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A B S T R A C T

Propagation of weld toe cracks under cyclic loading is often predicted using fracture mechanics.
In as welded condition, most of the propagation life is spent as a short crack, which is known
to behave differently than a long crack. Several studies have been conducted with the aim of
correlating the fatigue crack growth rate and the threshold condition of small cracks to the
well known linear elastic crack driving force parameter 𝛥𝐾, the stress intensity factor range. In
many cases, the application of such models requires the quantification of material properties
and model parameters that are difficult to obtain from tests, and therefore scarcely available.
The present paper bypasses this inconvenience by making use of the square root of area,

√

𝑎𝑟𝑒𝑎,
parameter proposed by Murakami. Successively, a linear elastic fracture mechanics based fatigue
crack growth model is formulated for physically short and long cracks under constant and
variable amplitude random block loading. The uncertainty of the model parameters is quantified
in a frequentist statistical framework.

. Introduction

The resistance of welded details against fatigue failure is often evaluated through the use of fatigue resistance curves in
ombination with the linear damage rule proposed by Palmgren and Miner [1–3]. For welded details, a global approach to fatigue,
.g. with the nominal or geometrical stress range as load parameters, is preferred to more local approaches based on continuum
echanics. This is because the in-service behavior of such details is largely influenced by the presence, the location, and the type of

nitial defects that significantly reduce the crack initiation stage of the fatigue life, up to the extent that this may even not exist in
s-welded details [4]. When initial defects are assumed to exist, fracture mechanics is necessary instead of continuum mechanics to
tudy their behavior, potentially leading to high accuracy in determining both the fatigue life and the threshold condition [5–13].
oreover, fracture mechanics models are required for implementing DTD, i.e. a design based on periodic fatigue inspections, in

oth deterministic and probabilistic frameworks, for example in steel bridges [14–18]. In DTD, the fracture mechanics model aims
o the determination of the fatigue crack growth rate, forming the basis to estimate inspection intervals.

Despite the crack growth being erratic [19], it is often assumed that the first mode of loading is dominant and that the crack
rows in a plane. The crack path is usually evaluated through either a single parameter, i.e. the crack depth 𝑎, or two parameters,
.e. the crack depth 𝑎 and the crack width 2𝑐. A semi-elliptical shape of the crack front is assumed [20–22], see Fig. 1. This assumption
s supported by experimental observation about the crack front shapes observed in metals. Cracks observed in smooth specimens
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Nomenclature

CA Constant Amplitude
DTD Damage Tolerant Design
FCGR Fatigue Crack Growth Rate
HAZ Heat-Affected Zone
K–T Kitagawa–Takahashi
SIF Stress Intensity Factor
VA Variable Amplitude

Symbols

𝛼′′ Geometry parameter for 𝜎ref
𝛥𝜎 Nominal stress range
𝛥𝜎0 Fatigue limit
𝛥𝜎rms Root mean square stress range in the stress spectrum
𝛥𝜎d Dispersion parameter of the Rayleigh distribution
𝛥𝜎max Maximum stress range in the stress spectrum
𝛥𝜎m Location parameter of the Rayleigh distribution
𝛥𝜎th Threshold stress range
𝛥𝐾 SIF range
𝛥𝐾0 Threshold SIF range for long cracks at 𝑅 = 0
𝛥𝐾rms Root mean square SIF range of the spectrum
𝛥𝐾max Maximum SIF range of the spectrum
𝛥𝐾th,eff Intrinsic (effective) component of the threshold SIF range
𝛥𝐾th,op,lc Extrinsic component of the threshold SIF range for long cracks
𝛥𝐾th,op Extrinsic component of the threshold SIF range
𝛥𝐾th Threshold SIF range
𝛥𝐾𝑡ℎ,lc Threshold SIF range for long cracks
̂ Estimator
𝜎max Maximum stress of the stress cycle
𝜎min Minimum stress of the stress cycle
𝜎m Primary membrane stress
𝜎op Crack opening stress
𝜎ref Reference stress
𝜎𝑏 Primary bending stress
𝜎𝑗 jth coefficient of a polynomial stress distribution
𝜎𝑠 Secondary stress
𝜎𝑢 Ultimate tensile strength
𝜎𝑦 Yield stress
√

𝑎𝑟𝑒𝑎 Square root of area parameter
√

𝑎𝑟𝑒𝑎crit Critical value of the square root of area parameter

𝐸

[

𝑑𝑎
𝑑𝑛

]

VA

Average fatigue crack growth rate observed under VA loading

𝑖 Index referring to the load level in the stress spectrum
𝑗 Index referring to the fatigue test data
𝑎 Crack depth
𝐴0 Parameter of the crack closure function
𝑎0 Fitting parameter for El-Haddad model
𝐴1 Parameter of the crack closure function
𝐴2 Parameter of the crack closure function
𝐴3 Parameter of the crack closure function
𝐴0,𝛺 Parameter of the crack closure function under VA spectrum loading
𝐴1,𝛺 Parameter of the crack closure function under VA spectrum loading
𝑎crit Crack depth associated to

√

𝑎𝑟𝑒𝑎crit
2
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𝑎ini Initial crack depth
𝐵 Thickness of the cross-section
𝐶 Fatigue crack growth rate coefficient
𝑐 Semi crack width
𝐶1 Integration constant
𝐶𝛺 Fatigue crack growth rate coefficient under VA spectrum loading
𝑐th Parameter of the NASGROW model
𝐶𝑜𝑉 [ ] Coefficient of variation
𝑑 Distance from the free surface of the largest microstructural barrier
𝑑𝑎∕𝑑𝑛 Fatigue crack growth rate
𝐹 Crack velocity function
𝐹𝛺 Crack velocity function under VA spectrum loading
𝑓𝑗 Weight functions
𝐹lc Crack velocity function for long cracks
𝑓op,𝛺 Crack opening function under VA spectrum loading
𝑓op Crack opening function
𝐹𝑙𝑐,𝛺 Crack velocity function for long cracks under VA spectrum loading
𝐻b Brinell hardness
𝐻V Vickers hardness
𝐼(𝜃) Fisher information matrix
𝐾 SIF
𝑘 Calibration parameter of the cyclic resistance curve as proposed by Mc Evily
𝐾𝑐 Critical value of the SIF
𝑘m Misalignment factor for SIF
𝐾p,max SIF resulting from primary stresses at the maximum applied load
𝐾p,max SIF resulting from primary stresses at the minimum applied load
𝐾p SIF resulting from primary stresses
𝐾s,b SIF resulting from secondary bending stresses
𝐾s,m SIF resulting from secondary membrane stresses
𝐾s,sb SIF resulting from secondary self-balancing stresses
𝐾s SIF resulting from secondary stresses
𝐾𝑝,𝑏 SIF resulting from primary bending stresses
𝐾𝑝,𝑚 SIF resulting from primary membrane stresses
𝑘𝑡𝑏 Stress concentration factor for SIF under bending loading
𝑘𝑡𝑚 Stress concentration factor for SIF under membrane loading
𝑀 Bulging correction factor for the SIF
𝑚 Fatigue crack growth rate exponent
𝑚𝛺 Fatigue crack growth rate exponent under VA spectrum loading
𝑀m Stress intensity magnification factor for membrane stresses
𝑀w Stress intensity magnification factor
𝑀𝑏 Stress intensity magnification factor for bending stresses
𝑀𝑤,𝑏 Weld toe stress intensity magnification factor for bending stresses
𝑀𝑤,𝑚 Weld toe stress intensity magnification factor for membrane stresses
𝑁 Number of cycles to failure
𝑛𝑖 Number of cycles for the ith stress range in the spectrum
𝑝th,𝛺 Parameter of the FCGR model under VA spectrum loading
𝑝th Parameter of the NASGROW equation
𝑅 Load ratio: 𝜎min∕𝜎max.
𝑇w width of the section
𝑌 Geometrical correction function for the SIF
𝑍 Weld leg
𝑧 Distance from the free surface of the considered point along the crack front
E[ ] Expectation operator
3
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Pr[ ] Probability
St.err.[ ] Standard error

Fig. 1. Crack developing at the weld toe of a non-load-carrying cruciform joint. Strategy involving one parameter, the crack depth, 𝑎, to model the crack front,
or two parameters, the crack depth, 𝑎 and the semi-width, 𝑐.

are found to initiate having an aspect ratio, 𝑎∕𝑐, close to unity [23], i.e. their shape is semi-circular. Several studies involved the
description of the crack growth at the weld toe in transverse welds [24–26]. These cracks are characterized by smaller aspect ratios
(𝑎∕𝑐 < 0.3) than cracks growing at the surface of smooth specimens. Moreover, multiple initiation sites are observed along the weld
toe, leading to short cracks which, especially at the early stages, tend to coalesce, forming larger cracks. When the crack depth
exceeds approximately 0.3 mm, it has been found that microstructural imperfections no longer affect crack growth [24–26].

The initial crack size to be used for fatigue life prediction based on fracture mechanics has been the subject of several studies. In
some of these studies, the equivalent initial flaw size is used, where the size has been determined by making use of fracture mechanics
fatigue life prediction models. The equivalent initial flaw size has been determined iteratively on the basis of the agreement between
the model prediction and fatigue test data [27,28]. Therefore, the initial crack size and its distribution are calibrated and are
conditional to the model, limiting the application of such an initial crack size to the model used and the geometry and the load
condition for which it was derived. This is because in most of these models there is no explicit reference to the distinction between
short and long cracks, despite the equivalent initial crack size being often one order of magnitude smaller than one millimeter, which
in the majority of the structural steels is often associated with a short crack. Zerbst [29] proposed to use as (artificial) minimum
initial crack size the maximum non-propagating crack at the fatigue limit for a given load ratio 𝑅. Using the crack arrest approach
Zerbst showed that the initial predicted crack size is smaller for the high-strength than for the low-strength steels [30]. On the
contrary, the size of non-propagating cracks is found to decrease with increasing the strength of the steel. Following an analysis of
the locations of crack initiation, no correlation was found with the geometry of the weld toe [31]. They were found to be dependent
on the surface roughness and the incidence of ripples up to a certain distance from the weld toe. Moreover, in the early stages of
crack propagation, the number of cracks along the weld toe was found to be proportional to the severity of the applied load, in
accordance with previous literature [32]. In [33] a model is presented in which the initial crack is defined by means of a method
based on a crack arrest criterion. Moreover, the initiation of multiple cracks is considered, based on the geometrical variation of the
weld toe geometry. A complete description of the initial crack size is relevant for fracture mechanics-based fatigue life prediction.
This can be obtained by observing fracture surfaces or by using non-destructive measurements. For example, measurements of the
initial defect size are reported in [34] for Inconel weldments. However, in this case uncertainty exists about the type of weld defect
or imperfection encountered since in [34] it is not stated whether the initial size reported is related to a crack, an undercut, or any
other type of crack-like defect located at the weld toe.

The characterization of short and long cracks through the definition of length scales in which cracks can be defined as either
‘‘long’’ or ‘‘short’’ is not possible in absolute terms. Short cracks have been divided into microstructurally short cracks (micro-cracks),
and mechanically or physically short cracks (small cracks) [35–39]. For micro-cracks, the propagation rate is significantly affected
by the microstructure, and it is found to be inhomogeneous due to the effect of microstructural barriers [40], see Fig. 2. Small
cracks are large enough to be not significantly affected by microstructural barriers, and they can be considered as surrounded by
a homogeneous material. For this reason, the crack growth rate, 𝑑𝑎∕𝑑𝑛, can be potentially described by means of a crack driving
force parameter based on the assumption of homogeneity, as the linear elastic stress intensity factor (SIF), 𝐾. It has been extensively
shown in the literature that for small cracks the measured crack growth rate plotted against the SIF range, 𝛥𝐾, does not correlate
well with that one of long cracks. This is because a small crack is not long enough for its driving force to be affected by extrinsic
effects that typically influence the behavior of long cracks, such as plasticity, oxide and, roughness induced crack closure [37], or
any other mechanism that shields the crack tip. For small cracks, the shielding effect of the crack tip is not as effective as for long
cracks, because of the dimension of the crack flanks. For these reasons, early studies observe that under cyclic loading conditions
leading to the same driving force, small cracks propagate faster than large cracks [23], see Fig. 2. However, the linear elastic SIF
4
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Fig. 2. Stages of fatigue crack propagation.
Source: Adapted from Miller [40].

Fig. 3. Qualitative trend of the cyclic R-curve.

range, 𝛥𝐾, valid only to describe the crack growth rate for long cracks, has been found suitable to describe also the growth of
small cracks [41] by making explicit the dependence of the extrinsic effects and crack size. This is because the intrinsic resistance to
fatigue crack propagation, which is related to the (intrinsic) damage processes that operate ahead of the crack tip [42], is essentially
the same. The extrinsic effects affect the crack tip stresses. The crack tip should be open at a minimum applied stress greater than
zero. When extrinsic effects occur, the above condition is not always verified and the crack opening stress 𝜎op can be greater than
the minimum stress of the stress cycle, i.e. 𝜎op > 𝜎min, determining a reduction of the effective crack driving force.

As for the fatigue crack growth rate, a similar difference between small and long cracks is observed for the threshold
condition [43]. The extrinsic mechanisms that determine a higher apparent threshold for long cracks are equal to those responsible
for a lower crack propagation rate [41], despite the intrinsic mechanism of threshold phenomena and crack propagation being
different [36–38]. The threshold condition, 𝛥𝐾th, is modeled as the sum of the intrinsic, 𝛥𝐾th,eff, and the extrinsic, 𝛥𝐾th,op,
components, and tends to the threshold SIF range for long cracks, 𝛥𝐾th,lc, with increasing the crack size:

𝛥𝐾th = 𝛥𝐾th,eff + 𝛥𝐾th,op (1)

where 𝛥𝐾th,op depends on the crack size, 𝑎, and the load ratio, 𝑅, and its maximum value is given by (𝛥𝐾th,lc−𝛥𝐾th,eff). Some studies
support the hypothesis that 𝛥𝐾th,eff depends, not only on the material, but also on the load ratio, 𝑅, despite the mechanisms causing
this dependence are not clear yet [44–46]. Other studies do not make an explicit reference to this relation or support the hypothesis
of the intrinsic threshold to be a unique material dependent parameter [41,47–49].

The circumstance that a small and a long crack subjected to the same 𝛥𝐾 exhibit different crack growth rates and require different
threshold conditions is a break of the similitude principle. This implies that the modeling and the experimental data for fatigue crack
propagation of small and long cracks are different. Several authors modeled the threshold condition for small cracks in different
ways. By using these models, the condition for which a crack propagates under cyclic loading is 𝛥𝐾 > 𝛥𝐾th and is graphically
5
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𝐻
p

to the crack size. Smith [51] determined the smallest crack size which is significant in linear elastic fracture mechanics calculations
as dependent on the threshold SIF range for long cracks and the fatigue limit of smooth specimens. El Haddad [52] interpreted the
behavior of experimental data from Kitagawa and Takahashi [43] and formulated the first model able to consider the effect of the
crack size on the threshold SIF range, which is nowadays used in the NASGROW model [53] by the following equation:

𝛥𝐾th = 𝛥𝐾th,lc

√

𝑎
𝑎 + 𝑎0

(2)

where 𝑎0 is a calibration parameter called ‘‘intrinsic crack length’’, which according to [53] can be considered as a fixed value
𝑎0 = 0.0381 mm. Zerbst [29] proposed a modified version of Eq. (2), based on the observation that 𝛥𝐾th should equal 𝛥𝐾th,eff for
crack extension equal to zero, that is for 𝑎 − 𝑑 = 0:

𝛥𝐾th = 𝛥𝐾th,lc

√

𝑎 + 𝑎∗
𝑎 + 𝑎∗ + 𝑎0

(3)

where:

𝑎∗ = 𝑎0
(𝛥𝐾th,eff ⧵ 𝛥𝐾th,lc)2

1 − (𝛥𝐾th,eff ⧵ 𝛥𝐾th,lc)2
(4)

In this approach, the intrinsic crack length is determined as:

𝑎0 =
1
𝜋

(

𝛥𝐾th,lc
𝑌 𝛥𝜎0

)2

(5)

where 𝑌 is the geometry correction factor, typically equal to 1 [29]. Murakami [54,55] related 𝛥𝐾th to the Vickers hardness,
V, for several metals. The size of the defect was accounted for by the square root of the area resulting from the orthogonal

rojection of the defect with respect to a plane perpendicular to the loading direction, i.e. the
√

𝑎𝑟𝑒𝑎 parameter. The
√

𝑎𝑟𝑒𝑎 is found
to be able to correlate different types of surface defects, namely notches, indentations, and cracks, with the threshold SIF range.
Moreover, the correlation holds independent of the shape of the defect, see Fig. 4. The experimental data produced to relate the
√

𝑎𝑟𝑒𝑎 parameter to the threshold stress for fatigue crack propagation, 𝛥𝜎th, led to the definition of the critical value of the
√

𝑎𝑟𝑒𝑎
parameter,

√

𝑎𝑟𝑒𝑎crit. For defects such that
√

𝑎𝑟𝑒𝑎 ≤
√

𝑎𝑟𝑒𝑎crit, 𝛥𝜎th = 𝛥𝜎0, otherwise 𝛥𝜎th < 𝛥𝜎0. To model the build-up of the
extrinsic effect on the intrinsic threshold, Mc Evily [56] suggested an exponential relation of which the exponent is dependent on
the material and loading condition, i.e. the load ratio. This relation was successively used by Chapetti [46] to model the cyclic
R-curve by a formulation which required only one independent parameter controlling the length scale at which the extrinsic effects
take place, besides the measurement of 𝛥𝐾th,eff and 𝛥𝐾th,lc. In [41] the build-up of crack closure was modeled as the sum of two
exponential terms that have to be calibrated with test data. The two terms take independently into consideration the plasticity and
roughness induced crack closure and the circumstance that these two extrinsic effects occur at different length scales (crack sizes).
In this case, three independent parameters are required, two controlling the length scales and one weighting the two crack closure
mechanisms. Whatever is the model, the determination of cyclic R-curve is not trivial, as many testing parameters can influence the
results [57].

For the fracture mechanics-based fatigue life prediction under VA loading, a large number of models have been proposed in the
literature, of which the accuracy depends on the specific load history [58–60]. This is because of the complexity of load sequence
effects. For example, crack growth following a single overload determines a transient in the crack opening function, which has
been the subject of many studies [61–64]. However, it is certainly more reliable, for many randomly loaded structures, to measure
the crack growth rate determined by the application of a load history sampled from a certain spectrum, and relate it to the crack
driving force parameter derived for a specific stress range, e.g. the root mean square, as done by Barsom [65,66]. By following this
approach, the load sequence effects are only globally accounted for.

The present paper aims to present a probabilistic fatigue life prediction model for fatigue crack growing at the weld toe, starting
from an initial defect or weld imperfection. The presented model is able to consider the difference in the fatigue crack growth rate
and threshold condition of small and large cracks. The crack propagation is considered under CA and VA loading, using spectrum
fatigue crack growth data from the literature. The inputs of the model and its epistemic uncertainty are estimated in a frequentist
statistical framework. The correlations proposed from Chapetti [46] and Murakami [54,55] were used to model the build-up of the
extrinsic effects on the threshold condition and the fatigue crack growth rate. For VA loading, the fatigue crack growth rate has
been determined from experimental data available in the literature which were determined under random block loading. Different
from random loading, in which the entire load history is randomized, a block of loading is generated creating a random sequence
of reversal points, i.e. a random block having a predefined length. This random block is applied repetitively until failure. Therefore,
the entire load history is not purely random. The data have been inferred using the proposed model and applied to predict the
fatigue life of non-load carrying cruciform joints under the same type of loading.

2. Models and methods

2.1. SIF determination for CA loading

Only the first mode of opening of the crack is considered in this research. Therefore, the SIF reported here always refers to this
opening mode.
6



Engineering Fracture Mechanics 242 (2021) 107487D. Leonetti et al.
Fig. 4. Definition of the
√

𝑎𝑟𝑒𝑎 parameter and the various types of surface defects investigated by Murakami [54].

In order to determine the fatigue crack growth rate using Eq. (18), the crack driving force is needed. The linear elastic SIF, 𝐾, is
used as a crack driving force parameter, considering its wide applicability and the verified appropriateness to represent both small
and long crack behavior, as mentioned in the introduction. At a given point along the crack front, the SIF is given by the sum of
the SIFs obtained for primary (𝐾p) and secondary (𝐾s) stresses [67]:

𝐾 = 𝐾p +𝐾s (6)

The primary membrane and bending stresses are the nominal stresses obtained directly from the applied force and bending moment,
respectively. The SIF for primary stresses is:

𝐾p = 𝐾p,m +𝐾p,b (7)

Because of the superposition principle, the SIF for primary loading is given by the sum of the SIF obtained under the membrane
and bending components:

𝐾p,m = 𝑀𝑓w𝑘tm𝑀wm𝑀m𝜎m
√

𝜋𝑎 (8)

𝐾p,b = 𝑀𝑓w𝑘tb𝑀wb𝑀b[𝜎b + (𝑘m − 1)𝜎m]
√

𝜋𝑎 (9)

where 𝑀 is the bulging correction factor, 𝑓w is the finite width correction factor, 𝑘tm and 𝑘tb are the membrane and bending stress
concentration factors, 𝑀wm and 𝑀wb are the membrane and bending stress intensity magnification factors for the weld toe geometry,
𝑀m and 𝑀b are stress intensity magnification factors for membrane and bending, respectively, 𝜎m and 𝜎b are the membrane and the
bending stresses, and 𝑘m is the factor considering the effect misalignment. In Eqs. (8)–(9), the SIF is calculated using a generalization
of the formula 𝐾 = 𝑌 𝜎

√

𝜋𝑎, resulting from the Westergaard solution, in which 𝑌 is the geometry function, depending on the
geometry, loading, and crack size, which is determined by the product of the factors 𝑀 , 𝑀m, 𝑀b, 𝑀k, 𝑘t, 𝑘m, and 𝑓w, which are
usually derived from finite element calculations, see compendia such as [67,68].

The secondary stresses, or residual stresses, are usually reported as normalized with respect to the yield stress, 𝜎y, and depend
on the type of weldment. The SIF for secondary stresses is:

𝐾s = 𝐾s,m +𝐾s,b +𝐾s,sb (10)

In a similar way as for the primary stresses, the SIF for the secondary stresses is given by the sum of the SIF obtained using three
components:

• the membrane component,

𝐾s,m = 𝑀m𝜎s,m
√

𝜋𝑎 (11)
7
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w
T

S

• the bending component,

𝐾s,m = 𝑀b𝜎s,b
√

𝜋𝑎 (12)

• the self-balancing component,

𝐾s,sb =
∑

𝑗
(𝜎𝑗𝑓𝑗 )

√

𝜋𝑎 (13)

where 𝜎𝑗 is the 𝑗th coefficient of the stress distribution expressed as a polynomial function of the relative abscissa 𝑧∕𝐵, and 𝑓𝑗 is the
weight function. As for the primary stresses, Eqs. (11) and (12) express the SIF as in the Westergaard solution. A different approach
is used in Eq. (13), where the weight function method [69] is used to calculate the SIF. Different from the geometric correction
factors, the weight functions only depend on the geometry of the component and the size of the crack and are independent of the
loading condition. Therefore, if the weight function for a cracked geometry is known, it is possible to compute the SIF for every
type of load and crack size, given the nominal stress profile acting in the section where the crack is present. As mentioned, the
stress profile is described with a polynomial relation as a function of the relative abscissa, 𝑧∕𝐵:

𝜎

(

𝑧
𝐵

)

=
∑

𝑗
𝜎𝑗

(

𝑧
𝐵

)𝑗

(14)

here 𝑧 is the distance between the considered point along the crack front and the free surface and 𝐵 is the thickness of the section.
he weight functions, 𝑓𝑗 , can result from finite element calculation or can be found in handbooks or standards [67,70].

By considering both primary and secondary stresses, and for a load cycle in which bending and normal loading are in-phase, the
IF range, 𝛥𝐾, and the load ratio, 𝑅, are given by:

𝛥𝐾 = 𝐾p,max −𝐾p,max (15)

𝑅 =
𝐾p,max +𝐾s

𝐾p,max +𝐾s
(16)

2.2. Fatigue crack growth rate for small and long cracks

In accordance with the considerations made in [53], the fatigue crack growth rate for long cracks is modeled as a function of
the SIF range, 𝛥𝐾, the load ratio 𝑅, and the crack size 𝑎, using the Forman–Mettu equation modified as in [71]:

𝑑𝑎
𝑑𝑛

= 𝐶𝐹lc𝛥𝐾
𝑚

(

1 −
𝛥𝐾th
𝛥𝐾

)𝑝th

(17)

where 𝐶, 𝑝th, and 𝑚 are material constants, 𝐹 is the crack velocity function, 𝛥𝐾th is the threshold of the SIF range. In [53] only the
threshold of the SIF range is dependent on both the load ratio 𝑅, and the crack size 𝑎, whereas the crack velocity function is not.
In particular, for a certain value of 𝑅 the value of 𝛥𝐾th for small cracks is given by Eq. (2). In order to consider the effect of small
cracks, also the crack velocity function needs to be modified, resulting in the following relationship:

𝑑𝑎
𝑑𝑛

= 𝐶𝐹𝛥𝐾𝑚

(

1 −
𝛥𝐾th
𝛥𝐾

)𝑝th

(18)

where 𝐹 is the crack velocity function for small and long cracks. The effect of the crack size 𝑎, and the load ratio 𝑅, on the fatigue
crack growth rate is depicted in Fig. 5, where the fatigue crack growth rate function resulting from Eq. (18) is qualitatively plotted
together with the bounds of the fatigue crack growth rate in the Paris region and of the threshold of the stress intensity factor range.
With increasing the crack size 𝑎:

• The threshold SIF range 𝛥𝐾th increases ranging between the intrinsic threshold 𝛥𝐾th,eff, up to the value for long cracks 𝛥𝐾th,lc.
• The fatigue crack growth rate in the Paris region decreases, ranging between the values obtained with and without considering

crack closure.

By definition, these bounds are independent of the crack size. Increasing the load ratio 𝑅, determines that:

• The threshold SIF range decreases up to its intrinsic value 𝛥𝐾th,eff.
• The fatigue crack growth rate in the Paris region increases up to the closure-free value.

The value of 𝛥𝐾th,lc and the lower bound of the fatigue crack growth rate are dependent on the load ratio 𝑅, since they are
determined for long cracks, whereas 𝛥𝐾th,eff and the upper bound fatigue crack growth rate, i.e. under closure-free conditions,
are independent on it.

For long cracks, the NASGROW model considers the extrinsic effects using the crack opening function given by:

𝑓op =

{

max{𝑅;𝐴0 + 𝐴1𝑅 + 𝐴2𝑅2 + 𝐴3𝑅3}, if 𝑅 ≥ 0
(19)
8

𝐴0 + 𝐴1𝑅, if 𝑅 < 0
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Fig. 5. Fatigue crack growth rate curve for long cracks and schematic effect of the crack size on the fatigue crack growth rate, Eq. (18).

where:

𝐴0 = (0.825 − 0.34𝛼 + 0.05𝛼2)

[

𝑐𝑜𝑠

(

𝜋
2

𝜎max
0.5(𝜎y + 𝜎u)

)]𝛼−1

(20)

𝐴1 = (0.415 − 0.071𝛼)
𝜎max

0.5(𝜎y + 𝜎u)
(21)

𝐴2 = 1 − 𝐴0 − 𝐴1 − 𝐴3 (22)

𝐴3 = 2𝐴0 + 𝐴1 − 1 (23)

where 𝛼 accounts for the level of constraint, 𝜎y is the yield stress, and 𝜎u is the ultimate tensile strength. According to [53] the
threshold SIF range for a long crack, 𝛥𝐾th,lc, is:

𝛥𝐾th,lc = 𝛥𝐾0

(

1 − 𝑓op

(1 − 𝐴0)(1 − 𝑅)

)−(1+𝑐th𝑅)

(24)

here the coefficients of 𝐴0, 𝐴1 and 𝑐th are calibration parameters, where 𝑐th usually ranges between 0 and 3 if 𝑅 ≥ 0 or is
pproximately 0.1 if 𝑅 < 0, 𝛼 accounts for the level of constraint, and 𝛥𝐾0 is the threshold SIF range for long cracks at 𝑅 = 0. In
ractice, the function that multiplies 𝛥𝐾0 takes into account the effect of plasticity induced crack closure, and it is a (monotonically
ecreasing) function of the load ratio.

To model the lower threshold SIF range and the higher crack growth rate that short crack exhibit with respect to long cracks, the
hreshold SIF range and the crack velocity function are modified to make explicit the dependence on the crack size. The build-up
f the extrinsic effect related to long cracks, i.e. 𝛥𝐾th,op,lc = 𝛥𝐾th,lc − 𝛥𝐾th,eff, is modeled as in [56]:

𝛥𝐾th = 𝛥𝐾th,eff + (𝛥𝐾th,lc − 𝛥𝐾th,eff)[1 − exp(−𝑘(𝑎 − 𝑑))] (25)

where 𝑑 is the position from the surface of the strongest microstructural barrier, and 𝑘 is a calibration parameter. In particular, 𝑑
also stands for the crack size for which the effect of the microstructure is negligible. The parameter 𝑘 controls the built-up of the
extrinsic effect and the length scales at which this happens: 1∕𝑘 represents a crack length at which a certain initial value of the
extrinsic effect has decreased to 1∕𝑒 of its initial value, where 𝑒 is the Euler’s number. Whereas 𝑑 is only dependent on the material
and its microstructure, 𝑘 also depends on the load ratio, 𝑅. Chapetti [46] proposed the following relation for estimating 𝑘:

𝑘 = 1
4𝑑

𝛥𝐾th,eff
𝛥𝐾th,lc − 𝛥𝐾th,eff

(26)

which gave a good agreement with test data related to several metals including aluminum, steel, and copper.
9
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Fig. 6. Crack velocity function 𝐹 , as a function of the load ratio 𝑅, for different crack sizes 𝑎 (a), and the extrinsic component of the threshold of the SIF range
normalized for its value at 𝑅 = 0 as a function of 𝑎 − 𝑑, for several values of the load ratio 𝑅 (b).

In accordance with [53,72] the crack velocity function for long cracks, 𝐹lc, is given by:

𝐹lc =

(

1 − 𝑓op

1 − 𝑅

)𝑚

(27)

here 𝑚 is the exponent of the FCGR function. In a similar fashion as done by Maierhofer [41], the crack velocity function for small
nd long cracks is obtained by correcting 𝐹lc using the exponential term in Eq. (25):

𝐹 = 1 − (1 − 𝐹lc)[1 − 𝑒𝑥𝑝(−𝑘(𝑎 − 𝑑))] (28)

Therefore, this model is able to represent the growth of small and long cracks growing from the critical location in weldments and
propagating according to mode I loading, i.e. in a direction perpendicular to the direction of the maximum principal stress.

For the determination of 𝛥𝐾th, Eq. (25), and 𝐹 , Eq. (28), for the point C, i.e. the intersection of the crack front with the free
surface, see Fig. 1, the semi crack width 𝑐 is used instead of the crack depth, 𝑎. This is based on the circumstance that the SIF is
defined, for every point of the crack front, to quantify the stress intensification in the vicinity of the crack tip and in the plane
perpendicular to the crack front.

The trend of the crack velocity function as a function of the load ratio for several values of the crack size is depicted in Fig. 6(a).
Since the parameter 𝑘 depends on the load ratio, 𝑅, and it is not a unique value, the trend of the crack velocity function 𝐹 shown
in Fig. 6(a) is not monotonic.

According to Eq. (26), at higher values of 𝑅, the reduction of the extrinsic component determines that the value of 𝑘 increases.
Therefore, a larger value of 𝑘 in Eq. (25) implies that the extrinsic component, 𝛥𝐾th,op = 𝛥𝐾th − 𝛥𝐾th,eff, is fully established,
i.e. 𝛥𝐾th,op = 𝛥𝐾th,op,lc, for smaller values of 𝑎 than at lower values of the load ratio 𝑅. This is also visible in Fig. 6(b), where
the extrinsic component of the threshold of the SIF range normalized for its value at 𝑅 = 0 is shown as a function of the crack size
for several values of the load ratio, 𝑅. It results that for lower values of 𝑅 a larger crack depth 𝑎 is required in order for the extrinsic
component to be fully active, i.e. for 𝛥𝐾th ≈ 𝛥𝐾th,lc. Instead, at higher values of 𝑅, the extrinsic component is fully developed for
shorter crack depths.

3. Estimation of the model parameters and their uncertainty

3.1. Secondary stresses for CA and VA loading

Secondary stresses are of high importance for fatigue crack propagation, as they modify the load ratio, and in turn, the extent
of plasticity induced crack closure. Positive residual stresses determine a higher fatigue crack growth rate and a lower threshold,
forming therefore a more severe condition. Residual stress profiles at the weld toe can be obtained either through measurements
or by finite element modeling, and in both cases the evaluation is non-trivial. In Fig. 7 the residual stress profile is depicted for
different types of weldments. Based on these data, in [73] it is suggested that the mean value is:

𝜎s
𝜎y

= 0.62 + 2.3267 𝑧
𝐵

− 24.125 𝑧
𝐵

2
+ 42.485 𝑧

𝐵
3
− 21.087 𝑧

𝐵
4

(29)

where 𝜎y is the yield stress. Eq. (29) does not strictly satisfy the self-equilibrium. However, it is here used to estimate the distribution
of the residual stress state under CA loading, since it is believed to be the most accurate description of the trend of the residual
stresses that is available. Despite in this work the residual stresses are not modeled in a probabilistic fashion, the variability
encountered can be modeled in two ways, considering the description of the scatter proposed in [73], i.e. a normal distribution
with mean value equal to one and a coefficient of variation equal to 0.25 at 𝑧∕𝐵 = 0 (a standard deviation equal to 0.155). This
10
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Fig. 7. Transverse residual stress profile for several types of weldments (T-butt, Plate on plate, T tubular, Y tubular) [5]. Scatterband and mean regression line,
Eq. (29).

normal distribution can be used to either multiply only the first term of Eq. (29), or to multiply the outcome of Eq. (29). Whilst in
the first way the self-balancing property of the residual stress distribution is not satisfied, in the second way the scatter resulting is
not uniform as shown from the data reported in [5].

Under VA loading, the residual stresses that are plotted in Fig. 7 may be modified due to the application of stress peaks [74].
his causes shakedown of residual stresses, which are observed to strongly reduce in magnitude during cyclic loading [3]. This is the
eason why, under VA loading, different modeling of the residual stresses is needed. The residual stresses to be used for VA loading
an be estimated according to the indication based in BS7910 [67], Annex O. It is recommended that if the welded component is
ubjected to a proof load leading to limited plasticization in the cracked section, the residual stress state reduces to:

𝜎s = min
{

𝜎y; 𝜎y

[

1.4 −
𝜎ref

0.5(𝜎y + 𝜎u)

]}

(30)

where 𝜎ref is the reference stress due to the applied primary load. In the case of variable amplitude random block loading, the
reference stress is calculated for every block.

Reference stress solutions are reported in standards, guidelines, and compendia [53,67,75]. For a semi-elliptical surface crack
growing in a rectangular section, the reference stress for normal bending restraint, and for negligible bending restraint are
respectively given by (BS7910):

𝜎ref =
𝜎b + [𝜎2b + 9𝜎2m(1 − 𝛼′′)2]0.5

3(1 − 𝛼′′)2
(31)

𝜎ref =
𝜎b + 3𝜎m𝛼′′ + [(𝜎b + 3𝜎m𝛼′′)2 + 9𝜎2m(1 − 𝛼′′)2]

3(1 − 𝛼′′)2
(32)

where

𝛼′′ =

⎧

⎪

⎨

⎪

⎩

𝑎∕𝐵
1+𝐵∕𝑐 , if 𝑇w ≥ 2(𝑐 + 𝐵)
2𝑎𝑐
𝐵𝑇w

, if 𝑇w < 2(𝑐 + 𝐵)
(33)

here 𝐵 and 𝑇w are thickness and the width of the cross section of the crack. The maximum bending and membrane stress 𝜎b and 𝜎m
re evaluated at the maximum stress range of the spectrum, that is 𝛥𝜎max∕(1 −𝑅). Eq. (30) is used to evaluate the relaxation of the
esidual stress following the application of 𝛥𝜎max under VA loading, assuming that the residual stresses are uniformly distributed.

.2. Cyclic R-curve

This section shows the proposed approach to estimate the cyclic R-curve according to Eq. (25) from [56]. To do so, the
elationships of Murakami [54,55] and Chapetti [46] are used.

According to Murakami [54,55], for a load ratio 𝑅 = −1, the fatigue limit of polished specimens of low to medium strength
teels, is related to the Vickers hardness, 𝐻V by:

𝛥𝜎0
2

= 1.6𝐻V (34)

here 𝛥𝜎0 is the stress range at the fatigue limit. Eq. (34) applies to specimens which are assumed to be free of defects. In the case
f specimens with defects, the threshold stress range, 𝛥𝜎 , for which crack propagation does not occur has been related also to the
11
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Fig. 8. Effect of a small drilled hole on the fatigue limit for two hypothetical steels (A and B), for which 𝐻V,A > 𝐻V,B. The size of the hole is expressed by the
√

𝑎𝑟𝑒𝑎.

Vickers hardness and to the defect size. The size of the defect is accounted for by the
√

𝑎𝑟𝑒𝑎 parameter introduced in Section 1, see
Fig. 4. In this case, the relation also includes the dependency from the load ratio 𝑅:

𝛥𝜎th
2

= 1.43(𝐻V + 120)
√

𝑎𝑟𝑒𝑎
−1∕6

(

1 − 𝑅
2

)0.226+10−4𝐻V

(35)

where
√

𝑎𝑟𝑒𝑎 is in μm. This relation was derived by introducing micro-defects of different sizes in polished specimens. For relatively
mall defect sizes, the threshold stress range was found to be equal to the fatigue limit. This leads to the definition of the critical
alue of the

√

𝑎𝑟𝑒𝑎 parameter, i.e.
√

𝑎𝑟𝑒𝑎crit, indicating the largest defect size for which the propagation of the defect does not occur
t any stress range lower than the fatigue limit. In other words, for

√

𝑎𝑟𝑒𝑎 ≤
√

𝑎𝑟𝑒𝑎crit the threshold stress is coincident with the
atigue limit and Eq. (35) is not valid, see Fig. 8. Therefore, if

√

𝑎𝑟𝑒𝑎 <
√

𝑎𝑟𝑒𝑎crit the considered defect is smaller than the inherent
defects inevitably present in the material, which dominate the phenomenon. Given the value of the Vickers hardness and considering
𝑅 = −1, the value of

√

𝑎𝑟𝑒𝑎crit can be estimated by equating Eqs. (34) and (35):

√

𝑎𝑟𝑒𝑎crit =

(

1.43(𝐻V + 120)
1.6𝐻V

)6

(36)

nd is found to be decreasing with increasing the Vickers hardness.
The threshold condition for fatigue crack propagation expressed using the linear elastic crack driving force parameter, 𝛥𝐾, is:

𝛥𝐾th = 𝑌 𝛥𝜎th

√

𝜋
√

𝑎𝑟𝑒𝑎 (37)

where 𝛥𝜎th is in MPa, and is estimated using Eq. (35), the geometry factor 𝑌 incorporates all the factors that were made explicit in
Eqs. (8)–(9), and refers to surface cracks in smooth specimens. For small semi-circular surface cracks, as those observed to initiate in
smooth specimens [23], 𝑌 = 0.65. Eq. (37) predicts the trend of the threshold of the SIF range as a function of the crack size, i.e. it
is the cyclic R-curve proposed by Murakami. However, Eq. (37) does not asymptotically tend to 𝛥𝐾th,lc, therefore it does not follow
he expected trend of a cyclic R-curve that is depicted in Fig. 3, and it does not allow to predict the value of 𝛥𝐾th,lc. To overcome
his inconvenience, Eqs. (35) and (37) are considered valid up to approximately

√

𝑎𝑟𝑒𝑎 = 1000 μm [54,55]. However, as mentioned
in Section 1, a crack cannot be defined as ‘‘short’’ or ‘‘long’’ through absolute length scales, therefore, the aforementioned upper
limit of Eq. (37) is not used here to derive any correlation with 𝛥𝐾th,lc. By making explicit 𝑌 and 𝛥𝜎th in Eq. (37), it becomes:

𝛥𝐾th = 2 ⋅ 0.65 ⋅ 10−3
[

1.43(𝐻V + 120)
√

𝑎𝑟𝑒𝑎
−1∕6

(

1 − 𝑅
2

)0.226+10−4𝐻V]√

𝜋
√

𝑎𝑟𝑒𝑎 (38)

or the SIF expressed in [MPa m0.5] and the
√

𝑎𝑟𝑒𝑎 in [μm]. Fig. 9 depicts the typical trend of the cyclic R-curve of a material
continuous line), and the trend of the SIFs as a function of the crack size, of which the initial value is 𝑎𝑖𝑛𝑖, under the effect of three

stress ranges under constant amplitude loading (dashed line). The crack size is on the horizontal axis, whereas the SIF range is on
the vertical axis. Starting from a crack of size 𝑑, the cyclic R-curve divides the region of propagating cracks 𝛥𝐾 > 𝛥𝐾th from that
one of non propagating cracks 𝛥𝐾 ≤ 𝛥𝐾th. A cyclic R-curve is conditional to the load ratio, 𝑅. According to Eq. (25), 𝑑 is the size of
the largest microstructural barrier from the free surface [46]. Each dashed curve in Fig. 9 relates the SIF range with the crack size
for an applied stress range of constant amplitude. Three situations may occur: for 𝛥𝜎 < 𝛥𝜎0, the dashed line intersects the cyclic
R-curve, estimating the size of the non propagating crack; for 𝛥𝜎 > 𝛥𝜎0 the dashed line does not intersect the cyclic R-curve, i.e. the
crack potentially propagates until failure occurs; for 𝛥𝜎 = 𝛥𝜎 the dashed line is tangent to the cyclic R-curve, also in this case
12
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Fig. 9. Schematic of the cyclic R-curve. Effect of the applied stress range and simplification adopted with respect to approximation of 𝑑.

stimating the size of the non propagating crack. This condition is the same as predicted by Eq. (36). By considering the defect to
e of semi-circular shape, the

√

𝑎𝑟𝑒𝑎crit [μm] can be translated in terms of crack depth [mm]:

𝑎crit =

(

2(
√

𝑎𝑟𝑒𝑎crit)
2

𝜋

)1∕2

10−3 (39)

Therefore, the critical crack depth 𝑎crit, i.e. the abscissa of the tangency point illustrated in Fig. 9, can be estimated using
√

𝑎𝑟𝑒𝑎crit,
and the corresponding threshold of the SIF range, 𝛥𝐾th(

√

𝑎𝑟𝑒𝑎crit), can be estimated using Eq. (38). In this work it is assumed that
crit is a reasonable estimate of 𝑑, that can potentially be used if this quantity is not available. This assumption is going to be
alidated in the next section, by comparing the predicted cyclic R-curve with experimental data from literature. This assumption is
ased on two arguments: (1) these quantities are expected to be very close, mostly because of the trend of both the cyclic R-curve,
.e. the continuous line in Fig. 9, and the loading curve, i.e. the dashed line in Fig. 9; (2) the growth of non-propagating cracks
efore they stop (𝛥𝜎 ≤ 𝛥𝜎0) is not of interest for determining the fatigue life under CA loading, as also postulated in [29]. If 𝑎crit is

used instead of 𝑑, the relationship proposed by Chapetti [46], i.e. Eq. (26), to estimate 𝑘 is here modified into:

𝑘 = 1
4𝑎crit

𝛥𝐾th,eff
𝛥𝐾th,lc − 𝛥𝐾th,eff

(40)

ssuming that 𝑑 ∼ 𝑎crit also implies that 𝛥𝐾th,eff is approximated by the value of the threshold of the SIF range evaluated for
𝑎𝑟𝑒𝑎crit by making use of Eq. (38). In this case, the dependency of the estimated value of 𝛥𝐾th,eff from the load ratio, 𝑅, is made

explicit because the tangency point between the cyclic R-curve and the loading curve depicted in Fig. 9 inevitably depends on the
load ratio 𝑅, since both 𝛥𝜎0 and 𝛥𝐾th,lc depend on it.

In summary, in the present work, the cyclic R-curve is modeled according to the exponential model of McEvily [56], which
makes use of two calibration parameters, i.e. 𝑑 and 𝑘. The distance of the first microstructural barrier from the free surface, 𝑑,
is estimated using

√

𝑎𝑟𝑒𝑎crit [54,55]. In order to estimate the parameter 𝑘, this leads to rewriting Eq. (26), initially proposed by
Chapetti [46], into Eq. (40). By using the proposed procedure, the required inputs to estimate the cyclic R-curve are:

• the Vickers hardness 𝐻V, which allows estimating
√

𝑎𝑟𝑒𝑎crit and 𝑘,
• and the threshold SIF range for long cracks 𝛥𝐾th,lc.

3.2.1. Validation and estimation of the uncertainty for the threshold condition
The aim of this section is to assess the accuracy of the predicted cyclic R-curve following the proposed approach described in

the previous section, and to validate both the assumption of 𝑑 ∼ 𝑎crit and the applicability of Eq. (40).
For the present analysis, four approaches are considered to estimate the cyclic R-curve:

1. the model of Mc Evily [56], Eq. (25), and the proposed approach to estimate the parameters;
2. the model of Mc Evily [56], Eq. (25), and the correlations proposed by Chapetti [46] to estimate the parameters;
3. the model proposed in the FITNET, i.e. Eq. (2), based on the El-Haddad [52] approximation of the Kitagawa and Takahashi

diagram [43];
4. the model of El-Haddad [52], using the correction proposed by Zerbst [29], and considering 𝑑 as the initial crack size.

These approaches are also used for qualitative and quantitative comparison with experimental data available from the scientific
literature. The test data from four different steels are reported in [46], and are used for the validation of the proposed approach.
With respect to each dataset, the inputs are summarized in Table 1.

In the proposed approach, the value of 𝐻V is estimated from 𝛥𝜎0 using Eq. (34). It allows estimating 𝛥𝐾th,eff, which is
approximated by Eq. (38) for

√

𝑎𝑟𝑒𝑎 =
√

𝑎𝑟𝑒𝑎crit, the latter estimated using Eq. (36). The value of 𝑎crit is estimated using Eq. (39),
allowing 𝑘 to be determined by Eq. (40). The only required quantity is 𝛥𝐾th,lc that for the current analysis is reported in Table 1.

he approach proposed by Chapetti [46] makes use of the measured values of 𝑑, 𝛥𝐾th,lc and 𝛥𝐾th,eff, which are reported in Table 1.
13

he approach reported in the FITNET guideline [53] makes only use of 𝛥𝐾th,lc, reported in Table 1. The correction factor proposed
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Table 1
Datasets considered for the validation, 𝑅 = −1 and 𝜎s = 0.

Steel grade 𝑑 𝛥𝜎0 𝛥𝐾th,eff 𝛥𝐾th,lc Ref.
[mm] [MPa] [MPa m0.5] [MPa m0.5]

0.42 C 0.018 450 2.2 5.9 [76]
2.25Cr1Mo 0.025 500 2.9 9.1 [77]
S20 C 0.0078 470 1.5 10.4 [78]
S20 C 0.055 326 2.8 12.4 [78]

Fig. 10. Cyclic R-curve. Comparison between test data, see Table 1, and the four approaches considered in the present paper.

y Zerbst [29], and the intrinsic crack length are both estimated using the material properties reported in Table 1. Moreover, the
rack extension is calculated as 𝑎 − 𝑑.

The comparison between the four approaches and the test data is depicted in Fig. 10. It results that the current approach leads
o a cyclic R-curve well in agreement with test data, similar to the approaches proposed by Chapetti [46] and Zerbst [29]. However,
he current approach requires fewer material properties to be measured. Instead, the El-Haddad approximation as proposed in the
ASGROW model leads, in every examined case, to an evident overestimation of the cyclic R-curve. Therefore, it is not considered

or further analyses.
Fig. 11a shows a box plot diagram of the residuals of the experimental threshold SIF range vs. the model prediction where

he single data reported are considered as outliers. The residuals are calculated as the difference between the logarithm of the
redicted threshold SIF range vs. the logarithm of the experimental threshold SIF range. It can be deduced that the proposed
pproach determines a coefficient of variation equal to 0.1, similar to the approach proposed by Zerbst. By analyzing the residuals
esulting from the approach proposed by Chapetti, it can be seen that this approach leads to a less severe threshold condition
han the test data, and the distribution of the residuals is more scattered. On the contrary, the residuals resulting from the FITNET
pproach determine a more severe threshold condition than the data, and show a significantly larger scatter and bias. Fig. 11b
hows the normal probability plots for the same residuals, highlighting that the results of the proposed approach and that one
rom Zerbst determine a less biased and scattered distribution than the other approaches. Moreover, the p-values resulting from
he Shapiro–Wilk test for normality [79] are 0.95, 0.033, 0.53 ⋅ 10−5, and 0.11 for the approaches proposed here, by Chapetti, by
erbst and by the FITNET recommendation, respectively. This means that for a (widely used) significance level of 0.05 the null
ypothesis of the Shapiro–Wilk test is rejected for the results produced by using the approaches proposed by Chapetti and Zerbst.
or the approach of Zerbst, this is due to the tail of the data which, according to Fig. 11b, is not matching with the assumed normal
istribution (see the purple data for a probability exceeding 0.90). Moreover, the residuals resulting from the proposed approach
14
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Fig. 11. (a) Box-plot diagram identifying the inter quartile range and prediction bounds of the residuals, and (b) Normal probability plot of the residuals. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Estimation of the aleatory and epistemic uncertainties for the parameters of the model proposed by Murakami,
and the estimation of the variability of the fatigue limit according to [81].

Parameter Estimator St.err. Correlation matrix

𝛼1 3.30E−03 8.18E−05 1 −4.58E−01 −7.06E−01 −3.56E−01
𝛼2 120 5.49E+00 – 1 −2.78E−01 2.34E−01
𝛼3 0.33 4.60E−03 – – 1 2.03E−1
𝜎𝑙𝑛(𝛥𝐾th ) 0.05 1.42E−03 – – – 1

𝛥𝜎0 1.6 𝐻V 0.14 See [81]

are more in accordance with a normal distribution than for the FITNET, this is because the larger the p-value is, the more it supports
the null-Hypothesis of the test.

Therefore, the authors consider the proposed approach as preferable, because of three reasons: (1) it appears to be less biased,
2) leads to a less scattered distribution of the log-residuals, and (3) it requires fewer input variables. In particular, it requires only
he Vickers hardness, which can be easily measured, and the threshold of the SIF range for long cracks, which can be measured
elatively easy, e.g. in comparison to 𝛥𝐾th,eff, and is reasonably known for many steel grades.

3.2.2. Estimation of the uncertainty for the correlation between
√

𝑎𝑟𝑒𝑎 and 𝛥𝐾th
From the previous section it follows that the correlations developed by Murakami are used to estimate relevant quantities such as

𝐾th,eff and 𝑎crit. In order to consider the uncertainty resulting from the use of these correlations, the test data used from Murakami
re re-analyzed using the maximum likelihood method.

The relation expressed by Eq. (38) reduces, by multiplying all the constants, into:

𝛥𝐾th = 3.3 10−3(𝐻V + 120)
√

𝑎𝑟𝑒𝑎
1∕3

(

1 − 𝑅
2

)0.226+10−4𝐻V

[MPa m0.5] (41)

For a load ratio 𝑅 = −1, the previous equation results in the relationship reported in [54]:

𝛥𝐾th = 3.3 10−3(𝐻V + 120)
√

𝑎𝑟𝑒𝑎
1∕3

[MPa m0.5] (42)

The
√

𝑎𝑟𝑒𝑎 parameter is expressed in [μm]. This equation has been obtained by fitting test data obtained from smooth specimens
containing defects. The data related the size of the defect, using the

√

𝑎𝑟𝑒𝑎 parameter, to 𝛥𝐾th. The regression model associated
with Eq. (42) is as follows:

𝛥𝐾th = 𝛼1(𝐻V + 𝛼2)
√

𝑎𝑟𝑒𝑎
𝛼3 + 𝜖 (43)

and 𝛥𝐾th is assumed to be distributed according to a log-normal distribution. The maximum likelihood method [80] is used to infer
the experimental data with the aim of estimating the uncertainty.

The estimators of the model parameters 𝛼1, 𝛼2, 𝛼3, and the standard deviation of the log-residuals 𝜎𝑙𝑛(𝛥𝐾th) are reported in Table 2
together with the standard error and the correlation matrix obtained from the Fisher information matrix of the likelihood function.
The epistemic uncertainty are modeled using a multivariate normal distribution having as a location parameter the estimator of
the model parameters. The covariance matrix can be obtained from the standard error and the correlation matrix, both reported in
Table 2. These results can be used in a probabilistic assessment in which 𝑑 and 𝛥𝐾th,eff are estimated using the procedure proposed
n this paper. The estimators of the parameters are coincident with those proposed by Murakami [54,55]. Moreover, the estimated
15
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Fig. 12. Rayleigh spectrum with truncation at 𝛥𝜎max.

standard error is always relatively small as compared to the estimator, <1%. This is associated with the relatively large number of
data. The quantities in Table 2 can be used to consider epistemic and aleatory uncertainty underlying the approach proposed by
Murakami.

3.3. Fatigue crack growth rate under VA loading

In this section, the fatigue crack growth rate data from [66] resulting from the application of the Rayleigh stress spectrum is
inferred using the fatigue crack growth rate model proposed in Section 3.3.1. The results of the fit and the model parameters are
discussed in Section 3.3.2.

3.3.1. Model for inferring fatigue crack growth rate data obtained for VA random block loading
The model proposed for fatigue crack growth under VA random block loading is based on fatigue crack growth data obtained by

applying a stress history in which the relative frequency of occurrence of a stress range follows the truncated Rayleigh distribution
function and the load ratio 𝑅 is fixed. The truncated Rayleigh distribution is depicted in Fig. 12, where the effect of the modal stress
range 𝛥𝜎m and the dispersion stress range 𝛥𝜎d, is shown. In the majority of the experimental studies performed by making use of
this type of load spectrum [65,66], and based on the analyses of Klippstein [82], the truncation was applied at 𝛥𝜎max = 𝛥𝜎m +2𝛥𝜎d,
nd 𝛥𝜎max = 𝛥𝜎min +3𝛥𝜎d. For this type of VA loading, Barsom [65] demonstrated that in the Paris region the fatigue crack growth
ate can be correlated with that one resulting from CA loading tests. In particular, a very good agreement was found when plotting
he fatigue crack growth rate against the root-mean-square SIF range 𝛥𝐾rms for CA and VA data (despite the lack of a physical
eaning of the root-mean-square SIF). Therefore, this is here used merely as a correlation.

The VA fatigue crack growth data in the near-threshold region produced by Fisher for A36 steel [66] are used in this paper in
rder to relate a characteristic value of the SIF range to the measured fatigue crack growth rate. The test data were produced by
onitoring fatigue crack growth in central crack specimens, subjected to repeated blocks of a random load history sampled from the

runcated Rayleigh distribution shortly described before. Three load ratios were used: 0.3, 0.55, and 0.80. In every case, 𝛥𝜎min = 0,
nd the ratio 𝛥𝜎d∕𝛥𝜎m was kept equal to 1.

Since most of the crack propagation time of as-welded details is spent in the near-threshold region as a small fatigue crack,
ccurate modeling of the near-threshold fatigue crack growth rate is crucial. Different from [65,66] the maximum SIF range, 𝛥𝐾max,
esulting from the maximum stress range of the spectrum, 𝛥𝜎max, is used as a crack driving force to correlate the threshold condition
nder CA and VA loading. This is because, under spectrum loading, the crack is assumed to propagate if 𝛥𝐾max > 𝛥𝐾th. For what
oncerns the Paris region, the correlation found by Barsom is used. For the estimation of 𝛥𝐾th and the near threshold fatigue crack

propagation, the VA fatigue crack growth rate data in [66] will be useful to validate these hypotheses and, at the same time, gain
an understanding of the near-threshold fatigue crack growth rate.

The proposed fatigue crack growth model is based on Eq. (18). However, the relations to describe the dependency of 𝛥𝐾th,lc on
he load ratio, Eq. (24), and the crack velocity function, Eq. (27), although remaining similar to those of the NASGROW model [53]
re modified into:

𝛥𝐾th,lc,𝛺 = 𝛥𝐾0,𝛺

(

1 − 𝑓op,𝛺

(1 − 𝐵0)(1 − 𝑅)

)−(1+𝑅𝛾th)

(44)

𝛥𝐾𝑚𝛺
eff = 𝛥𝐾𝑚𝛺𝐹𝑙𝑐,𝛺 where 𝐹𝑙𝑐,𝛺 =

(

1 − 𝑅
1 − 𝑓op,𝛺

)𝑚𝛺

(45)
16
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Fig. 13. Spectrum fatigue crack growth rate data, fit using the proposed model.

he crack opening function 𝑓op,𝛺, related to spectrum is expressed similar to that one of the NASGROW model [53], but simplified
ith respect to Eq. (19):

𝑓op,𝛺 = max{𝑅;𝐵0 + 𝐵1𝑅} (46)

he variables 𝛥𝐾0,𝛺, 𝐵0, 𝐵1, 𝛾th are model parameters that are estimated based on fatigue test data. 𝐹𝑙𝑐,𝛺 represents the crack velocity
unction for long cracks related to the considered spectrum 𝛺, and 𝛥𝐾th,𝑙𝑐,𝛺 is the threshold SIF range for long cracks related to the
pectrum 𝛺 for which, if 𝛥𝐾max > 𝛥𝐾th,𝑙𝑐,𝛺 fatigue crack propagation is assumed to occur. As for the CA loading, 𝛾th is assumed to

be equal to 2. Therefore, for long cracks Eq. (18) becomes:

𝐸

[

𝑑𝑎
𝑑𝑛

]

VA

= 𝐶𝛺𝐹𝑙𝑐,𝛺𝛥𝐾
𝑚𝛺
max

(

1 −
𝛥𝐾th,𝑙𝑐,𝛺
𝛥𝐾max

)𝑝th,𝛺

(47)

where 𝐸

[

𝑑𝑎
𝑑𝑛

]

VA

is the averaged fatigue crack growth rate resulting from the application of the spectrum, 𝐶𝛺, 𝑚𝛺, and 𝑝th,𝛺 are

he model parameters for random block VA loading. The parameter 𝑚𝛺 can be assumed equal to 𝑚 resulting from CA loading. The
arameters 𝑝th,𝛺, and 𝐶𝛺 depend on the specific value of 𝛥𝜎d∕𝛥𝜎m, i.e. their values depend on the specific spectrum, because of the
oad sequence effects.

.3.2. Estimation of the uncertainty for the fatigue crack growth rate under VA random block loading
In this section, the VA fatigue crack growth rate data from [66] are inferred using the model proposed in the previous section. The

forementioned data were obtained by testing central crack specimens and applying a VA random block loading of which the stress
pectrum follows the truncated Rayleigh distribution as introduced in the previous section. The agreement between the proposed
atigue crack growth rate model and the data is depicted in Fig. 13. In addition, the estimators of the parameters of the model and
he resulting uncertainty are reported in Table 3. The analysis results in a very large standard error for 𝑙𝑜𝑔10(𝐶𝛺). This is attributed
o the lack of fatigue crack growth rate data in the Paris region, as can be seen in Fig. 13. This large uncertainty is further amplified
y the uncertainties of 𝐵0, and 𝐵1, of which the source is again the lack of data in the Paris regime. On the contrary, the estimator
f 𝛥𝐾0,𝛺 is very close to the values of 𝛥𝐾0 reported in [53] for similar steel grades. This supports the choice of using the value of
𝐾max as crack driving force parameter for VA fatigue crack growth rate, with the aim of correlating the threshold condition for VA

oading to that one obtained from CA fatigue crack growth rate data. For what concerns the near-threshold VA fatigue crack growth
ate, it results that a smoother transition between the Paris regime and the threshold is obtained for the VA fatigue crack growth
ate as compared to the CA fatigue crack growth rate. Indeed, the absolute value of the estimator of 𝑝th,𝛺 (1.21), see Table 3, is
arger than the absolute value of 𝑝th, usually equal to 0.5 [53].

. Results of the fatigue life prediction

The fatigue crack growth model described in Section 2.2 is used for two purposes. At first, a sensitivity analysis is carried out with
17

he purpose of establishing the importance of the different parameters with respect to the predicted fatigue life and fatigue limit.
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Table 3
Estimators and uncertainty of the parameters of the proposed model fitting the fatigue crack growth rate data from [66] obtained under spectrum loading.

Parameter Correlation matrix

Name Estimator St. Err. 𝑚𝛺 𝜎𝑙𝑜𝑔10 (𝐶𝛺 ) 𝛥𝐾0,𝛺 𝜎𝑙𝑜𝑔10 (𝛥𝐾0,𝛺 ) 𝑝th,𝛺 𝐵0 𝐵1

𝑙𝑜𝑔10(𝐶𝛺) −1.39E+01 3.17E+00 −3.29E−01 −3.94E−02 −2.32E−02 −6.55E−02 −9.52E−02 9.55E−01 −9.54E−01
𝑚𝛺 3.47E+00 3.74E−01 1.00E+00 1.62E−01 2.77E−01 2.37E−02 4.74E−01 −3.47E−02 3.22E−02
𝜎𝑙𝑜𝑔10 (𝐶𝛺 ) 2.37E−01 2.28E−02 – 1.00E+00 1.50E−01 −2.15E−01 3.23E−02 8.95E−03 −9.95E−03
𝛥𝐾0,𝛺 2.78E+02 1.34E+01 – – 1.00E+00 −6.75E−01 7.72E−01 7.25E−02 −7.42E−02
𝜎𝑙𝑜𝑔10 (𝛥𝐾0,𝛺 ) 2.92E−02 7.65E−03 – – – 1.00E+00 −4.01E−01 −6.68E−02 6.74E−02
𝑝th,𝛺 −1.21E+00 2.34E−01 – – – – 1.00E+00 6.44E−02 −6.58E−02
𝐵0 3.66E−01 1.26E+00 – – – – – 1.00E+00 −9.90E−01
𝐵1 5.68E−01 1.13E+00 – – – – – – 1.00E+00

Table 4
Reference values for the sensitivity analysis.

Parameter Value Ref.

𝛥𝐾th,eff 63 [MPa mm0.5] [67]
𝛥𝐾0 278 [MPa mm0.5] [53,84]
𝑎crit 0.05 [mm] a

𝑎𝑖𝑛𝑖 0.15 [mm] [85]
𝑎𝑖𝑛𝑖∕𝑐𝑖𝑛𝑖 0.62 [–] [85]
𝐶 2.50E−13 b [84]
𝑅 0.5 [–] Ref.

aArbitrary value.
bFor 𝑑𝑎∕𝑑𝑛 in [mm], given 𝛥𝐾 in [MPa mm0.5].

Secondly, the model is applied to a cruciform joint geometry under constant and variable amplitude loading, aiming to verify the
agreement between the fatigue life prediction and the test data. The fatigue test data used for the validation are obtained from [83]
and are related to a non-load carrying cruciform joint.

4.1. Sensitivity analysis for CA loading

The sensitivity analysis is carried out in order to determine the relative importance of each variable. The change of the response
of the model is quantified after a separate perturbation of each of the variables. The semi-elliptical surface crack is considered to
grow at the weld toe of a cruciform joint until its depth reaches 0.8 times the plate thickness, 𝐵. The variables considered in the
sensitivity analysis are:

1. the intrinsic threshold 𝛥𝐾th,eff,
2. the threshold for a long crack at 𝑅 = 0, 𝛥𝐾0,
3. the estimated distance from the surface of the first microstructural barrier 𝑎crit,
4. the initial crack size 𝑎𝑖𝑛𝑖
5. the initial crack aspect ratio 𝑎𝑖𝑛𝑖∕𝑐𝑖𝑛𝑖,
6. the coefficient 𝐶 of the crack growth rate law,
7. the load ratio 𝑅.

The monitored response of the model consists of three aspects: (1) the predicted fatigue limit 𝛥𝜎0, (2) the predicted fatigue life at 𝛥𝜎
= 200 MPa, and (3) the predicted fatigue life at 𝛥𝜎 = 300 MPa. For the fatigue life and the fatigue limit, respectively, the indicators
of importance are defined as:

𝜂𝑁,𝜃𝑖 =
𝑁𝜃𝑖+𝛥𝜃𝑖 −𝑁𝜃𝑖−𝛥𝜃𝑖

𝑁𝜃𝑖
(48)

𝜂𝛥𝜎0 ,𝜃𝑖 =
𝛥𝜎0𝜃𝑖+𝛥𝜃𝑖 − 𝛥𝜎0𝜃𝑖−𝛥𝜃𝑖

𝛥𝜎0𝜃𝑖
(49)

where 𝑁𝜃𝑖 is the number of cycles to failure predicted for the considered parameter 𝜃𝑖 to be equal to the reference value, 𝑁𝜃𝑖±𝛥𝜃𝑖
re the number of cycles to failure predicted for the perturbed value. The same definition applies to the fatigue limit, 𝛥𝜎0. Each
arameter is perturbed by 10%, i.e. 𝛥𝜃𝑖 = 0.1𝜃𝑖. The reference value of each parameter is reported in Table 4 and is based on typical
alues for structural steels.

For the purpose of carrying out the sensitivity analysis, the intrinsic threshold, 𝛥𝐾th,eff, the cyclic R-curve, and the effect of the
econdary stresses on the load ratio 𝑅 are not evaluated as described in Section 3.2. This means that, the values of 𝑎crit and 𝛥𝐾th,eff
18

re directly assumed, instead of estimating them through the use of the 𝐻V, in order to measure the influence of the distance of
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Table 5
Result of the sensitivity analysis.

Input Output

𝜃𝑖 𝜂𝛥𝜎0 ,𝜃𝑖 𝜂𝑁,𝜃𝑖 at 𝛥𝜎 = 200 MPa 𝜂𝑁,𝜃𝑖 at 𝛥𝜎 = 300 MPa

𝛥𝐾th,eff 0.17 0.05 0.03
𝛥𝐾0 0.05 0.02 0.01
𝑑 −0.06 −0.03 −0.02
𝑎𝑖𝑛𝑖 −0.03 −0.09 −0.09
𝑎𝑖𝑛𝑖∕𝑐𝑖𝑛𝑖 0.00 0.01 0.01
𝐶 0.00 −0.20 −0.20
𝑅 −0.02 −0.08 −0.08

Table 6
Mean values of the fatigue crack growth rate exponent and coefficient.

Material 𝐶 𝑚 Ref

S355 4.96 10−14 3.23 [87]
Mild steel weld 1.83 10−13 3.00 [88]
Mild steel weld 2.50 10−13 3.00 [84]
Mild steel weld 1.09 10−13 3.10 [89]
HAZ and BS958 steel 8.78 10−13 2.80 [90]

For 𝑑𝑎∕𝑑𝑛 in [mm], given 𝛥𝐾 in [MPa mm0.5].
Closure free value assumed equal to the estimator at 𝑅e = 0.75.

he microstructural barrier and the intrinsic threshold of the SIF range on the fatigue strength and life. The resulting values of 𝜂𝑁,𝜃𝑖
nd 𝜂𝛥𝜎0 ,𝜃𝑖 are reported in Table 5.

It clearly results that, given the reference values of the model parameters, the most dominant variables with respect to the
stimation of the fatigue limit are 𝛥𝐾th,eff and 𝑑, but the effect is opposite (opposite sign). The third most important parameter

is the threshold for long cracks at 𝑅 = 0, 𝛥𝐾0. With respect to the predicted life at 𝛥𝜎 = 200 and at 𝛥𝜎 = 300 MPa, the most
relevant parameters are the coefficient of the fatigue crack growth rate function, 𝐶, and the initial crack depth, 𝑎𝑖𝑛𝑖. The effect of
the load ratio 𝑅 affects both the estimation of the fatigue limit and the fatigue life, because of the effect induced on 𝛥𝐾0, 𝛥𝐾th,eff,
and 𝐶. The variables that are more relevant for the threshold condition, 𝛥𝐾0, 𝛥𝐾th,eff, and 𝑑 determine a decreasing relevance with
respect to the fatigue life with increasing the applied stress range. However, it must be noted that the results are based on an equal,
independent, perturbation of all the parameters. In reality, standard deviations of these variables are different and, therefore, it is
expected that a different ranking occurs if other methods, such as the First Order Reliability Method (FORM) are used.

4.2. Model validation for CA loading

The results of the proposed model are here graphically compared to a CA fatigue test dataset of cruciform joints obtained
from [83].

The steel grade used was ASTM A572 Grade 50, equivalent to S235 steel for which the statistics of the monotonic tensile
properties are investigated in [85,86]. The Vickers hardness was obtained from the Brinell hardness by using commonly available
conversion tables. During fatigue crack propagation, the crack front might be located in the base material or in the coarse- or
fine-grained heat-affected zone (HAZ), depending on the crack size and location. The prediction is performed using several fatigue
crack growth rate exponents and coefficients available in standards, codes and literature. These values are reported in Table 6. The
values in [87] are obtained for the base material of the S355 steel. The values reported in DVNGL-C201 [88], OTH 511 report [84],
and DNV standard [89] refer to structural steel welds, whereas the values reported from [90] refer to HAZ in mild steels and BS958
steel grade from [91]. Table 7 summarizes the dataset and the dimensions of the welded detail tested in [83].

In order to determine the crack driving force, the geometry correction factors in Eqs. (6) and (7) are calculated using the equations
reported in BS7910 [62]. In particular, the 3D solutions for calculating 𝑀k are used. The final crack size is set equal to 0.8 times
the thickness of the cross-section, which is the limit of validity for the equations used to calculate the geometry correction factors.
According to [70], the geometry is considered to be subjected to membrane stress only, therefore 𝜎b = 0. A minimum stress equal
to 13.8 MPa was applied, independent of the stress range. The residual stress distribution is assumed to follow Eq. (21).

Comparison is made between the predicted fatigue life using the proposed model, the prediction obtained using the models in
the BS7910, and the experimental data obtained for CA loading.

The models in BS7910 make use either of a ‘‘simplified law’’, i.e. the Paris law with threshold condition, or of a ‘‘bilinear law’’,
and a threshold of the SIF range independent of the load ratio, 𝑅. This is because the residual stress state is taken into account
by considering the threshold of the SIF range for high load ratio, i.e. 𝑅 larger than 0.5. Concerning the threshold condition, the
standard recommends that for 𝑎 ≥ 1 mm the value, 𝛥𝐾th = 63 MPa mm0.5, is a lower bound. However, it also recommended not
to consider larger values of the threshold SIF range for 𝑎 < 1 mm. The probabilistic model code of the JCSS [85] recommends a
mean value: 𝛥𝐾 = 140 MPa mm0.5, which is in accordance with the data reported in [84]. Given these indications, and the order
19
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Table 7
Geometry, summary of the fatigue test data and input values of the models variables for comparison with the selected
CA fatigue test data.

Geometry of the cruciform joint.

Parameter Value Unit Note Ref.

Plate thickness 𝐵 10 [mm] [83]
Plate width 𝑇w 50 [mm] [83]
Weld toe leg 𝑍 6 [mm] [83]

Summary of fatigue test data.

Failure data 20 [83]
Runout data 9 [83]

Inputs of the fatigue crack growth models — mean values

Parameter Value Unit Note Ref.

U.T.S. 𝜎u 555 [MPa] [85,86]
Yield stress 𝜎y 436 [MPa] [85,86]
Brinell hardness 𝐻b 144 [–] [81]
Vickers hardness 𝐻V 146 [–] a

Long crack threshold 𝛥𝐾0 278 [MPa mm0.5] d [53]
FCGR parameter 𝑝th 0.5 [–] a [53]
FCGR parameter 𝛼 2 [–] a [53]
FCGR parameter 𝑐th 2 [–] [53]
Initial crack depth 𝑎𝑖𝑛𝑖 0.15 [mm] a [85]
Initial crack aspect ratio 𝑎𝑖𝑛𝑖∕𝑐𝑖𝑛𝑖 0.62 [–] a [85]
Bilinear FCGR coefficient 𝐶1 4.80E−18 b [84]
Bilinear FCGR coefficient 𝐶2 5.86E−13 b [84]
Bilinear FCGR exponent 𝑚1 5.10 [–] [84]
Bilinear FCGR exponent 𝑚2 2.88 [–] [84]
Simplified FCGR coefficient 𝐶𝑃 2.50E−13 b [84]
Simplified FCGR exponent 𝑚𝑃 3 [–] [84]
Threshold SIF 𝛥𝐾th see Eq. (50) [MPa mm0.5] e [67]

aASTM conversion table.
bFor 𝑑𝑎∕𝑑𝑛 in [mm], given 𝛥𝐾 in [MPa mm0.5].
cClosure free value assumed equal to the estimator at R = 0.75.
dAssumed for similar steel grade.
eTo be used only for the models in BS7910 and for structural steels.

of magnitude of the initial crack depth considered in this work, the threshold condition for the models in BS7910 is assumed in this
work as:

𝛥𝐾th =

{

63, for 𝑎 < 1
140, for 𝑎 ≥ 1

(50)

which corresponds to a stepwise R-curve. The fatigue crack growth rate coefficients are independent on the crack depth and
considered for load ratio 𝑅 larger than 0.5. The input values are summarized in Table 7.

The results of the prediction are plotted in Fig. 14, where a good agreement can be observed between fatigue test data and the
prediction of the proposed model. The best agreement results from the application of the fatigue crack growth rate coefficient and
exponent proposed in [87], since it minimizes the sum of the residuals squared.

When compared to the prediction obtained using the BS7910, the fatigue life predicted using the proposed model is less
conservative both in the finite life regime and at the fatigue limit, showing a better agreement with CA fatigue test data. The
predicted fatigue life obtained by making use of the simplified law in the BS7910 is conservative with a factor of 3, at relatively
low stress ranges. By using the bilinear law, the prediction is less conservative. Both models predict a significantly lower fatigue
limit as compared to the CA fatigue test data. Instead, the proposed model predicts a fatigue limit more in line with the trend of
the CA fatigue test data.

4.3. Model validation for VA loading

For the purpose of evaluating the model response for variable amplitude fatigue test data, the VA fatigue crack growth
rate equation proposed in Section 3.3.1, Eq. (47), is applied. In this case, the residual stress state is assumed to be uniform,
i.e. independent of 𝑧∕𝐵, and re-estimated every 500 cycles by making use of Eq. (30), since the block length applied in [83] for the
production of the fatigue test data is 500 cycles. Furthermore, the model is applied a second time without considering the effect
of the residual stresses. The first case is expected to give conservative results, because BS7910 is a design standard, whereas the
second case is expected to provide a too optimistic prediction.
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Fig. 14. Comparison between model prediction and fatigue test data under CA loading from [83].

The experimental results reported in [65] showed that, under a Rayleigh spectrum loading, the use of the root mean square of
he SIF range, 𝛥𝐾rms, well correlates CA and VA fatigue crack growth rate data in the Paris region. This means that in the Paris
egion the average fatigue crack growth rate under this specific type of VA loading spectrum, can be estimated by:

𝐸

[

𝑑𝑎
𝑑𝑛

]

VA

= 𝐶𝛥𝐾𝑚
rms (51)

where 𝐶 and 𝑚 are respectively the fatigue crack growth rate coefficient and exponent for CA loading. This correlation was verified
for several structural steels: A36, A588GrA, A588GrB, A514Gr.E, A514Gr.F.

The proposed model makes use of the maximum value of the SIF range, implying that Eq. (51) cannot be directly used.
owever, given the relationship between 𝛥𝐾rms and 𝛥𝐾max, it is possible to estimate the value of 𝐶𝛺. In light of the characteristics

of the Rayleigh spectrum, 𝛥𝐾max can be related to 𝛥𝐾rms. In particular, for a Rayleigh spectrum truncated as in [83], that is
𝛥𝜎max = 𝛥𝜎min + 3𝛥𝜎d (or equivalently 𝛥𝜎max = 𝛥𝜎m + 2𝛥𝜎d, because the data in [83] were produced using a Rayleigh spectrum
having 𝛥𝜎d∕𝛥𝜎m = 1), it results that:

𝛥𝜎rms = 𝛥𝜎m + 0.387𝛥𝜎d (52)

sing the SIF range instead of the stress range, it follows that:

𝛥𝐾rms = 0.459𝛥𝐾max (53)

y substituting the previous equation into Eq. (51) it results in that:

𝐸

[

𝑑𝑎
𝑑𝑛

]

VA

= 𝐶(0.459𝛥𝐾max)𝑚 (54)

Therefore, for the truncated Rayleigh spectrum used in [65,66,83], 𝐶𝛺 is related to 𝐶 by the following relationship

𝐶𝛺 = 0.459𝑚 𝐶 (55)

The predicted fatigue life obtained using the proposed model, is compared to the prediction obtained using the models in BS7910,
nd the VA fatigue crack growth data. The models in BS7910 are again the ‘‘simplified law’’ or ‘‘bilinear law’’ with the same
hreshold condition as defined for CA loading. The fatigue crack growth rate for VA loading is estimated as the average of the
atigue crack growth rate (𝑑𝑎∕𝑑𝑛)𝑖 estimated for each individual stress range of the spectrum, (𝑑𝑎∕𝑑𝑛)𝑖, weighted by the relative
requency, 𝑛𝑖∕(

∑

𝑛𝑖) associated with each stress range of the spectrum, 𝛥𝜎𝑖:
(

𝑑𝑎
𝑑𝑛

)

VA

=
∑

𝑖

[

(𝑑𝑎
𝑑𝑛

)

𝑖

𝑛𝑖
∑

𝑛𝑖

]

(56)

where (𝑑𝑎∕𝑑𝑛)𝑖 is individually estimated for each stress range of the spectrum by either using the bilinear or the simplified law.
The resulting predicted fatigue life and the comparison with test data are shown in Fig. 15 by either considering residual stresses

(using Eq. (30)) or neglecting their effect. This distinction is made because it is likely that the approach in BS7910 might lead to
conservative prediction. The predicted curves reasonably bound the average fatigue life following from the VA fatigue test data,
depending on the assumed magnitude of the secondary stresses. In particular, the prediction obtained by assuming 𝜎r = 0 is inside
the 95% confidence interval for the mean response of the LRM fitting the VA fatigue test data. When compared to the fatigue life
predicted using the proposed model, the prediction obtained by the models in BS7910 gives conservative results, also with respect
to VA fatigue test data.
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Fig. 15. Comparison between VA fatigue test data from [83], and fitted using a LRM, the 95% confidence interval for the mean response, the prediction using
the proposed model with and without residual stresses, and prediction using the models in BS7910.

5. Conclusions

The paper presents a fatigue life prediction model for transverse welded details by making use of the linear elastic fracture
mechanics parameter 𝛥𝐾, considering the behavior of mechanically short (small) and long cracks.

The transition in the threshold condition between small and long cracks is modeled using the exponential relation introduced
by McEvily [56]. The parameters of controlling the length scales at which extrinsic phenomena become fully active are estimated
by making use of the empirical correlations proposed by Chapetti [46] and Murakami [54]. The comparison between the predicted
cyclic R-curve and the test data from literature reveals that the proposed approach determines a non-biased prediction of the
threshold condition for small and long cracks. Moreover, following the comparison between the predicted cyclic R-curve and the test
data, the global uncertainty has been evaluated based on the distribution of the log-residuals of the threshold stress intensity factor
range: CoV=0.10. This performance is better than for other models from the literature. The authors consider the proposed approach
as preferable, because of three reasons: (1) it appears to be less biased, (2) leads to a less scattered distribution of the log-residuals,
and (3) it requires fewer input variables. In particular, it requires only the Vickers hardness, which can be easily measured, and the
threshold of the SIF range for long cracks, which can be measured relatively easily, e.g. in comparison to 𝛥𝐾th,eff, and is reasonably
nown for many steel grades.

Since the correlations developed by Murakami [54,55] are used to estimate relevant quantities such as the intrinsic threshold of
he SIF range and the distance from the free surface of the first microstructural barrier, the test data used by Murakami [54] are
e-analyzed using the maximum likelihood method in order to estimate aleatory and epistemic uncertainty.

With the aim of predicting the fatigue life at relatively high stress ranges and the fatigue limit of the considered welded detail,
t results that the most relevant parameters are the intrinsic threshold of the SIF range and the fatigue crack growth rate coefficient.

The obtained prediction is compared with independent datasets from literature related to a non-load carrying cruciform joint.
good agreement is obtained for both the CA and the VA fatigue life prediction, and a less conservative prediction is obtained as

ompared to the models in BS7910. The VA fatigue test data were obtained by applying a random block of VA loading by sampling
rom a Rayleigh spectrum. It is well known that the fatigue strength is strongly related to the type of applied load history. This
mplies that the estimators of the model parameters derived in this paper cannot be directly applied to predict the fatigue life
n the case of a different type of stress spectrum. This would require that either the fatigue crack growth rate be experimentally
etermined for the selected type of load history (stress spectrum), or crack growth retardation and acceleration models be available
nd sufficiently accurate to estimate the fatigue crack growth rate for the selected type of load history.

The modification of the residual stress state induced by the VA loading has been considered by two extreme cases: (1) by using
he approach for proof loading described in the BS7910, leading to a conservative prediction, and (2) by neglecting the effect of
esidual stresses, leading to an optimistic prediction. The two predictions are found to reasonably bound the average fatigue life.
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