide 
variety of activities that are spatially demanding. Maritime transport is 
one of the main activities, being the NSR one of the busiest areas in the 
world, and including three of the most important seaports in the world 
(Rotterdam, Hamburg and Antwerp). Fishing areas are also predomi-
nant in the NS, being protected and coordinated by the European 
Commission. Some countries around the NS also allocate part of their 
shelves for military purposes. Finally, recreation and sand extraction 
areas also demand space. 

The literature regarding spatial resolution and energy system models 
is relatively recent and scarce. Previous studies, like [14] or [15], 

presented some challenges and opportunities of the integration of spatial 
resolution and energy models, and analysed relevant literature, but 
focusing mainly on GIS applications. Other studies, like [16] tried to 
quantify the trade-off between spatial data aggregation and precision of 
results. 

This paper aims to, first, analyse what is the role of spatial resolution 
when modelling energy systems, and second, from the findings and 
lessons learned from the literature review, analyse the NSR from a 
spatial perspective and propose a complete modelling framework that 
can capture this spatial component. The paper is divided in four main 
sections, which cover aspects related to spatial resolution from different 
perspectives:  

• First, we review studies where Geographic Information Systems 
(GIS) have been used in an energy system analysis, or where GIS has 
been applied to energy models. Those include assessment of meteo-
rological conditions, deployment and expansion of energy infra-
structure or land availability. In the paper this corresponds to section 
3. 

Fig. 2. North Sea map with regions, adapted from Wikimedia Commons [17].  
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• Second, a literature review and an assessment of a selection of ESMs 
is done, in order to understand how different ESMs permit to include 
spatial resolution and to what extent this resolution can be modified. 
This analysis includes other features such as the mathematical 
method used in each model, or the level of sector integration, in 
order to find correlations (if any) between the level of spatial detail 
and these features. In the paper this corresponds to section 4.  

• Third, a summary of techniques and practices found in the literature 
to account for spatial data in large scale energy systems is performed, 
including mathematical methods for spatial data clustering that have 
been applied in ESMs. In the paper this corresponds to section 5.  

• Last, the analysis of the NSR as a case study is developed including: 
1) a literature review of previous modelling efforts in the NSR, with a 
special focus on the spatial resolution used, 2) a definition of a new 
case study which complements the ones available in the literature, 3) 
a proposal of a modelling framework to address this case study and 4) 
an assessment of which of the modelling tools available in the 
literature could be successfully used to analyse the proposed case 
study. In the paper this corresponds to section 6. 

2. Methods 

As mentioned above, this paper is divided in four sections, each of 
them analysing a particular aspect of spatial resolution and energy 
modelling. In order to compile the relevant literature for each section, 
we conduct four different literature reviews, as shown in Fig. 3. 

The method combines systematic literature reviews, following 
partially the PRISMA statement and recommendations [18], and a 
complementary non-systematic review, targeting specific literature and 
documentation. In short, the steps followed are:  

i) Identifying a primary list of journal articles through database 
search, using search strings dependent on the aim of the section.  

ii) Screening the abstracts of the articles in order to filter the ones 
that meet a given criterion.  

iii) Analyse the whole text of the screened articles in order to exclude 
the ones that do not fit within the scope of our review.  

iv) Complement the selection of papers conducting a non-systematic 
review, targeting relevant literature that it is not included in i-ii 
and that can add meaningful insights. 

2.1. Section 3 

For Section 3 a two-step literature review is conducted, consisting of 
a systematic literature review, followed by a complementary non- 
systematic review. For the systematic review, the search of peer- 
reviewed articles is performed in Scopus, searching documents from 
2016 until late 2020. This timespan permits to evaluate recent findings 
while maintaining a manageable number of publications to screen. The 
search string used can be found in Table 1 under the name S3. 

The primary goal of Section 3 is to review studies were GIS is com-
bined with energy system analysis, therefore the first search targets 
articles including “GIS”, “energy” and ‘“modelling” in the title, abstract 
or keywords. The list of 540 articles is narrowed down to 48 articles 
using the criteria shown in Fig. 3. The subsequent non-systematic review 
aims to target articles related to the scope of Section 3 which are not 
indexed in Scopus or do not fall within the search criteria, but are 
considered relevant for the analysis. Six additional articles are added in 
this step. 

2.2. Section 4 

For Section 4 a two-step literature review is conducted, consisting of 
a systematic literature review, followed by a complementary non- 
systematic review. For the systematic review, the search of peer- 

reviewed articles is performed in Scopus, searching documents from 
2018 until late 2020. There are several reasons to justify the choice of 
this short timespan. First, reviews of energy models are abundant in the 
literature, and therefore a wider timespan would entail a huge number 
of articles to screen. Second, recent reviews usually include an up-to- 
date list of models, and therefore recent model developments are 
included. Third, reviews from 2018 to 2020 probably include within 
their references reviews from previous periods. Thus, if needed, relevant 
documentation from previous years can be derived from them. The 
search string used can be found in Table 1 under the name S4. 

As the literature required for Section 4 is formed mainly by reviews 
of energy system models, the first search targets articles including “re-
view”, “energy”, “systems” and “models” in the title, abstract or key-
words, within the category “review articles”. The list of 470 articles is 
narrowed down to 6 articles using the criteria shown in Fig. 3. The 
subsequent non-systematic review aims to target the documentation and 
related publications of the models included in the analysis of Section 4, 
and relevant review documents referenced in the selected articles. Sixty- 
six additional documents are added in this step. 

2.3. Sections 5 and 6 

For Sections 5 and 6 only non-systematic literature reviews are 
conducted. In the case of Section 5, the goal is to identify clustering 
techniques applied in the literature to aggregate spatial data, and due to 
the fact that the literature is relatively scarce and there is a lack of 
standardized definitions, it is challenging to conduct a systematic review 
that produces relevant results. In the case of Section 6 the reason is 
similar: the literature prior to 2015 has already been reviewed in some 
journal articles (e.g. Ref. [19]), and the literature from 2016 to 2020 is 
relatively narrow and easy to manage with a non-systematic literature 
review. 

3. Spatial resolution and GIS-based energy modelling in the 
literature 

The objective of this section is to present a literature review of 
studies where GIS-based approaches have been applied to energy sys-
tems modelling. GIS-based modelling has been widely used during the 
last decades in multiple fields, such as urban planning, disaster man-
agement and mitigation or mapping. Previous analyses of GIS-based 
modelling for energy applications, such as [14,15], point out that, 
although the interaction between GIS and energy modelling is benefi-
cial, it is still in a development stage and has to be strengthened. As one 
of the goals of this paper is to understand the impact of spatial resolution 
in energy models, and due to the fact that GIS is one of the most mature 
fields in terms of spatial data analysis, we consider convenient to include 
in this review a summary of relevant studies where this interaction is 
included. 

Most of the previous applications of GIS to the energy field have been 
evaluated at local scale. Since local applications are out of the scope of 
this paper, one of the screening conditions for the systematic literature 
review is that at least regional coverage should be included. 

As a result of the systematic and non-systematic literature review 54 
journal articles are included in this analysis. We classify these articles 
according to two categories: the energy sector or specific energy appli-
cation where they are applied, and the geographical coverage that they 
include. Results are summarized in Fig. 4 and Fig. 5, and a brief 
description of the selected literature can be found in Appendix A. 

Results show that biomass (12 articles), solar (14 articles) and wind 
(11 articles) are the most common applications regarding GIS and en-
ergy modelling. Analysis of energy demand (6 articles) and power plant 
sitting (3 articles) are also present in the literature. Regarding 
geographical coverage, it can be concluded that regional and national 
analysis are so far the most usual resolutions included, whereas the 
contributions at multinational scale are extremely scarce. 
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3.1. Biomass 

The biomass studies screened are mainly focused on national scale. 
There are two different types of GIS studies applied to biomass: first, 

articles aiming to calculate or estimate the potential and availability of 
certain types of biomass [20–22], second, articles aiming to analyse 
optimal locations of biomass power plants based on proximity to 
biomass sources [23–31]. In the latter, due to the fact that the transport 

Fig. 3. Description of the methodology to search and filter the selected literature.  
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of biomass to the generation units entails a considerable cost, GIS ap-
proaches are used to consider distances in multiple technoeconomic 
assessments. 

3.2. Energy demand 

Studies related to energy demand have been found only in national 
and multinational scale. Two types of analysis are identified: GIS applied 
to buildings, in order to estimate heating or cooling demand [32–35], 
and GIS applied to estimate electricity consumption [36,37]. 

3.3. Power plant siting 

Few studies analyse siting of different types of power plants, such as 

gas generators [38,39], in which GIS is generally used to geographically 
match supply and demand, or hydro plants [40] in which optimal areas 
based on geography are defined. 

3.4. Solar and wind 

GIS studies applied to solar and wind energy are probably the most 
popular and abundant in the literature. The studies included in this 
section can be divided in two categories, first, analyses in which the 
potentials of wind or solar across a certain area are evaluated ([41–43] 
in the case of solar and [44–48] in the case of wind), and second, studies 
where the best locations to deploy solar or wind installations are 
determined, considering not only meteorological conditions, but also 
other spatial components such as land availability, connectivity with 
existing infrastructure or correlation with existing energy demand 
([49–59] for solar and [60–65] for wind). 

3.5. Benefits and challenges of GIS and ESM integration 

On top of the specific literature reviewed for this section, other 
studies analyse how GIS and ESM integration present multiple benefits 
to energy models, but also some challenges in order to implement them. 
Ref. [14] already pointed some challenges in GIS-based planning for 
renewable energy, such as the complexity of energy system models and 
geospatial models, which complicates their integration; the huge 
computational requirements of the resulting modelling framework; the 
limited availability of GIS data; or the variety of highly heterogeneous 
data structures, which again complicates GIS and ESM integration. 
Ref. [15]. also showed the benefits of GIS and ESM integration, also 
considering the temporal component, and analysing the impact of 
spatiotemporal modelling in VRE potentials and design of VRE plants. In 
different reviews of ESM, like [66], the role of spatial resolution and 
GIS-based approaches in ESMs is highlighted as one of the crucial fea-
tures for modelling systems with high penetration of VRE, and it is 
considered an area with room for improvement in future model 
developments. 

There are multiple benefits of GIS and ESM integration in different 
applications. GIS has shown promising results to calculate weather po-
tentials, especially for wind (both offshore and onshore) and solar en-
ergy. GIS-based approaches are useful to define the optimal location of 
VRE plants based on meteorological conditions, but also to analyse the 
variability of VRE potentials across a certain territory. Note that it has 
been proven in the previous literature that in the case of wind energy, 

Table 1 
Search strings used in Scopus as input for the systematic review.  

Order Search string 

S3 TITLE-ABS-KEY (gis AND energy AND modelling) AND (LIMIT-TO ( 
PUBYEAR, 2020) … OR LIMIT-TO (PUBYEAR, 2016) AND (LIMIT-TO ( 
LANGUAGE, “English”) ) 

S4 TITLE-ABS-KEY (review AND energy AND system AND models) AND 
(LIMIT-TO ( DOCTYPE, “re”) ) AND (LIMIT-TO ( SUBJAREA, “ENER”) ) AND 
(LIMIT-TO ( PUBYEAR, 2020) … OR LIMIT-TO (PUBYEAR, 2018) ) AND 
(LIMIT-TO ( LANGUAGE, “English”) )  

Fig. 4. Categorization of selected articles according to their energy application.  

Fig. 5. Categorization of selected articles according to their geographical coverage.  
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with a proper combination of wind farm locations and considering 
enough interconnection between them, the energy output is more 
consistent than if the same locations were located in closer areas [67]. 
These studies proved that up to 47% of the yearly averaged wind power 
could be used as baseload power [68]. This shows that GIS-based ana-
lyses are important not only to increase the spatial resolution and get 
insights of very local parameters, but also to understand variations of 
certain parameters across a territory, even in national or international 
scales. As a consequence, a poor spatial analysis might end up under-
estimating this geographical variability as well as overestimating the 
uncertainty and flexibility requirements to balance supply and demand. 
GIS has also shown promising results in other areas, such as design of 
power, heat or gas infrastructure, for example through GIS-based rout-
ing of pipelines; interactions between biomass sources and biomass 
plants; and spatial interactions between supply and demand, due to the 
analysis of the spatial distribution of demand across a territory. 

GIS-based approaches can also be beneficial to create spatial data 
clusters, in order to define the regions of ESMs. ESMs usually include 
regions which are defined according to political borders or geographical 
regions. Creating regions using GIS-based techniques might be a good 
alternative, due to the fact these resulting regions would be more 
balanced. For example, if we want to analyse VRE and we use political 
borders, some regions might have huge VRE potentials, while others 
might have a lower value. If we use a GIS-based approach we would 
define the regions based on the VRE potential data, and we will not have 
this problem of unbalance. 

One of the shortcomings found in the integration of GIS and ESM in 
the literature is that most of the applications are in local scale, for 
example, using meteorological data to define which is the best location 
of a single VRE plant, or analysing the distribution of the energy demand 
across a city at building level. There are multiple reasons for this trend, 
like the huge computational requirements for GIS and ESM integration 
at large scale level or the lack of homogeneous data in large areas [14]. 
However, in the future, with improvements in computational capacities 
and more data availability, this knowledge gap should be covered. 

It is also important to mention that the interaction of GIS and ESM is 
usually unidirectional, that is, the GIS analysis is used as an input for the 
ESM, in order to improve the quality of the results. One interesting 
future research avenue would be to make this interaction bidirectional, 
that is, to analyse the outputs of ESM using GIS analysis. For example, 
after running an ESM with spatial data at national level (i.e. one node 
per country) a GIS-based approach could be used to analyse the output 
of the ESM and identify different bottlenecks, such as land availability 
for VRE deployments or lack of transmission capacity. This information 
might be eventually sent back to the model in an iterative fashion. 

4. Spatial resolution in energy system models 

The objective of this section is to analyse how different energy 
modelling tools permit to include spatial resolution and to what extent 
this parameter is flexible.1 This analysis will also include other features 
such as the mathematical method used in each model, or the level of 
sector integration, in order to find correlations (if any) between the level 
of spatial detail and these features. It is not the goal of this paper to 
analyse the general state of the art of energy systems modelling. For that 
purpose, the reader is forwarded to Refs. [66,69–71], where extra 
background on energy modelling history, classification, trends, chal-
lenges and future expectations are presented. 

The systematic and not-systematic literature review presented in 
Section 2 permitted to collect a comprehensive set of review articles 
related to energy system models. Table 2 presents a summary of their 

goal and coverage. For the analysis pursued in this section we will use 
these studies and the references therein as a starting point. 

Connolly et al. reviewed 37 different energy modelling tools ana-
lysing the integration of renewable energy into various energy-systems, 
analysing features such as the tool availability, the energy sectors 
considered, the geographical area and the time-step [72]. A similar re-
view was carried out by Bhattacharyya et al. analysing and character-
izing ten specific computer tools, but in this case with the aim to 
determine whether they were suitable for analysing energy policies in 
developing countries [69]. Foley et al. presented and reviewed 7 elec-
tricity system models, pointing out how their role has changed while 
moving towards liberalized electricity markets [73]. In Ref. [74], 
Després et al. proposed a new typology for long term energy models and 
electricity system models with a focus on future energy systems with 
large shares of VRE. More recently, Ringkøb et al. reviewed 75 model-
ling tools in terms of their performance with large shares of variable 
renewable energy sources [76]. Similar studies have been carried out by 
Lopion et al. to analyse the future challenges of national energy models 
to properly account for the variability and intermittency of renewable 
energy sources [75]. Other publications have compared several models 
with a higher level of detail, for instance EnergyPLAN and H2RES [81], 
or NEMS and MARKAL-MACOR [82]. Also, Pfenninger et al. included 
future challenges such as the integration of human behaviour and social 
risks and opportunities [66]. Fattahi et al. [77] reviewed 19 national 
integrated energy system models, including also an analysis of capa-
bilities and shortcomings of their use in low carbon energy systems. 
Maruf [78] included a review of 16 open source energy system models 
and assessed their capabilities in the context of a sector coupled scenario 
of the North Sea region. In Ref. [79] Prina et al. reviewed 22 energy 
system models with four main foci: resolution in space, in time, in 
techno-economic detail and in sector coupling. Finally, in Ref. [80] 
Groissbok et al. reviewed 31 open source energy modelling tools, in 
order to compare how mature are open source energy models compared 
to some widely used non open source models. It is important to mention 
that none of the previous reviews extensively analyses the trade-offs 
between temporal, spatial and technological resolution, and the anal-
ysis of the spatial resolution is usually reduced to investigate what is the 
number of regions included in the model, and how many nodes are 
included in each of them. 

Considering only the selection of reviews proposed in Table 2, it is 
possible to find detailed information of more than 100 models. As the 
intention of this section is to analyse up to date tools which can be used 
in large scale applications (analysing the role of spatial resolution in 
tools with a local focus is to some extent contradictory) we decided to 
filter those models. The selection criteria are that the models should 
have been used after 2010, and they should have been applied at least at 

Table 2 
Selected papers analysing energy modelling tools.  

Reference Goal Coverage 

Connolly el al. [72] Renewable integration in 
energy models 

37 energy modelling tools 

Foley et al. [73] Strategic review of 
electricity models 

7 power system models 

Bhattacharyya 
et al. [69] 

Comparison and 
classification of energy 
models 

10 energy modelling tools 

Després et al. [74] New typology for models 
proposed 

35 energy modelling tools 
and 5 power system models 

Lopion et al. [75] Comparison and 
classification of energy 
models 

24 energy modelling tools 

Ringkjøb et al. [76] Analysis of energy models 75 energy modelling tools 
Fattahi et al. [77] Analysis of energy models 19 energy system models 
Maruf et al. [78] Analysis of energy models 16 energy system models 
Prina et al. [79] Analysis of energy models 22 energy system models 
Groissbok et al. 

[80] 
Analysis of open source 
energy models 

31 energy system models  
1 In this context, we consider that the spatial resolution of a model is ‘flexible’ 

when it can be easily modified, that is, the number of regions/nodes and the 
resolution of the data can be increased/decreased. 
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national scale. After this filter, the number of models is reduced to 34. 
For the categorization of the selected models we define 6 different pa-
rameters, which are shown in Table 3. 

In Table 4 the models are described according to the aforementioned 
parameters. 

4.1. Methodology and mathematical approach 

The most common methodology used in the selected models is 
optimization. In fact, 23 out of 34 models (68%) include optimization as 
a methodology, while 15 (44%) include simulation. Note that 4 of the 
selected models include both optimization and simulation within their 
frameworks. 

Regarding the mathematical approach, it is interesting to see that 
linear programming (LP) is the favourite approach, being part of 18 of 
the 23 optimization models (78%). This choice is reasonable taking into 
account that the selected models are applied at least in national scale 
(according to our selection criteria). Optimization problems written as 
LPs can be solved relatively fast, and their computational performance is 
much better (in terms of running time) than other approaches such as 
MIP or non-linear programming (NLP). Thus, when considering large 
scale energy systems, which means large amounts of data, it is a usual 
practice to use a LP approach in order to keep a reasonable computa-
tional burden. The same principle applies when multiple energy sectors 
are included in a model, or when a higher temporal resolution is 
required. 

4.2. Geographical area and spatial resolution flexibility 

Out of the 34 selected models, 7 can be applied to the whole world 
(20%), while 27 can be used to analyse international scenarios (80%). 
These figures solely indicate the area covered by the model, but give no 
information about the level of spatial flexibility or how the models ac-
count for spatial data (for example, GEM-E3 [83] has a global coverage, 
but its resolution is fixed to 38 regions, so the level of spatial data is 
highly aggregated and the spatial resolution is relatively low). That is 
the reason why the spatial resolution flexibility parameter can provide 
some extra insights on this matter. 

However, estimating how flexible is the spatial resolution of a model 
is not straightforward. From a purely theoretical perspective, most en-
ergy models are a set of mathematical equations written in a certain 
software. Therefore, in theory it should be possible to modify some of 
the parameters or equations in order to have a different spatial resolu-
tion. In reality this is not entirely true: some models do not permit to 
change their structure at all; others do permit it, but they are calibrated 
and tailor-made for a specific region, and broadening the regional scope 
might entail infeasibilities or computational problems. 

There are two main aspects that can affect and limit the spatial 
resolution that an energy model can reach. The first one is the data 
availability. Naturally, if the resolution of a model wants to be increased 
but there is no data available at that precise resolution, the enhancement 

of the model will be imprecise or even impossible. As an example, if a 
model has national level resolution and is modified to account for sub-
national regions, but the data remains aggregated at national level, the 
model will fail to provide meaningful results. Data availability has 
indeed been pointed out as one of the main challenges in order to in-
crease spatial resolution in energy models [14]. 

The second one is related to the specific formulation of each model. 
Some energy models are released as “black boxes”, and the user is not 
allowed to modify the internal configuration, and therefore the spatial 
resolution is limited to the predefined options that the tool developer 
included. Other models are released under open source licenses, 
allowing the user to access the codes and formulations, and therefore to 
modify them. However, this is not a guarantee that the spatial resolution 
can be increased as much as possible, as at some point computational 
limitations might appear. 

Measuring the trade-off between spatial resolution and computa-
tional performance is extremely complex, as there are multiple variables 
that can affect it. First, the specifications of the computer used are 
decisive, and a model might be successfully solved by a powerful 
desktop but not by a standard laptop. Second, models are usually 
simplified when covering larger areas in order to reduce their 
complexity, and therefore the comparison of the running times of the 
same tool with different resolutions is not valid. As an example, PyPSA 
has been used in case studies ranging from regional scale to international 
scale, with running times ranging from few minutes to multiple hours. 
However, each case study has a different level of technological resolu-
tion, which naturally affect the computational performance as well. 
Other models, like the TIMES family models, tend to use timeslicing 
techniques in order to reduce the temporal complexity of the problem. 
As a consequence, it might happen that a model with certain spatial 
resolution faces computational problems when solved using hourly 
resolution, but can be solved using multiple timeslices per year. Finally, 
the development of new optimization solvers, or the improvement of the 
mathematical formulations can also reduce the running time and permit 
some models to be solved. 

In short, there is no generic rule to calculate or measure which is the 
exact spatial resolution that a model can solve in practice. In this paper, 
in order to set a reference point, we thoroughly review the documen-
tation and related publications of the selected models in order to assess if 
they permit to modify the spatial resolution, and what different 
geographic coverages they have included. We consider that a model has 
spatial flexibility if it fulfils one of the following requirements: 1) it has 
been used in the literature in different areas/with different resolutions. 
2) previous literature reviews on energy modelling have been pointed 
out that the geographical scope is variable, or that the model can cover 
different geographical scales. 3) the documentation of the model 
explicitly explains that the spatial resolution can be defined by the user. 

Sixteen of the selected models (47%) permit to increase/decrease 
their spatial resolution. That means that the geographical coverage can 
be extended/reduced, and also that the resolution within each region of 
the system can be increases/decreased as well. As an example, the 
Oemof framework [84] could be extended from Germany to surrounding 
countries, and also the resolution of each of the countries could be 
increased to represent different regions. 

The need of more spatial flexibility in energy models has been 
extensively discussed in the literature [14], and it has also been proved 
that recent model developments are moving towards more flexible and 
user-defined specifications, in both spatial and temporal resolution [84]. 
This trend is supposed to grow even more in the future, with expected 
larger penetrations of decentralized VRE. 

It is important to be sceptical about how feasible it is to implement 
this flexibility in real case studies. From a purely theoretical point of 
view some models presented in Table 4 permit to increase their spatial 
resolution as long as there is enough data for the new regions. But in 
reality there are computational limitations that limit the levels of reso-
lution in order to keep running times below a certain threshold. In the 

Table 3 
Rationale and categories used for the energy model analysis.  

Rationale Categories 

Underlying 
methodology 

Optimization models, simulation models, econometric 
models, macro-economic models, economic equilibrium 
models, back-casting models, multi-criteria models and 
accounting models 

Mathematical method Linear Programming, Mixed Integer (linear) Programming, 
Mixed Integer Quadratically Constrained Programming 

Geographical coverage Regional, national, international, user defined 
Inclusion of a GIS- 

based tool 
Yes/No 

Spatial resolution 
flexibility 

Yes/No 

Sectoral coverage Electricity, heat, hydrogen, transport  
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literature there has been continuous research about how temporal 
simplifications (timeslicing) can affect the performance of the models 
and the accuracy of the results [85]. However, as of our knowledge, 
analysing how different granularities affect the performance of energy 

models is a big knowledge gap. 

Table 4 
Characterization of the models selected for the assessment. Abbreviations: S – Simulation; Op – Optimization; LP – Linear Programming; MIP – Mixed Integer Pro-
gramming; MILP – Mixed Integer Linear Programming; MIQCP – Mixed Integer Quadratically Constrained Programming.  

Model name Underlying 
methodology 

Mathematical 
approacha 

Geographical area Includes a GIS- 
based tool 

Spatial 
resolution 
flexibility 

Sectoral coverage Reference 

AURORAxmp Op&S LP, MIP Regional to international (used 
in USA and EU)  

✓ Electricity [76,101–103] 

BALMOREL Op LP/MIP Regional to international  ✓ Electricity, district 
heating 

[75,79,104, 
105] 

Calliope Op LP/MILP User defined  ✓ Electricity, heat, 
hydrogen 

[75,76,79,106] 

COMPETES Op LP/MIP International, applied to the EU  ✓ Electricity, heat [88] 
DESSTinEE S – 40 countries in EU and north 

Africa   
Electricity [105,107,108] 

EMMA Op LP Northwest Europe   Electricity [105,109–112] 
EMPIRE Op LP 31 European countries   Electricity [76,113] 
EMPS Op LP User defined  ✓ Electricity [114,115] 
EnergyPLAN S – Regional to international   Electricity, heat, 

hydrogen, transport 
[75,76,79,80, 
116,117] 

ENTIGRIS Op LP Regional to international, 
applied in Europe and north 
Africa 

✓ ✓ Electricity [76,118] 

ETM S – User defined  ✓ Electricity, heat, 
hydrogen, transport 

[76,119] 

ETSAP-TIAM Op LP Global, 15 regions considered   Electricity, heat, 
hydrogen, transport 

[120–122] 

EUCAD Op MIQCP 24 European countries   Electricity [123,124] 
EUPower- 

Dispatch 
Op MIP 32 European nodes   Electricity [76,125] 

GEM-E3 S – Global, 38 regions considered   Electricity, heat, 
hydrogen, transport 

[76,126,127] 

LIBEMOD S – 27 European countries   Electricity, heat, 
transport 

[128–130] 

LIMES-EU Op&S LP 26 European countries  ✓ Electricity [131–134] 
MESSAGE Op&S LP/MIP Global, 11 macro regions 

considered   
Electricity, heat, 
hydrogen, transport 

[79,135,136] 

NEMS S – Regional to national, applied in 
the United States   

Electricity, heat, 
transport 

[76,137] 

Oemof Op&S LP/MILP User defined √b ✓ Electricity, heat, 
hydrogen, transport 

[78–80,138, 
139] 

OSeMOSYS Op LP Regional to international  ✓ Electricity, heat, 
hydrogen, transport 

[79,80,140, 
141] 

PLEXOS Op LP/MIP/NLP Regional to international  ✓ Electricity, heat [76,79,87] 
POLES S – Global, 66 regions included   Electricity, heat, 

hydrogen, transport 
[76,127,142] 

PRIMES S – Europe, recently calibrated to 
11 north African countries   

Electricity, heat, 
hydrogen, transport 

[75,143] 

PyPSA Op LP/MIP Regional to International ✓ ✓ Electricity, heat, 
hydrogen, transport 

[79,80,105, 
144–146] 

ReMIND Op NLP Global, 11 regions considered   Electricity, heat, 
hydrogen, transport 

[147–149] 

REMix Op LP Regional to international ✓ ✓ Electricity, heat 
hydrogen 

[79,80,150] 

RETScreen S – Regional to global   Electricity, heat, 
hydrogen 

[80,151,152] 

stELMOD Op MIP Europe, with a particular focus 
on Germany   

Electricity, heat [76,105,153, 
154] 

SWITCH Op MIP Regional to international  ✓ Electricity [80,105, 
155–157] 

Temoa Op LP United States (single region)   Electricity, heat, 
transport 

[75,79,80,105, 
158,159] 

TIMES Op LP Local to global  ✓ Electricity, heat, 
hydrogen, transport 

[160,161] 

WEM S – Global, including 25 regions   Electricity, heat, 
hydrogen, transport 

[76,162] 

WITCH S – Global, including 13 regions  ✓ Electricity, heat, 
transport, hydrogen 

[76,127,163, 
164]  

a Optimization models are divided into Linear Programming (LP), Mixed integer programming (MIP), Mixed Integer Quadratically Constrained Programming 
(MIQCP) or Non Linear Programming (NLP). Simulation models are not classified in terms of mathematical approach. 

b The oemof framework includes applications like renpass-gis with high spatial resolution GIS data. 
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4.3. Sectors modelled 

Sector integration has been extensively discussed as a key element in 
future energy systems, in order to provide extra flexibility to the system 
and help to integrate larger amounts of VRE [86]. The importance of 
including interrelated sectors in energy models has also been defined as 
a key element for future energy models [5], and trends show that current 
tools are becoming more and more integrated [76]. Indeed, out of the 
selected models for this analysis, 24 (71%) include at least two different 
energy sectors. Even power system models, such as PLEXOS [87] or 
COMPETES [88], which describe in detail the electricity sector, include 
to some extent interactions with other energy sectors such as heat or 
transport. This interaction is extremely crucial to have realistic results 
that estimate correctly the flexibility that sector integration can provide 
to the system. 

4.4. Trade-offs between features 

As mentioned throughout different sections of this paper, the 
computational power and the state of the art of optimization solvers 
pose a limit to the level of detail that energy models can include. Ideally, 
in order to represent a realistic system, the temporal resolution should 
be as high as possible, the spatial granularity should be high enough to 
include enough spatial data, all energy sectors should be represented 
and nonlinearities should be included in the mathematical equations. 
However, it is naïve to expect all these features in an energy model as of 
today. 

Different studies have tried to analyse how different levels of detail 
in those parameters can affect the performance of the model. In 
Ref. [89], Poncelet et al. used a TIMES model with different timeslicing 
methods in order to compare how different the solutions were in 
different long term scenarios. Similarly, in Ref. [90] also TIMES was 
used with a timeslicing strategy comparing the results of a deterministic 
scenario with multiple stochastic scenarios, pointing out that aggressive 
timeslicing barely captures the intermittency of VRE. In Ref. [91] mul-
tiple timeslicing strategies were compared to assess to what extent 
simple timeslicing methods can capture renewable intermittency. 
Regarding spatial resolution, in Ref. [16] different spatial resolutions 
were used in the same case study to compare how different granularities 
can affect the result in the power sector, finding out that with an 
appropriate clustering method different spatial resolutions could pro-
vide similar results. Finally, with sector integration, in Ref. [7] it was 
concluded that storage needs in energy systems are reduced if more 
sectors are considered in the analysis, that is, if the flexibility provided 
by sector integration is not taken into account models tend to over-
estimate the energy storage requirements. However, all these analyses 
evaluate how the performance of different models changes when vary-
ing only one of the parameters. 

4.5. Models including GIS/models used in the literature with external GIS 
tools 

The literature shows that the use of GIS in energy models has been 
growing during the last years. However, there is a lack of models inte-
grating endogenously GIS tools, there is not a clear consensus on how to 
properly link GIS and energy tools, and in general there are many 
different challenges that have been discussed in the literature, such as 
the need of unified (spatial) data models. 

The lack of endogenous integration of GIS in energy models can be 
exemplified attending to the selected models of Table 4. Out of them, 
only ReMIX, oemof, ENTIGRIS and PyPSA have an internal GIS related 
function. In ReMIX, this function is internally included in order to 
reduce processing times [92], but it only allows to calculate VRE po-
tentials based on weather data depending on the resolution chosen 
(which in ReMIX, as pointed out, is flexible). In Ref. [93] it was used to 
analyse the Hashemite region in 2020, using GIS data of CSP, PV and 

wind power. In Ref. [94] it was used to analyse the potential of hydrogen 
storage in salt caverns in the North of Germany, but again the GIS data 
used was only for VRE potentials and feed-in time series with a resolu-
tion of 10 × 10 km. Another example with ReMIX is [95], where heat 
from biomass potential in Germany was analysed. 

Other models displayed in Table 4 have been effectively used linked 
with different GIS-tools. In Ref. [96], EnergyPLAN was linked with a GIS 
tool to analyse a 100% RES scenario, but it was applied only in local 
scale in the city of Pompeii. In Ref. [97]. Balmorel is used to analyse the 
role of hydrogen in Germany in 2030, linking it with an external GIS tool 
to calculate infrastructure costs. In Ref. [98] RETScreen was used to 
investigate the potential of solar hot water system (SHW) in China at a 
national scale, linking it to a GIS tool at a local scale (applied to 31 
capitals of China). PLEXOS has also been successfully linked with a GIS 
tool at a European scale [99]. Finally, TIMES family models have also 
been linked to GIS tools in previous reports [100]. 

Finally, in Ref. [80] a group of 31 energy models was reviewed, with 
the aim to compare the performance of open source models versus non 
open source models. The interesting output is that one of the parameters 
that they examined was the presence of a GIS related function in each 
one of those models. Out of the models analysed, only 7 (22%) presented 
an internal GIS tool, which in most cases only provided weather data for 
VRE potentials. 

5. Practices found in the literature to account for spatial data in 
large scale energy system models 

The goal of this section is to review some common practices used in 
the literature to include spatial resolution in energy models, ranging 
from aggregated methods where the spatial granularity is almost non- 
existent to sophisticated clustering methods. We focus on large scale 
systems, and therefore we only consider studies analysing at least na-
tional level. 

5.1. No data aggregation 

Although it is not a usual practice due to the high computational cost, 
in some previous large scale studies spatial data has been used without 
any type of clustering or aggregation technique. There are some reasons 
that can justify this choice. In some case studies local data can highly 
affect the results, and therefore it can be required to sacrifice other 
features of the model (i.e. temporal resolution or sector integration) to 
include spatial data without any kind of aggregation. In other cases, for 
instance when analysing particular scenarios of the power sector, it is 
required to have a detailed representation of the power network at local 
level. In those cases, feeding the energy model with raw spatial data may 
be required. 

There are some examples in the literature where hardly or no spatial 
aggregation is used. In Ref. [99] PLEXOS is used to model the European 
power system with a high resolution spatial grid, of dimensions 0.75 ◦ ×
0.75 ◦. The spatial data fed to the model includes national boundaries, 
protected conservation areas, offshore areas with a depth up to 50 m, 
and weather data from the Corine dataset, with data for wind and PV 
generation. As a consequence of this high resolution the analysis is 
constrained only to the power sector, lacking the interaction of elec-
tricity with other sectors. Moreover, the temporal scale was also 
simplified in this case using 12 time-slices per year. A similar approach 
of low data aggregation is used in Ref. [165], where the grid resolution is 
4 ◦ × 5 ◦, and includes weather and power network data. Again, this 
level of detail requires huge simplifications. In this case, only the power 
sector of the US is included, and the model provides only one feasible 
solution, which is not guaranteed to be the optimal one. 

5.2. Aggregated data in nodes 

As mentioned and justified throughout the paper, aggregating spatial 
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data in nodes is a usual technique in energy modelling. The main reason 
of the aggregation is to reduce the computational power required to run 
the model, but there are other reasons that may influence that choice. 
For example, in Europe day ahead electricity markets are cleared per 
zone, so every zone has a single price. Therefore, when defining the 
merit order curve and the equilibrium price, the underlying grid of each 
zone is in theory not taken into account, and generation and consump-
tion data are aggregated per zone no matter where they are located. 

There is not in the literature a description about how to aggregate 
spatial data. Here we suggest two different types depending on how the 
aggregation is done: non-optimal clustering and optimal clustering. 

5.2.1. Non-optimal clustering 
We define non-optimal clustering as a simple method for aggregation 

in which only purely geographical parameters are taken into account (i. 
e. aggregating per country, per district, etc.). Pros of this method are that 
a good balance between spatial resolution and running times can be 
found if the number of nodes is selected carefully, and if data is available 
the definition of nodes is straightforward. On the other hand, the main 
drawback is that if no algorithm is used the resulting nodal configuration 
can be different than the optimal one. 

This methodology has been widely used in the literature as it is the 
simplest and less computational demanding one. Most models without 
spatial flexibility (check Table 4) use this approach, as their spatial 
resolution is static and usually defined according to geographical 
regions. 

5.2.2. Optimal clustering 
In the energy field clustering algorithms have been applied, espe-

cially over the last two decades with the increasing trend of machine 
learning and big data applications. Clustering has been mainly applied 
to the temporal scale of energy models. In Ref. [166], for example, 
Hoffmann et al. reviews multiple time series aggregation methods 
applied to energy models. 

Using clustering algorithms to aggregate spatially-explicit data 
related to energy systems is scarce in the literature. Some GIS tools (e.g. 
ArcGIS) allow to create spatially constrained multivariate clusters 
[167]. This GIS-based clustering has been applied in multiple fields, 
such as demography, agriculture or urban planning. In the energy field 
most of the GIS-based clustering methods have been applied in local 
scale. For example, in Ref. [168] optimization based clustering is used to 
integrate district heating at city level. In Ref. [169] a GIS-based frame-
work is used to analyse energy demand patterns in Greece. 

Among the optimal clustering algorithms in the literature, there are 
two that have been successfully applied to large scale energy systems 
and show promising results. These are the k-means algorithm and the 
max-p regions method. 

5.2.2.1. K-means. K-means is a very popular algorithm in data science. 
It was first introduced in Ref. [170], and in the last decades multiple 
variations and improvements have been built on top of it. Formally, the 
traditional k-means method can be described as a minimization prob-
lem, as described in Eq. (1). 

min
S

∑k

i=1

∑

x∈Si

|x − μi|
2 (1) 

Being k the (desired) number of clusters, Si each cluster, x ∈ Si each 
observation x included in a cluster S and μi the mean of the observations 
in Si. 

The main benefit of k-means is that, although it is considered a 
computationally difficult problem (NP-hard), it can manage large 
amounts of data and converge relatively quickly, due to the fact that 
multiple algorithms to solve it have been developed in the past. Another 
advantage is that it has been used extensively and there is a large 
literature about it, and therefore it can be considered a reliable method. 

As k-means is not an algorithm designed explicitly for spatial clus-
tering, there are different shortcomings when defining regions using it. 
The most relevant one is that the regions delivered from the standard k- 
means (i.e. Eq. (1)) do not ensure contiguity. For example, if k-means is 
used with a dataset of solar potentials across Europe, it will group 
together the data values that are more similar to each other, in order to 
have homogeneous clusters (that is, in Eq. (1), every solar potential x 
will be included in a cluster where the mean of solar potential data μi is 
as similar as possible). One alternative to ensure contiguity between 
regions using k-means is the one applied in Ref. [16], where the data 
used for the clustering stage is purely geographical. In Ref. [16] Brown 
et al. clustered a European power network dataset (including 5586 
HVAC lines, 26 HVDC lines and 4653 substations) using the geograph-
ical coordinate of each data point. As a consequence, it is ensured that 
every point will belong to the nearest cluster. The drawback of this 
approach is that the resulting clusters only consider geographical data, 
so other features of the dataset are not taken into account, and therefore 
the homogeneity of the resulting clusters is not considered. 

Another alternative to ensure contiguity with k-means is to include a 
contiguity constraint in the minimization problem (for instance penal-
izing distance in the objective function). In this case, clusters are defined 
according to a certain parameter (for instance, solar potential, as 
mentioned before) while ensuring spatial contiguity. However, the fact 
of enforcing this spatial contiguity might lessen the homogeneity of each 
cluster (in other words, the penalty in the objective function would 
affect more than the parameter itself), and it is in general not recom-
mended [171]. 

Another problem with k-means is that, due to the fact that It is a NP- 
hard problem and convergence to the global optimum is never guaran-
teed, it might provide results that are arbitrarily bad compared to the 
optimal clustering. In order to improve that, Arthur et al. [172] pro-
posed a variation, named k-means++, in which the initial values for the 
iteration are chosen following a methodology. 

5.2.2.2. Max-p. The max-p regions problem was introduced by Duque 
et al. in Ref. [173]. According to the authors, the max-p problem entails 
the aggregation of a number of areas into a certain number of homo-
geneous regions, ensuring that each of the resulting regions satisfies a 
minimum threshold value, like for instance the energy demand per re-
gion. In this method, the resulting number of regions (clusters) is not 
defined by the user. The max-p problem is presented in Ref. [173] as a 
minimization problem. The objective function is shown in Eq. (2). 

min Z=

(

−
∑n

k=1

∑n

i=1
xk0

i

)

× 10h +
∑

i

∑

j|j>i

dijtij (2)  

where k is the index of potential regions, i is the index of areas, x and t 
are decision variables, d is a dissimilarity relationship between areas and 
h is a parameter calculated from d. The max-p problem is completed 
with a set of 7 constraints, more information and details of the formu-
lation, parameters, variables and heuristics to solve it can be found in 
Ref. [173]. 

One of the problems of the max-p algorithm is that the number of 
resultant regions is not defined by the user, as it is delivered by the al-
gorithm. However, the number of regions is highly correlated with the 
minimum threshold, and this threshold is an input to the model. 
Therefore, a wise choice of the threshold values can permit to constrain 
and estimate the number of regions that the algorithm will deliver. 
Another drawback is that max-p cannot handle large amounts of data. As 
described in Ref. [173] the formulation of max-p is a mixed integer 
problem (MIP) with 3n + (n − 1)n2 + n n2 − n

2 constraints and 
(n − 1)n2 + n2 − n

2 variables, and therefore when the number of areas n 
increases the problem becomes computationally intractable. 

The max-p algorithm is very effective when clustering data that is 
geographically distributed across a territory. For example, in Ref. [174] 
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Fleischer applied the max-p method to cluster European regions 
considering population data, solar and wind resource potential and 
pumped-hydro storage capacity. In Ref. [175] Getman et al. compared 
the performance of k-means and max-p when clustering a large spatio-
temporal dataset of solar resource data in Colorado. The dataset had a 
resolution of 10 × 10 km2. The clusters provided by both approaches 
where assessed calculating two measures of consistency: sum of squares 
within (SSW), and R2. According to these metrics max-p performed 
better than k-means. The reason is that k-means considered only the 
geographical coordinates of each data point, and therefore resulting 
clusters did not take into account the homogeneity of the solar resource 
within the cluster. Additionally, due to the fact that contiguity was not 
hardly imposed, some clusters included disconnected data points. The 
main conclusion that can be inferred from this study is that, with 
datasets that are spatially continuous, like solar or wind potentials, 
max-p is preferable over k-means if the computational complexity of the 
problem is tractable. K-means is therefore more suitable for discrete 
datasets, where there is no continuity and where geographical distances 
are more important than data homogeneity within the cluster2. 

5.2.2.3. Combination of k-means and max-p. As mentioned before, both 
k-means and max-p have been successfully applied for spatial clustering, 
but they have different strengths and weaknesses. In Ref. [171] Siala 
et al. propose a methodology in which both of them are combined, so 
their strengths are combined and their weaknesses are diluted. 

The methodology is designed for cases in which contiguity between 
clusters and homogeneity within clusters is required, and the input 
dataset is too large, so that p-max cannot handle it. Therefore, what is 
proposed is to apply k-means++ and max-p sequentially. The complete 
methodology is fully described in Ref. [171], and the open source 
implementation can be found in Ref. [176]. In a simple way, the 
methodology first divides the input data in smaller cells, then applies the 
k-means++ algorithm to every cell to finally apply the max-p method. 
After that, the resulting clusters of every cell are put together, and if 
necessary another max-p clustering can be applied to the whole map in 
order to get a more reduced number of clusters. 

5.2.2.4. Others. The literature of spatial clustering methods is exten-
sive, and it is not the intention of this paper to review every single 
methodology in detail. For a more detailed review the reader is for-
warded to Ref. [177] where 26 spatial data clustering methods are 
described. 

Out of the methods not covered in this section, there are two that 
deserve a highlight: Skater, which stands for Spatial ‘K’luster Analysis by 
Tree Edge Removal, and it was presented by Assunção et al. in 
Ref. [178], and Redcap, which stands for REgionalization with 
Dynamically Constrained Agglomerative Clustering And Partitioning, 
and was presented by Guo in Ref. [179]. 

5.3. Summary 

As a recapitulation, Table 5 provides a summary of the clustering 
methods evaluated in this section, including contiguity achieved, defi-
nition of the number of nodes, data tractability and extra comments. 

6. Spatial resolution and energy modelling in the North Sea 
region 

As explained in the Introduction, there are multiple reasons to justify 
why the NSR is a relevant case study for analysing spatial aspects of the 
energy transition. Sections 2-5 of this paper provided insights about the 
interaction between spatial resolution and energy modelling. In this 
section we aim to focus on the NSR, in order to analyse previous 
modelling efforts and, with the findings and lessons learned throughout 
the paper, propose a methodology which permits to model the NSR 

while capturing relevant spatial interactions. 

6.1. Offshore modelling in the NS region: previous studies 

Several studies have modelled and analysed the NS region from 
different perspectives. The majority of these studies are related to the 
analysis of the “North Sea offshore grid”, which can be understood as the 
combination of offshore power generation, offshore loads and offshore 
interconnections. The offshore grid concept has been part of different 
projects during this decade, such as the North Seas Transnational Grid or 
the North Seas Countries’ Offshore Grid Initiative. 

Offshore grid projects in the literature are mainly focused on the 
power sector, hence paying special attention to investment and opera-
tion of power infrastructure. Studies covering other energy sectors are 
scarce, and they are reduced to the analysis of the role of CCS in offshore 
sinks. Recently some reports have emphasized the potential benefits of 
the interaction of offshore power and gas (i.e. power and offshore 
hydrogen and/or CCS), but these analyses have so far only been applied 
at regional scale. A global analysis (covering the whole NSR) of the 
offshore infrastructure including operation and investment in power and 
gas infrastructure is a missing piece of the puzzle, and a knowledge gap 
in the literature. 

Table 6 summarizes the most relevant studies modelling the NS re-
gion with different spatial resolutions, including power sector, CCS and 
integrated setups. For a more comprehensive review of offshore power 
studies during the period 2010–2015, the reader is referred to Ref. [19], 
where Dedecca et al. analysed 26 studies from different angles. Here we 
aim to expand this analysis up to 2020 and with a special focus on the 
spatial resolution, paying special attention to the number of nodes/re-
gions considered in each study, how these nodes/regions have been 
defined (i.e. defining them exogenously from the literature or defining 
them with a clustering method) and how many sectors are included in 
the assessment (i.e. only power or power/gas/CCS). Here, we also 
describe the interconnection typology, including radial interconnection 
(i.e. power generation connected to shore and countries connected via 

Table 5 
Summary of clustering methods covered in the article.  

Clustering 
method 

Contiguity Number of 
nodes 

Data 
tractability 

Comments and 
additional 
information 

K-means Not 
ensured 

User 
defined 

High There are multiple 
heuristics to solve it, 
and it is overall 
pretty reliable and 
fast. However, 
resulting regions are 
not ensured to be 
contiguous. 

Spatially 
constrained 
k-means 

Ensured User 
defined 

High If the contiguity 
constraint is very 
hard the 
homogeneity does 
not participate in the 
cluster definition, 
and therefore 
clusters are purely 
geographical. 

Max-p Ensured Algorithm 
defined 

Medium It ensures contiguity 
and data 
homogeneity, but 
with large datasets 
the problem becomes 
intractable. 

K-means++

with max-p 
Ensured Algorithm 

defined 
High It needs multiple 

steps and links 
between k-means++

and max-p, and it is 
challenging to 
automatize it.  
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direct interconnectors), hub interconnection (i.e. power generation 
clustered in hubs which are connected to shore, and countries connected 
via direct interconnectors), and integrated or hybrid interconnection (i. 
e. power generation clustered and connected to shore, clusters con-
nected to each other, and countries connected via direct interconnectors 
and via hubs connected to multiple countries). For a more detailed un-
derstanding of these typologies the reader is referred to Ref. [19], which 
presents a more standardized definition. 

One conclusion that can be directly observed in Table 6 (see also 
Fig. 6) is that there is not a common trend regarding the number of 
nodes, their definition and the models used for the assessment. In Refs. 
[13,180] 14 offshore nodes are considered in the NSR. The nodes in this 
case are defined using the k-means method to cluster 532 offshore wind 
projects. Only offshore wind and investment in interconnections are 
considered in this analysis, and the model used is the Dynamic Trans-
mission Investment Model (DTIM). In Ref. [181], Konstantelos et al. 
proposed 3 different case studies with 2, 3 and 6 offshore nodes, 
respectively. These case studies aimed to analyse costs and benefits of 
integrated interconnection versus radial interconnection, and how they 
are distributed between different countries. The nodes, in this case, were 
defined and fed into the model without using any clustering algorithm, 
using a tailor-made pan European power model. 

In [186], Kristiansen et al. analysed the economic benefits of build-
ing an artificial power link island (PLI). For this case study, one node was 
defined for the PLI, and 8 more nodes were defined as offshore hubs. 
These 9 nodes were defined exogenously, without any clustering 
method. The model used was the Power expansion and planning model 
(PowerGIM), and the assessment included offshore wind generation and 
power interconnection. In Ref. [182], Dedecca et al. analysed the impact 
of governance in the planning of the NS offshore grid, and included 8 
offshore nodes in their assessment. The nodes were taken directly from 
the ENTSO-E database, and therefore not using any clustering algorithm. 
The model used for the assessment was a MILP modification of PyPSA 
using a myopic approach. In Ref. [183], Gea et al. presented a similar 
study as in Ref. [182], but using an intertemporal approach with the 
Balmorel model. They included 15 offshore nodes which were taken 
from the NSON-DK energy system scenarios database, and assessed 
offshore power and investment in interconnections. 

It is important to mention the two conceptual designs that TenneT 
(the Dutch and German Transmission System Operator) has proposed 
and that have inspired different studies. The first one, in 2018, suggested 
the creation of an artificial island in the Dogger Bank to host large de-
ployments of wind power and to be connected to the surrounding NS 
countries. More recently, in 2019 the hub and spoke concept was pre-
sented [184], with a concept of multiple small hubs around the North 
Sea which could combine offshore generation of energy with offshore 
production of hydrogen, and an infrastructure consisting of both power 
cables and gas pipelines, the latter to transport the hydrogen to shore. 

Offshore Carbon Capture and Storage (CCS) has also been analysed 
and modelled in the context of the NSR. In Ref. [187], Strachan et al. 
analysed the cost-effectiveness of CO2 storage in the Utsira formation for 
Germany, Denmark, Netherlands, Norway and UK, using a combination 
of TIMES pan-EU and the TIMES model of each country, and considering 
different trunkline configurations, but all of them with only one offshore 
node (the Utsira formation). In Ref. [188], Neele et al. carried out a 
similar assessment, but including Central and North-west Europe, using 
the PRIMES model and evaluating 8 different offshore sinks in the NS, 
and therefore 8 nodes. 

6.2. Proposed methodology: an integrated approach 

One of the main conclusions of the review of NSR modelling studies 
is that all offshore grid analyses consider exclusively the power sector, 
including offshore power generation and power interconnectors. CCS 
analyses consider different energy sectors onshore, but the offshore 
design is exclusively focused on gas pipelines to transport CO2. The only 
efforts in the literature including synergies between different sectors 
such as power, hydrogen or CCS are either at a national level (see for 
instance The North Sea project [190]), or at a conceptual level, such as 
the Spoke and Hub proposal of TenneT. Moreover, the definition of 
nodes and regions for the energy models is usually non-optimal (i.e. not 
using clustering techniques), and the spatial analysis (e.g. land avail-
ability or synergies between activities) is low or inexistent. 

In order to fill this knowledge gap, we propose a framework that 
includes, on the one hand, multiple sectors, so that the interactions of 
different offshore activities such as power, hydrogen or CCS can be 

Table 6 
Selection of modelling studies analyzing the NS offshore network.  

Publication Year Description Offshore nodes 
considered 

Criteria for node 
definition 

Sectoral coverage Interconnection 
typologies 

Model used 

Dedecca et al. [182] 2018 Offshore power 
network design 

8 Non-optimal. 
Based on ENTSO- 
E data 

Offshore VRE and 
power interconnection 

Radial and hybrid PyPSA 

Bermudez et al. [183] 2019 Offshore power 
network design 

15 Non-optimal, 
based on NSON- 
DK data 

Offshore VRE and 
power interconnection 

Radial and hybrid Balmorel 

Strbac et al. [13] 
Konstantelos et al. 
[180] 

2014 
2017 

Offshore power 
network design 

14 (32 in total, 
but not in NS) 

Optimal, use of k- 
means algorithm 

Offshore VRE and 
power interconnection 

Radial and hybrid DTIM 

TenneT artificial island 
(conceptual) 

2018 Offshore power 
network design 

1 Non-optimal, 
using TenneT 
data 

Offshore VRE and 
power interconnection 

Radial n/a 

TenneT hub and spoke 
(conceptual) [184] 

2019 Offshore power 
and gas design 

4 Non-optimal, 
using TenneT 
data 

Offshore VRE, power 
and gas interconnection 

Radial and hybrid n/a 

OffshoreGrid [185] 2011 Offshore power 
network design 

Case study 
dependent 

Non-optimal Offshore VRE, power 
interconnection 

Radial and hybrid Multiple models used 

Konstantelos et al. 
[181] 

2017 Offshore power 
network design 

Case study 
dependent (2–6) 

Non-optimal Offshore VRE, power 
interconnection 

Radial and hybrid Pan-European grid model 

Kristiansen et al. [186] 2018 Offshore power 
network design 

9 Non-optimal Offshore VRE, power 
interconnection 

Radial and hybrid Power expansion and 
planning model (PowerGIM) 

Strachan et al. [187] 2011 Offshore CCS 
network design 

1 Non-optimal, 
using GIS data 

Offshore CCS Radial Combination of TIMES- 
MARKAL national models 
and TIMES pan-EU 

Neele et al. [188] 2011 Offshore CCS 
network design 

8 Non-optimal Offshore CCS Radial PRIMES  
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analysed; and on the other hand, an optimal definition of offshore nodes 
or regions through spatial data clustering algorithms. 

For the spatial data clustering stage, we propose a variable number of 
nodes depending on the specific topic of the case study. The reason of 
proposing a variable number of nodes is because depending on the 
research question the node definition can have a high effect on the re-
sults. For example, it the main objective is to analyse the offshore power 
network, the main drivers to define the nodes will be the VRE potentials, 
planned offshore project locations and cable costs. If we also want to 
analyse offshore hydrogen production other variables should influence 
the node definition, such as suitable locations for electrolyser place-
ment. If CCS is part of the analysis, CO2 sinks, available pipelines and 
cost of new pipelines should also be part of the node definition. In short, 
a variable number of nodes allows that our methodology can be suitable 
for different analyses and case studies. 

For the modelling framework the proposal is to include a power 
system model soft-linked with an integrated energy model. Soft-linking 
specific power system models with integrated energy system models is a 
usual approach in the literature, as it allows to combine the strong points 
of each of them: on the one hand, the high level of sectoral detail of the 
power system models, and on the other hand the broad sectoral coverage 
and high technological resolution of integrated energy system models. 
Furthermore:  

1) Power system models usually have a high temporal resolution 
compared to integrated energy system models. This factor is crucial 
when analysing systems with a large penetration of intermittent 
renewable energy sources, due to the fact that large variations in 
power generation can happen in short periods of time. On the other 
hand, integrated energy system models usually work with lower 
resolutions (usually simplifying large periods into time-slices). This 
simplification has been proved to be sub-optimal and can lead to 
significant underestimations of the need for balancing resources. 

2) Integrated energy system models include more energy sectors (usu-
ally at least electricity, gas and heat). Thus, outputs of these models 
capture interactions between different technologies/sectors and al-
lows to understand energy systems from a global point of view. On 
the other hand, power system models are usually highly specified, 
focusing on the power sector only. 

6.2.1. Models assessment 
It is not the goal of this paper to choose a unique set of models for the 

analysis of the NSR, but to propose a framework that can be used with 
different tools to answer different research questions. In order to narrow 
down the tool selection, the list of 34 models analysed in Section 3 will 
be assessed in terms of the rationale shown in Table 7. Table 8 and 

Fig. 6. Sketch of the node definition of NS modelling studies. 1 corresponds to Dedecca et al. [182], 2 corresponds to Bermudez et al. [183], 3 corresponds to Strbac et al. 
[13], 4 corresponds to the TenneT artificial island design, 5 corresponds to the TenneT spoke and hub concept design, 6 corresponds to Kristiansen et al. [186]. The NSR map is 
adapted from Wikimedia Commons [189]. 

R. Martínez-Gordón et al.                                                                                                                                                                                                                     



Renewable and Sustainable Energy Reviews 141 (2021) 110857

15

Table 9 classify the energy models of Section 4 (Table 4) according to the 
mentioned rationale. 

6.2.2. Node definition and soft-linked framework 
A graphical representation of the framework is presented in Fig. 7, 

including different stages and data inputs and outputs. The first part of 
the methodology includes the spatial data gathering, the GIS and anal-
ysis of these data, the optimal node definition using spatial data clus-
tering algorithms, and the input of the defined nodes to the desired 
modelling framework. 

The GIS and spatial analysis comprises 4 main categories. First, 
spatial claims, which comprise land reserved for military use, land 
reserved for energy uses, land for transportation, land for fisheries, land 
for recreation and sand extraction activities. From this analysis the land 
availability can be derived. Second, the CO2 sink data, which includes 
the potential location and storage capacity of CO2 sinks. Third, the CO2 
source data, which includes CO2 emissions and locations around the NS 
region. From these two last categories, potential trunklines from sources 
to sinks can be obtained. Finally, infrastructure data, which comprises 
offshore gas pipelines and power lines. 

In the node definition or clustering stage the clustering algorithm is 
applied to derive the distribution of nodes. The inputs to the algorithm 
are the existing infrastructure, the potential trunklines, the VRE poten-
tials -which are a result of the combination of land availability and 
meteorological time series-, the planned offshore VRE projects and the 
desired number of nodes, which in general is a technical limit that the 
modelling framework imposes due to computational limitations. 

Finally, the last stage comprises the input of the defined nodes to the 
modelling framework, which in other words means to modify the 
number regions considered within the models. 

It is important to remark that this methodology can be applied for 
different case studies or modelling frameworks. For instance, if in a case 
study the CO2 storage is going to be disregarded, the potential trunklines 
and existing gas infrastructure can be omitted into the clustering algo-
rithm. If a case study wants to consider only planned VRE deployments, 
the VRE potentials can also be removed. 

Finally, Table 10 shows a collection of up-to-date datasets that can be 
used as input for the proposed methodology, including offshore wind 
potentials, offshore VRE planned projects, available CO2 sinks, offshore 
infrastructure and offshore land availability. 

The last part of the framework comprises a soft link of the chosen 
energy system model and power system model. There are fundamentally 
two decisions that are extremely relevant when deciding how to soft-link 
a power system model and an energy system model. The first one is 
whether the data flow between the models is going to be iterative, or the 
output of one model is only going to be used as an input of the other 
without any iteration. The iterative fashion is in theory more accurate, 
but it has important drawbacks: it can be computationally demanding, 
as both models have to be run an undetermined number of times; finding 
the convergence between both models can be challenging, it might 
happen that the solutions do not converge; and the processing of data (i. 
e. aggregating/disaggregating data and timeslices) is multiplied as the 
number of iterations increase. As a consequence of these drawbacks, we 
decide for our framework to choose a one-direction soft-link, where one 
model feeds its output to the other model, and therefore only one run per 

model is required. 
The second decision is defining which model is going to be run first, 

and which one is going to receive the input from the other. For our case 
we decide to have the energy system model as the first step, and the 
power system model as the final one. With this sequence, the energy 
system model can provide a comprehensive overview of all the energy 
sectors of the NSR, whereas the power system model can receive most of 
this information as an input (i.e. electricity demand, hydrogen demand, 
CO2 emissions of multiple sectors, etc.). 

It is out of the scope of this paper to define what are the exact data 
flows and interactions in the soft-linking part of the framework, as it is 
something that will depend on the models chosen, on the case study and 
on the data available. In Ref. [196], for example, a detailed description 
of a soft-linking methodology between TIMES and PLEXOS is explained 
in detail. This soft-linking methodology has also been implemented and 
further developed in Refs. [197,198], and can be used as a starting point 

Table 7 
Wish-list of features of the models included in the framework.  

Models included Power system model and integrated energy model 
Spatial coverage At least NSR and surrounding countries 
Spatial resolution 

flexibility 
Both models should include spatial resolution flexibility 

Temporal resolution The power system model should have hourly resolution 
Sectoral coverage The integrated energy model should cover power, heat, 

hydrogen and CCS 
Others Choice of open-source models  

Table 8 
Assessment of power system models.   

Geographical 
coverage 

Temporal 
resolution 

Spatial 
resolution 
flexibility 

Open 
source 

Desired NS and 
surroundings 

Hourly Yes Yes 

AURORAxmp ✓ ✓ ✓  
COMPETES ✓ ✓ ✓  
DESSTINEE ✓ ✓  ✓ 
EMMA ✓ ✓  ✓ 
EMPIRE ✓    
EMPS ✓  ✓  
ENTIGRIS ✓ ✓ ✓  
EUCAD ✓ ✓   
EU-Power 

Dispatch 
✓ ✓   

LIMES-EU ✓  ✓  
PLEXOS ✓ ✓ ✓  
SWITCH ✓ ✓ ✓ ✓  

Table 9 
Assessment of energy system models. Models including an * have a global 
geographical coverage. Therefore, even though they include the NSR and sur-
roundings, the level of aggregation is so high that they are not suitable for the 
analysis.   

Geographical 
coverage 

Sector 
integration 

Spatial 
resolution 
flexibility 

Open 
source 

Desired NSR and 
surroundings 

Electricity, 
heat, hydrogen 

Yes Yes 

Balmorel ✓  ✓ ✓ 
Calliope ✓ ✓ ✓ ✓ 
EnergyPLAN ✓ ✓  ✓ 
ETM ✓ ✓ ✓ ✓ 
ETSAM- 

TIAM 
* ✓   

GEM-E3 * ✓   
LIBEMOD ✓    
MESSAGE * ✓   
NEMS     
Oemof ✓ ✓ ✓ ✓ 
OSeMOSYS ✓ ✓ ✓ ✓ 
POLES * ✓   
PRIMES ✓ ✓   
PyPSA ✓ ✓ ✓ ✓ 
ReMIND * ✓  ✓ 
REMIx ✓ ✓ ✓  
RETScreen ✓ ✓  ✓ 
sTELMOD    ✓ 
Temoa    ✓ 
TIMES ✓ ✓ ✓  
WEM * ✓   
WITCH * ✓ ✓   
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in order to properly soft-link the selected models for the analysis. 

7. Lessons learned, conclusions and future research avenues 

In this paper we aimed to present a comprehensive review of the role 
of spatial resolution in energy planning, modelling and analysis, 
including how GIS and spatial resolution are applied in recent reports 
and publications, how different energy models tackle spatial resolution 
and GIS-based modelling and what are the most used techniques to 
aggregate spatial data into nodes in the literature. From this review, we 
aimed to apply the reviewed knowledge to the North Sea region. 

The first part of this paper presented a review of the literature 

publications in which GIS or spatial analyses have been used for 
studying energy systems, at local, national and international level. The 
review showed that this type of analysis is relevant to study how 
meteorological conditions can affect renewable energy production, to 
assess infrastructure investment needs and costs, including gas pipe-
lines, transmission power grid or district heating network, and to 
consider allocation of resources, such as correlations between location of 
storage and energy production sites, correlations between CO2 capture 
and CO2 storage or correlations between generation plants and biomass 
sources. GIS-based modelling approaches show multiple benefits 
compared to non-spatially explicit energy modelling approaches. 
Regarding meteorological conditions, some GIS-based approaches 

Fig. 7. Flowchart including the methodology to define the nodes of the case study and its application to the modelling framework.  
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permit to calculate VRE potentials (mainly wind and solar) with high 
accuracy, considering resolutions that can reach the order of magnitude 
of kilometres. GIS-based approaches also permit to identify best loca-
tions for VRE deployments, considering high resolution VRE potentials, 
land availability and other constraints that cannot be included in non- 
spatially explicit energy models. Regarding infrastructure, GIS ap-
proaches permit to define the cost-optimal routing of pipelines, cables 
and different networks, considering distances, infrastructure cost and 
areas where the infrastructure cannot be deployed. This also applies to 
CO2 capture and storage, where GIS-based modelling can be used to 
identify possible links between CO2 sinks and sources, considering dis-
tances between them. These multiple benefits could be used to improve 
the quality of energy modelling results, but this link between GIS-based 
approaches and large scale energy models is not straightforward, as it 
also presents certain challenges. On the one hand, GIS approaches 
normally use large amounts of spatial data, which can reach the order of 
magnitude of meters/kilometres. Incorporating this data to large scale 
energy models, even after processing or aggregating it (i.e. by means of 
clustering techniques) might result in intractable problems due to the 
huge computational requirements. On the other hand, the lack of ho-
mogeneous data structures poses a challenge to this integration between 
GIS and large scale energy models. In some cases GIS data is defined at a 
very local scale, and therefore the data might be structured and pro-
cessed in a different way from one region to another. As a consequence, 
including this data in large scale energy models might require different 
harmonization steps in order to have an homogeneous database. 

The second part presented a review of 34 energy modelling tools 
(including integrated energy models and power system models). This 
review included a description of the geographical area covered by each 
model, whether the spatial resolution of each model could be modified 
(the so called “spatial resolution flexibility”), and other modelling fea-
tures such as technological detail, underlying methodology or mathe-
matical approach. These features were used to try to understand if there 
is a trade-off between these features and the spatial resolution of the 
models concerned. The review showed that there are currently multiple 
models that permit to include tailor-made spatial resolution by 
increasing or decreasing the number of regions in the system. This trend 
is especially noticeable in open source models, due to the fact that open 
code eases the inclusion of modifications in the model structure. Out of 
the 34 models included in this assessment, 16 (47%) permit to include 
regional coverage, reaching at least NUTS22 level. Out of these 16 
models, 13 (81%) include what we defined as spatial resolution flexi-
bility. These numbers show that, with current computational capabil-
ities, it is possible to incorporate regional analysis in available large 
scale energy models covering subnational levels. When it comes to 
higher levels of resolution of spatial data (e.g. NUTS 3 level or above, or 
local resolutions employed in typical GIS datasets) the integration is still 
a challenge and entails usually prohibitive running times. 

The third part of the review focused on different practices found in 
the literature to account for spatial data in large scale energy systems. 
The practices found can be classified into no data aggregation, aggre-
gation of data in geographical regions and aggregation of data through 
mathematical algorithms. This review showed that k-means and max-p 
are, as of today, the most popular clustering algorithms that have 
been used for spatial data analyses in the energy field. Spatial data 
clustering is heavily developed in other sectors, such as demography, 
urban planning or agriculture. Therefore, future research should try to 
export the lessons learned from these sectors to the energy field. K- 
means has been proved as a very powerful algorithm in terms of data 
tractability. Literature shows that k-means can be applied at continental 
scale with spatial data resolutions of under 1 km.3 In the case of Europe, 
there are examples of k-means applied to datasets of up to 108 data 
points. Considering typical resolutions of GIS and spatial data, it can be 
stated that, with current computational capabilities, k-means can be 
effectively used with any kind of spatial data resolution in large scale 
energy models. The shortcoming of k-means is that in general it does not 
ensure contiguity between the regions created, and therefore if it is 
applied to data that is not strictly geographical (i.e. coordinates) results 
might be misleading. Max-p is proved as an efficient algorithm to create 
regions that are contiguous and homogeneous, but it becomes intrac-
table when the amount of input data reaches a certain threshold. GIS 
data falls within this threshold, and therefore max-p requires pre- 
processing and aggregation of high resolution data in order to provide 
meaningful results. In this regards, literature also pointed out the com-
bination of k-means and max-p as a promising alternative for cluster 
creation when contiguity is required and the input datasets have very 
high resolutions. 

In the last section the North Sea region was presented as a potential 
case study focusing on the spatial aspects of this region. Previous pub-
lications doing modelling exercises in the NS region were reviewed, 
including offshore grid projects and offshore CCS projects. First, we 
presented a case study which is innovative and contributes to the liter-
ature. We identified two knowledge gaps in the literature, which are the 
lack of offshore integrated energy modelling, due to the fact that most 
studies are focused only on one energy sector; and the lack of spatial 
analysis while defining the offshore regions of the modelling framework. 
We therefore proposed a case study including multiple energy sectors (i. 
e. power, hydrogen and CCS) and a regionalization based on spatial data 
analysis. Second, due to the particularities of the NSR, and based on the 
literature review, we proposed a modelling framework to analyse the 
defined case study. The framework, which was described in Fig. 7, in-
cludes GIS and spatial data analysis for the data input, a clustering stage, 
and a soft-link between a power system model and an energy system 
model. Finally, in order to understand which available energy models 
are a good match for our case study, we assessed the 34 large scale 
energy models reviewed in Section 3 according to a rationale. Our 
rationale required that both models cover at least the NSR and sur-
rounding countries, that the power system model includes hourly reso-
lution, that the energy system model covers at least power, heat, 
hydrogen and CCS, that both models include the so called “spatial res-
olution flexibility” and, if possible, that models are open source. After 
applying this rationale, 5 power system models (1 open source and 3 non 
open source) and 7 energy system models (5 open source and 2 non open 
source) fulfilled the minimum requirements. 

In short, spatial resolution has been proved to be beneficial when 
analysing energy systems, especially when large deployments of VRE are 
considered. The role of spatial resolution is crucial to, for example, 
analyse bottlenecks in the transmission grid, assess VRE potentials based 

Table 10 
List of data sets required for the clustering stage and data sources.  

Data input Source Reference 

Offshore wind 
potentials 

Renewables.ninja [191] 

Offshore wind 
planned projects 

Emodnet, OSPAR and 4coffshore databases [192–194] 

Available offshore 
CO2 sinks 

Emodnet database [192] 

Available oil & gas 
infrastructure 

Emodnet database [192] 

Exclusion areas/space 
availability 

A spatial analysis of potentials for suitable 
clean energy infrastructure locations in the 
NSR 

[195]  

2 https://ec.europa.eu/eurostat/web/nuts/background. 

3 For example, a dataset of operating windfarms is not continuous, it is 
formed by discrete points with certain coordinates. When clustering, we most 
likely want to group wind farms that are close to each other rather than clus-
tering wind farms that are far away but are similar in certain features. 
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on the location, understand geographical variations of energy demand 
or improve the design and routing of energy infrastructure (e.g. inter-
connectors or gas pipelines). Multiple energy models used as of today 
already permit to increase their spatial resolution, and the development 
and improvement of spatial data clustering algorithms permit that 
higher spatial resolutions can be incorporated to energy models at an 
affordable computational cost. 
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Appendix A  

Ref Year Short description Category Geographical coverage  

[199] 2019 Analysis of land suitability for hydrogen production from solar energy in Algeria Others National 1 
[44] 2020 Use of satellite data to estimate potentials for wind power production in Sardinia Wind Regional 2 
[41] 2019 GIS based model developed to estimate the large scale PV potential in China Solar National 3 
[32] 2019 GIS based model developed to estimate global heating and cooling demand Demand Multinational 4 
[33] 2020 Data driven GIS methodology to predict the energy performance of Irish houses Demand National 5 
[40] 2019 GIS methodology to estimate the potential of PHES in Iran Plant National 6 
[49] 2019 Optimal site selection of PV power plants in southern Morocco Solar Regional 7 
[50] 2020 GIS based methodology to identify optimal locations of PV plants in Brazil Solar National 8 
[200] 2020 Use of GIS and remote sensing to identify geothermal sites Others Regional 9 
[38] 2020 Siting and sizing of biogas plants in Turkey Plant Regional 10 
[52] 2019 GIS and MCDM tool to analyse feasible placements of solar PV in Mauritius Solar Regional 11 
[53] 2019 GIS based analysis to determine optimal areas for installation of PV plants in Iran Solar National 12 
[23] 2020 GIS based analysis of a 100% RES system in Australia with emphasis on biomass Biomass National 13 
[24] 2019 GIS based framework to allocate biomass sources and facilities in Bolivia Biomass National 14 
[60] 2019 GIS assessment of potential locations for wind power in Poland Wind National 15 
[20] 2020 GIS based modelling of availability of residual biomass in Mexico Biomass National 16 
[25] 2020 Techno-economics of a biomass based electricity generation facility in Bolivia Biomass National 17 
[21] 2020 GIS based model to assess availability of biomass in Czech Republic Biomass National 18 
[54] 2020 Use of a GIS based tool to analyse optimal placement of PV plants in West Bengal Solar Regional 19 
[55] 2020 GIS, RS and MCDM use to define suitable locations for PV locations in North Egypt Solar Regional 20 
[26] 2020 GIS approach to identify optimal location of biogas plant based on biomass availability Biomass Regional 21 
[61] 2020 GIS and MCDM to analyse optimal siting of bottom fixed offshore wind in Aegan Sea Wind Regional 22 
[62] 2018 GIS based model for wind farm site selection in Nigeria Wind National 23 
[56] 2019 GIS based model combining legal and environmental aspects for wind siting in Valencia Solar Regional 24 
[63] 2016 GIS based model to assess offshore wind economic feasibility in UK Wind National 25 
[39] 2019 GIS and AHP based process to assess optimal plant siting of a gas unit in Esfahan (Iran) Plant Regional 26 
[34] 2020 GIS approach combined with a building model to assess energy demand in Algeria Demand National 27 
[42] 2016 Technical potential of solar generation in South East Asia using satellite radiation data Solar Multinational 28 
[27] 2020 GIS method based on LISA to assess optimal location of bioenergy plants in Queensland Biomass Regional 29 
[28] 2018 GIS based framework to match biomass resources and demand in co-fired plants in EU Biomass Multinational 30 
[45] 2020 GIS based method to calculate wind potential and suitable placement in Saudi Arabia Wind National 31 
[64] 2017 GIS combined with MCDM analysis to assess locations of wind energy in Saudi Arabia Wind National 32 
[22] 2020 GIS based method to predict technical potential of biomass production in China Biomass National 33 
[35] 2016 Bottom-up GIS based model to forecast energy consumption until 2040 in Algeria Demand National 34 
[57] 2020 Geospatial approach used to identify suitable areas and potential of CSP in South Africa Solar National 35 
[29] 2018 GIS based model used to identify favourable locations for biomass facilities Biomass Regional 36 
[30] 2018 GIS and MCA used to identify optimal locations of biomass plants in Tasmania Biomass Regional 37 
[58] 2016 GIS method to analyse PV potential considering existing grid infrastructure in Tibet Solar Regional 38 
[31] 2019 GIS combined with mathematical programming to optimize biomass processing Biomass Mexico 39 
[65] 2018 GIS tool used to select suitable sites for offshore wind in the coast of South Korea Wind Regional 40 
[59] 2017 GIS and MCDM method to assess suitable locations for solar PV in Saudi Arabia Solar National 41 
[36] 2017 GIS used to identify spatial patterns in energy demand in Greece Demand National 42 
[51] 2018 GIS combined with fuzzy logic model to analyse site selection for PV in Markazi Solar Regional 43 
[43] 2020 Spatiotemporal analysis using GIS tools to assess solar energy potential in Jubek Solar Regional 44 
[37] 2017 Linear regression model to analyse electricity demand patterns in China Demand National 45 
[46] 2018 GIS platform used to analyse technical potential of offshore wind along the China coast Wind Regional 46 
[47] 2018 Use of a GIS based methodology to generate estimates of global wind potentials Wind Multinational 47 
[48] 2017 GIS mapping and analysis of technical potential of wind generation in Thailand Wind National 48  
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[25] Morató T, Vaezi M, Kumar A. Techno-economic assessment of biomass 
combustion technologies to generate electricity in South America: a case study for 
Bolivia. Renew Sustain Energy Rev 2020;134. https://doi.org/10.1016/j. 
rser.2020.110154. 

[26] Jayarathna L, Kent G, O’Hara I, Hobson P. A Geographical Information System 
based framework to identify optimal location and size of biomass energy plants 
using single or multiple biomass types. Appl Energy 2020;275. https://doi.org/ 
10.1016/j.apenergy.2020.115398. 

[27] Van Holsbeeck S, Srivastava SK. Feasibility of locating biomass-to-bioenergy 
conversion facilities using spatial information technologies: a case study on forest 
biomass in Queensland, Australia. Biomass Bioenergy 2020;139:105620. https:// 
doi.org/10.1016/j.biombioe.2020.105620. 

[28] Cintas O, Berndes G, Englund O, Cutz L, Johnsson F. Geospatial supply-demand 
modeling of biomass residues for co-firing in European coal power plants. GCB 
Bioenergy 2018;10:786–803. https://doi.org/10.1111/gcbb.12532. 
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[178] Assunção RM, Neves MC, Câmara G, Da Costa Freitas C. Efficient regionalization 
techniques for socio-economic geographical units using minimum spanning trees. 
Int J Geogr Inf Sci 2006;20:797–811. https://doi.org/10.1080/ 
13658810600665111. 

[179] Guo D. Regionalization with dynamically constrained agglomerative clustering 
and partitioning (REDCAP). Int J Geogr Inf Sci 2008;22:801–23. https://doi.org/ 
10.1080/13658810701674970. 

[180] Konstantelos I, Moreno R, Strbac G. Coordination and uncertainty in strategic 
network investment: case on The North Seas grid. Energy Econ 2017;64:131–48. 
https://doi.org/10.1016/j.eneco.2017.03.022. 

R. Martínez-Gordón et al.                                                                                                                                                                                                                     

https://doi.org/10.1016/j.energy.2009.07.025
https://doi.org/10.1016/j.apenergy.2015.05.086
https://doi.org/10.1016/j.apenergy.2015.05.086
https://www.energyplan.eu/wp-content/uploads/2019/09/EnergyPLAN-Documentation-Version15.pdf
https://www.energyplan.eu/wp-content/uploads/2019/09/EnergyPLAN-Documentation-Version15.pdf
https://www.ise.fraunhofer.de/en/business-areas/power-electronics-grids-and-smart-systems/energy-system-analysis/energy-system-models-at-fraunhofer-ise/entigris.html
https://www.ise.fraunhofer.de/en/business-areas/power-electronics-grids-and-smart-systems/energy-system-analysis/energy-system-models-at-fraunhofer-ise/entigris.html
https://www.ise.fraunhofer.de/en/business-areas/power-electronics-grids-and-smart-systems/energy-system-analysis/energy-system-models-at-fraunhofer-ise/entigris.html
https://www.ise.fraunhofer.de/en/business-areas/power-electronics-grids-and-smart-systems/energy-system-analysis/energy-system-models-at-fraunhofer-ise/entigris.html
https://energytransitionmodel.com/
https://doi.org/10.1016/j.apenergy.2010.05.003
https://doi.org/10.1016/j.apenergy.2010.05.003
https://iea-etsap.org/index.php/applications/global
https://doi.org/10.1007/s10287-007-0046-z
https://doi.org/10.1007/s10287-007-0046-z
http://refhub.elsevier.com/S1364-0321(21)00151-9/sref123
http://refhub.elsevier.com/S1364-0321(21)00151-9/sref123
http://refhub.elsevier.com/S1364-0321(21)00151-9/sref124
http://refhub.elsevier.com/S1364-0321(21)00151-9/sref124
https://ses.jrc.ec.europa.eu/eupowerdispatch-model
https://ses.jrc.ec.europa.eu/eupowerdispatch-model
https://ec.europa.eu/jrc/en/gem-e3/model
https://www.iamcdocumentation.eu/index.php/IAMC_wiki
https://www.iamcdocumentation.eu/index.php/IAMC_wiki
http://refhub.elsevier.com/S1364-0321(21)00151-9/sref128
http://refhub.elsevier.com/S1364-0321(21)00151-9/sref128
http://refhub.elsevier.com/S1364-0321(21)00151-9/sref128
https://www.frisch.uio.no/ressurser/LIBEMOD/
https://www.frisch.uio.no/ressurser/LIBEMOD/
https://doi.org/10.1016/j.econmod.2013.06.023
https://www.pik-potsdam.de/research/transformation-pathways/models/limes
https://www.pik-potsdam.de/research/transformation-pathways/models/limes
https://doi.org/10.1016/j.eneco.2020.104730
https://doi.org/10.1016/j.eneco.2020.104730
https://doi.org/10.1016/j.enpol.2015.09.026
https://doi.org/10.1016/j.enpol.2015.09.026
https://doi.org/10.1016/j.rser.2015.02.044
https://doi.org/10.1016/j.rser.2015.02.044
https://doi.org/10.1016/0360-5442(96)00025-4
https://doi.org/10.1016/0360-5442(96)00025-4
https://iiasa.ac.at/web/home/research/researchPrograms/Energy/MESSAGE.en.html
https://iiasa.ac.at/web/home/research/researchPrograms/Energy/MESSAGE.en.html
https://www.eia.gov/outlooks/aeo/info_nems_archive.php
https://www.eia.gov/outlooks/aeo/info_nems_archive.php
https://doi.org/10.1007/978-3-658-19293-8_3
https://oemof.org/
https://doi.org/10.1016/j.energy.2012.08.017
https://doi.org/10.1016/j.energy.2012.08.017
http://www.osemosys.org/
https://ec.europa.eu/jrc/en/poles
https://ec.europa.eu/clima/sites/clima/files/strategies/analysis/models/docs/primes_model_2013-2014_en.pdf
https://ec.europa.eu/clima/sites/clima/files/strategies/analysis/models/docs/primes_model_2013-2014_en.pdf
https://doi.org/10.1016/j.energy.2017.02.111
https://pypsa.org/
https://doi.org/10.5334/jors.188
https://doi.org/10.2139/ssrn.2026443
https://www.pik-potsdam.de/research/transformation-pathways/models/remind
https://www.pik-potsdam.de/research/transformation-pathways/models/remind
https://doi.org/10.1088/1748-9326/aac3ec
https://doi.org/10.1088/1748-9326/aac3ec
https://doi.org/10.1016/j.energy.2017.01.115
https://doi.org/10.1016/j.energy.2012.08.040
https://openei.org/wiki/RETScreen_Clean_Energy_Project_Analysis_Software
https://openei.org/wiki/RETScreen_Clean_Energy_Project_Analysis_Software
https://www.diw.de/de/diw_01.c.599753.de/modelle.html
https://www.diw.de/de/diw_01.c.599753.de/modelle.html
https://github.com/frkunz/stELMOD
https://doi.org/10.1016/j.enpol.2012.01.031
https://doi.org/10.1016/j.enpol.2012.01.031
http://switch-model.org/
https://github.com/switch-model
http://refhub.elsevier.com/S1364-0321(21)00151-9/sref158
http://refhub.elsevier.com/S1364-0321(21)00151-9/sref158
http://temoaproject.org/
http://refhub.elsevier.com/S1364-0321(21)00151-9/sref160
http://refhub.elsevier.com/S1364-0321(21)00151-9/sref160
http://refhub.elsevier.com/S1364-0321(21)00151-9/sref160
https://iea-etsap.org/index.php/etsap-tools/model-generators/times
https://iea-etsap.org/index.php/etsap-tools/model-generators/times
https://www.iea.org/reports/world-energy-model
https://www.iea.org/reports/world-energy-model
https://www.witchmodel.org/model/
https://doi.org/10.1038/s41467-019-10842-5
https://doi.org/10.1038/s41467-019-10842-5
https://doi.org/10.1073/pnas.1510028112
https://doi.org/10.1073/pnas.1510028112
https://doi.org/10.3390/en13030641
https://doi.org/10.3390/en13030641
https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/spatially-constrained-multivariate-clustering.htm
https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/spatially-constrained-multivariate-clustering.htm
https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/spatially-constrained-multivariate-clustering.htm
https://doi.org/10.1016/j.apenergy.2016.12.136
https://doi.org/10.1016/j.egypro.2016.10.071
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1016/j.esr.2019.100362
https://doi.org/10.1145/1283383.1283494
https://doi.org/10.1145/1283383.1283494
https://doi.org/10.1111/j.1467-9787.2011.00743.x
https://doi.org/10.1016/j.esr.2020.100563
https://doi.org/10.1016/j.esr.2020.100563
http://refhub.elsevier.com/S1364-0321(21)00151-9/sref175
http://refhub.elsevier.com/S1364-0321(21)00151-9/sref175
http://refhub.elsevier.com/S1364-0321(21)00151-9/sref175
https://github.com/tum-ens/pyCLARA
https://github.com/tum-ens/pyCLARA
http://refhub.elsevier.com/S1364-0321(21)00151-9/sref177
http://refhub.elsevier.com/S1364-0321(21)00151-9/sref177
https://doi.org/10.1080/13658810600665111
https://doi.org/10.1080/13658810600665111
https://doi.org/10.1080/13658810701674970
https://doi.org/10.1080/13658810701674970
https://doi.org/10.1016/j.eneco.2017.03.022


Renewable and Sustainable Energy Reviews 141 (2021) 110857

22

[181] Konstantelos I, Pudjianto D, Strbac G, De Decker J, Joseph P, Flament A, et al. 
Integrated North Sea grids: the costs, the benefits and their distribution between 
countries. Energy Pol 2017;101:28–41. https://doi.org/10.1016/j. 
enpol.2016.11.024. 

[182] Gorenstein Dedecca J, Lumbreras S, Ramos A, Hakvoort RA, Herder PM. 
Expansion planning of the North Sea offshore grid: simulation of integrated 
governance constraints. Energy Econ 2018;72:376–92. https://doi.org/10.1016/ 
j.eneco.2018.04.037. 

[183] Gea-bermúdez J, Pade L, Koivisto MJ, Ravn H, Gea-bermúdez J, Pade L, et al. 
Optimal generation and transmission development of the North Sea region : 
impact of grid architecture and planning horizon CF EU. 2019. https://doi.org/ 
10.1016/j.energy.2019.116512. 

[184] North Sea wind power hub consortium. Concept paper 3: power hub as an island. 
2017. 

[185] Jan De Decker PK. Offshore electricity infrastructure in Europe offshore 
electricity. Ewea 2011:154. 

[186] Kristiansen M, Korpås M, Farahmand H. Towards a fully integrated North Sea 
offshore grid: an engineering-economic assessment of a power link island. Wiley 
Interdiscip Rev Energy Environ 2018;7:1–10. https://doi.org/10.1002/wene.296. 

[187] Strachan N, Hoefnagels R, Ramírez A, van den Broek M, Fidje A, Espegren K, et al. 
CCS in the North Sea region: a comparison on the cost-effectiveness of storing CO 
2 in the Utsira formation at regional and national scales. Int J Greenh Gas Control 
2011;5:1517–32. https://doi.org/10.1016/j.ijggc.2011.08.009. 

[188] Neele F, Koenen M, Van Deurzen J, Seebregts A, Groenenberg H, Thielemann T. 
Large-scale CCS transport and storage networks in North-west and central Europe. 
Energy Procedia 2011;4:2740–7. https://doi.org/10.1016/j.egypro.2011.02.176. 

[189] NSR map, available online n.d. upload.wikimedia.org/wikipedia/commons/1/ 
15/North_Sea_relief_location_map.jpg (accessed May 6, 2020). 

[190] TNO. North Sea energy programme. n.d, https://north-sea-energy.eu/en/progr 
amme/. [Accessed 1 December 2019]. 

[191] Renewables.ninja online database. n.d, https://www.renewables.ninja/. 
[Accessed 4 August 2020]. 

[192] Emodnet. n.d, https://www.emodnet-humanactivities.eu/view-data.php. 
[Accessed 4 August 2020]. 

[193] OSPAR database. n.d, https://odims.ospar.org/. [Accessed 4 August 2020]. 
[194] 4coffshore database. n.d, https://www.4coffshore.com/. [Accessed 4 August 

2020]. 
[195] Gusatu LF, Yamu C, Zuidema C, Faaij A. A spatial analysis of the potentials for 

offshore wind farm locations in the North Sea region: challenges and 
opportunities. ISPRS Int J Geo-Inf 2020;9. https://doi.org/10.3390/ijgi9020096. 
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