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Abstract

This present paper concerns the application of probabilistic fatigue life prediction
models based on S–N curves aiming at the estimation of the safety level for a non-
load carrying cruciform joint. The safety level is expressed in terms of the
reliability index as a function of the number of applied cycles. Estimating the
reliability of a structural component against fatigue failure is relevant for both
new and existing structures. The analysis is executed considering three models.
For each of them, the input random variables are given in a probabilistic
manner, based on fatigue test data from the scientific literature. The effect of
the model uncertainty on the model response is quantified for both the load
and the resistance side, demonstrating its relevance. Moreover, it has been
shown that a 0.5 to 1 increase in the reliability index is achievable by applying
the newly proposed, more complex model.
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Introduction

The safety assessment of bridge struc-
tural details for fatigue failure, requires
an appropriate resistance model repre-
senting the structural detail under con-
sideration. Concerning bridge
infrastructures, resistance models
based on both S–N curves and fracture
mechanics have been widely applied,
either to show that the design life can
be reached or to determine the safety
status of such details. An S–N curve
describes the empirical relationship
between the applied stress range and
the number of cycles to failure of a
certain structural detail. The European
standard EN 1993-1-9, Eurocode 3,1

recommends a fatigue resistance
model based on S–N curves character-
izing the fatigue resistance under con-
stant amplitude (CA) and variable
amplitude (VA) loading. The charac-
teristic CA S–N curve is derived from
laboratory tests and presents the
finite life region and the fatigue limit,
i.e. the stress range value assumed as
the threshold for fatigue failure under
CA loading, see Fig. 1. For VA
loading, the CA S–N curve is extended
below the fatigue limit using a log-log
linear relationship with a slope modi-
fied according to the findings of
Haibach.2 The Palmgren-Miner linear
damage rule is used to consider the

effect of VA loading, see Fig. 1. In
Eurocode 3, partial factors are rec-
ommended to be applied that should
be multiplied with to the characteristic
values of strength to determine the
design value based on the design type
and consequences of failure. For a
safe-life design two values of the
partial factors, gM,f , are recommended:
gM,f = 1.35 for high consequences of
failure, gM,f = 1.15 for low conse-
quences of failure.

The resistance model recommended in
Eurocode 3 has been modified in,3

mostly following the recommendations
given in4 to make it suitable for prob-
abilistic analyses, aiming to determine
the safety status expressed in terms of
probability of failure Pf , or reliability
index b. In particular, the variability
of the fatigue resistance is modeled as
a combination of the variability of the
CA S–N curve and the critical
damage, which are both recommended
in the probabilistic model code of the
JCSS.4 Another option to estimate
these quantities is to use a fatigue
resistance model calibrated with test
data, which need to be obtained using
load histories similar to those faced
during service.5 This can be done by
inferring fatigue test data using a prob-
abilistic fatigue resistance model, as it
was done in.6,7

Klippstein and Schilling8 investigated
the stress spectra resulting from the
traffic loading of short-span bridges.
The analyses indicated that the load
history recorded can be reproduced
by a stress spectrum following a trun-
cated Rayleigh distribution. The same
authors9 performed fatigue tests
under CA and VA loading, using the
truncated Rayleigh stress spectrum, to
characterize the response to fatigue
loading of non-load carrying cruciform
joints made of A572 Gr.50 steel. The
fillet welds were produced by sub-
merged arc welding, using Lincoln
L61 wire and 761 flux. Also, Barsom10

performed laboratory tests dedicated
to the estimation of the fatigue crack
growth rate under the truncated Ray-
leigh spectrum loading. These test
data form the basis to calibrate
fatigue resistance models in appli-
cations in which the loading spectrum
can be assumed similar to a truncated
Rayleigh. This is because they
provide information about the non-
linear phenomena of which a quantifi-
cation is difficult in absence of test
data.5

Two sources of uncertainty are to be
considered in a fatigue reliability
analysis. The aleatory uncertainty
exists due to the intrinsic variability of
the phenomenon under investigation
in this case, the intrinsic variability of

Fig. 1: Fatigue resistance model as defined in
the Eurocode 3 (EN 1993-1-9)
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the fatigue life. The epistemic uncer-
tainty is related to the amount of infor-
mation available to describe the
phenomenon, in this case the amount
of fatigue test data on which the S–N
curve is based. For fatigue test data
analysis these uncertainties have been
quantified in,6,7 amongst others.

The object of this study is to compare
the predicted reliability according to
the S–N curve in Eurocode 3 (EN
1993-1-9) with a more advanced
model at the end of the design life.
The model proposed in,6 hereafter
referred to as the modified six par-
ameters random fatigue limit model
(the modified 6PRFLM), is selected
for the latter. These models are cali-
brated based on the test data produced
by Klippstein and Schilling for a non-
load carrying cruciform steel joint
using the truncated Rayleigh spec-
trum.8,9 Considering a characteristic
fatigue resistance curve representing
the detail under investigation, the
applied stress spectrum is determined
for an arbitrary design life equal to
107 cycles, and is assumed to follow a
truncated Rayleigh distribution. In
addition, the effect of the epistemic
uncertainty on both load and resist-
ance side is quantified to highlight
their relevance with respect to the esti-
mated safety status.

Models and Methods

In this work, the fatigue resistance
under VA loading is estimated by
making use of two different models
based on S–N curves. The first model
is the bilinear S–N curve, depicted in
Fig. 1, applied in Eurocode 3 (EN
1993-1-9),1 and the recommendation
of the probabilistic model code from
the JCSS.4 The second model
employed is the probabilistic fatigue
life prediction model proposed in,6

the modified 6PRFLM. Both models
are briefly described in the two follow-
ing sections.

The Bilinear S–N Curve

The bilinear S–N curve for fatigue
resistance has been established after
the findings of Haibach2 and forms
the basis of the deterministic fatigue
life assessment of several standards
and guidelines such as Eurocode 3
(EN 1993-1-9),1 BS 7608,11 and DNV-
GL.12 It is based on the Basquin
relation for stress ranges higher than
the fatigue limit, Ds0, and a log-log

linear extension for considering the
contribution to the fatigue damage of
the stress ranges lower than the
fatigue limit, see Fig. 1. The slope of
the extension is assumed to be shal-
lower than the slope of the Basquin
relation. This is due to the fact that
the stress ranges lower than Ds0 are
less damaging than those above. This
model makes use of the following
form of the Basquin relation, which is
a linear relationship between the
base-10 logarithm of the fatigue life,
N, and the base-10 logarithm of the
stress range, Ds:

log10 N = a1 +m1 log10 Ds

for Ds . Ds0
(1)

the variable a1 is the intercept of the
curve for Ds = 1, and m1 is the slope.
Stress ranges lower than the fatigue
limit are accounted for by an exponen-
tial extrapolation of the S–N curve
below the fatigue limit, of which the
slope has been modified according to
the findings of Haibach:

log10 N = a2

+m2 log10 Ds log10 Ds

for Ds ≤ Ds0

(2)

where m2 is the slope and a2 is the
intercept of the curve. Variable a1 is a
random variable assumed to be fully
correlated to a2, which is also a
random variable. Both are assumed to
be lognormally distributed with mean
value and standard deviation to be
determined by inferring CA fatigue
test data using the least square
method. The value of a2 is obtained
considering that the fatigue limit is
the stress range associated with a
fatigue life equal to 5 million cycles.1

In EN 1993-1-9, the extension is
applied to the stress ranges lower
than Ds0 and above the cut-off limit,
defined as the stress range correspond-
ing to 108 cycles, see Fig. 1. It results
that the stress ranges lower than the
cut-off limit are considered negligible.
In the present work, the cut-off limit
is neglected, following the JCSS Prob-
abilistic Model Code.4 The Palmgren-
Miner linear damage rule is applied
to determine failure under the effect
of variable amplitude loading:

D =
∑ nj

Nj
(3)

where the index j refers to a stress
range of the loading spectrum, nj is
the number of cycles associated with
that stress range, and Nj is the
number of cycles to failure predicted
by the S–N curve. Failure occurs
when the cumulated damage, D,
reaches its critical value Dcr = 1 in EN
1993-1-9. In4 the critical damage is
assumed to be a lognormally distribu-
ted random variable having a mean
value mD = 1 and scale parameter
sD = 0.3,4 in order to consider the
uncertainty associated with VA
loading, which are due to load
sequence effects.

The Modified 6PRFLM

This model for the inference of VA
fatigue test data was proposed in6,13

and its formulation is based on the
6PRFLM, developed for CA fatigue
test data, but extended with the
damage limit concept first proposed
by Kunz14 in combination with the
linear damage rule of Palmgren and
Miner.

The 6PRFLMmakes use of the follow-
ing relation between the base-10 logar-
ithm of the fatigue life,N, and the base-
10 logarithm of the stress range, Ds:

log10 N = b0 + b1 log10 Ds

− p log10 1− Ds0

Ds

( )
(4)

where b0 and b1 are the model par-
ameters that control the location and
the slope of the curve in the finite life
region, just as the variables a and m1
do in the bilinear S–N curve, and p is
the parameter controlling the curva-
ture between the finite and the infinite
life regions. The fatigue limit and the
fatigue life conditional to the fatigue
limit are modeled as random variables,
namely V and W|V, respectively. V is
modeled by the function fV , which is
a function of the base-10 logarithm of
the fatigue limit v = log10 (Ds0) and is
conditional to the location and scale
parameters of the probability distri-
bution associated with the fatigue
limit, i.e. mV and sV :

fV = 1
sV

f
v− mV

sV

( )
(5)

where f is the pdf of the standard
normal distribution. In a similar way,
fW|V is a function of the base-10 logar-
ithm of the number of cycles to
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failure w = log10 N and is conditional
to (1) the parameters b0, b1, p of the
S–N curve, Eq. (4), (2) the applied
stress range Ds, and (3) the fatigue
limit Ds0. These parameters determine
the location parameter of W|V:

fW|V = 1
sW|V

f

w− [b0 + b1log10Ds
− plog10(1− (Ds0/Ds))

]

sW|V

⎛
⎜⎜⎝

⎞
⎟⎟⎠

(6)

where sW|V is the scale parameter of
the distribution. Since the symbol f
denotes the standard normal distri-
bution, the fatigue limit and the
fatigue life conditional to the fatigue
limit are both assumed to be lognor-
mally distributed. The probability
density and the cumulative distribution
functions of w are:

fW(w|Ds, uCA) =
∫log10Ds
−1

fV fW|V dv

(7)

FW(w|Ds, uCA) =
∫log10Ds
−1

fV FW|V dv

(8)

where uCA is the vector of the 6PRFLM
parameters, i.e. uCA = {b0, b1, sW|V ,
mV , sV , p} and FW|V is the cumulative
distribution function of W|V.

The contribution of the different stress
ranges to the fatigue damageD, is con-
sidered by using the linear damage
rule, Eq. (3). To consider the stress
ranges lower than the fatigue limit it
is assumed that the threshold stress
range for fatigue damage accumulation
Dsth is a function of the cumulated
damage. In particular, it is assumed
that:

Dsth = Ds0 1− D
Dcr

( )z

(9)

where Dcr is the critical value of the
damage, and z is a model parameter
controlling the trend of the normalized
threshold stress range Dsth/Ds0 as a
function of the normalized damage, or
cycle ratio, D/Dcr.

Dcr has the same meaning as in the
bilinear S–N curve, however, it is
described by a distribution that is cali-
brated based on fatigue test data. Dcr

It is assumed to be a lognormally dis-
tributed random variable having

mean value mD and scale parameter
sD. The vector of the model par-
ameters is uVA = {mD, sD, z}. uCA and
uVA are estimated by respectively infer-
ring CA and VA fatigue test data using
the maximum likelihood method.
Moreover, uVA is conditional upon
uCA. This is because the 6PRFLM is
first used to infer CA fatigue test
data, determining uCA then, uCA is
used in the 6PRFLM to infer VA
fatigue test data and determine uVA.

Figure 2 shows the 6PRFLM and its
horizontal and oblique asymptotes on
a log-log scale in which the vertical
axis is normalized to Ds0 and the hori-
zontal axis is normalized to
N0 = b0 + b1 log10 (Ds0). The figure
shows how the fatigue limit decreases
with increasing the normalized
damage assuming, for example, z = 1,
which implies that Eq. (9) is a linear
relation between Dsth and D/Dcr.
Different from the bilinear model, a
stress range Ds lower than Ds0 con-
tributes to the fatigue damage only if
the previously applied stress ranges
induced a certain D/Dcr in such a
way that the threshold stress range
Dsth is lower than this stress
range Ds. This is based on an analogy
between the fatigue damage and the
crack size, and is in agreement with
fracture mechanics. Different from
the modified 6PRFLM, in the bilinear
model, all the stress ranges contribute
to the fatigue damage since the first
applied cycle, which is not in agree-
ment with the mechanics of the
fatigue phenomenon. This is because,
the larger is the crack size, the larger
is the damage, and the lower is the
stress range which contributes to
crack growth, i.e. damage accumu-
lation. In Fig. 2, the modified
6PRFLM is plotted for D/Dcr = 0.25,
0.50, 0.75 and 1.

The 6PRFLM and the modified
6PRFLM are used to infer experimen-
tal data, CA and VA fatigue test data,
respectively, using the maximum likeli-
hood method, i.e. by maximizing the
likelihood function, which is a function
of the model parameters and is con-
ditional to the data and the model:

L(u; Data) =
∏

[ fw(w|Ds, u)]di

[1− Fw(w|Ds, u)]1−di

(10)

where d is the failure indicator, i.e. d =
1 for failure in the finite life regime and
d = 0 for runout in the infinite life
regime. As a result of the maximiza-
tion, the estimator of the model par-
ameter is determined as well as the
uncertainty. The epistemic uncertainty
is modeled as a multivariate normal
distribution of the model parameters,
of which the mean value is the
maximum likelihood estimator, and
the covariance matrix is determined
from the Fisher information matrix,
which is the Hessian matrix of the
Loglikelihood function, i.e. the matrix
of the second derivatives, evaluated at
the maximum likelihood estimator.
More information can be found in.6,13

In summary, the observed Fisher infor-
mation matrix is used to estimate the
epistemic uncertainty, and the aleatory
uncertainty is modeled following the
modified 6PRFLM. To evaluate the
model response, i.e. the distribution
of the fatigue life under VA loading,
the Monte Carlo method is used. The
epistemic and aleatory uncertainty are
considered using a nested random
sampling scheme. Therefore, for each
simulation the value of uCA and uVA
are sampled from the multivariate
normal distribution of the model par-
ameters, and consequently, the fatigue

Fig. 2: (a) Modified 6PRFLM forD/D_cr = 0.25, 0.50, 0.75 and 1 and its asymptotes and (b)
the damage limit function for different values of z
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life is estimated considering a random
sample of the S–N curve, and the criti-
cal damage.

The Fatigue Resistance of the
Non-Load Carrying
Cruciform Joint

CA Fatigue Test Data

Several authors investigated the
fatigue resistance of non-load carrying
cruciform joints. The test data reported
in the background documentation to
EN 1993-1915 are plotted in Fig. 3a
and compared with the S–N curve
given in EN 1993-1-9, the characteristic
fatigue resistance for a fatigue life
equal to 2 million cycles, i.e. the detail
category. The welded detail under
investigation is shown in Fig. 3 and in
EN 1993-1-9 is associated to the detail
category 80. Moreover, Fig. 3a shows
that the latter is a realistic lower
bound curve for this population. Fig.
3b shows only the fatigue test data pro-
duced by Klippstein and Schilling9

compared with detail category 80. It
results that detail category 80 is signifi-
cantly conservative with respect to
these data. For this reason, a character-
istic S–N curve has been derived using
only the CA fatigue test data of,9 see
Fig. 3b, and the procedure used in EN
1993-1-9. This implies that the failed
CA fatigue test data are inferred and
the Basquin relation, Eq. (1), is fit to
the failure data from9 using the least
square method, considering
x = log10 (Dsmax) as the independent
variable, and w = log10 (N) is the
dependent variable. The results are
reported in Table 1.

The characteristic fatigue resistance
curve is defined starting from the
stress range corresponding to 2
million cycles for a probability of

failure equal to 95% and 75% lower
confidence bound, considering the
standard deviation and the number of
samples [Eurocode 3]. This requires
the determination of a lower tolerance
bound (LTB). At a certain stress range
Ds, the LTB is calculated by

log10 NLTB = log10 N̂ + kP,1−a ŝw×
1+ 1

mCA
+ (log10Ds− E[log10Dsj])

2

∑
j (log10Dsj − E[log10Dsj])

2

√√√√

(11)

where log10 N̂ is estimated using the
Basquin relation, kP,1−a is a coefficient
for the calculation of the tolerance
limit,16 which is obtained from the
non-central Student T distribution,
and is a function of the selected per-
centile P, the confidence level a and
the number of test data mCA, ŝw is
the estimator of the standard devi-
ation of the residuals, reported in
Table 1, the stress range Dsj refers to
the j-th test data, i.e. j = 1…mCA,
and E[ · ] is the expectation operator.
The LTB curve for P = 0.95 and a =
0.75 is plot in Fig. 3b. It results that
the characteristic fatigue resistance
for N = 2 million cycles is DsC =
126 MPa, for the database of.9 The
characteristic S–N curve is con-
structed from this point, considering
m1 as obtained for the Basquin
relation, Table 1. Its extension has
been defined below the knee point
located at 5 million cycles.1 The

characteristic curve is also shown in
Fig. 3b. It appears to be significantly
higher than the S–N curve for detail
category 80 recommended in the
Eurocode 3 for the non-load carrying
cruciform joint.

The 6PRFLM, Eq. (4) has been used
to infer the same dataset. The estima-
tors of the parameters are reported in
Table 2. It can be seen that the estima-
tors of b0, b1 and sw|v are the same as
a1, m1 and sw obtained for the
Basquin relation. This results in the
two models to be very close in the
finite life region. On the contrary, the
6PRFLM allows the estimation of
the fatigue limit Ds0 = 10mv , and its
scatter sv, based on the distribution
of failure data and runouts, which is
not possible using the Basquin
relation. In addition, the parameter p
allows modeling the curvature
between finite and infinite life
regions, see Fig. 2. However, p being
almost equal to 0 means that in this
case a sharp knee is obtained for the
median S–N curve. This is attributed
to the small number of data around
the knee-point.

The Rayleigh Stress Spectrum
and VA Fatigue Test Data

This section presents the VA fatigue
test data and describes the loading
spectrum used in this investigation.
The normalized stress spectrum
follows a truncated Rayleigh distri-
bution as a result of the findings in8

regarding the loading spectrum in
short span bridges. The truncated Ray-
leigh distribution is given by the fol-
lowing relationship:

f (z) = CR z exp (−0.5 z2)

for 0 , z ≤ zmax

(12)

where z is the normalized stress range,
f (z) is the normalized frequency, zmax
is the truncation level, and CR is a nor-
malizing constant due to the trunca-
tion, being CR = 1/(0.988) for zmax = 3.
The normalized spectrum is shown in
Fig. 4a. The stress range is

Ds = Dsmin + z Dsd (13)

where Dsd = (Dsmax − Dsmin)/zmax is
the dispersion stress range, Dsmin is
the minimum stress range in the spec-
trum, see Fig. 4a. In9 the stress
spectra were generated considering
Dsd = Dsm. Then, for zmax = 3 the

Fig. 3:CA fatigue test data related to the non-load carrying cruciform joint: (a) all the data in
the background document of EN1993-1-9, and (b) data from Klippstein and Schilling

Parameter a1 m1 sw

Estimator 14.9 −3.99 0.0733

Table 1: Estimators of the Basquin equation
and its extension fitting the CA failure data
from Klippstein and Schilling
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maximum stress range of the spectrum
is Dsmax = Dsmin + 3 Dsd, and the
modal, i.e. the most frequent, stress
range in the spectrum is
Dsm = Dsmin + Dsd. Therefore, given
the truncation level, and given that
the fatigue test data used for calibrat-
ing the modified 6PRFLM are pro-
duced using Dsmin = 0, only one
parameter among Dsm, Dsd, and
Dsmax is necessary to fully define the
shape of the stress spectrum. In this
work, Dsmax is used, which is based
on the approach proposed by Gassner
while defining the Gassner curve.
Different authors inferred VA fatigue
test data obtained with the same type
of stress spectrum using different
stress range values to identify the
stress spectrum.17

The VA fatigue test data produced in9

using the Rayleigh stress spectrum
described by Eqs. (12) and (13) are
depicted in Fig. 4b by plotting on a
log-log scale the maximum applied
stress range of the spectrum against
the number of cycles to failure. The
VA fatigue data refer to specimens
belonging to the same batch of the
specimens used for the CA fatigue

tests described in the previous
section. Moreover, the geometry and
production procedure are also the
same. The VA fatigue test data are
inferred using a linear regression
model (LRM):

w = a0 − a1x+ e(0, sw) (14)

where w = log10 (N) is the dependent
variable, x = log10 (Dsmax) is the inde-
pendent one, a0 and a1 are the model
parameters, and e is the error term
for which it is assumed that the
residuals follow a normal distribution
having zero mean and standard devi-
ation equal to sw. The estimators of
the model parameters are reported in
Table 3. This model allows a compari-
son between the prediction of the
modified 6PRFLM and the bilinear
S–N curve of EN 1993-1-9 with test
data in a probabilistic fashion.

The bilinear model has not been used
to infer the VA fatigue test data, since
the value of m2 is obtained from the
slope of the Basquin relation using
the Haibach rule: m2 = m1 − 2, and
a2 is fully correlated to a1. Moreover
the critical damage is assumed to be
lognormal random variable with mean
mD = 1 and scale parameter sD = 0.3,
as reported in the JCSS Probabilistic
Model code.4 The Likelihood, the
Akaike and the Bayesian Information
Criteria resulting from the application
of these models inferring the con-
sidered data were calculated in,6

showing that the modified 6PRFLM
confers higher likelihood to the con-
sidered data, and that the AIC and
BIC statistics are in favor of the modi-
fied 6PRFLM.

The VA fatigue test data have been
inferred also using the modified
6PRFLM, allowing the estimation of
uVA and the epistemic uncertainty,
which is given in Table 4. The random
variable describing the epistemic
uncertainty follows from the appli-
cation of the Maximum Likelihood
method and is assumed to be a multi-
variate Normal distribution of the
model parameters as in.6,7 It results
that the critical damage distribution
has a mean value 1.61 times higher
and a lower scatter than assumed by
the JCSS Probabilistic Model code.

Results

This section aims to compare the
reliability index predicted by the differ-
ent models at the end of the design life
for the non-load carrying cruciform
joint of which the CA and VA test
fatigue test data have been presented
and used to calibrate the models. At
first, the reliability indices are com-
pared considering the aleatory uncer-
tainty only. In a second step, the
epistemic uncertainty on the resistance
side is added, and in the last step, the
epistemic uncertainty is introduced
for both the resistance and the load.

The calculation is performed by using
the Monte Carlo Method. The
general definition of the reliability
index is used:

b = −F−1(Pf ) (16)

where F−1 is the inverse of the cumu-
lative standard normal distribution
and Pf is the probability of failure, i.e.
the ratio between the number of

Fig. 4: (a) Normalized Rayleigh spectrum and (b) VA fatigue test data from [9] fitted by the
LRM

Parameter Estimator St.err

Correlation Matrix

b0 b1 sw|v mv sv p

b0 14.9 0.387 1 −0.995 0.341 0.205 −0.313 −0.621

b1 −3.99 0.159 −0.995 1 −0.283 −0.175 0.258 0.554

sw|v 0.0733 0.0208 0.341 −0.283 1 0.471 −0.687 −0.602

mv 2.11 0.0122 0.205 −0.175 0.470 1 −0.630 −0.408

sv 0.0383 0.0279 −0.313 0.258 −0.688 −0.630 1 0.701

p 1.09 10−8 0.0709 −0.621 0.554 −0.602 −0.408 0.701 1

Table 2: Estimators and uncertainty of the 6PRFLM fitting the CA data from Klippstein and
Schilling

Parameter a0 a1 sw

Estimator 18.0 −4.81 0.113

Table 3: Estimators of the parameters of the
LRM fitting the VA fatigue test data
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simulations that showed failure before
the end of design life (D = 1 at 107

cycles) and the total number of
simulations.

The Rayleigh stress spectrum applied
in this work has been calibrated to
obtain a design life of 107 cycles, i.e.
D = 1 at 107 cycles, and considering
the design S–N curve, which results
from the characteristic S–N curve by
applying a partial factor gM,f . The
characteristic S–N curve has been
derived using the CA data from.9 Cali-
brating the stress spectrum implies,
since Dsmin = 0, zmax = 3, and Dsd
= Dsm, calibrating solely Dsmax. By
using the characteristic S–N curve
defined in the previous section, the
Rayleigh stress spectra for a design
life equal to 107 cycles are determined
for safe life design considering the
partial factors given in EN 1993-1-9
for both high and low consequences
of failure. The maximum stress ranges
of the stress spectrum are Dsmax = 140
and 119 MPa for hM,f = 1.15 and 1.35,
respectively.

The trend of the reliability index is
depicted in Fig. 5 as a function of the
number of cycles resulting from both
models including and excluding the
epistemic uncertainty on the resistance
side. It has been obtained by 107Monte
Carlo samples of the fatigue life. By
doing so, assuming as a rule of thumb
that a negligible numerical error is
obtained with 100 failures, i.e. Pf =

100/107, a realistic estimation of the
reliability is obtained for b , 4.26.
When only aleatory uncertainty are
considered, the modified 6PRFLM
and the bilinear S–N curve show a
similar scatter. Instead, when epistemic
uncertainty are considered, the modi-
fied 6PRFLM results in a wider distri-
bution than the bilinear S–N curve of
EN 1993-1-9. This is because a
steeper trend denotes a narrower, i.e.
less scattered, distribution of fatigue
life. This directly follows from Eq.
(15). Fig. 5a shows the probability
density function (Pdf) of two assumed
distributions of the fatigue life, having
their mean equal to 106 cycles and
their CoVequal to 0.2 and 0.3, respect-
ively. The cumulative density function
(Cdf) is plotted for the same cases in
the same figure. The reliability index
is calculated using Eq. (15) and is plot
in Fig. 5b. These figures show that the
more scattered distribution results in
a shallower trend of the reliability
index.

Moreover, the results obtained using
the modified 6PRFLM are closer to
those obtained by the application of
the LRM fitting the VA fatigue test
data. It appears that the effect of the
epistemic uncertainty is larger for the
modified 6PRFLM than for the
bilinear S–N curve of EN 1993-1-9.
This shows in two differences. (1) For
the bilinear S–N curve, the uncertainty
related to the S–N curve extension and
that related to the location of the

fatigue limit is assumed to be fully cor-
related to the epistemic uncertainty
associated with the location parameter
of the CA S–N curve. In the modified
6PRFLM, the fatigue limit is modeled
as a random variable of which the
location and scale parameters result
to be weakly correlated with the
location parameter of the CA S–N
curve, see Table 2. (2) In the modified
6PRFLM, the stress ranges below the
fatigue limit are taken into account by
the damage limit model, which is
dependent on the value of z, assumed
to be uncorrelated to any of the par-
ameters of the CA S–N curve, since
CA and VA data are inferred in two
separate procedures. In summary, it
appears that the epistemic uncertainty
is not properly accounted for in the
probabilistic fatigue resistance model
constructed based on clause 9.6.1(5)
of EN 1993-1-9, since it is only esti-
mated on the basis of CA fatigue test
data. For the considered design life,
i.e. 107, and low consequences of
failure, and when both the aleatory
and the epistemic uncertainties are
considered, the prediction of the
bilinear S–N curve of EN 1993-1-9 is
the most conservative, followed by
the LRM and the modified 6PRFLM,
see Fig. 5a. The difference between
the prediction of the LRM of the VA
fatigue test data and the modified
6PRFLM is due to the values of
Dsmax considered being outside the
range of the VA fatigue test data used
to calibrate the models. This makes
the LRM the most conservative. For
the LRM, the effect of the uncertainty
increases with increasing the difference
between Dsmax and the stress range of
the centroid of the data, i.e.
E[log10Dsj], see Eq. (11). This also
explains the large difference between
the LRM with and without the episte-
mic uncertainty. Moreover, the LRM
does not include any type of threshold
condition for fatigue failure under VA
loading. This explains the fact that the
difference between the modified
6PRFLM and the LRM increases
with decreasing Dsmax. Figure 6 also
shows that the LRM gives very large
effect of the epistemic uncertainty, as
compared to the other two models.
This is due to the low number of data
(10 data) inferred by this model, as
only VA fatigue test data were used.
On the contrary, the bilinear S–N
curve gives the smallest effect of the
epistemic uncertainty due fact that
only the CA test data (20 failure data
and 9 runouts) were inferred by this

Fig. 5: Relation between the reliability index and the scatter of the fatigue life: (a) Pdf and Cdf
of the fatigue life, and (b) trend of the reliability index

Parameter Estimator St.err. Correlation matrix

mD 1.61 0.161 mD sD z

sD 0.225 0.0982 0.249 1 0.550

z 1.14 1.07 0.0243 0.550 1

Table 4: Estimators of the parameters of the modified 6PRFLM
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model. The modified 6PRFLM incor-
porates both CA and VA data and
highlights two aspects. On one hand,
it shows the importance of corroborat-
ing VA fatigue test data with CA
fatigue test data in order to reduce
uncertainty. On the other hand, it
shows the large epistemic uncertainty
associated with VA loading.

The uncertainty on the load side has
been modeled as a global model uncer-
tainty, as suggested in the JCSS.4 In
here, the stress ranges of the truncated
Rayleigh spectrum are multiplied by a
lognormally distributed random vari-
able with a mean of 1, and assuming
full correlation between the stress
range levels. Three values for the stan-
dard deviation on the load side, sload

have been considered: 0, 0.1, and 0.2.
The JCSS recommends sload = 0.1.
Figure 7 depicts the reliability index
with and without the uncertainty
associated with the load determination.
In this case, the epistemic uncertainty
associated with the resistance model

is always considered. The Monte
Carlo samples are generated perform-
ing a (independent) nested sampling
of epistemic and aleatory uncertainty
for both the load and resistance side.
The figure shows that with increasing
the uncertainty on the load side, i.e.
stepwise increasing sload by 0.1, the
reliability index at the end of the
design life almost decreases by a unit
value. This suggests a large importance
of correctly estimating the uncertainty
on the load side.

Conclusions

In this work, three fatigue resistance
models were applied to estimate the
reliability against fatigue failure of a
non-load carrying cruciform joint and
the effect of the uncertainty on both
load and resistance sides. The follow-
ing conclusions can be drawn:

(1) The bilinear S–N curve based on
the linear regression of CA fatigue

test data, the Haibach rule, and
the recommendations from JCSS,
which forms the basis of the S–N
curves in EN 1993-1-9, is solely
based on CA fatigue test data.
This determines that the prediction
of the reliability index differs from
the modified 6PRFLM and the
LRM of VA data when only alea-
tory uncertainty are considered.
Moreover, the effect of the episte-
mic uncertainty is significantly
smaller compared to the other two
models, given the datasets inferred.

(2) The linear regression of VA fatigue
test data determines a prediction in
line with the modified 6PRFLM
when the epistemic uncertainty on
the resistance side is neglected.
When epistemic uncertainty is
taken into account, the linear
regression model becomes signifi-
cantly more conservative than the
modified 6PRFLM. The conservati-
vism increases with the maximum
stress range of the spectrum Dsmax
approaching the fatigue limit Ds0
and with increasing the absolute
value of the difference between the
maximum stress range Dsmax and
the stress range at the centroid of
the data. This proves the importance
of corroborating VA fatigue test
data with CA fatigue test data in a
model forVA fatigue life prediction.

(3) The modified 6PRFLM is used to
infer both CA and VA fatigue test
data and is considered more
reliable with respect to the other
two models because it is able to
take into account both CA and
VA fatigue test data.

(4) Introducing the uncertainty on the
load side has a significant effect on
the estimated reliability index. In
this case, a stepwise increase of
sload associated to the load side by
0.1 resulted in approximately a
unit decrease of the reliability
index for all the considered models
fitting the CA andVA data reported
by Klippstein and Schilling.9

(5) For the considered datasets, it has
been shown that increasing the
model complexity leads to higher
accuracy of the prediction and
reduced uncertainty. Due to the
model complexity and increasing
calculation time, it is expected
that such models are of better use
for reliability analyses and for cali-
brating partial factors rather than
for daily use in practice as their
use requires also the application
of statistical concepts.

Fig. 7: Effect of load uncertainty on model response on the reliability index versus applied
number of cycles for the stress spectra resulting in a design life of 107 cycles: (a) low con-
sequences of failure(Dsmax = 140 MPa), (b) high consequences of failure
(Dsmax = 119 MPa)

Fig. 6: Reliability index as a function of the applied number of cycles for the stress spectra
resulting in a design life of 107 cycles: (a) low consequences of failure (Dsmax = 140 MPa),
(b) high consequences of failure (Dsmax = 119MPa)
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