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Abstract
Curved aluminium extrusions are applied in a wide range of industrial applications. Because extrusions are initially straight, an
additional process is required to curve the product. Undesired wrinkling of the plate part at the inner radius is frequently observed
during the curving process. Wrinkling has already been extensively studied for the rotary-draw bending process. This paper aims
at predicting the conditions for which wrinkling of a hollow section can occur during the three-point-roll bending process. It is
shown that the most important condition for wrinkling is that buckling of the compressed plate part at the inner radius occurs. An
analytical prediction model for buckling is presented, which predicts the critical bending radius as a function of the plate
slenderness. The analytical model is validated with a finite element model, which in turn is validated with an experiment.
Both the finite element model and the experiment confirm that wrinkling does not occur if the applied radius exceeds the model
predicted critical radius.
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1 Introduction

Aluminium alloys are well known for their excellent strength-
to-weight ratio, and are therefore widely applied in the trans-
port and construction industries. These industries often de-
mand casted and extruded aluminium products of various
shapes that should meet high standards with respect to me-
chanical and visual properties. An extruded product is initially
straight, due to its production process. An additional process
therefore is required if the final product needs to be curved.
The two most often applied curving processes are as fol-
lows: (a) rotary-draw bending (RDB, Fig. 1); and (b) three-
point-roll bending (TPRB, Fig. 2). Obviously, these proce-
dures take place near the end of the production process.
Therefore, the parameters of these curving procedures

determine to a large extent the quality of the finalised prod-
uct. One of these qualities, surface quality, is related to the
presence and magnitude of scratches and cracks and to
(excessive) deformation and wrinkling, the latter being
the subject of this paper.

Wrinkling has been mainly studied for RDB. An RDB
machine (RDM) consists of the components as given in Fig.
1: (1) pressure die, (2) wiper die, (3) mandrel, (4) bending die,
(5) clamping die, (6) flexible mandrel balls and an optional (7)
boosting die. RDB provides a product with a local curvature
due to a rotational movement ωdraw of the bending die. A
boosting die supports the curving process by performing an
actuated movement vboost in the direction aligned with the
movement of the product caused by ωdraw.

Experimental, analytical and numerical studies have been
conducted regarding several aspects involved in RDB, in or-
der to gain control over the surface quality. Common practice
in most studies has been to threat a single aspect of the curving
process, resulting in the following fields of study: mechanics
involved in curving, spring back, machine settings, residual
stresses, strain hardening and damage. Zhu et al. [1] observed
that wrinkling starts in the part of the section in front of the
bending die, i.e., before it is in contact with the die. Friction
between the bending die and the section was found to be of
importance for wrinkling. He et al. [2] conducted a study
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including various process parameters, considering the coeffi-
cient of friction (COF) and the lack of fit (LOF) between the
different parts of the RDM and the effect of the ratio between
the wall thickness over the bending radius on these COF and
LOF coefficients. The obtained observations are summarized
in Table 1, where “negative” or “positive” refers to a deterio-
ration or improvement, respectively, of the (wrinkling related)
surface quality. In addition, it was observed that the effects of
the coefficients are amplified for an increasing plate
slenderness.

Xiao et al. [3] studied the combined effects of the process
parameters given in Table 1 on wrinkling and wall thinning or
thickening of a double-ridged wrought copper brass hollow
section by using a grey relational analysis. The governing pa-
rameters for the studied effects are indicated in Table 1 by a [3].

Chen and Zhang [4] studied the effect of the bending ve-
locity on the wrinkling of stainless steel and aluminium CHS.
They observed that the interaction between the different parts
of the RDM and the section hinders material flow at higher
bending speeds. Consequently, material flow lags behind the

speed of the process. This causes material to accumulate in
front of the bending die, which in turn results into higher
magnitudes of wrinkling. Li et al. [5] found that wall thinning
and wrinkling is decreased if the bending velocity is con-
trolled by a proper boosting velocity, but this effect depends
on the LOF between the mandrel (cores) and section and the
LOF between the pressure die and the section.

Safdarian [6] and Fang et al. [7] found that an increase of
the extension length of the mandrel, after the bending point,
results in an increase in wall thinning and a decrease in wrin-
kling. Material-related mandrel characteristics are also shown
to be important when considering wrinkling during RDB. As
an example, Liang et al. [8] found that the rigidity of the
mandrel is of influence on the susceptibility of the wrinkling
of a steel RHS with an inner core.

The above overview indicates that the process parameters
have an important influence on wrinkling. As such, and taking

Fig. 1 Rotary-draw bending (RDB) configuration

Fig. 2 Three-point-roll bending
(TPRB) configuration

Table 1 Summary of the influence of the interaction coefficients on the
wrinkling of an aluminium circular hollow section (CHS)

Interaction Effect

LOF between the wiper die and CHS Negative

LOF between the mandrel (cores) and CHS [3] Negative

LOF between the bending die and CHS [3] Positive

LOF between the pressure die and CHS Positive

Decrease in COF between wiper die and CHS Negative

Decrease in COF between mandrel and CHS Negative

Decrease in COF between bending die and CHS Negative

Decrease in COF between pressure die and CHS Positive
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into account practical curving conditions, He et al. [2] used a
criterion for wrinkling based on the energy method [9]:

0:8 <
T

Umin
< 1:0 ð1Þ

where factor 1.0 is the theoretical limit value, considered an
upper bound in [2], and the factor 0.8 is a practical lower bound
that takes into account the imperfections of the machinery. T is
the load potential obtained indirectly via the energy dissipated
in plastic deformation (EDPD) at the compressed side of the
hollow section, obtained from a finite element (FE) model:

T ¼ ∑
n

e¼1
σeεeVe ð2Þ

where n is the number of finite elements in the compressed
deformation zone, Ve is the volume of the element, and σe and
εe are its average equivalent stress and strain, respectively.
Umin in Eq. (1) is the strain energy (SE) related to the wrin-
kling of the hollow section. It consists of the following terms:

Umin ¼ U tube þ Umachine ð3Þ
where Utube is the energy required to initiate plate buckling,
and Umachine is the work done by the RDM on the hollow
section and depends on the LOF.

To develop a decision model for the process parameters
that enables rotary draw bending without wrinkling and dis-
tortions, the bending limits of CHS have been investigated in
Li et al. [10]. To predict wrinkling, thinning and flattening,
theoretical models were used, and these were verified with
experiments. Subsequently, the theoretical models were used
to describe the safe combination of design parameters, taken
all three types of failure into account. Specifically for wrin-
kling, the theoretical model was based on a minimum-energy
prediction (Li et al. [11]).

It is also evident from Eq. (2) that the material parameters
affect the work done on the section, and many researchers have
shown that thematerial consequently affects wrinkling. Jie et al.
[12] studied the effect of material properties on the wrinkling of
a rectangular wrought copper brass section, with results accord-
ing to Table 2 (using a similar setup as Table 1, and with INAS
explained hereafter), where K and n are parameters of the so-
called Holloman’s strain hardening equation:

σ εp
� � ¼ Kεnp ð4Þ

where σ is the stress and εp is the plastic strain.
Zhao et al. [13] derived an analytically model for the effect

of strain hardening on wrinkling of an aluminium rectangular

hollow section (RHS) using the principle of stationary poten-
tial energy (PE) and Holloman’s equation. Similar to [12], it
was observed that materials with a high value for K—i.e. a
strong material—and a low value for n—i.e. little strain
hardening—have poor formability properties. As such, these
materials cause concentrated yielding in the section, subse-
quently increasing the sensitivity to and magnitude of wrin-
kling deformations. Guangjun et al. [14] found that variations
of hardening exponents, thickness anisotropy and the Young's
modulus had a large effect on the bending properties, and so
on wrinkling. The effect of the anisotropy was also studied in
Hasanpour et al. [15] by using the Hill yield locus, with a
similar effect on wrinkling as observed in [12]. This effect
can be explained by the relationship between anisotropy and
lateral contraction, and the fact that during RDB, the dies and
mandrel restrain lateral contraction. Note that this is one of the
reasons why heat treatment prior to curving can reduce wrin-
kling, since by the treatment grains with equal multiaxial,
properties are formed during recrystallization.

Another influencing factor on the occurrence and magni-
tude of wrinkling during RDB, with a significant interaction
with the material parameters as well, is the so-called inward
neutral axis shift (INAS), which was studied by Li et al. [16].
It was shown that the larger the INAS, the larger the wrinkling
distortions become. The effects of material properties on the
INAS are shown in Table 2, in which ‘–’ and ‘+’ refer to a
smaller and a larger INAS respectively, whereas NC refers to
not considered. Considering materials with different yield
strength in tension compared to compression, INAS appears
to decrease if the ratio between the tensile yield stress and the
compressive yield stress increases. The effects of the strength
coefficient and normal anisotropy on the INAS increase,
whereas the effect of the strain hardening index reduces.

Finally, the section geometry influences the susceptibility to
wrinkling. Many researchers have shown that the plate slender-
ness is of significant importance to wrinkling. For aluminium
CHS and RHS respectively, He et al. [2] and Zhao et al. [13]
concluded that an increase in plate slenderness causes an in-
crease in the critical radius, which is the largest radius for which
the compressed section part wrinkles. The interaction of plate
elements is studied by Liu et al. [17] for aluminium RHS and
U- and L-shaped sections. They observed that adjacent plate

Table 2 Summary of material properties on wrinkling and INAS

Increase of Wrinkling [12] INAS [16]

Yield stress f0 Negative -

Strength coefficient K Negative -

Strain hardening index n Positive +

Young’s modulus E Positive NC

Normal anisotropy γ Negative -
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elements can amplify their out-of-plane deflection mutually if
the plates have a similar slenderness.

In summary, the studies into wrinkling in RDM demon-
strate that wrinkling models should incorporate the plate slen-
derness, the section and mandrel geometry, and the section
and mandrel material properties. They further demonstrate
that it is important to align (the velocities of) the machinery
and the curved product.

Whereas RDB is used to manufacture a product with a local-
ized curvature, TPRB is often used to provide a product with a
curvature over a certain (or the entire) length. A standard TPRB
configuration is given in Fig. 2 and consists of the following
elements: (1) a first roll, (2) a last roll and (3) a centre roll. TPRB
resembles a multi-stage process: The section is placed in be-
tween the rolls (see the top left of Fig. 2), succeeded by a uni-
axial displacement yload of the centre roll, being the loading
phase and providing the section with an initial curvature (see
the top right of Fig. 2). Subsequently, the first, centre and last
rolls perform rotational movements ωfr, ωcr, and ωlr, respective-
ly, causing the section to be fed through the machine in the
feeding phase, at the same time being curved over the length,
see Fig. 2 at the bottom. The process ends with an unloading
phase, in which the product is released from the set-up.

Wrinkling in TPRB has received less attention from the
international research community compared to wrinkling in
RDB. Shim et al. [18] studied wrinkling of steel RHS during
TPRB by using a combined experimental, analytical and nu-
merical approach for a double-stage curving process. A
double-stage curving process involves a section, bar or sheet
bent to its final radius by feeding it twice through the TRRB
configuration; the last time in opposite direction and with an
increased displacement yload of the centre roll. The two feed-
ing stages are referred to as the pre-bending and final bending
stage, respectively.

The study of Shim et al. [18] was aimed at the determina-
tion of the critical pre-bending radius. Also, studies were the
effect of pre-bending on the wrinkles observed after the final
bending stage. Depending on the difference between the crit-
ical radius and the final radius, it was found that pre-bending
reduces or prevents wrinkling in the final bending stage. The
critical pre-bending radius was predicted by equating the out-
of-plane component of the internally developed force due to
bending, and the elastic resistance at the onset of yielding. The
critical pre-bending radius Rcrit; pb follows from:

Rcrit;pb≥
3b2

2t
ð5Þ

where b and t are the width and thickness of the plate element
susceptible to wrinkling, respectively.

Different from [18], the TPRB configuration studied in this
paper is equippedwith additional tooling, consisting of a man-
drel and a push unit, see Fig. 3a. This additional tooling does
not allow for multi-stage bending. Instead, the section is bent
to the required radius in a single stage. The mandrel is a flex-
ible filling, made fit to the interior of the section with practi-
cally no initial tolerance. It therefore prevents damage to the
section that might otherwise occur as a result of large forces at
the location of the centre roll, and possibly also reduces in-
ward wrinkling.

Figure 4 shows the forces exerted on the section. Since the
mandrel is made fit to the interior of the section, a frictional
force Fmandrel develops, causing a friction stress σ(xBR)fric in
the section. A pulling-rod transfers the frictional force to the
support. This friction often exceeds the slip force between the
section and the rolls responsible for feeding the section
through the machine. Consequently, the friction hinders or
prevents the transport of the section through the bending con-
figuration. A push unit is therefore applied to compensate the
additional friction. It exerts a uniaxial actuated movement x-
push that pushes the section through the machine. The accom-
panying force Fpush results into a stress σpush in the section.
Friction between the section and the rolls is negligibly small
compared to the friction between the section and the mandrel,
because of the actuated rotation of the rolls being aligned with
xpush. Bending and frictional stresses are therefore (amongst
others) a function of location xBR, where xBR = 0 refers to the
location of first-roll-contact and xBR = L refers to the last con-
tact point of the TPRB-configuration with the extrusion, with
thus, L the total length of the bending region (BR), after which
the remaining stress in the section is a residual stress σres.

Wrinkles develop in two stages in the TPRB process. In
the first stage, the buckling stage is the part of the com-
pressed plate buckles in front of the centre roll as shown in
Fig. 3b. In the second stage, the wrinkling stage, the buckle
is reshaped (set) between the centre roll and the mandrel.
This paper aims at predicting the largest radius at which
buckling occurs during TPRB including a mandrel and a

Fig. 3 TPRB process: a
configuration with push unit and
mandrel; b plate buckling during
TPRB
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push unit. An analytical model is employed for this first
stage, as elaborated in Section 2. The model is validated
with a numerical model using the finite element method
(FEM), Section 3. The numerical model is also used to
study the second stage of the wrinkling process and this
stage is validated by an experiment. The parameters that
appeared important for RDB as listed above are incorpo-
rated in the study, but sometimes in a simplified fashion.
The models presented allow for further extension with ad-
ditional parameters. Finally, conclusions are given in
Section 4. Figure 5 presents the structure of the paper.

2 Analytical description of buckling

This section provides an analytical approach to describe buck-
ling during the loading phase of the compressed plate in front
of the centre roll (the first stage of wrinkling development),
which is a prerequisite for wrinkling and an upper bound

approximation for the critical radius. In this loading phase,
the possible beneficial effects of the boosting velocity caused
by the push unit (Li et al. [5] and Li et al. [16]) are not yet
present and it is therefore the decisive phase for the occurrence
of buckling. Shim et al. [18] derived a relationship between
the out-of-plane component of the internally developed nor-
mal force due to bending and the onset of wrinkling, see Eq.
(5). Instead, the current study suggests a theory for the buck-
ling of plate elements of a RHS based on the concept of a
semi-infinite section, see Fig. 6, in which it is assumed that
the plate element, ‘a’ is in-plane supported by the adjacent
plate parts ‘∞.’ This theory is used because Shim et al. [18]
studied the phenomenon of unrestrained inward wrinkling,
whereas it is assumed here that the mandrel fits so tightly that
this wrinkling mode is not possible.

Plate element ‘a,’ subject to out-of-plane deformation due to
buckling, is adjoin with the supporting plate parts ‘∞,’ in which
the out-of-plane deformations gradually dissolve. The plate
parts adjacent to part ‘a’ are referred to as ‘∞,’ because the

Fig. 4 Set-up during the feeding
stage with schematic reaction
forces and stresses in the section
(the detail in the dotted lined
circle shows a possible small gap
between section and mandrel)

Fig. 5 Paper outline
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mechanical behaviour of these parts in combination with prac-
tical dimensions allows for the approximation that these plate
parts are of infinite length. This statement will be proven below.

As mentioned earlier, He et al. [2] proposed a criterion to
predict wrinkling during RDB curving based on the energy
method [9], as was shown in Eg. (1). A modification of the
denominator of Eq. (1) is considered here to allow for the
description of buckling during TPRB:

Umin ¼ V þ ∑Ksprings ð6Þ

The terms contributing to the Strain Energy (SE) of the
system are the SE of the plate part ‘a,’ defined as V, and the
SE of springs within the system, defined by Ksprings, which
represent the boundary conditions of the plate. These contri-
butions are elaborated hereafter.

2.1 Strain energy of a plate elastically restrained
against rotation

Plate element ‘a’ is modelled as a plate that is elastically re-
strained at its edges perpendicular to its width a. As a first
approach to the problem, a general solution for a plate that is
elastically restrained against rotation along its circumference is
explored, as shown by themechanical scheme as given in Fig. 7.

The SE of the plate equals:

V ¼ D
2
∫b0∫

a
0

∂2w
∂x2

� �2

þ ∂2w
∂y2

� �2

þ 2v
∂2w
∂x2

∂2w
∂2y2

V þ 2 1−vð Þ ∂2w
∂x∂y

� �2

dxdy

ð7Þ
where D is the flexural rigidity of the plate, a and b are the
plate dimensions, v is Poisson’s ratio, and w is the shape

function of the deflection. The flexural rigidity of the plate is
given by:

D ¼ Et3

12 1−v2ð Þ ð8Þ

where E is Young’s modulus and t is the plate thickness. The
SE of the rotational springs equal:

∑Ksprings ¼ 2
1

2
∫a0kr;x

∂w
∂y

� �2

dx

( )
þ 2

1

2
∫b0kr;y

∂w
∂x

� �2

dy

( )
ð9Þ

where kr; x and kr; y are the rotational spring stiffness per unit
length along the edges aligned with the x- and y-axis, respec-
tively. Henceforward, the problem is reduced to find (an ap-
proximation of) the shape function w, and the spring stiff-
nesses kr, x and kr, y.

2.2 Elastic restrained plates

Qiao and Shan [19] provide a shape function for the out-of-
plane deflection of a plate with elastically restrained edges:

w x; yð Þ ¼ Ω 1−ψð Þsin πx
a

� �
þ ψ 1−cos

2πx
a

� �� �� 	
� 1−ϑð Þsin πy

b

� �
þ ϑ 1−cos

2πy
b

� �� �� 	
ð10Þ

whereΩ is the amplitude and ψ and ϑ represent weight factors
for the amount of edge restraint about the y- and x-axis, re-
spectively: A weight factor of zero resembles simply support-
ed edges, whereas a weight factor equal to unity resembles a
fully clamped edge.

Realistic values for ψ and ϑ can be obtained by taking into
account the dynamic boundary conditions at the elastically
restrained edges:

Fig. 6 Semi-infinite section

Fig. 7 Elastically restrained plate
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My;0 ¼ −D
∂2w
∂x2






x¼0

¼ −kr;y
∂w
∂x






x¼0

ð11Þ

My;a ¼ −D
∂2w
∂x2






x¼a

¼ kr;y
∂w
∂x






x¼a

ð12Þ

Mx;0 ¼ −D
∂2w
∂y2






y¼0

¼ −kr;x
∂w
∂y






y¼0

ð13Þ

Mx;b ¼ −D
∂2w
∂y2






y¼b

¼ kr;x
∂w
∂y






y¼b

ð14Þ

The weight factors are then obtained by substitution of Eq.
(10) into the boundary conditions for My; i and Mx; i:

ψ ¼ akr;y
akr;y þ 4πD

ð15Þ

ϑ ¼ bkr;x
bkr;x þ 4πD

ð16Þ

The resulting equations illustrate that the amount of edge
restraint is a function of the plate dimensions, rotational spring
stiffness and the plates’ flexural rigidity.

A general solution for the SE as a function of the deflection
of a plate with a fully elastically restrained circumference was
derived in the Section 2.1. To make this general solution ap-
plicable to the current problem, Eq. (10) is modified by con-
sidering the boundary conditions that apply during the TPRB
process. The plate elements adjacent and perpendicular to the
wrinkled plate (shown on the left in Fig. 8 as horizontal
flanges at the top and bottom) are free to deflect out-of-plane
in the theoretical case of an unrestrained section. However, the
mandrel and the roll, including its upper and lower flanges,
restrain this out-of-plane deflection for the TPRB process
studied here, shown in the centre of Fig. 8. Consequently,
the value of the spring stiffness kr; x can be regarded as infinite
and the clamping ratio ϑ becomes:

ϑ ¼ lim
kr;x→∞

bkr;x
bkr;x þ 4πD

¼ 1 ð17Þ

Substitution the value ϑ = 1 into Eq. (10) yields:

w x; yð Þ ¼ Ω 1−ψð Þsin πx
a

� �
þ ψ 1−cos

2πx
a

� �� �� 	
� 1−cos

2πy
b

� �� �� 	
ð18Þ

Substituting Eq. (18) into Eq. (7) and (9) and subsequently
into Eq. (6) yields:

Umin ¼
Dπ3 I1a4 þ I2b4 þ I3a2b2

� �
24a3b3

 
þ 3π2kr;yb ψ−1ð Þ2

2a2

!
Ω2 ð19Þ

where the terms Ii are given by:

I1 ¼ 48π−96πψþ 512ψþ 192πψ2−512ψ2 ð20Þ
I2 ¼ 9π−18πψþ 96ψþ 153πψ2−96ψ2 ð21Þ
I3 ¼ 24π−48πψþ 256ψþ 120πψ2−256ψ2 ð22Þ

All terms in Eq. (19) apart from spring stiffness kr; y have
now been defined. A Levy-type plate bending solution is ex-
plored as an approach to determine this rotational spring stiff-
ness. This analytical method uses a single Fourier series to
describe bending problems for rectangular plates having two
opposite simply supported edges and two opposite edges with
arbitrary boundary conditions [20]. A Levy-type solution as-
sumes the following displacement function for the plate de-
flection:

ew x; yð Þ ¼ ∑
∞

m¼1
f n xð Þsin πmy

b

� �
ð23Þ

where fn(x) is a function (yet to be determined) that describes
the deflection in the x-direction and m is the number of half
sine waves. Substitution of Eq. (23) into a basic equation for
the linear theory of plate bending [21] yields the general Levy-
type solution:

ew x; yð Þ ¼ ∑
∞

m¼1

πmx
b

A1sinh
πmx
b

� �
þ A2cosh

πmx
b

� ���n
þ A3sinh

πmx
b

� �
þ A4cosh

πmx
b

� �o
sin

πmy
b

� �
ð24Þ

Fig. 8 Restraining properties of
the mandrel and roll, including its
upper and lower flanges
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The terms Ai are constants that depend on the boundary
conditions of the plate edges in y-direction, and are based
on the system as given by the continuous lines in Fig. 9.
In this figure, a∞ is the width of the supporting plate part
“∞”, d is the depth of the RHS, and M0 is a dummy edge
moment applied to derive the spring stiffness provided by
plate part ‘∞.’

Although a mandrel is present, inward out-of-plane deflec-
tion of plate part ‘∞’may take place due to a small gap emerg-
ing (dotted circle in Fig. 4) at the end of the mandrel. This gap
is related to the mandrel stiffness and the dimensional toler-
ances required to fit the mandrel into the RHS. Because buck-
ling may be related to even small out-of-plane deflections, this
potential inward deflection has to be taken into account. It is
assumed that the edges of the supporting part aligned with the
x-axis, see Fig. 9, are simply supported. Further kinematic and
dynamic boundary conditions are:

ew



x¼0

¼ ew



x¼a∞

¼ d2ew
dx2







x¼0

¼ 0 ð25Þ

and the dynamic boundary condition related to the dummy
edge moment equals:

D
d2ew
dx2







x¼a∞

¼ −M 0 ð26Þ

By substitution of the general Levy-type solution into the
boundary conditions, the constants Ai are obtained:

A1 ¼ A4 ¼ 0 ð27Þ

A2 ¼ −
A3bsinh

πma∞
b

� �
πma∞cosh

πma∞
b

� � ð28Þ

A3 ¼ −
a∞bcosh

πma∞
b

� �
2πmDsinh πma∞

b

� �2 ∑
∞

m¼1

4M0sin πm
2

� �2
πm

ð29Þ

Substitution these terms into Eq. (24) yields the shape func-
tion as given in Fig. 10, and this shape is as expected for a
plate subjected to an edge moment at x = a∞.

The value of the rotational spring stiffness of the plate part
‘a∞’ can now be obtained by the following relations:

dew
dx

¼ φ ð30Þ

kr;y ¼ M 0

φ
ð31Þ

Combining the latter two equations yields a function for the
spring stiffness of the supporting plate element at the edge x =
a∞:

kr;y yð Þ

x¼a∞
¼ π2Dsinh ϰð Þ2

2sin
πy
b

� �
bcosh ϰð Þsinh ϰð Þ−μcosh ϰð Þ2 þ μsinh ϰð Þ2
� �

ð32Þ
where

ϰ ¼ πa∞
b

ð33Þ

Fig. 9 Part of the RHS section as
also shown in Fig. 6
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μ ¼ πa∞ ð34Þ

However, the value of a∞ is undefined yet. Thanks to the
distance between the rolls in practice, a∞ ≫ b. Two extreme
cases are therefore considered, namely a∞ = b and a∞ =∞.
Figure 11 shows the spring stiffness following these extremes,
and it can be concluded that the spring stiffness is insensitive
to the actual value of a∞within the practical domain of TPRB.

Henceforward, the value of a∞ =∞ is selected, which im-
plies that the plate subjected to local buckling during TPRB is
supported by a semi-infinite section. By taking the limit of Eq.
(32) with this selected value, the equation for the rotational
spring stiffness at the edge x = a∞ in Fig. 11 becomes:

lim
a∞→∞

kr;y yð Þ

x¼a∞
¼ π2D

2bsin
πy
b

� � ð35Þ

Figure 11 further indicates that the value for kr; y naturally
is low at midspan and shows asymptotic behaviour towards
y = 0 and y = b, where the plate is connected to the other parts.

2.3 Load potential

The SE of the plate has now been obtained; however, also, the
load potential (LP) is needed. The LP in [2] considers the

potential energy of the load via a numerical model.
However, in order to obtain a fully analytic solution, here an
analytical approach is used for the LP of a distributed line load
as given in [9]:

T ¼ Nxx

2
∫b0∫

a
0

∂w
∂x

� �2

dxdyþ Nyy

2
∫b0∫

a
0

∂w
∂y

� �2

dxdy ð36Þ

where Nxx and Nyy are the loads working in the x- and y-direc-
tions (Fig. 9) on the plate respectively. The load Nxx = tσxx is a
consequence of the stress in the compressed plate between the
first and the centre roll. The loading phase—with an actuated
movement yload (Fig. 2)—appears to generate the largest com-
pression load during the process, and the accompanying plate
load is easily obtained from yload. The plate loadNyy is equal to
zero for the case here. By substitution of Eq. (18) into Eq. (36)
and evaluation of the integral, it follows:

T ¼ πI4σxxtb
8a

Ω2 ð37Þ

In which I4 is given by:

I4 ¼ 3π−6πψþ 32ψþ 15πψ2−32ψ2 ð38Þ

2.4 Elastic critical buckling stress

The boundary value of 0.8 in Eq. (1) as proposed in [2] takes
into account practical conditions during RDB. Because TPRB
is a fundamental different curving procedure, the value of 0.8
and the practical conditions on which it is based are question-
able for the current application. A theoretical framework is
proposed here, so that the upper bound solution of Eq. (1)
applies, and T =Umin. Namely, to obtain equilibrium for a
buckling problem in particular, the SE can be set equal to
the load potential (LP), but note that for a normal non-
buckling elastic problem, the sum of LP and SE has to be
made stationary to find equilibrium. By setting equal the SE
in Eq. (19) to the LP in Eq. (37), and defining the stress as the
elastic critical stress i.e. σxx = σcr, it follows:

πI4σcrtb
8a

Ω2

Dπ3 I1a4 þ I2b4 þ I3a2b2
� �

24a3b3
þ 3π2kr;yb ψ−1ð Þ2

2a2

!
Ω2

 ¼ 1 ð39Þ

All required terms in Eq. (39) for solving σcr are known,
except for the value for a. Therefore, Eq. (39) can be written as:

σcr ¼ kτ
D
t

ð40Þ

where kτ is a factor depending on the plate aspect ratio τ = a/b.
The critical aspect ratio is obtained by solving:

Fig. 10 Deflection field of the supporting plate element

Fig. 11 Rotational spring stiffness of the supporting plate element

Int J Adv Manuf Technol



dkτ
dτ

¼ 0 ð41Þ

Noting that τ > 0 and τ ∈ℝ, and for the boundary condi-
tions of the plate considered, numerical solving Eq. (41) yields
τ = 0.91 or a = 0.91b, which agrees with photos of the buck-
ling mode in [18]. Substituting this value together with the
expression of kr; y in Eq. (15) provides ψ = 0.596. The elastic
critical stress then follows from Eq. (39):

σcr ¼ 102:609
D

b2t
ð42Þ

2.5 Elasto-plastic and plastic buckling

Characteristic for TPRB is the continuous process of
(plastically) deforming a section in between the rolls. Hence,
buckling during TPRB takes place outside the fully elastic
regime: σcr > σp where σp is the proportionality stress i.e. the
stress at which the material deviates fromHookes law. Stowell
[22] derived equations for the critical inelastic buckling stress,
σcr, inel, which consider the influence of the inelastic stress-
strain relationships during buckling. As such, Eq. (42) is re-
placed by:

σcr;inel≤102:609
Dp

b2t
ξc ð43Þ

where Dp is the flexural rigidity of the plate in the inelastic
regime, defined hereafter, and ξc takes into account the re-
duced stiffness in the inelastic regime. For the specific case
of the boundary conditions of the current plate, [22] provides:

ξc ¼
Es

E
0:352þ 0:648

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ 3

4

Et

Es

r� �
ð44Þ

in which Es and Et are the secant and tangent modulus,
respectively:

Es ¼ σ
ε σð Þ ð45Þ

Et ¼ dε σð Þ
dσ

� �−1

ð46Þ

where ε is the strain and σ is the stress. Hence, the values for
Es and Et follow from the stress-strain curve. A widely applied
stress-strain model for aluminium alloys is the Ramberg-
Osgood model, [23]:

ε σð Þ ¼ σ
E
þ ε0

σ
f 0

� �n

ð47Þ

where ε0 is the permanent 0.2% strain i.e. ε0 = 0.002, f0 is the
0.2% proof stress of the alloy considered, and n is the strain

hardening index of the alloy. Equation (43) can be replaced by a
two-branch model for a better resemblance of test results [23]:

ε σð Þ ¼
σ
E
þ ε0

σ
f 0

� �n1

if σ≤ f 0
σ
E
þ ε0

σ
f 0

� �n2

if σ > f 0

8>><>>: ð48Þ

Also Poisson’s ratio changes when σ > σp. Taking into ac-
count incompressibility in the fully plastic regime, this ratio in
Eq. (8) is replaced by the coefficient of lateral contraction vp [24]:

vp ¼ 1

2
1− 1−2vð ÞEt

E

� �
ð49Þ

Furthermore:

Dp ¼ Et3

12 1−vp2
� � ð50Þ

Hence, Eq. (43) takes into account the change in stiffness
and lateral contraction of the material during strain hardening.
Equation (48–50) can be solved numerically, and the critical
strain, εcr, then follows from Eq. (48). Finally, the critical
bending radius at the neutral axis Rcrit follows from the com-
patibility equation:

k ¼ 1

Rcrit
¼ 2εcr

d
ð51Þ

Figure 12 shows this critical bending radius vs. the plate
slenderness for a RHS with dimensions and material proper-
ties according Table 3. The material data is obtained via cou-
pon tests on alloy AA 6063-T6. It appears that the ratio be-
tween the critical radius and the squared slenderness is almost
constant, which corresponds to practical experience as given
by TPRB operators.

Fig. 12 Critical radius vs. slenderness for an RHSwith Table 3 properties

Int J Adv Manuf Technol



3 Finite element simulations

The previous section provides the means to predict local
elasto-plastic buckling during TPRB. Although buckling is a
required precursor for wrinkling, it cannot describe the wrin-
kling pattern that may be found after TPRB. Just before wrin-
kling, an initial buckle comes into contact with the centre roll
and possibly with the mandrel as shown in Fig. 13. This con-
tact causes a shape transformation from a buckling mode to a
wrinkling pattern. This transformation process depends on the
loading history of the material, cross-sectional properties, sev-
eral contact parameters and machine settings. In turn, contact
parameters depend on the COF and the stiffness and geometry
of the parts. Consequently, an analytic approach to predict
wrinkling is believed to be almost impossible, and therefore,
the FEM is used instead. Simulations are performed with
ABAQUS version 6.14.

3.1 Geometry and materials

The geometry and material selected for the FE simulations are
identical to those used for Fig. 12 i.e. following the values
according to Table 3, and with a wall thickness t equal to 3
mm. Table 4 provides the specifications of the machinery. A
bending radius was selected such that wrinkles could be ex-
pected that are visible to the naked eye. Figure 14 shows the
components included in the FE model, and Table 5 describes
the approach followed to model them. The first and last rolls
are modelled as rigid bodies to reduce computational time.

The centre roll is modelled as a ring instead of a solid disc—
i.e. the core is omitted— to reduce the number of elements.
These aforementioned components are significantly stronger
and stiffer than the section and mandrel, and hence, simplify-
ing these components is not expected to reduce the accuracy.

Shim et al. [18] used Abaqus S4R shell elements to simu-
late the RHS in the TPRB process. For the current application,
however, these reduced integrated four node shell elements,
with only one integration point over the surface, suffered from
shear locking. Therefore fully integrated four-noded S4 shell
elements were used, which performed well.

It follows from Eq. (18) and the semi-infinite-section and
the bucking mode found by Shim et al. [18] that the first
buckling mode is symmetrical for the geometry concerned
and has an Eigenvalue that is significantly lower than those
of the second and successive Eigenmodes. For this reason,
only half of the TPRB configuration is modelled, using sym-
metry conditions along the symmetry axis. All possible con-
tact areas are defined as surface-to-surface contacts. The con-
tact formulations are based on Abaqus-specific hard contact
and penalty friction. The COF’s are selected based on practi-
cal experience of TPRB operators and are given in Table 6.

Asmentioned in the introduction, a standard TPRB process
comprises of three phases, being the loading phase, the feed-
ing phase and the unloading phase. Furthermore, a TPRB
configuration equipped with a push unit requires an actuated
angle correction during the loading phase, the so-called AC-
phase, in which the configuration of the three rolls is rotated
over ωcorr, see Fig. 15. This is to ensure alignment of the push

Table 3 Geometric and material properties of the RHS applied in the simulations

b [mm]a) d [mm]a) t [mm] E [GPa] f0.2 [MPa] fu
b) [MPa] n1[-] n2 [-]

100 − 2t 50 − 2t 2.5–5.5 70 150 195 11 18

a) Outer dimensions of the section are 100 mm × 50 mm
b) fu= ultimate tensile strength, provided here for reference

Fig. 13 Buckling and wrinkling (wrinkling detail in the dotted circle)
during TPRB

Table 4 Dimensions of the components and machinery

Component Value [mm]

Roll diameters 200

Centre-to-centre distance between the first
and last rolls

700

Centre roll displacement yload (Fig. 2) after
tight fit of RHS between rolls

48

RHSa) 100 × 50 × 2.5

Mandrel clearance 0.5

Mandrel length 600

Bending radius 805

a) Ratio b/t = (100 mm − 2 ∙ 2.5 mm)/2.5 mm= 38
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unit with the section. In practice, often, a slightly lower value
than strictly required (undercompensation) is applied in order
to ensure contact between the RHS and the first roll. Such an
undercompensation is also applied in the FE model.

Additional computational effort is required to model the
angle correction phase. To avoid simulating this step in the
FEMwhilst ensuring that the alignment between the RHS and
the push unit remains as in practice, the rolls are modelled
with a fixed position and instead of a single directional motion
of the push unit, vpush in Fig. 15, a bi-axial motion is applied
with the resultant being perpendicular to the section’s cross-
section after the loading phase. Figure 16 shows the results,
and indeed, the resulting push unit movement is aligned with
the length axis of the undeformed part of the RHS.

With respect to the feeding phase, Shin et al. [25] derived a
method to predict the required centre roll displacement, yload
in Fig. 2, for a certain desired curvature of a plate. Using
similar principles, a relation is derived here between the re-
quired curvature of the RHS, and the corresponding centre roll
displacement yload, the angular velocities of the rolls ωfr, ωcr,
and ωlr (Fig. 2) and the corresponding bi-axial movement of
the push unit in x- and y-direction, xpush and ypush respectively,
to simulate ωcorr. Table 7 provides velocities applied in the FE
model for these process parameters to reach their proper rela-
tive displacements at the end of the simulation.

3.2 Simulation steps and mesh size

A dynamic implicit solution scheme is used, taking into ac-
count non-linear geometrical effects and material properties.
Mesh densities have been selected as based on a convergence
study, taking into account the occurring stress gradients, the
final obtained wrinkling shape, and EDPD.

Note that the RHS wall thickness used for the mesh sensi-
tivity study was slightly different from those in the rest of this
paper, namely t = 3 mm (instead of t = 2.5 mm, Table 4). In the
convergence study, studied element sizes for the extruded sec-
tion were approximately 10 × 10mm, 5 × 5mm, 3 × 3mm, and
2 × 2 mm. Figure 17 shows the wrinkles and stress patterns of
the simulations for the selected mesh sizes. It can be seen that
the wrinkle shape depends on the mesh size. However, the Von
Mises equivalent stress has the same magnitude for all simula-
tions, whereas the stress contours and wrinkling shape of the
RHS appear to converge with a refinement of the mesh.

As Fig. 17 provides a qualitative comparison of the mesh
size, the EDPD is selected as a quantitative criterion to eval-
uate the mesh size, see Fig. 18. The figure shows that the
solution converges slowly with an increased mesh density;
however, the computational time increases rapidly with an
increasing mesh density, see Fig. 19. Therefore, a mesh size
of 2 × 2 mm was selected for further analysis, as a trade-off
between accuracy and computational costs. Shim et al. [18]
also concluded that a mesh size of 2 × 2 mm is appropriate in
their TPBR setup for describing wrinkling of a section of
similar size and shape.

To explore the effect of imperfections, a sine-based imper-
fection field was applied to the compressed plate of the ex-
truded section by:

wimp x; yð Þ ¼ Ωinpsin
πx
b

� �
sin

πy
b

� �
ð52Þ

in whichΩinp is selected as b/1000, which is a typical value
for aluminium extrusions [23, 26]. This imperfection field did
not influence the results of the FE model, in terms of occur-
rence and magnitude of the wrinkles. This is attributed to the
fact that buckling and deformations enforced by the centre roll
are so significant that they outweigh initial imperfections.

3.3 Results of the FE model

For validation purposes, a TPRB test was performed with the
same set-up, process parameters, geometry and material

Table 5 Components included in the FE model

# Name Behaviour Type of element

1 Centre rolla) Deformable/analytical rigid Solid/revolved shell

2 First roll Analytical rigid Revolved shell

3 Last roll Analytical rigid Revolved shell

4 Mandrel Deformable Solid

5 RHS Deformable Shell

a)Material applied: steel grade S235 (yield strength 235 MPa)

Fig. 14 Geometry of the FE model, see Table 5 for a definition of the
numbers

Table 6 COF’s used in the FE model

Contact Between components COF

RHS-rolls 1–5, 2–5, 3–5 μ = 0.25

RHS-mandrel 4–5 μ = 0.05
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properties as applied in the FE model i.e. with values given in
Tables 3, 4, and 5 and with the same relative velocities as in
Table 7. The material properties in Table 3 were measured by

coupon tests from the same RHS as used in the TPRB test.
Figure 20 compares the deformations of the RHS in the FE
model and the TPRB experiment. The good qualitative

Fig. 15 Steps during TPRB
process including a push unit,
where the AC-phase rotates the
three rolls such that the section
end is aligned with the push unit

Fig. 16 FE simulation of the
TPRB process including a push
unit: a boundary conditions and
load, with brown arrows
indicating the push unit
movement; b three steps during
the analysis

Table 7 Process parameters as
used in the FE model Parameter Value Step Time [Sec.]

yload 5 [mm/s] Loading 9.6

ωcr 0.098 [rad/s] Feeding 150

ωfr =ωlr -0.102 [rad/s] Feeding 150

xpush 10.35 [mm/s] Feeding 150

ypush 1.75 [mm/s] Feeding 150

Fig. 17 Mesh size dependent Von Mises stress and wrinkling pattern (left to right: 10 × 10 mm, 5 × 5 mm, 3 × 3 mm, and 2 × 2 mm element size)
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agreement of deformations and bent curvature between the
test and the FE model indicate the usefulness of the FE model.

Table 8 provides a quantitative comparison between the
experiment and the FE model. A good agreement is observed
between most of the characteristics. The number of wrinkles
per length in the experiment varies, whereas it is regular in the
FE simulation. Therefore, it is expected that some of the
buckles in the experiment were flattened instead of transferred
into wrinkles. The variation in the number of wrinkles per unit
length in the experiment is attributed to machine-related geo-
metrical imperfections and eccentricities, causing the RHS to
be fed through the machine in an irregular manner.
Differently, the FE model simulates perfect TPRB operation,
and consequently, a regular wrinkling pattern is obtained.

Figure 21 presents the reaction forces according to the FE
model, with definitions given in Fig. 4. The loading phase—

where the centre roll is displaced with yload with a constant
velocity—starts at t = 0 and ends at time t3. The non-linear

Fig. 18 EDPD as a function of mesh size

Fig. 19 Wall clock time as a function of mesh size

Fig. 20 TPRB wrinkling as obtained by the experiment (top) and in the
FE model (bottom)

Table 8 Wrinkle characteristics of the experiment and the FE model

Characteristic FE model Experiment

Wrinkle height 0.74b 0.80b

Wrinkle width 0.24b − 0.40b 0.23b − 0.33b
Wrinkle depth 0.004b − 0.0075b 0.009b

Wrinkles per unit length 1.35/b 1.40/b − 3.65/b
Number of wrinkles per metre 14.5 16.85a)

a) Average over the curved part of the section.
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curve of roll reaction force versus time up to t1 shows that the
RHS deforms plastically. The roll reaction forces reduce at
time t1 caused by inelastic buckling of the RHS. A second
buckle develops at time t2. The push unit is activated with
constant velocity at time t3 i.e. immediately after the loading
phase. A push unit force then develops together with the man-
drel frictional force. At the same time, the centre roll reaction
force decreases whereas the last roll reaction force increases.
The fluctuation of the forces during the entire process is
caused by the development of buckles and the subsequent
contact of buckles against the centre roll. A slight increase
over time of the first roll reaction force is visible, which is
caused by the undercompensating value of ωcorr as shown in
Fig. 15. Time t4 up to which the feeding phase is displayed is
halfway the total feeding phase.

3.4 Comparison between the analytical model and the
FE model

The FE model shows a wrinkling pattern quite comparable to
the experiment, and is therefore considered useful to predict
and validate the analytically derived critical radius. Indeed, the
FE model showed that buckling of the extrusion takes place in
front of the centre roll, Fig. 22, with a buckling shape a/b that
corresponds with the shape derived in Section 2, and with only
outwards out-of-plane deformations.

The modelled RHS has a slenderness ratio of b/t = 38, see
Table 3. As can be obtained from Fig. 12, this corresponds to a
critical radius of approximately Rcrit = 4.5 m. To verify this
further, two additional FE simulations were made: one with a
radius equal to this analytically derived critical radius RTPRB =
Rcrit, and one with a 10 % smaller radius RTPRB=0.9Rcrit. The
out-of-plane deflection field of the plate susceptible to buckling
is shown in Fig. 23 for RTPRB = Rcrit (left) and for RTPRB=
0.9Rcrit (right), where RTPRB is the radius induced by the FE
TPRB configuration. Figure 23 shows that buckling occurs in
the FE model if R <Rcrit whereas it remains absent for R =Rcrit.
This supports the predictive capability of the analytical solution
for elasto-plastic plate buckling in TPRB.

4 Conclusions

This paper considered local buckling andwrinkling of a RHS in
a three-point-roll bending (TPRB) set-up that includes a push
unit and a flexible mandrel. Local buckling and wrinkling were
studied both analytically and via simulations, and results were
further verified by an experiment. As far as the authors know,
this paper presents for the first time Timoshenko’s energymeth-
od (for buckling: equating strain energy and load potential) in
combination with the Ramberg Osgood material model. The
following conclusions can be made:

& TPRB processing of RHSs can lead to wrinkling of the fully
compressed plate at the inner radius, if the ratio between the

Fig. 21 Resultant reaction forces
of the FE model: a entire
simulation; b close up of the
loading phase

Fig. 22 Plate buckling during TPRB (half model mirrored to show the
complete section)
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squared plate slenderness (b/t)2 and the curving radius ex-
ceeds a certain value, for the studiedRHS equal to 0.32mm-1.

& Wrinkles develop in two stages. For the first stage, buck-
ling of the bent section occurs in front of the centre roll.
The analytical model developed herein is capable of
predicting the conditions for which this buckling occurs.
In addition to traditional plate buckling, the model takes
into account elasto-plastic behaviour and the specific
boundary conditions. As such, it has been demonstrated
that this stage can be predicted with Timoshenko’s ener-
gy method (for buckling: equating strain energy and
load potential) in combination with the Ramberg
Osgood material model. Namely, a FE model with
the model predicted radius indeed does not show
buckling whereas a FE model with a 10% smaller
radius does show buckling.

& During the second stage (the wrinkling stage), a present
buckle is reshaped between the mandrel and the centre
roll, causing the buckle to transform into a wrinkle. This
phenomenon appears to depend on contact, material and
geometrical properties of the extruded section, as well as
on machine settings. Due to its complexity, this phase has
here been simulated by a FE model. Good agreement was
observed between the FE model and an experiment, com-
paring the curvature radius and the wrinkling

deformations. For example, the experimental wrinkle
height of 0.80b was predicted by the FE model to be
0.74b, a very useful result.

& The flexible mandrel, which was made fit to the interior of
the RHS such that practically no initial clearance existed,
reduces and possibly even prevents inward wrinkling in
TPRB. On the other hand, due to the mandrel, longitudinal
compression stress in the section increases through fric-
tion between the section and the mandrel. For the friction
coefficient used here, the net effect of the mandrel is ben-
eficial i.e. it results in a reduction of the curvature radius at
which wrinkling occurs.
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