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Abstract
Over the past decade, microfluidic intestine-on-a-chip models
have been emerging as a novel platform to study intestinal
function in health and disease. These microphysiological sys-
tems surpass conventional in vitro intestinal model systems, as
they add microenvironmental context in the form of mechanical
cues or by the incorporation of multiple cell types and/or gut
microbiome, thereby better reflecting intestinal architecture
and physiology. This review summarizes the current intestine-
on-a-chip models with a distinction between cell- or organoid-
based models and models that apply ex vivo tissue biopsies,
as well as describing the progress and hurdles to overcome
when applying intestine-on-a-chip models to study host-
microbe interactions and intestinal diseases.
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Introduction
The digestive environment of the gut lumen is sepa-
rated from the body by a protective epithelial barrier
that consists of multiple cell types with specialized
functions in nutrient and drug absorption, transport and
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metabolism, mucus production, and the secretion of
hormones or cytokines in response to food or environ-
mental factors [1]. Furthermore, a large community of
microbes inhabits the gut wall which contributes
significantly to intestinal homeostasis by producing
factors such as vitamin K and short chain fatty acids, and
they can also play an important role in the metabolism of
certain drugs [2]. To understand the intestinal barrier

function and be able to model drug absorption, a diverse
range of in vitro and ex vivo models are being used.
Models applying ex vivo tissue, such as the everted sac
model [3], Ussing chamber [4,5], and InTESTine�
[6,7] are physiologically highly relevant, but these
models often have limited throughput and lifespan
(maximum of 6e8 h). Therefore, most in vitro research
into intestinal barrier function and drug absorption is
performed using human intestinal epithelial cell lines,
such as Caco-2 and HT-29 cells [8,9], or intestinal 3D-
organoid structures derived from primary intestinal

crypts [10]. Although the latter better reflects the in-
testinal architecture and cell type diversity than the
monocellular cell line cultures, supporting cells and
tissue parts of the normal intestinal wall, such as blood
vessels and immune cells, are lacking in intestinal
organoids. Moreover, access to the lumen of the organoid
is technically challenging, therefore limiting the ability
to study critical intestinal barrier functions [10].
Furthermore, the static nature of traditional cell culture
on a dish or Transwell is in sharp contrast to the living
intestine which endures peristaltic movements and has

a continuous supply of nutrients and oxygen and
removal of waste products [11,12]. Microfluidic organ-
on-a-chip models overcome (some of) these limita-
tions and provide relevant microenvironmental context
that brings in vitro intestinal research to a next level
(Figure 1). This review describes the current intestine-
on-a-chip models and reflects on novel developments to
use these microphysiological systems to study gut bar-
rier function, intestinal diseases, and host-microbiome
interactions.
Cell- vs. tissue-based models
First designs of intestine-on-a-chip microfluidic devices
were fabricated using multilayer soft lithography to
create PDMS (polydimethylsiloxane, a silicon-based
polymer) chips consisting of two chambers separated
www.sciencedirect.com
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Figure 1

Key aspects of the intestinal microenvironment. In order to represent the physiology of the intestine in health and disease in vitro it is important to
stimulate the physical properties of the intestinal microenvironment, the 3D architecture and mechanical cues, and to provide cellular and biochemical
cues normally present in the vicinity of the intestinal wall.
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by a porous semipermeable membrane on which seeded
epithelial cells formed a barrier to separate the apical
and basolateral compartments [13e15]. Medium flow

ensures appropriate nutrient distribution and the
removal of waste products, as well as providing me-
chanical cues essential for normal intestinal function
[16]. Although these first designs permitted polarized,
apical to basolateral, membrane transport of (fluo-
rescently labeled) molecules [13e15], subsequent de-
signs focused on the incorporation of more
environmental context to mimic the in vivo setting more
closely. For example, Sung et al. [17] designed a 3D-
hydrogel villi-scaffold using calcium alginate and
collagen and integrated it into a microfluidic device with

a gravity-driven flow [17,18]. They showed that Caco-
2 cells grown on this scaffold have enhanced metabolic
enzymatic activity of CYP3A4 and aminopeptidase
compared to 2D-cultures in Transwell or the chip
www.sciencedirect.com
without villi-scaffold [19]. Interestingly, Caco-2 cells,
biopsy-derived organoid structures, and iPSC-derived
intestinal organoids could also spontaneously form

villi-like structures when exposed to mechanical cues.
These villi structures consist of different types of
differentiated epithelial cells (absorptive, mucus-
secretory, entero-endocrine, and Paneth cells) along a
traditional crypt-villus axis with proliferative cells
located at the bottom of the crypt and differentiated
cells located along the side and top of the villus [11,20e
24]. Mechanical cues provided by the fluid flow were
indispensable for the villi formation and also shortened
the time needed for Caco-2 cells to differentiate [11].
Furthermore, with microfluidics barrier integrity and

proper tight junction functioning, measured by trans-
epithelial electrical resistance (TEER) or permeability
of compounds transported via the paracellular route,
were well-established and improved compared to static
Current Opinion in Toxicology 2021, 25:6–14
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Caco-2 Transwell cultures, as well as other normal in-
testinal functions such as mucus production and enzy-
matic activity of CYP3A4 [11,22e24]. The impact of
fluid shear stress on cell, and in particular Caco-2 cell,
differentiation was recently investigated in more detail
using a Hele-Shaw microfluidic device [25,26]. In this
device the flow shear stress in a single fluidic channel
linearly decreases from the inlet to the outlet, thereby

creating 5 different sections with different levels of
shear stress. Five days post-seeding, Caco-2 cells
demonstrated the highest level of mucus production,
metabolic enzyme expression, mitochondrial activity,
microvilli, vacuoles, and a denser actin-network at the
highest level of shear stress. However, tight junction
protein expression was highest at the second and third
level of shear stress. These results indicate that the
optimal flow shear stress in intestine-on-a-chip models
can vary depending on the intestinal function that is
aimed to be studied. A second mechanical cue was

provided by the PDMS chip designed by the Ingber
group, by inducing peristaltic-like motions of a porous
membrane by cyclic application of vacuum to hollow
side chambers [11,27]. The addition of cyclic strain had
no additional effect on intestinal cell maturation/dif-
ferentiation, but did increase the expression of proteins
in lipid and carbohydrate metabolism as well as specific
signaling pathways [28]. In addition, increased expres-
sion levels of proteins involved in apoptosis and oxida-
tive phosphorylation might hint toward fluid flowe
induced injury. The most recent designs of this PDMS

chip also incorporate human intestinal microvascular
endothelial cells to create an organ-level model with a
tissue-tissue interface [22,23,29,30]. So far with this
technology, the Gut Chip using Caco-2 cells [11,20], the
(Small) Intestine Chip using duodenum-derived orga-
noids [22,29], the Jejunum-Intestine-Chip using jejunal
human enteroids [28], and the Colon Chip or Colon
Intestine-Chip using biopsy specimens from the sig-
moid and ascending colon have been presented [ [31e
33]] (Table 1). The value of combining the intestinal
epithelium cells with an endothelium model is also
recognized by other research groups, with different
Table 1 Intestine-on-a-chip names explained.

Model Intestinal cell or tissue type

Gut Chip Caco-2
(Small) Intestine Chip Duodenum organoids
Jejunum-Intestine-Chip Jejunal enteroids
Colon Chip Colon organoids
Colon Intestine-Chip Colon organoids
OrganoPlate® Caco-2, HT29-MTX-E12, iPSC-derived
HMI™ Caco-2
HuMiX Caco-2
PMI Chip Caco-2
GuMI Colon organoids
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sources of endothelial cells [34]. In contrast to the
artificial porous membrane used to seed cells or
organoid-like structures in many of the microfluidic
intestine-on-a-chip devices, extracellular matrix (ECM)
hydrogels were used to separate Caco-2 cells or iPSCs
differentiating into a gut monolayer from a flow channel
in a multi-well plate with a gravity-driven flow and the
capacity to culture 40 microfluidic cell culture struc-

tures in parallel, called the OrganoPlate [35,36]. Under
flow, the cells formed tubes lining all surfaces of the
perfusion channel which showed proper barrier
integrity that was prone to disruption by drugs, and
responsiveness to an inflammatory trigger [35,36]. In an
alternative approach to create tube-like structures,
Caco-2 cells were cultured in a hollow fiber membrane
setup [37,38]. With a high emphasis on shear stress,
these researchers showed that pump-driven unidirec-
tional flow improved differentiation and shortened the
time needed for the cells to form a tight monolayer.

Moreover, it was shown that this unidirectional flow
resulted in tighter monolayers compared to gravity
driven bidirectional flow which on itself already induced
the formation of villi-like structures. Like the other cell-
based intestine-on-a-chips, intestinal functions such as
barrier integrity and metabolic capacity could be
assessed on these hollow fiber membrane devices.

These studies show the importance of mimicking the
architectural structure and dynamic microenvironment
of the in vivo intestine to study normal intestinal func-

tion in vitro. Nevertheless, cell- or organoid-based
models represent only the intestinal epithelium and
therefore miss a broad range of other cell types, such as
immune and connective tissue cells, that are important
for normal intestinal physiology [39]. Although much
closer to the in vivo structure and architecture, only a
handful of microfluidic models use ex vivo intestinal
tissue over the past decade. Midwoud et al. [40] applied
microfluidics to rat intestinal tissue slices which
retained their viability and metabolic activity up to 8 h,
but did not provide a separate medium flow to the apical
and basolateral side of the tissue. Sustained viability
Founding institute or company First citation

Wyss Institute at Harvard University [11]
Wyss Institute at Harvard University [22]
John Hopkins University School of Medicine [28]
Wyss Institute at Harvard University [31]
Emulate Inc. [33]
MIMETAS [35]
Ghent University [50]
University of Luxembourg [51]
The University of Texas at Austin [53]
Massachusetts Institute of Technology [54]
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Figure 2

Cell- vs. tissue-based intestine-on-a-chip models. From a relatively simple cell- or organoid-based intestine-on-a-chip model with intestinal cells cultured
in a 2D monolayer toward a more complex one with 3D architecture of the intestinal cells, co-culture with multiple cell types and including the gut
microbiome. Tissue-based intestine-on-a-chip models have an intact tissue architecture, which include vasculature and multiple cell types, and by adding
the gut microbiome even more complexity can be achieved. Additional intestinal functions can be studied by increasing the complexity of the intestine-on-
a-chip models.
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�24 h was shown in subsequent studies by research
groups that used one or multiple tissue biopsies loosely
placed on a porous membrane in a microfluidic device
perfused with culture medium from the basolateral side
only [41,42]. By design, these ex vivo tissue models are
not suitable to study intestinal permeability, in contrast
to cell-based microfluidic models with a main focus on
the formation of a tight intestinal barrier. Proper barrier

integrity is not only needed to study intestinal perme-
ability of drugs or nutrients, but is also crucial in studies
evaluating the impact of the microbiome, which is only
present in the gut lumen. Therefore, microfluidic de-
vices were developed that keep the tissue in place as a
barrier between the apical and basolateral compartment
with adhesives such as glue or tape [43,44]. Both models
provide perfusion to both sides of the tissue biopsy and
show an intact barrier by using FITC-labeled molecules
of high molecular weight. In another approach short (3e
4 cm) intact intestinal fragments were mounted on
needles fixed on holders that could facilitate dual-

perfusion [45]. Although an interaction was shown be-
tween two different microbes, that were administered
to the gut lumen with neuronal and immune cells, the
device was developed for intestinal fragments of young
mice (day 18 prenatal to 14 days old) and therefore not
applicable for intestinal tissue from humans or other
species.
Interaction with the gut microbiome
Dysbiosis of the commensal gut microbiome is associ-
ated with the development of disorders such as in-
flammatory bowel disease (IBD), colorectal cancer,
diabetes, and obesity [46,47]. Despite this knowledge,
understanding the molecular crosstalk between mi-
crobes and their host has remained largely elusive.
Whereas bacteria do overgrow epithelial cells in static
www.sciencedirect.com
in vitro models within a few hours, the dynamic micro-
environment of intestine-on-chips stimulates the for-
mation of a protective mucus layer and supports co-
culture with vascular and immune cells in adjacent
channels [20,22]. In successful long-term co-cultures of
Caco-2 cells and probiotic bacteria, inflammation could
be triggered by introducing peripheral blood mono-
nuclear cells (PBMCs) in the vascular channel and

pathogenic bacteria in the upper channel of the chip
[11,30,48]. To study Shigella flexneri infection in vitro, the
Intestine Chip microenvironment with mechanical
forces and crypt-villus architecture proved to be indis-
pensable for infecting Caco-2 cells [49]. Nevertheless,
the aerobic environment in these experiments contrasts
with the low oxygen levels in vivo (<1% in human colon)
and does not facilitate the study of the strict anaerobic
bacteria that are a big part of our gut microbiome. The
HMImodule [50] and the HuMiX device [51] were first
examples of microfluidic chips with an aerobic-anaerobic
interface in which the anaerobic medium containing

facultative or strict anaerobic bacteria was separated
from the Caco-2 cells and aerobic cell culture medium
with a semi-porous membrane was coated with mucus.
An even more direct interaction between bacteria and
Caco-2 cells, using the Intestine Chip, was recently
achieved by Jalili-Firoozinezhad [52] who co-cultured
obligate anaerobes directly on top of Caco-2 cells,
covered with their self-produced protective mucus layer,
up to 5 days. Efficacious aerobic-anaerobic interface co-
cultures were also established using a complex human
gut microbiota isolated from fresh human stool samples

and primary human intestinal epithelial cells [52] or
patient-derived organoids [53]. In a different device
called GuMI (gut microbiome), Zhang et al. [54], were
the first to show long-term (2 days) co-culture of pri-
mary human colon cells with the super oxygen-sensitive
Current Opinion in Toxicology 2021, 25:6–14
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Figure 3

Precision medicine based on personalized intestine-on-a-chip models. In this approach, patient-derived blood and intestinal tissue biopsies will be used to
create personalized intestine-on-a-chip models with patient-specific immune, vascular, and intestinal cells in co-culture with microbiome isolated from the
patient’s stool. Effective therapeutic strategies can subsequently be determined by screening selections of candidate drugs. The lead compound will then
be sent back to the clinic for use in the patient.
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commensal anaerobe Faecalibacterium Prausnitzii and its
anti-inflammatory effects on colon epithelium gene
expression. Although without aerobic-anaerobic inter-

face, the first fungal host-microbe interaction was
recently demonstrated in an immunocompetent model
with 4 different cell types (i.e., endothelial and Caco-
2 cells, macrophages, and PBMCs) [55]. Interestingly,
host-to-microbe effects and microbe-to-host effects
were demonstrated in another recent publication to
enterohemorrhagic Escherichia coli (EHEC) bacteria
incubated with human or mouse microbial metabolites
in the Colon Chip [ [31]]. So by selecting specific mi-
crobes and studying their impact on host cells, and in
some cases also the other way around, these studies

reveal first hints toward pathways in intestinal host-
microbe interactions important for a healthy, but also
diseased, intestine. However, as in most intestinal dis-
eases more factors than microbiome dysbiosis play a role,
these disease-specific features have to be incorporated
in intestine-on-a-chip models as well.
Current Opinion in Toxicology 2021, 25:6–14
Towards models of inflammatory bowel
disease
Thus far, most intestine-on-a-chip models find common
ground in mimicking the in vivo gut as closely as possible
by establishing an effective leak-tight barrier and
creating the right microenvironment. However, in many
intestinal diseases this barrier is impaired leading to a

so-called “leaky” gut and intestine-on-a-chip models
used to study such disorders need to adjust accordingly.
Administration of pro-inflammatory cytokines to induce
inflammation-induced intestinal barrier leakiness seems
the preferred option of many research groups to create
an intestine-on-a-chip model of IBD. Cytokine TNF-a
seems to be the common denominator in these so-
called pro-inflammatory cytokine cocktails, in combi-
nation with IL-1b [56], with IL-1b, IL-6, and IL-8 [30],
with IL-1b and IFN-g [57], or in combination with
lipopolysaccharide (LPS) [58]. Whereas initial studies

were performed with monocultures of Caco-2 cells
[30,57,58], the more recent models have incorporated
www.sciencedirect.com
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immune cells in the basolateral channel or ECM or use
co-cultures of Caco-2 cells with other intestinal cell
types. In combination with THP-1 and MTZ-3 immune
cells, pro-inflammatory cytokine treatment (TNF-a and
IL-1b) in the apical and basolateral channel of the
OrganoPlate decreased barrier and inflammation in
Caco-2/HT29-MTX-E12 tubuli [56]. Decreased barrier
integrity of Caco-2 tubules in the OrganoPlate was also

achieved when co-cultured with LPS-activated THP-
1 cells in the ECM, leading to neutrophil infiltration
[59]. Shin and Kim [48] adopted a different strategy and
followed the use of dextran sodium sulfate (DSS) to
induce colitis, a type of IBD, in mouse models. Two-day
treatment of Caco-2 villi in a microfluidic chip with 2%
DSS significantly decreased barrier integrity as
measured by TEER and FITC-dextran permeability as
well as decreasing villus height and disrupting the
mucus layer without causing epithelial cytotoxicity [48].
Pretreatment with 8 probiotic bacterial strains could

maintain the intestinal barrier during DSS administra-
tion, but not when the epithelium was challenged with
DSS before adding the probiotic bacteria, consequently
leading to translocation of bacteria through the damaged
epithelial layer [48]. Patient-specific biopsy-derived
organoids or iPSCs, which retain their diseased
morphology ex vivo, are also used to recreate the IBD-
phenotype on-a-chip [53,60]. Using their physiody-
namic mucosal interface-on-a-chip (PMI Chip) cultured
with biopsy-derived intestinal epithelial organoids from
Crohn disease (CD) and ulcerative colitis (UC) pa-

tients, Shin et al. [53] successfully demonstrated that
the formed epithelial layers of these two IBD types
retained their 3D morphology and expression of
epithelial markers such as MUC2, a mucus protein, in
agreement with IBD patient data. Up to date, the most
complex model of IBD-on-a-chip was established by
Trapecar et al. [60] who created a gutelivereimmune
axis in a multi-organ chip with primary liver, gut, and
circulating immune cells and studied the effect of short
chain fatty acids (SCFA) on IBD-related inflammation.
In the absence of adaptive immune cells, administration
of SCFA to the apical side of an UC-derived intestinal

epithelial layer in the gut compartment of the multi-
organ chip reduced the intestinal innate immune
response and improved hepatic metabolism. Interest-
ingly, however, is that increased inflammation, gut bar-
rier disruption, and decreased hepatic function were
noted when activated CD4þ T cells were co-
administered with SCFA in all compartments of the
multi-organ chip [60]. These opposing results for SCFA
show the usefulness of such a complex system that ex-
plores context-dependent interactions in the gute
livereimmune axis.
Multi-organ chips
Besides studying organ crosstalk in health and disease
conditions, the combination of liver and intestinal cells
www.sciencedirect.com
on a multi-organ chip can also be attractive for phar-
macokinetic profiling of drugs, as the combination of the
main organs involved in drug absorption and metabolism
will increase in vitro to in vivo translation. However, so far
only a few research groups that combined intestine and
liver cells on multiple-organ chips assessed the phar-
macokinetic profile of the administered drug [61e63].
In fact, most studies combining intestinal cells with

other organs on multi-organ chips primarily focus on the
treatment of tumor cells with anti-cancer reagents
[61,64e66]. Although these studies provide promising
data, the complexity of co-culturing and connecting
multiple organ-compartments on one microfluidic
device seems to attenuate wide-scale adoption of multi-
organ chips in the organ chip research field.
Conclusions and future perspectives
With the ability to mimic the in vivo intestinal archi-
tecture and microenvironment more closely than the
conventional in vitro culture systems, microfluidic
intestine-on-a-chip devices offer a novel and more
realistic approach to study intestinal function and pa-
thology (Figure 2). Although each intestine-on-a-chip
model has its own advantages and limitations, there

are some common hurdles that need to be considered.
Firstly, correct representation of the intestinal wall re-
mains a challenge as cell- or organoid-based intestine-
on-a-chip systems lack diverse cell types and supportive
tissue structures. While several researchers have shown
that the addition of multiple cell types is possible, their
platforms remain complex, labor-intensive and by
choosing one cell type over the other cell-based models
still miss out important factors. Using ex vivo tissue will
bypass this problem, but as it is difficult to apply in a
leak-tight manner and highly limited by available
(human) donor material, so far not many ex vivo
intestine-on-a-chip models have been developed. Sec-
ondly, the chip material can have a big impact when the
intestine-on-a-chip models are used for drug response
bioassays. Used in many organ-on-a-chip models and
loved for its flexibility, transparency, and easy
manufacturing, PDMS adsorbs a wide range of mole-
cules [67,68] and intestine-on-a-chip models made of
this material are therefore less attractive for studying
compound transport or toxicology studies [69]. Hence,
investments in alternative materials such as glass [70] or
coatings [71] may be useful. Besides the chip material,

using ECM in organ-on-a-chip devices can alter the ef-
ficacy or mechanism of action of a drug by the compo-
sition and stiffness of the matrix [72]. Thirdly, it is an
open secret that the throughput of almost all the models
is currently limited to running a few chips in parallel and
users need training to learn highly specific and delicate
techniques. This is an aspect that requires attention in
the coming period. Conclusively, although it can take
some time before the current or future intestine-on-a-
chip models find their way to research labs world-
Current Opinion in Toxicology 2021, 25:6–14
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wide, the great potential of these microphysiological
systems of the human intestine has already become
clear. We believe that novel developments in this field
will direct future research into intestinal function and
provide a platform to yield precision medicine based on
patient-derived cells or tissue biopsies and their
microbiome (Figure 3).
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