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Health maintenance and disease prevention strategies become increasingly prioritized

with increasing health and economic burden of chronic, lifestyle-related diseases. A

key element in these strategies is the empowerment of individuals to control their

health. Self-measurement plays an essential role in achieving such empowerment.

Digital measurements have the advantage of being measured non-invasively, passively,

continuously, and in a real-world context. An important question is whether such

measurement can sensitively measure subtle disbalances in the progression toward

disease, as well as the subtle effects of, for example, nutritional improvement. The

concept of resilience biomarkers, defined as the dynamic evaluation of the biological

response to an external challenge, has been identified as a viable strategy to measure

these subtle effects. In this review, we explore the potential of integrating this concept with

digital physiological measurements to come to digital resilience biomarkers. Additionally,

we discuss the potential of wearable, non-invasive, and continuous measurement of

molecular biomarkers. These types of innovative measurements may, in the future,

also serve as a digital resilience biomarker to provide even more insight into the

personal biological dynamics of an individual. Altogether, digital resilience biomarkers

are envisioned to allow for the measurement of subtle effects of health maintenance

and disease prevention strategies in a real-world context and thereby give personalized

feedback to improve health.
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MEASUREMENT IN HEALTH MAINTENANCE AND DISEASE
PREVENTION

The majority of global deaths and health-related financial burden comes from chronic, lifestyle-
related diseases, including obesity, type 2 diabetes, and cardiovascular disease (1). Health
maintenance and disease prevention are, therefore, increasingly prioritized (2). Moreover, as
has been highlighted during the coronavirus disease 2019 (COVID-19) pandemic, good health
is important for combatting acute infections (3). To optimally exploit the potential of health
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maintenance and disease prevention strategies, individuals must
be empowered to control their health. A core element in
health empowerment is the ability to self-measure as guidance
for personal health interventions (4). Unfortunately, traditional
health measurements based on, for example, blood sampling
or imaging are often not developed for application in a
home setting and therefore less suitable for self-measurement.
Limitations include their invasive nature, the lack of ecological
validity, the need for trained personnel, and the high costs.
Furthermore, although self-measurement tools exist, such as
finger prick glucose, cholesterol, or blood pressure, these
measurements are typically episodic, limiting continuous health
insight and management.

Digital health solutions are promising in empowering
individuals to control their health, although most developments
have been focusing on disease management rather than
prevention (5). Indeed, digital measurements may be passively
collected in a free-living, at-home setting by anyone wearing a
digital device. Digital tools such as smartwatches, smartphones,
and other wearable devices are now able to measure essential
indicators of health status including vital signs, skin temperature,
sleep, and activity patterns (6–8). At the same time, developments
of a novel type of continuous, non-invasive, and wearable
molecular sensing technologies are ongoing, for example, the
non-invasive quantification of biomolecules in sweat, saliva, and
other body fluids (9–11). These types of measurements may
eventually enrich the current abilities of digital measurements.

With the development of novel (digital) biomarkers, it is
important to start with asking what health aspect is meaningful
and relevant to the end-user (e.g., patient, consumer) (12). In
the context of personalized health maintenance and disease
prevention, it is relevant to be able to measure an intervention
effect, for example, dietary change, exercise, stress coaching, or
nutritional supplementation. While for some of these types of
interventions, there may be clear effects on specific variables
(e.g., bodyweight reduction with a weight loss program), the
effects of most interventions are subtle and focused on the
long term (e.g., increasing vegetable intake to improve immune
health). Indeed, the goal of especially health maintenance, but
also disease prevention, is to restore subtle disbalances in
the biological system. To measure these subtle effects, next-
generation resilience biomarkers have been proposed for the
evaluation of small but relevant effects of health maintenance
and disease prevention strategies (13). The foundation of these
novel-type biomarkers is based on a recent definition of health
by Huber et al. as “the ability to adapt and self-manage in the
face of social, physical, and emotional challenges” (14). In line
with this, resilience biomarkers are based on the measurement of
the biological response to a specific challenge and have also been
referred to as biomarkers of phenotypic flexibility (13, 15–18).
Since wearable digital measurements are typically measured with
a high time resolution (seconds to minutes), they are perfectly
suited for the measurement of resilience as the continuous
response to daily challenges such as stress, food, activity.

This review first elaborates on the concept of resilience
biomarkers to subsequently explore its integration with current
and future digital measurement approaches to come to a novel

concept of digital resilience biomarkers for the evaluation of
health maintenance and disease prevention.

RESILIENCE BIOMARKERS

To evaluate the effect of personalized health maintenance and
disease prevention strategies on “the ability to adapt and self-
manage,” it is important to understand the dynamic interaction
between the biological system and the continuously changing
external influences of food, stress, activity, and other factors.
A biological system is characterized by a complex, interactive
network of regulatory processes that operate over multiple time
scales and several layers. These layers can be defined by layers
of molecules, pathways and processes, organs and systems, and
health outcomes to evaluate the propagation of nutritional and
other effects through the biological system (Figure 1A) (16, 19).
The ability to adapt reduces with age and toward disease, starting
at the bottom layers with molecules, pathways, and processes,
eventually resulting in functional decline at the level of health
outcomes. For instance, as an isolated example, overnutrition
(molecules) causes insulin resistance (process), which in turn can
cause accumulation of hepatic triglycerides leading to hepatic
steatosis (organ), eventually causing fatty liver disease (health
outcome) (20).

A resilience biomarker aims to measure “the ability to
adapt” that is reduced with age and disease (Figures 1B, 2).
The generally accepted definition of a biomarker is “a defined
characteristic that is measured as an indicator of normal
biological processes, pathogenic processes, or responses to an
exposure or intervention, including therapeutic interventions”
(24). In 2016, an Food and Drug Administration–National
Institutes of Health (FDA-NIH) working group identified seven
biomarker subtypes being diagnostic biomarker, monitoring
biomarker, pharmacodynamic/response biomarker, predictive
biomarker, prognostic biomarker, safety biomarker, and
susceptibility/risk biomarker. Definitions of these subtypes are
given in Table 1 (24). With none of these biomarkers addressing
“the ability to adapt” as a concept with particular utility in the
health maintenance and disease prevention domain, we have
highlighted the resilience biomarker as a separate subcategory of
a diagnostic, monitoring, or response biomarker (Table 1).

There are two approaches for constructing a resilience
biomarker as the dynamical response to external perturbations
to the biological system. The first approach is based on the
time-resolved biomarker response to a standardized challenge
(13). Examples of standardized challenges have been developed
for multiple health domains and include the cardiopulmonary
exercise test (37), Trier social stress test (38), lipopolysaccharide
challenge (to quantify immune resilience) (39), oral glucose
tolerance test (40), and mixed-meal challenges (15). Healthy
individuals adequately handle a challenge test through regulatory
mechanisms of adaptation, showing optimal resilience. The loss
of resilience is reflected in an impaired response to the challenge
(21, 22, 41, 42). Figure 2A presents an example of the oral glucose
tolerance test as the measurement of blood glucose dynamics
upon ingestion of 75 g of water-dissolved sugar within 5min. The
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FIGURE 1 | Conceptualization of digital resilience biomarkers. (A) The multilayer model of health with complex interactions across hierarchical layers of biological

organization. (B) Digital sensors can be connected to molecules or biological processes of, e.g., glucose regulation, lipid regulation, vascular regulation, microbiome

dynamics, stress regulation, and low-grade inflammation to come to a digital resilience biomarker. (C) Resilience markers are more sensitive to early and subtle

derailments of biological system before disease manifests.

effect of aging, and evenmore so of disease, can be observed in the
higher glucose concentrations in response to the same challenge.
In other words, the regulatory mechanisms of glucose uptake are
impaired in older individuals and type 2 diabetes patients.

To further understand the dynamical interaction between
the biological system and external perturbations, it is important
to measure the integrated biological response to a challenge.
Therefore, more complex resilience biomarkers have been
developed by evaluating the dynamic response of multiple
biomarkers to a single challenge test, for example, the PhenFlex
challenge (21). This is a standardized high-caloric mixed meal
challenge that has been proven to perturb multiple biological
processes, including glucose metabolism, lipid metabolism,
amino acid metabolism and vitamins, metabolic stress, and low-
grade inflammation (21). Based on the differential biomarker
responses to the PhenFlex challenge in individuals along a health
spectrum ranging from healthy to unhealthy, several resilience
biomarkers were developed associated with these biological
processes (22). Not only have these resilience biomarkers allowed
for the quantification of health in the non-disease range, but they
have also been shown to quantify the effect of subtle nutritional
interventions (25, 43).

A second way of constructing a resilience biomarker is
to evaluate a continuous biological pattern without using an
explicit standardized challenge test. For instance, a continuous
electrocardiogram can be used to determine indices of heart
rate variability as a reflection of the autonomic nervous system

function (44). Indeed, heart rate patterns do change with age
and disease, as can be observed in Figure 2B. In fact, in this
example, the mathematical complexity (e.g., sample entropy)
of the continuous pattern is reduced and can be used as a
measure of biological resilience sensitive to age and disease (23,
45). Since this approach of constructing resilience biomarkers
often involves a digital measurement, further examples will be
discussed below.

DIGITAL RESILIENCE BIOMARKERS

The measurement of a challenge–response involves time-
resolved sampling. The relative burden for the collection
of this type of resilience biomarkers, besides being exposed
to a standardized perturbation, is mostly thus higher than
for a static biomarker. As an example, the measurement
of metabolic resilience based on traditional measurement
methods includes five blood samples throughout 4 h (22).
Moreover, such measurement only gives insight into the
resilience at a specific moment. Digital biomarkers have the
advantage of being measured non-invasively and continuously.
They can be defined as “biomarkers collected by a wearable
or portable system of sensors, electronics, and algorithms
that generate a long-term, real-time digital signal to enable
frequent, non-invasive monitoring under daily life conditions”
[adapted from (6)]. This definition of a digital biomarker
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FIGURE 2 | Measures of resilience with (A) the increased response of glucose to a high caloric milkshake with age and disease [data from studies described by

Wopereis et al. (21) and van den Broek et al. (22)] and (B) the decrease of heart rate variability with age and disease [reprinted with permission from Sturmberg et al.

(23)].

includes measurements from smartwatches, smart textiles, smart
scales, and handheld devices for real-time health monitoring
by consumers but excludes clinical-grade devices that need
operation by a professional. For example, an at-home real-time
temperature measurement falls under this definition but not a
lab-based hair cortisol measurement. During the last decade, the
number of digital biomarkers has grown rapidly. Examples of
digital biomarker applications in a general population include
photoplethysmography for the detection of irregular pulse
rate to predict atrial fibrillation (27) and accelerometry for
measurement of sleep duration (46). Other examples, focused
on a specific disease population, are the measurement of
accelerometry and gyroscopy for gait freezing in Parkinson’s
disease (47); the use of accelerometry and skin conductance to
predict epileptic seizures (48); wearable electroencephalogram,
heart rate variability, and skin conductance for mood tracking
(49); photoplethysmography for detecting diabetes (50); or a
combination of pulse rate, skin conductance, skin temperature,
and oxygen saturation for telemonitoring of chronic obstructive
pulmonary disease (COPD) patients (51).

Being measured in time series, digital biomarkers are well-
suited for constructing a resilience biomarker based on a
continuous biological pattern. As already mentioned, heart
rate variability is a resilience biomarker reflecting autonomous
system function related to multiple biological functions (52,

53), including psychological stress (54), cardiovascular health
(36, 55), and inflammation (56, 57). Other examples include
variability of blood pressure (58–60), gait (61, 62), and glucose
(26). Blood pressure variability has been associated with all-cause
mortality (59), cardiovascular events (59), and progression of
Alzheimer’s disease (60). Gait variability has been associated with
the risk of falling in neurodegenerative disorders (61), although
it seems not to change with age (62). Glucose variability was
associated with glucose dysregulation (26). While these examples
focus on a digital resilience biomarker as a complexity measure of
a digital time-series pattern, they can also be defined as the digital
biomarker responses after a standardized challenge test or as the
continuous response upon daily challenges, such as food intake
and activity (63).

By selecting digital measurements based on their ability to
reflect a specific biological process, a digital resilience biomarker
can be constructed (as conceptualized in Figure 1C) to evaluate
subtle changes in the biological system. Here, we describe
several examples of biological processes relevant to health
maintenance and disease prevention that may be measured using
digital resilience biomarkers. These biological processes can be
digitally quantified alone, or in combination, to provide an
integratedmeasurement of diverse health aspects. For illustration
purposes of future potential, not all examples will strictly follow
the abovementioned definition of a digital biomarker. Some
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TABLE 1 | Definitions, non-digital, and digital examples for eight biomarker types.

Type Definitiona Non-digital example Digital example

Resilience

biomarkerb
A specific type of a diagnostic, monitoring, or

response biomarker measured as the response

to an external challenge to reflect the resilience

of the biological system

Cytokine response to the PhenFlex challenge

indicates low inflammatory resilience in

metabolically compromised individuals (25)

Continuous glucose variation is higher in

prediabetic and diabetic individuals with

glucose dysregulation (26)

Diagnostic

biomarker

A biomarker used to detect or confirm

presence of a health status, disease or

condition of interest or to identify individuals

with a health or disease subtype.

Increased fasting plasma glucose or

hemoglobin A1c indicate the presence of type

2 diabetes

Atrial fibrillation is diagnosedc using

photoplethysmography in a smart watch

(27)

Monitoring

biomarker

A biomarker measured serially for assessing

status of health or a disease or medical

condition or for evidence of exposure to (or

effect of) a medical product, a lifestyle change,

or an environmental agent

Regular glucose finger pricks are used to

manage insulin administration in type 1

diabetes patients

Calibration-free continuous glucose

monitoring is used for monitoring type 2

diabetes patients (28)

Response biomarker A biomarker used to show that a biological

response has occurred in an individual who has

been exposed to a medical product, a lifestyle

change, or an environmental agent

Serum LDL cholesterol reduction with

cholesterol lowering agents or lifestyle changes

Hyperglycemic peak reduction with

exercise as an add-on intervention in type

2 diabetes patients using metformin (29).

Hyperglycemic peaks were measured with

continuous glucose monitoring

Predictive biomarker A biomarker used to identify individuals who

are more likely than similar individuals without

the biomarker to experience a favorable or

unfavorable effect from exposure to a medical

product, a lifestyle change, or an environmental

agent

Individuals with insulin resistance in the muscle

benefit from a Mediterranean diet, whereas

individuals with insulin resistance in the liver

mostly benefit from a low-fat diet (30)

Wearable heart rate, skin conductance,

skin temperature, and activity patterns

were used to define digital phenotypes

characterized by poor health indicators

and high depression, anxiety and stress

scores (31)

Prognostic

biomarker

A biomarker used to identify likelihood of a

clinical event, disease recurrence or

progression in patients who have the disease

or medical condition of interest.

Augmented C-reactive protein (CRP) levels

indicate increased likelihood of recurrent artery

disease events in patients with unstable angina

Spatial memory, prospective memory,

executive function, and psychomotor

processing speed were assessed with a

smartphone app to define a prognostic

biomarker for progression to dementia in

people with mild cognitive impairment (32)

Safety biomarker A biomarker measured before or after an

exposure to a medical product, a lifestyle

change, or an environmental agent to indicate

the likelihood, presence, or extent of toxicity as

an adverse effect

Increased levels of plasma creatinine

phosphokinase indicate statin intolerance in the

muscles (33)

QT prolongation, a cardiac safety

biomarker, was reliably identified using a

wearable ECG monitoring system (34)

Susceptibility/risk

biomarker

A biomarker that indicates the potential for

developing a disease or medical condition in an

individual who does not currently have clinically

apparent disease or the medical condition

High CRP levels indicate greater likelihood of

developing incident coronary disease (35)

Autonomic imbalance, measured by

reduced heart rate variability, may serve as

a risk factor for cardiovascular disease (36)

aDefinitions are adapted from BEST glossary also include health status and lifestyle interventions (24); bAdded to the list to highlight the specific characteristic of a resilience biomarker;
cAt the moment, this is not a medical diagnosis.

examples of measurement methods are slightly invasive (e.g.,
continuous glucose monitors) or currently only available as
a clinical-grade methodology (e.g., ambulatory blood pressure
monitoring). In addition, it should be noted that developing
digital resilience biomarkers involves algorithm development,
but a discussion on specific data science methods is not within
the scope of this review.

Digital Resilience Biomarkers of Vascular
Regulation
Dysregulated vascular homeostasis is an important determinant
in several metabolic diseases, including cardiovascular disease,
metabolic syndrome, and type 2 diabetes, and is associated
with oxidative stress, chronic inflammation, insulin resistance,
and lipid dysregulation (64). It now becomes possible to
monitor vascular function by looking at continuous patterns

from wrist-worn tonometry (65), photoplethysmography (66), or
ambulatory blood pressure variability (67) as a digital resilience
biomarker. Blood pressure variability has been associated with
cardiovascular disease outcome (59). In particular, the short-term
variability (beat-to-beat and 24 h) is of interest, being related
to arterial compliance or arterial elasticity (58), although it has
been questioned whether the value of blood pressure variability
outperforms that of absolute blood pressure for the prognosis of
cardiovascular outcome (68).

Digital Resilience Biomarkers of Mental
Stress Regulation
Mental stress is an important driver of, among others,
neurodegenerative, mental, cardiovascular, metabolic, and
inflammatory diseases (4, 18, 69). Whether sources of stress
have a negative influence on long-term health outcomes is
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dependent on the mental resilience of an individual. Indeed,
the physiological response, including heart rate, to the Trier
Social Stress Test indicates the resilience to stress (38). Not
only heart rate, heart rate variability, skin conductance, and
skin temperature but also voice perturbations have been used
in response to a stress test for the quantification of stress under
laboratory conditions (70–72). Not all of these variables may
be reliably measured with consumer-grade wearables under
non-stationary daily life conditions, given their sensitivity to
motion artifacts (73). However, large-scale monitoring of the
electrocardiogram, skin conductance, and skin temperature
under daily life circumstances revealed blunted physiological
stress responses associated with poor health, high depression,
high anxiety, and high levels of stress (31).

Digital Resilience Biomarkers of Chronic
Low-Grade Inflammation
Chronic low-grade inflammation plays a central role in
many lifestyle-related chronic disorders including cardiovascular
disease and metabolic syndrome (43). Recently, the cytokine
response to the PhenFlex challenge was used to define a non-
digital resilience biomarker of chronic low-grade inflammation
(25). Interestingly, heart rate variability (57, 74), and blood
oxygen saturation (690 may act as indirect digital biomarkers
of inflammation. Indeed, heart rate variability has consistently
been associated with C-reactive protein and other inflammatory
markers (57). In addition, skin temperature measured by
a wearable may be associated with systemic inflammation,
although this association was not consistent, possibly explained
by the influence of environmental temperature on skin
temperature (75).

Digital Resilience Biomarkers of
Host–Microbiome Dynamics
The host–microbiome dynamics, greatly determined by dietary
intake, is an important mediator between diet and health
through inflammatory, metabolic, and neural processes (76, 77).
Hydrogen breath testing upon a lactose challenge is a proven
technique to determine lactose intolerance, based on defect
microbial carbohydrate fermentation. Processes of microbial
fermentation produce volatiles such as hydrogen, methane, and
hydrogen sulfide, among other volatiles, that can be measured
in breath by portable eNose technology (78–80). Although
only starting to emerge, devices for measurement of these
compounds in breath are becoming small and consumer grade,
enabling their utilization in a daily life (81), holding promise
for these biomarkers becoming a digital resilience biomarker for
microbiome dynamics.

Digital Resilience Biomarkers of Lipid
Regulation
Lipids serve multiple essential functions in the body, including
energy storage, acting as structural components of cells,
and signaling. Biological processes underlying lipid regulation
include lipid digestion, transport, storage, and metabolism.
Currently, there are no digital biomarkers known for these
markers, although early developments are being made for

wearable measurement of cholesterol (82). In addition, intra-
abdominal fat spectroscopy, associated with lipid regulation and
inflammation, is likely to become possible in the near future
(83). Other than that, the autonomic imbalance is associated with
metabolic syndrome and its components, including cholesterol
and triglycerides (84, 85), indicating that heart rate variability
may serve as an indirect reflection of lipid dysregulation.

Digital Resilience Biomarkers of Glucose
Regulation
Glucose regulation is controlled by a series of biological
processes, including insulin sensitivity, β-cell function, and
gluconeogenesis. As a digital biomarker, glucose can be reliably
measured in the interstitial fluid of the skin by minimally
invasive continuous glucosemonitoring for up to 14 days without
the need for invasive calibration (28, 86). The oral glucose
tolerance test response, measured by a continuous glucose
monitor, was recently used to evaluate the postprandial responses
to food (63). Continuous glucose monitoring was also used to
calculate glucose variability as a measure of glucose dysregulation
(26). Heart rate variability was associated with measures of
systemic insulin sensitivity (75, 87), showing prognostic value
for predicting 5-year insulin sensitivity (88). Given its generic
character, the specificity for measuring heart rate variability as
a proxy for glucose dysregulation is low. However, this may be
improved by perturbing glucose regulation with an oral glucose
tolerance test (89). This approach, heart rate variability response
to an oral glucose tolerance test during pregnancy, may even
allow for indirect determination of fetal insulin sensitivity using
fetal magnetocardiography (90).

MOLECULAR DIGITAL BIOMARKERS

The above-described digital resilience biomarkers are mostly
based on measurements of vital signs such as heart rate,
blood pressure, or oxygen saturation. While a few examples of
minimally or non-invasive measurements of specific molecular
biomarkers (subcutaneous glucose, breath volatiles) were
discussed, this comprises a much larger novel area with future
potential for novel, specific molecules measured as digital
biomarker (9–11). Given the fact that these technologies allow
the continuous measurement of molecular markers, they can also
be used to define novel digital resilience biomarkers. Currently,
many of these molecular digital biomarkers are at the stage of
evaluating and demonstrating the performance of the sensor
technology. Molecular digital biomarkers can be measured
transcutaneous in blood or tissue or a non-invasively accessible
biofluid such as sweat, tears, or saliva (Table 2).

Non-invasive Sampling of Biofluids for
Molecular Digital Biomarkers
One of the most explored non-invasive biofluids for continuous
monitoring is sweat (10). Eccrine sweat glands are located over
nearly the whole body surface, and sweat contains multiple
biomolecules that are generated locally or transported from the
systemic circulation via diffusion or active transporters (92).
Examples of biomarkers that are being explored for continuous
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TABLE 2 | Digital biomarker characteristics, challenges and sensing principles of molecular digital biomarkers in non-invasive biofluidsa.

Sensing

modality

Digital biomarker characteristics (current state of the art) Technical challengesb Main sensing principle (Potential) molecular

markersc

Non-invasive Real-time Continuous Wearable

Sweat Yes, although some cases

involve invasive stimulation

of sweat production by

iontophoresis

Yes Yes, days to weeks Yes, platforms include

wristbands, tattoos,

patches and textiles

- Low samples volumes

- Low biomarker concentrations

- Contamination of consecutive sweat

samples

- Artifacts from sweat rate, temperature,

pH

- Biomolecule distribution from blood to

sweat (including time-lag)

Selector-transducer

(electrochemical, optical)

Metabolites (e.g., glucose,

lactate, ethanol), electrolytes

(e.g., pH, Na+, Cl−), heavy

metals

Interstitial fluid Currently minimally invasive

due to subcutaneous

insertion of cannula or

interstitial fluid (ISF)

collection by reverse

iontophoresis

Yes Yes, days to weeks Yes, platforms include

patches and wristbands

- Interference from sweating (with reverse

iontophoresis)

- Low sample volumes

- Skin irritation due to ISF extraction

- Biomolecule distribution from blood to

interstitial fluid (including time-lag)

Selector-transducer

(electrochemical, optical)

Metabolites (e.g., glucose,

urea, pharmaceuticals)

Tears Yes Yes Yes, days to weeks Yes, platform used is a

contact lens

- Transparency

- Biocompatibility

- Application in humans

- Biomolecule distribution from blood to

tears (including time-lag)

Selector-transducer

(electrochemical, optical)

Metabolites (e.g., glucose,

lactate)

Saliva Yes Yes Yes, days to weeks Yes, platforms include tooth

enamel, mouthguard and

pacifier

- Contamination with food residues,

bacteria, etc.

- Mechanical stress on sensor from

mouth movements

- Biocompatibility and user comfort

- Biomolecule distribution from blood to

saliva (including time-lag)

Selector-transducer

(electrochemical, optical)

Metabolites (e.g., cortisol,

glucose, lactate, uric acid)

Breath Yes Yes Currently limited, due to

non-wearable platforms

No, mostly portable,

although a wristband has

been developed requiring

active breathing onto the

sensor

- No current wearable applications

- Contamination from ambient air

- Artifacts from airflow, humidity, ingested

materials and temperature

Selector-transducer

(electrochemical, optical),

spectroscopy

Metabolites (e.g., hydrogen,

methane, sulfate)

Transcutaneous

(tissue, blood)

Yes Yes Yes, months to years Yes, depending on the

spectroscopic method.

- Motion artifacts

- Signal-to-noise

- Need for frequent calibration

- Often indirect measurement, which is

sensitive to confounders

Spectroscopy Metabolites (e.g., oxygen

saturation, fat, water,

NADH, FAD, bilirubin),

proteins (e.g., advanced

glycated end products)

aThis table is a compilation of information from multiple sources. Worthwhile reviews on the sensor technologies, molecular markers, and the related challenges can be found in (9, 10, 91). bNot including the general challenges of

bio-sensing (e.g., stability, sensitivity, etc.), energy supply, wireless communication, material size and rigidity, and data analytics and security (91). cThe list of potential biomarkers is broader if purely local biomolecules (e.g., proteins,

peptides, bacteria) are also considered. The examples in this table are limited to those with potential to distribute from the systemic circulation to the biofluid of interest.
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and real-time analysis in eccrine sweat include metabolites (e.g.,
glucose, lactate, cortisol, uric acid, alcohol), electrolytes (e.g.,
chloride, sodium, potassium, pH), and metal traces (e.g., zinc,
iron, copper) (9, 10). Furthermore, interstitial fluid, although
currently collected in a minimally invasive manner, is well-
known for the continuous glucose monitoring devices on the
market, but it contains many more biomolecules. Interstitial
fluid can be collected via a subcutaneous cannula, or via
reverse iontophoresis (93), to allow for contact between the
sensor and the analyte. An interesting development is the
application of pain-free microneedles for multiplex monitoring
of biomolecules in interstitial fluid (94), as was shown for
glucose, lactate, and pH (95). In addition, tear fluid contains
metabolites, electrolytes, and proteins, some of them reflecting
systemic concentrations. Although, currently, most studies have
been performed in animals, sensors integrated into contact
lenses have been developed to monitor biomolecules in tears as
digital biomarkers, including glucose and lactate (96, 97). Saliva
is another attractive biofluid for molecular digital biomarkers,
containing metabolites (e.g., glucose, lactate, cortisol), enzymes
(e.g., alpha-amylase), and antibodies (e.g., IgA, IgG) (98). Saliva
monitoring has been accomplished by sensor integration in,
for example, a tooth enamel for bacteria detection (99), a
mouthguard for glucose and nitrite monitoring (100), and even
a pacifier for glucose monitoring (101). In addition, exhaled
breath contains many volatile organic compounds that have been
shown predictive of several diseases, including diabetes (102).
Combined with a lactose challenge, breath hydrogen testing is
the gold standard for detecting lactose intolerance, often also
combined with other breath volatiles such as carbon dioxide and
methane. This test is now also available in a portable, consumer-
grade device, although further optimization is needed to improve
the accuracy of the measurement (81). Finally, non-invasive
monitoring of biomolecules in blood and tissue is possible with
spectroscopic techniques (103). A well-known example is pulse
oximetry, available as a medical device, used for the detection of
peripheral oxygen saturation in the fingertip (103).

Sensing Principles for Molecular Digital
Biomarkers
Four different sensing principles are used for biomonitoring
in general: electrophysiological monitoring (e.g.,
electrocardiogram), acoustic monitoring (e.g., ultrasound),
selector-transducer monitoring (mostly electrochemical
sensors), and optical monitoring (e.g., pulse oximetry for oxygen
saturation and heart rate). The sensing principles that are
most relevant for non-invasive biofluid and transcutaneous
biomolecule detection are selector-transducer and optical
spectroscopy-based detection methods. Table 3 provides an
overview of specific sensor types based on these principles that
will be discussed below.

The selector-transducer principle is based on a selector (e.g.,
an enzyme) that selectively and with high sensitivity interacts
with the biomarker of interest to produce a signal that is related to
the concentration of the biomolecule of interest (104, 105). For a
digital biomarker, this interaction needs to be fast and reversible

TABLE 3 | Sensor types and related sensing principles for wearable, non-invasive,

continuous molecular digital biomarkers.

Sensor type Sensing principlea

Selector-transducer

Potentiometric

sensors

An ionophore binding specific ions (e.g., Na+, K+, etc.)

combined with a transducer that senses the voltage

differences with a reference electrode

Amperometric

sensors

An enzyme catalyzing the target metabolite (e.g.,

glucose, lactate, etc.) combined with a transducer that

senses the change in the electrical current at an

electrode

Conductometric

sensors

An enzyme catalyzing the target analyte combined with a

transducer that senses the changes in ionic conductance

Colorimetric

sensors

A sensor that changes color upon binding with a specific

metabolite (e.g., glucose, lactate) or an electrolyte (e.g.,

Na+, Cl−)

Fluorometric

sensors

A sensor that changes fluorescent properties upon

interaction with a specific metabolite (e.g., glucose,

lactate, O2) or an electrolyte (e.g., Na+, Cl−)

Spectroscopy

Transmission

spectroscopy

Transmission of light at a specific wavelength (ultraviolet,

visible, near-infrared, infrared) through a sample to

measure the absorption, which is proportional to the

number of molecules of interest. A well-known example

is Fourier Transform Infrared (FTIR) spectroscopy

Reflectance

spectroscopy

Reflectance of light at a specific wavelength (ultraviolet,

visible, infrared, near-infrared) in a sample to measure the

absorption, which is proportional to the number of

molecules of interest

Photoplethysmography A specific form of transmission or reflectance

spectroscopy to detect volume changes in peripheral

blood vessels as a measure of heart rate and other

cardiovascular variables

Photoacoustic

spectroscopy

Energy gained by light absorption is released as heat in a

gas chamber or tissue to form a pressure wave

measured as sound, mostly applied for breath analysis

Photoluminescence

(fluorescence)

spectroscopy

Energy gained by light absorption is released as light with

longer wavelength due to energy loss to thermal energy

Raman

spectroscopy

Energy gained by light absorption is released as light,

with a slightly different energy because of interactions

with vibrational modes in the molecules

aDefinitions of the sensing principles are based on those described in dedicated reviews

(9, 10, 91, 103).

to allow for continuous, real-time monitoring. The interaction
between the biomarker and the selector is translated into a
signal by a transducer function and mostly also an indicator.
The electrochemical selector-transducer principle is one of the
most widely used for biomarker detection, although also acoustic,
piezoelectric, and optical (colorimetric, fluorometric) transducer
functions have been applied (104, 105). Both the selector as
well as the indicator are incorporated in a polymeric or ceramic
coating. Examples are the electrochemical and optochemical
detection of glucose using the enzymes glucose oxidase or
hexokinase as selectors. Glucose oxidase produces H2O2, causing
a change in electrical current measured by amperometry.
Hexokinase produces NADH that influences the absorption of
light that can be measured by photometry. This principle has

Frontiers in Digital Health | www.frontiersin.org 8 January 2021 | Volume 2 | Article 614670

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


van den Brink et al. Digital Resilience Biomarkers

been applied in sweat, tear fluid, saliva, interstitial fluid, etc.
Similarly, many other biomolecules can be measured using
a specific selector-transducer principle, including metabolites
(lactate, uric acid, ammonia, drugs, carbon dioxide, cortisol,
sugars, etc.) and electrolytes (H+, Na+, Cl−, etc.) (9, 10). Larger
molecules such as peptides and proteins can also be detected
with these principles, although these molecules are minimally
present in sweat, tears, etc. due to limited solvability and
diffusion. However, since these molecules are not expected to
distribute from the systemic circulation to the biofluids of interest
because of their size, they are regarded as less relevant as digital
resilience biomarker for systemic biological processes. Wearable,
continuous electrochemical detection is only starting to emerge
with current applications mostly being research-grade.

Optical methods, in the most basic form, use a light source
to measure the absorption that is proportional to the number
of molecules of interest. The absorption of light is based on
molecular electronic or vibrational transitions that occur at
specific wavelengths of light (ultraviolet, visual, infrared, etc.)
and are different for every molecule. A common detection
method is to measure the transmission or reflection of specific
wavelengths to calculate the absorbance. A well-known example
of transmission spectroscopy is the measurement of oxygen
saturation (103), using two light-emitting diodes at different
wavelengths, one being red (wavelength 660 nm) and the other
being infrared (wavelength, 880 or 940 nm), and a photodiode for
measuring the transmission through a finger or earlobe at both
wavelengths. Deoxygenated and oxygenated hemoglobin have
different absorption characteristics at both wavelengths, allowing
for the calculation of oxygen saturation from their transmission
intensities. Similarly, wearable pulse rate measurements are often
based on reflectance photoplethysmography using red or green
light-emitting diodes (103). Alternatively, some optical methods
measure the fluorescent light that is released by a molecule
after absorbing light. Raman spectroscopy is based on Raman
scattering, causing a slight shift in wavelength because of the
interactions with vibrational transitions in the molecules. The
technology has been applied to non-invasively measure glucose,
although the current evidence is based on small sample-sized
and limited external validation (106). Photoacoustics measures
the absorbed energy that is converted into heat causing local
expansion, which generates a pressure wave in a gas chamber or
tissue that can be measured as ultrasound. The technology has,
for example, been used to measure ethylene, as a novel biomarker
for early onset of infection (107). Photoluminescence, based on
intrinsic fluorescent or phosphorescentmolecular characteristics,
measures the released energy as light with a longer wavelength
due to energy loss to heat. These last two methods are very
sensitive because the released energy has a different form with
no background signal.

Challenges With Molecular Digital
Biomarkers
Wearable biomonitoring platforms have to deal with multiple
challenges (Table 2). General challenges include operational

challenges of pretreatment conditions, stability, sensitivity,
response time, and multianalyte interference, energy supply
challenges, data communication challenges, material challenges
of size and rigidity, and data analytics and security challenges.
These are all crucial aspects to address when developing a
digital biomarker. A detailed discussion on these topics is out
of the scope of this review but is provided elsewhere (91).
Additionally, when non-invasively identifying digital biomarkers
from accessible biofluids, reflecting systemic concentrations,
the disconnection between systemic biomolecule concentrations
and local concentrations may be a challenge. Transport of
biomolecules, local production, external influences, and internal
milieu are all factors that can affect this relation that need
to be taken into account for developing a reliable sensor for
molecular digital biomarker monitoring. Furthermore, more
specifically, continuous sweat monitoring has to deal with low
sample volumes, low biomarker concentrations, contamination
of consecutive sweat samples, and artifacts from sweat rate,
pH, and temperature (10). Interstitial fluid monitoring probably
is the most advanced technology with the main challenges
being its relative invasiveness, interference from sweating,
skin irritation (both with reverse iontophoresis), and low
sample volumes (10). Tear fluid monitoring must guarantee
transparency and biocompatibility, and still needs a translation
to humans for further validation (10). Saliva monitoring is
challenged by contamination from food residues, bacteria, etc.,
mechanical stress from mouth movements on the sensor, and
biocompatibility and user comfort (e.g., with amouthguard) (10).
Breath monitoring is challenged by contamination from ambient
air and artifacts from airflow, humidity, ingested materials,
and temperature (10). Transcutaneous optical methods may
suffer from low sensitivity due to low signal-to-noise ratios
and artifacts such as motion and ambient light. Additionally,
frequent calibration may be needed in cases where there is a
risk of confounding effects. Nevertheless, multiple developments
are ongoing to overcome these limitations and to develop
reliable at-home biomonitoring platforms that eventually allow
for molecular digital health monitoring and the development of
digital resilience biomarkers.

UTILIZING DIGITAL RESILIENCE
BIOMARKERS FOR PERSONALIZED
HEALTH MAINTENANCE AND DISEASE
PREVENTION

For digital resilience biomarkers to be optimally utilized, they
must take an integral part in eHealth applications that focus
on personalized health maintenance and disease prevention.
Chronic disorders are typically complex and require a systems
approach to cure or prevent them. This not only involves
biological components but also behavioral and social elements,
allowing tailor-made (lifestyle) interventions based on the
individual needs from all domains that affect the disease (4, 8).
Digital measurements can cover several of those elements
enriching resilience biomarkers with static digital biomarkers
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to gain a more comprehensive biological measurement.
Furthermore, digital measurements of behavior can include
activity trackers, sleep trackers, and stress monitoring, whereas
mobile phone usage and Global Positioning System (GPS) data
can be used for monitoring the social context. As an example,
Van Ommen et al. have convincingly argued for personalized
systems interventions (i.e., dietary interventions, physical
activity, medication), taking these factors into account to achieve
remission of type 2 diabetes by regaining biological resilience
on beta-cell function, insulin sensitivity, vascular health, and
chronic low-grade inflammation (4). Similarly, from a health
maintenance and disease prevention perspective, personalized
systems interventions will help maintain biological resilience.
Indeed, mHealth platforms such as WellDoc have shown clinical
improvement of diabetes (108). Similar applications have been
shown effective for diabetes prevention now (109). As we have
argued in this review, digital resilience biomarkers provide an
accessible way to measure the biological resilience related to
glucose health, chronic low-grade inflammation, vascular health,
and other biological domains.

Several of the above-described digital resilience biomarkers
are based on sensor technology available in current wearable
technology. The sensor data from these wearables can be
evaluated in response to a challenge test or as a continuous
pattern to define a digital resilience biomarker. Awaiting further
validation of such digital resilience biomarkers, a relatively
straightforward integration into existing mHealth platforms is
possible. While the examples focus on (pre)diabetes, the idea
of digital resilience biomarkers as a component of eHealth
platforms will be relevant for other chronic diseases (e.g., cancer,
mental disorders, neurodegenerative disease) to quantify early
development or remission of the disease. In addition, it will be
helpful as an instrument to monitor people at risk for developing
chronic disease [e.g., those with genetic disposition or adverse
childhood experiences (110)] to guide preventive interventions.

CONCLUDING REMARKS

Digital biomarkers have gained large interest during recent years
as non-invasive markers of health and disease. As they typically

allow for continuous monitoring, they may also be used for
the development of resilience biomarkers. These biomarkers,
in contrast to static biomarkers, allow the quantification
of subtle disbalances in the biological network associated
with early progression toward disease. The combination of
digital biomarker development with the concept of resilience
provides a novel type of digital biomarkers as outlined in
this review. A digital resilience biomarker is based on the
dynamical interpretation of a non-invasive and continuous
digital biomarker measured in daily life. Although most of the
digital resilience biomarker examples described in this review
come from a lab setting, these biomarkers have good potential for
application in an at-home setting. Future research should focus
on the validation of these biomarkers, ideally guided by a recently
published framework around validity, usability, and data security
(5). Furthermore, with all efforts focusing on developing wearable
electronics for molecular monitoring within accessible biofluids,
novel digital resilience biomarkers will become available that
give mechanistic insight into biological pathways and processes
concerning health status and dynamics. Development of the
digital resilience biomarker concept is envisioned to eventually
allow for non-invasive, continuous monitoring of personalized
health maintenance and disease prevention strategies under
real-world conditions. Digital resilience monitoring can be
combined with personalized intervention strategies to improve
individual health.
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