
Schoen and Wopereis BMCMedical ResearchMethodology          (2020) 20:222 
https://doi.org/10.1186/s12874-020-01085-w

TECHNICAL ADVANCE Open Access

A new randomization procedure based
on multiple covariates and applicable to
parallel studies with simultaneous
enrollment of all subjects prior to
intervention
Eric D. Schoen1,2*† and Suzan Wopereis1†

Abstract

Background: Parallel intervention studies involving volunteers usually require a procedure to allocate the subjects
to study-arms. Statistical models to evaluate the different outcomes of the study-arms will include study-arm as a
factor along with any covariate that might affect the results. To ensure that the effects of the covariates are
confounded to the least possible extent with the effects of the arms, stratified randomization can be applied.
However, there is at present no clear-cut procedure when there are multiple covariates.

Methods: For parallel study designs with simultaneous enrollment of all subjects prior to intervention, we propose a
D-optimal blocking procedure to allocate subjects with known values of the covariates to the study arms. We prove
that the procedure minimizes the variances of the baseline differences between the arms corrected for the covariates.
The procedure uses standard statistical software.

Results: We demonstrate the potential of the method by an application to a human parallel nutritional intervention
trial with three arms and 162 healthy volunteers. The covariates were gender, age, body mass index, an initial
composite health score, and a categorical indicator called first-visit group, defining groups of volunteers who visit the
clinical centre on the same day (17 groups). Volunteers were allocated equally to the study-arms by the D-optimal
blocking procedure. The D-efficiency of the model connecting an outcome with the study-arms and correcting for
the covariates equals 99.2%. We simulated 10,000 random allocations of subjects to arms either unstratified or
stratified by first-visit group. Intervals covering the middle 95% of the D-efficiencies for these allocations were [82.0,
92.0] and [93.2, 98.4], respectively.

Conclusions: Allocation of volunteers to study-arms with a D-optimal blocking procedure with the values of the
covariates as inputs substantially improves the efficiency of the statistical model that connects the response with the
study arms and corrects for the covariates.

Trial registration: Dutch Trial Register NL7054 (NTR7259). Registered May 15, 2018.
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Background
The motivating example for this paper is a clinical study
to assess the health effects of generic versus personalized
nutrition advice in healthy volunteers. There were three
study arms: (1) a control arm where no advice was offered,
(2) a generic nutrition advice arm and (3) a personalized
nutrition advice arm. The study included a total of 162
subjects. Each of the subjects visited the clinical center
three times. The initial visit involved collecting base-
line information of the subjects such as anthropometrics
and demographic data. Subjects furthermore consumed
a mixed meal challenge drink and multiple blood sam-
ples were collected before and after consumption of the
challenge drink to determine the physiological response.
Based on this response, an initial health score was calcu-
lated [1]. A key feature of this study is the simultaneous
availability of the baseline information for all 162 subjects
prior to continuation with the intervention, which started
at the second visit. The primary outcome of the study is
the relation between the study arm and changes in health
score between second and third visit.
Clinical studies such as the present one usually focus on

comparing the effect of different interventions or treat-
ments of the subjects. The main instrument for the com-
parison is a statistical model that links clinical outcomes
to the intervention or treatment that was applied. An
important concern when evaluating the treatment differ-
ences is that unadjusted treatment effects may be affected
by random imbalances. For example, if subjects allocated
to one of the arms are on average older than those allo-
cated to another arm, the crude difference in average
responses of these arms may be related to age rather than
to the intervention.
There are well-known methods to correct the treat-

ment effects for random imbalances of covariates. First,
for subject-specific covariates, one could consider using
a cross-over or within-subjects design, in which any sub-
ject receives all of the treatments, separated by a wash-
out period. However, the treatments may be incompat-
ible with such a design. For example, lifestyle interven-
tions such as in the motivating example should involve
a between-subjects rather than a within-subjects design,
because effects are not easily washed out.
For parallel or between-subjects studies, each partici-

pant is allocated to one of the arms. Imbalance due to
covariates can be reduced in two ways. First, the ran-
domization procedure to allocate the subjects to the arms
could be made to address specific sources of imbalance.
For example, one could use a stratified randomization [2]
to reduce imbalance due to age. This involves defining
age classes, determining the age class for each subject
and randomizing the allocation of the subjects of each
age class to the arms of the study. As a consequence, the
arms of the study have about the same average value of

the covariate involved so that differences in treatment out-
come means hardly need adjustment for differences in a
covariate among the arms. Stratified randomization is a
study design-based measure to reduce imbalance.
The second way to reduce imbalance in between-

subjects studies is to include the potential sources of
imbalance in the statistical model to evaluate study out-
comes. The statistical model then provides estimates of
the treatment effects corrected for covariates such as
age. Inclusion of the covariate in the statistical model in
addition to stratified randomization is hardly needed to
remove imbalance, but it does reduce the unexplained
variation within the arms. Therefore, the effects of the
different treatments are estimated more precisely than
without the inclusion of the covariate in the model, so that
the power to detect intervention effects is increased.
Provided that there is a simultaneous enrollment of all

subjects prior to starting the interventions, it might be
possible to define homogeneous study groups based on
multiple covariates. When these groups are sufficiently
large, stratified randomization could proceed in the same
way as for a single covariate. However, with an increas-
ing number of covariates the groups become too small
for a stratified randomization. Nevertheless, it is desir-
able that the arms of a human study have about the same
average value for all of the covariates, or, in case of a
categorical covariate, shows a proportional distribution
of that covariate for the respective arms. The motivating
example includes gender, age, body mass index (BMI), and
a composite health score as continuous covariates. Sub-
sequently, a categorical covariate called first-visit group
defines groups of subjects whose initial visit of the clinical
center was on the same day. There are 17 different first-
visit groups so that a stratified randomization addressing
all the covariates would be impossible to perform.
The purpose of this paper is to propose a method to

allocate subjects to the arms of a study using multiple
covariates that are simultaneously available for all subjects
before intervention starts in any subject. The method is
model-based such that the variances of the intervention
effects corrected for the covariate are minimized. It can
be conducted using commercially available statistical soft-
ware, requiring as input a list specifying for each subject
the covariates that need to be addressed, and the num-
ber of arms in the study. The output is an allocation table
where each subject is allocated to one of the arms.We fur-
ther propose a quantitative measure of the effectiveness of
any allocation. We show the effectiveness of the proposed
allocation method for the motivating example using both
this measure and tables of mean values or frequencies of
the covariates for the three study-arms. We compare the
effectiveness of our procedure with results on 10,000 com-
pletely random allocations and 10,000 stratified random
allocations within each of the 17 levels of the first-visit
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group. Finally, we sum up benefits and possible drawbacks
of the procedure.

Methods
Allocation procedure
Our method to allocate subjects to the arms of a study
is based on a statistical model that relates any parame-
ter of interest to the arms of the study and the covariates
considered to be relevant for that study. We assume that
these parameters are continuous so that we can use linear-
model methodology. Let y be theN ×1 vector of observed
values of these parameters. Further, let X be the N × p
matrix of covariates and T the N × (t − 1) matrix of con-
trasts modelling the differences between the t arms of the
study. The statistical model of the data is then

y = Xβ + Tγ + ε, (1)

where β is a p × 1 vector of coefficients corresponding to
the covariates that includes the intercept, γ is a (t−1)×1
vector of coefficients quantifying the differences between
the arms, ε ∼ N(0, σ 2IN ) is a vector of identically and
independently distributed normal variables with mean 0
and variance σ 2, and IN is the N × N identity matrix.
The purpose of the study is to estimate γ as precisely

as possible. Atkinson, Donev and Tobias [3] show that the
precision of the estimator of γ is maximized if

Ds = |TT (I − X(XTX)−1XT )T | (2)

is maximized, where |.| denotes the determinant. This is
the determinant of the residual sums of squares and prod-
ucts matrix after regressing the t − 1 contrast vectors in
T that make up the differences between the arms of the
study on the covariates collected in X. Denoting the full
matrix of parameters with F =[XT], it can be shown that
(2) is equivalent to

Ds = |FTF|/|XTX| (3)

ThematrixX is fixed at the time of allocation of the sub-
jects to the arms of the study. The only way to affect Ds is
in the allocation of the subjects to the arms as expressed
with the matrix T. We propose optimizing this allocation
using the blocking procedure of Cook andNachtsheim [4].
The blocking procedure [4] groups the rows of a pre-

existing matrix X with contrast columns of primary inter-
est into groups, or blocks, of a specified size such that the
precision of the estimator of the effects of primary inter-
est is maximized. Denoting the blocking contrast matrix
by B and using G =[BX], the procedure maximizes

D∗ = |GTG|/|BTB|. (4)

The blocking factor is a categorical covariate added by
the procedure. Note that |BTB| is fixed by the block sizes.
For the allocation of subjects to arms, however, we have a
pre-existing matrix of covariates X that are not of primary

interest, and we want to allocate the rows to groups cor-
responding to the arms. For this purpose, we also use the
matrix B returned by the blocking procedure, replace the
symbol B by T and the symbolG by F. Equation (4) is thus
re-expressed as D∗ = |FTF|/|TTT |. If we fix the number
of subjects in each arm, we fix |TTT |. Therefore, |FTF|
is maximized by the procedure. By (3), maximization of
|FTF| implies maximization of Ds so that the procedure
can be used to optimize the allocation of subjects to the
arms of a study as well, provided that the numbers of
subjects in each of the arms are predetermined.
One of the favorable properties of unrestricted random-

ization is that the distributions for both observed and
unobserved covariates in the respective treatment groups
are statistically comparable. Our proposed blocking pro-
cedure directly deals with comparability of observed
covariates included in the matrix X and indirectly
with unobserved covariates that are correlated with the
observed covariates in X. For other covariates, the proce-
dure retains a random element, because the Ds optimal
allocation starts with a random allocation of the treat-
ments to the rows of the matrix of covariates. Indeed,
independent applications of the procedure result in dif-
ferent allocations that are, however, equally efficient (see
next section for a measure of effectiveness).

Measuring effectiveness
By writing the determinant in (2) as

Ds = |TTT − TTX(XTX)−1XTT |, (5)

it can be seen that the maximum is reached if X and T
are orthogonal to each other, and Ds = |TT |. Without loss
of generality, T can be made to include t − 1 orthogonal
contrasts with length

√
N . Therefore, |TTT | = Nt−1. Fol-

lowing Schoen [5], we define theDs efficiency of the study
design with respect to the covariates as

Ds = D1/(t−1)
s /N . (6)

Its value equals 1 if the allocation is such that the treat-
ment contrasts are orthogonal to the covariates. Its value
equals 0 if one or both of the treatment contrasts are
completely aliased with one of the covariates.
The Ds criterion clearly depends on XTX and XTT ,

TTT being constant. It cannot reflect XTY , because it
works on existing data, while Y belongs to future data, col-
lected after the allocation of the subjects to the arms of
the study. Correlation between the covariates in X and the
response Y is taken into account in the statistical model
for the collected data.

Results
Performance of the allocation procedure
The motivating example detailed at the start of this paper
involves three study arms and a total of 162 subjects.
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Each of the subjects visited the clinical center three times.
At the initial visit, baseline information of the subjects
was collected such as BMI, age and gender. Subjects fur-
thermore consumed a mixed meal challenge drink and
multiple blood samples were obtained before and after-
wards to analyse the physiological response. Based on this
response, an initial health score was calculated [1]. A key
feature of this study is the simultaneous availability of
the baseline information for all 162 subjects prior to the
start of the intervention, so that this information can be
employed in the randomization. The intervention started
on the second visit to the clinical center. The main interest
of the study is in the relation between the study arm and
changes in health score between second and third visit.
Gender, age, BMI and initial health score may affect

the change in health parameters between the second and
third visit. Therefore, they should be included as covari-
ates in a statistical model relating the change in health
score between second and third visit to the arm of the
study. We decided also to include the grouping variable
that indicates which participants initially visited the clini-
cal center on the same day. There are 17 first-visit groups
indicated by this variable. These groups of subjects remain
largely the same for the second and third visits. Therefore,
including the first-visit group as a variable in a statistical
model accounts for different changes in health parameters
for people starting early in the study when compared to
those starting later on, for example by seasonal variation.
In view of the main interest of the study, the differ-

ences between the arms as regards the changes in health
parameters between the second and third visit should
be confounded to the least possible extent with differ-
ences between gender, age, BMI, initial health score and
first-visit group. The matrix X in Eq. 1 thus includes one
column for each of the parameters gender, age, BMI and
initial health score and 17 columns indicating whether a
subject belongs to first-visit group 1 up to 17 (an entry 1
for subject i in column j indicates that subject i belongs to
first-visit group j).The matrix T is a 162×2 matrix of nor-
malized contrasts making up the differences between the
3 arms of the study. An allocation of subjects to the arms
of the study corresponds to a permutation in the rows of
T against a fixed matrix X. We impose the restriction that
each arm is to include 54 subjects. Therefore, |TTT | in
Eq. (4) equals 1622.
We used SAS/QC procedure OPTEX with 5000 iter-

ations to allocate the subjects to the arms. The Ds-
efficiency of the allocation is 0.992. Table 1 shows the
distribution over the arms for female (F) and male (M)
subjects. The table shows that the 104 female subjects are
allocated as evenly as possible to the three arms. The same
is the case for the 58 male subjects. Neither 104 nor 58 is
divisible by 3 so that the distribution cannot be perfectly
even. The distribution is such that each arm includes 54

Table 1 Allocation of subjects to study arms according to
gender in the motivating example

Gender Arm

A B C

F 34 35 35

M 20 19 19

The table shows the numbers of female (F) and male (M) subjects allocated to the
arms A, B and C, respectively

subjects and the ratio of female over male is as close to
constant as possible. Table 2 shows the distribution over
the arms for each first-visit group. Note that these groups
are of unequal size. It is clear that the subjects of one and
the same first-visit group are allocated as evenly as pos-
sible to the three arms. Finally, the means and standard
deviations of the continuous covariates age, BMI and ini-
tial health score are shown in Table 3. The three arms have
nearly the same mean values of these covariates, while
their standard deviations are also close. We conclude that
the allocation procedure was very successful in returning
an efficient study design.
Finally, we checked that repeated applications of the

procedure, using different random seeds, indeed result
in different allocations with the same Ds efficiency. We
conclude that the allocation procedure retains features of
stratified randomization.

Table 2 Allocation of subjects to study-arms according to
first-visit group in the motivating example

Visit Arm

A B C

1 3 4 3

2 3 3 4

3 4 4 3

4 3 2 2

5 4 3 4

6 3 3 4

7 3 2 2

8 4 4 3

9 2 3 3

10 3 3 3

11 3 3 3

12 3 4 4

13 3 3 4

14 4 3 3

15 4 4 4

16 2 2 2

17 3 4 3

A first-visit group comprises the subjects that had their intake visit on the same day.
The table shows for each first-visit group the numbers of subjects allocated to the
arms A, B and C, respectively
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Table 3 Allocation of subjects to study-arms according to age,
BMI and initial health score in the motivating example

Covariate Arm

A B C

mean sd mean sd mean sd

Age 42.63 12.59 42.33 12.36 42.93 11.87

BMI 25.28 3.15 25.31 3.68 25.27 3.97

Health Score 1.476 0.135 1.475 0.121 1.478 0.133

The table shows means and standard deviations of the covariates in the arms A, B
and C, respectively

Discussion
Comparison with complete and restricted randomization
To assess the amount of improvement due to the proposed
procedure, we performed 10,000 random allocations of
the subjects to arms and evaluated the Ds efficiency (6) of
each of the resulting 10,000 study designs with respect to
the covariates in that design. We considered a completely
random allocation and a random allocation stratified by
first-visit group. For the latter case, we had to assume that,
for each first-visit group, the numbers of subjects assigned
to each of the arms correspond to the numbers in Table 2.
The results of the completely random and stratified ran-

dom allocations are shown in Figs. 1 and 2, respectively.
In both figures, the blue bars show a frequency distri-
bution of 10,000 allocations. The proposed procedure
addresses all covariates simultaneously. The small red bar
denotes the Ds-efficiency of 99.2 obtained in this way.
Intervals covering 95% of the Ds-efficiencies for the com-
pletely random and stratified random allocations were

[0.80, 0.90] and [0.93, 0.98], respectively. Maximum val-
ues were 0.97 and 0.99 respectively. We conclude that it is
very likely that a random allocation returns a substantially
worse Ds-efficiency for the study design than a model-
based allocation. Even in case the numbers of subjects
per arm are predetermined for each first-visit group, the
stratified randomization generally produces inferior study
designs.
In principle, allocation of volunteers to study-arms

could also be achieved by methods that are specifically
designed to balance out sequential experiments. These
methods might be applied to studies where all the covari-
ates are known prior to actual treatment by mimicking
sequential entrance in the study and allocating the vol-
unteers one by one. We briefly discuss two examples.
First, Sajobi et al. [6] provide a heuristic method to bal-
ance multiple covariates as much as is feasible over the
arms of the study. Their method employs an updated table
of the current distribution of each individual covariate
over the arms to allocate a new subject to one of these
arms. Instead, our method operates directly on the preci-
sion of the parameter estimators modeling the differences
between the arms when corrected for the joint effects of
the covariates.
As a second example, we mention a biased coin type of

randomization [7], which involves counts xijk quantifying
the number of patients with level j of prognostic factor i
who have been assigned to treatment k. Operationalizing
the procedure requires a measure of the amount of varia-
tion of the counts for each prognostic factor within each
of the treatments, as well as combining the amounts of

Fig. 1 Ds-efficiencies for potential complete randomizations in the motivating example. Ten thousand study designs are generated by random
allocation of subject to arms, not stratified by any covariate. The figure shows Ds efficiencies of the 10,000 study designs with respect to covariates
gender, age, BMI, a composite health score and membership of one of 17 first-visit groups as covariates. The red bar denotes the efficiency obtained
with the proposed procedure, which addresses all covariates simultaneously
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Fig. 2 Ds-efficiencies for potential stratified randomizations in the motivating example. Ten thousand study designs are generated by random
allocation of subject to arms, stratified by first-visit group. The figure shows Ds efficiencies of the 10,000 study designs with respect to covariates
gender, age, BMI, a composite health score and membership of one of 17 first-visit groups as covariates. The red bar denotes the efficiency obtained
with the proposed procedure, which addresses all covariates simultaneously

variation of the respective prognostic factors to one figure
per treatment. In addition, based on the combined mea-
sure, allocation probabilities for a new subject to each of
the treatments have to be defined. All choices required
seem to some extent arbitrary. In contrast, the proposed
method has a clearly defined objective function.
Finally, one of the referees of this paper suggested that,

if historical estimates of β in Eq. (1) are available, then
stratified assignment could be based on quartiles, or pos-
sibly deciles, of Xβ . This would be highly beneficial,
since using these quantiles permits a stratified random-
ization that directly addresses the expected differences in
response levels due to the covariates. However, for covari-
ates that bear on the experimental conduct, such as the
first-visit group in the motivating example, there are no
historical estimates. In that case, we can apply the pro-
posed procedure on the categorical covariate defined by
the quantiles of Xβ and the covariates with no available
historical estimates of their effects.

Restriction to specific study designs
The allocation procedure proposed here is appropriate for
a parallel study design in which the subjects are simul-
taneously allocated to the treatment arms. This implies
that the procedure is not compatible with studies where
an immediate choice among treatments is required such
as sequential clinical trials that enrol subjects gradually.
The procedure is also not compatible with a cross-over

design in which each subject receives all the treatments
sequentially. A correction for the covariates determined
prior to the actual start of the study would affect these
treatments in the same amount. As a result, treatment

differences in these cross-over studies are unaffected by
covariates measured at the start. If the subjects do not
receive all of the treatments, most of the analyses will
still be based on within-subject differences which are not
affected by the covariates of a subject as measured at the
start of the study. Our proceduremight be helpful, though,
if one requires to use inter-subject information for the
treatment differences.

Multiple endpoints
Our procedure is designed for studies with a single pri-
mary endpoint. When there are two or more primary
endpoints, there may be specific covariates for each of the
endpoints. A given allocation of subjects to study-arms
would then result in Ds efficiencies (6) for each of the
endpoints. An interesting subject for further research is
the adaptation of our procedure for the multiple-endpoint
case.

Conclusions
In this paper, we proposed a model-based procedure to
allocate subjects with known values of a set of covariates
to the study-arms of a parallel study with simultaneous
enrollment of all subjects prior to intervention. The pro-
cedure can be viewed as an extension of stratified random-
ization to the case of multiple covariates. It operates using
standard statistical software. Its goal function is such that
the allocation results in a maximum precision for the
effects of the study-arms after correction for the covari-
ates. The success of the procedure can be measured by
the Ds-efficiency of the resulting design and by summary
tables classified by the covariate values and the study-arm.
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An application to a human intervention trial with three
arms and 162 volunteers showed that the procedure is
highly effective.
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