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Abstract
Feedback of physiological responses have a great potential to support virtual training
paradigms aimed to increase cognitive task performance under stressful threatening
conditions. In the current study, we examined the sensitivity of a range of physiological
indicators derived from electrodermal activity (EDA), blood pressure (BP) and heart rate
(HR) to measure stress as induced by the threat of an electric shock (ES). In contrast to
previous work that studied physiological stress responses compared to a rest condition,
we compared conditions with high cognitive load combined with stress caused by threat
of an ES, to conditions with high cognitive load without such stress. Twenty-five
participants performed a cognitively demanding task in an experimental setup. At certain
10 s time intervals, indicated by a continuous tone, participants were either asked to do
their best and increase cognitive task performance (non-threat condition), or they were
told that they could receive an ES during this interval if cognitive task performance was
not high enough (threat condition). Physiological measures, task performance and self-
reported measures of stress and workload were analysed. Task performance and self-
reported measures of stress and workload were roughly the same in both conditions.
Especially EDA measures were affected by the threat of an ES. Threat and non-threat
conditions could be distinguished with an across-participant classifier using EDA and BP
features with an accuracy of 70%. These results suggest that EDA and BP can be used to
evaluate stress coping training paradigms or to individually adapt the stress levels in
virtual training environments.
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1 Introduction

The ability to cope with stress caused by physical threat is an important skill for military and
law enforcement professionals. A potential promising tool to train professionals to cope with
such stressors are virtual training programs, simulating professionals’ working environments.
Ideally, these programs adjust the intensity and frequency of presented stressors to individual’s
levels of stress [40, 21, 6, 17, 52]. For this, continuous information about an individual’s stress
level is valuable. In the present study, we explored the possible use of various physiological
indicators in such technology by examining physiological responses under circumstances that
are prerequisite for this area of application, but have not been studied together in previous
literature. Firstly, we examined whether, and which, physiological responses differed between
conditions presenting an increase in task demand (workload) alone, and conditions presenting
physical threat in addition to an increase in workload. Secondly, we assessed response patterns
against a background of performing a task, rather than to a resting baseline. Thirdly, we
monitored and interpreted responses at the level of an individual person. Thus, besides
examining signal characteristics aggregated across participants, we also trained classification
models and assessed whether they could distinguish between threat and non-threat conditions
at the level of a single individual. Finally, we designed our study such that any difference in
physiology between conditions and task episodes can be attributed to mental processes rather
than to differences in body movements. We focused on non-invasive and continuous physi-
ological indicators, that can be applied in virtual training programs.

Previous literature has shown physiological effects of both workload and stress caused by
physical threat. Workload has been manipulated by a range of controlled and naturalistic tasks,
such as the n-back task that induces short term memory load in a controlled manner [11],
mental arrhythmic [2], the Multi-Attribute Task Battery that simulates piloting tasks [22], and
navigating aircrafts or vehicles under different workload conditions [5]. While specific results
depend on task and other factors, physiological findings in these studies are consistent with
increased activity of the sympathetic ‘fight or flight’ autonomous nervous system, such as
increased pupil size [37], electrodermal activity or skin conductance [19], heart rate and blood
pressure [30]. Threat also activates the sympathetic autonomous nervous system, at least when
active coping mechanisms are possible [30]. Studies on stress caused by physical threat
predominantly use the threat of electrical shocks (ES), with paradigms varying in ES predict-
ability, whether ES can be evaded, and whether, or how often, ES are actually delivered [31,
44, 24, 43]. Previous studies reported that threats of (never administered) ES generally lead to
heart rate acceleration [43, 20, 23]. Furthermore, Folkins [23] reported a rise in skin conduc-
tance after threat, and Smith et al. [43] a rise in blood pressure. For inducing threat in a virtual
environment, threat of an ES without delivering it is a suitable tool since it is relatively easy to
implement. In addition, the advantage of the threat of an ES is that compared to the situation an
actual shock is administered, it will only affect the individual’s mental state, without physi-
ological effects of shock administration itself [18]. Finally, it mimics situations in which
military professionals operate, where the threat of an event and the uncertainty if the feared
event will occur contribute to their experienced stress [1, 13].

As outlined above, physiological responses to workload and physical threat are similar
since both are associated with increased sympathetic nervous system activity [14, 28].
Importantly, in real-life situations, stress caused by (physical) threat will often co-occur with
- or contribute to - increased experiences of workload [49, 39]. Workload is expected to
increase, because in potentially stressful and threatening situations, individuals need to quickly
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register and process information from their environment and decide on appropriate next
moves, which has shown to be affected in stressful situations. [45]. Physiological responses
following a ‘stressor’, such as physical threat, may then be attributed to stress while in fact,
these responses are caused by increased workload. In our study we therefore examined
whether we can differentiate between physiological responses in high workload conditions
with and without concurrent experienced stress as caused by physical threat.

Furthermore, our study differs from most other studies in that we assessed effects
of increases in workload, with or without threat, rather than compare it with a resting
baseline. The majority of studies on physiological responses to threat view responses
in a context without any (cognitively demanding) background task [43, 20, 23, 25]. In
the application we have in mind, individuals are not resting but actively performing a
task, both mentally and physically. Body movements and sensory input associated
with the background task should be similar during the increased workload- and threat
episodes, such that any physiological differences between these conditions can be
ascribed to mental processes [12].

In this study we compared the responsiveness to stress caused by physical threat of
several physiological indicators that can be measured continuously and relatively
unobtrusively. We chose electrodermal activity (EDA) and several cardiovascular
measures, namely heart rate (HR), systolic blood pressure (SBP) and diastolic blood
pressure (DBP), following van der Vijgh et al. [53], who identified these as the most
reliable psychophysiological indicators of stress responses in real time, and in a
virtual context. In addition, we estimated cardiac output (CO) and total systemic
peripheral vascular resistance (TPR, a measure of resistance of the arteries) since
these measures hold promise to distinguish between experiencing stress as a threat or
as a challenge [4]. These physiological variables were analysed at two different time
scales. Firstly, at the overall level, comparing conditions with and without episodes of
threat of ES. Secondly, at the level of seconds, we also provides insights in the
response patterns of physiological indicators, specifically around the intervals when
workload was increased either under threat of an ES or without such a threat. When
the level of stress can be detected immediately after a stressor occurs, this could be
directly used as feedback in a virtual learning environment.

2 Methods

2.1 Participants

Twenty-five males (age range = 18–35 years, mean age = 23,92 years) from the par-
ticipant pool of TNO (Netherlands Institute of Applied Sciences, where the study was
conducted) participated in the study. They all self-reported to be free of cardiovascular
medical conditions. Participants were asked not to consume alcohol or other drugs
24 h prior to the experiment. In addition, they were asked to refrain from the
consumption of caffeine and nicotine, and performing heavy physical exercise in the
period three hours before the experiment. Participants received 25 euros for partici-
pating and compensation for their travel costs. The study was approved by the TNO
ethics committee (approval number 2017-003).
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2.2 Design

A within-subjects design was applied with a non-threat and a threat condition. Each condition
was presented once to a participant in a task block of 11.5 min. The order of conditions was
counterbalanced across participants. During both conditions, participants performed a contin-
uous cognitive task (see below) for the whole task block period of 11.5 min. During the threat
condition, participants were connected to a Transcutaneous Electrical Nerve Stimulation
(TENS) device. They were told that, if they did not perform well, they would receive an
electric shock (ES) at specific 10 s time periods that were indicated by the continuous sound of
a tone. During the non-threat condition participants were disconnected from the TENS device
and were instructed to increase cognitive effort during the indicated 10 s time periods.

2.3 Materials

2.3.1 Equipment

Figure 1 shows a schematic overview of the equipment and setup. Electrodermal activity
(EDA), blood pressure (BP) and heart rate (HR) were continuously measured during the
experiment using BIOPAC Systems at 500 Hz sampling rate. BP and HR were measured using
a non-invasive blood pressure monitor (CNAP® Monitor 500, CN Systems, Graz, Austria)
with a cuff on the upper arm and two electrodes: one on the index and one on the middle finger
of the non-dominant hand. EDA was measured using two electrodes on the ring and little
finger of the non-dominant hand (EL507, BIOPAC MP150, BIOPAC Systems). To increase
the quality of the recordings, participants’ non-dominant arm rested on a soft and comfortable
armrest after the electrodes were placed for the duration of the measurements. All physiolog-
ical data was recorded and synchronized using BIOPAC’s software package AcqKnowledge
on one pc, while on another pc (stimulus computer) the cognitive task software was run. To
synchronize the physiological signals with the cognitive task, markers were sent by parallel
port from the task pc to the acquisition pc. A Medisana TENS device was used to induce the
threat of an ES. Two electrodes were placed between the shoulder blades and only in the threat
condition the electrodes were connected to the TENS device to suggest the actual delivery of
ES. However in this study ES were never delivered. Previous work applying the threat of an
ES showed that the threat itself is an effective way to induce physiological responses indicative
of stress [31, 44, 43, 20, 23].

2.3.2 Cognitive Task

Participants performed a cognitive visuomotor tracking task [48] in combination with an n-
back task [9, 34, 29], as schematically depicted in Fig. 2. Participants used a joystick to
continuously manoeuvre a virtual moving blue disc underneath a red target disc in the centre of
the display. The blue disc was programmed to continuously float away from the red target.
Simultaneously, participants had to perform a 2-back task. Letters were presented inside the
red disc for 1 s each. Participants were asked to press a button on the joystick each time the
current letter was the same as two letters earlier. This was the case for 20% of the letters. The
outcome measures from this double task are the average Euclidian distance over time between
the red and blue disc for the tracking task, the reaction time of pressing the response button and
the accuracy (percentage correct) for the 2-back task.
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During both 11.5-minute task blocks (threat and non-threat), a salient continuous tone was
presented six times for a duration of ten seconds that indicated that they should increase their
effort (with or without threat of the ES). The first continuous tone was presented thirty seconds
after the start of the block, and each following tone was separated by a period varying between
90 and 100 s of uninterrupted task performance. Thus, for each participant 6 epochs of high
workload, threat data and 6 epochs of high workload, non-threat data were recorded.

2.3.3 Subjective experience

The Perceived Stress Scale (PSS) was used to measure a participant’s overall stress level
during the past month [15]. Perceived anxiety was measured with a Dutch version of the short-
STAI [50, 36, 51]. Cognitive workload was measured using the NASA-TLX [38]. Addition-
ally, perceived stress during the experiment was measured by a single item question “How
stressed did you feel?”. For this, a 20-point scale was used that was modelled after the
preceding NASA-TLX items, ranging from “very low” to “very high”.

2.4 Procedure

On arrival participants were welcomed in a (de)briefing room and signed the consent form
after the experimental procedure was explained. After that, the EDA electrodes were attached
on the non-dominant hand, as well as the ES electrodes of the TENS between the shoulders.
Next, the participants were escorted to the experimental room. Participants were seated behind
a desk and filled out the PSS questionnaire. Before the start of the experiment, participants
practiced the cognitive task in three practice blocks. These blocks lasted five minutes and were

Fig. 1 Schematic representation of the setup. The participants were sitting in front of a desk with the stimulus
screen in front of them. The electrodes to measure EDA, and the finger and handcuff to measure BP were
attached to the participants’ non-dominant hand resting on an armrest to avoid unwanted movements. The
dominant hand was on the joystick to interact with the task. The two electrodes of the Medisana TENS were
placed on the back between the shoulder blades. The CNAP blood pressure system and BIOPAC systems were
located on the left side of the participant
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interleaved with two-minute breaks. During the first practice block, the experimenter stayed in
the room to monitor whether the task was well understood and provided feedback on the task
execution to increase learning speed. During the two remaining practice blocks, the experi-
menter left the room and only entered the room during the short break to answer questions, if
necessary. After the practice blocks, BP cuffs were attached to the participant, the non-
dominant arm was placed on a comfortable armrest and the measurement systems were
calibrated.

Next, a three-minute rest measurement was conducted in which participants were instructed
not to move. After that, the first experimental condition was conducted. The participant started
either with the threat- or non-threat condition. In the non-threat condition participants were
instructed to perform the task as good as possible and to do their best especially when they
heard the tone. The TENS electrodes were not attached to the TENS device in the non-threat
condition. In the threat condition, participants were told that an electric shock could be
administered when their performance was below average during the tone, and the TENS
electrodes were attached to the TENS device. After each experimental condition, participants
filled out the NASA TLX, STAI and single-item stress surveys before they received a 5-
minute break. When participants had performed the threat condition at first, the break between
the two conditions was used to disconnect the TENS sensors from the device. After

Fig. 2 A screenshot of the cognitive task. Participants had to keep the blue disc, that floats away from the red
disc, underneath the red disc using a joystick. In the centre of the red disc, a new letter appeared every second.
Participants had to press a button as soon as a letter was presented that was the same as two letters before
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completing both experimental conditions, a second rest measurement was conducted for three
minutes. Next, the measurement equipment was disconnected, and participants were debriefed
that we never intended to induce actual ES. The complete procedure, including (de)briefing,
practice, filling out questionnaires, breaks, attaching and removing sensors took about 1 ½
hours.

2.5 Data analysis

Stress sensitivity of each physiological measure was investigated at the ‘overall level’ (i.e., a
comparison between averages over complete threat- and non-threat task blocks as well as the
rest measurement – at the level of multiple minutes) and at the ‘event level’ (i.e., a comparison
between responses to the continuous tone in the threat and non-threat task blocks – at the level
of seconds). Furthermore, to test for the possibility of detection of stress in a single individual,
across participant classification models using the different physiological measures as features
were trained to distinguish between threat and non-threat epochs.

2.5.1 Preprocessing physiological data

The arterial blood pressure data was processed using the Physio Toolkit MATLAB toolbox
[27] available for free public use. First, data was down sampled from 500 to 128 Hz. Next,
based on peak analysis of the blood pressure signal, the systolic blood pressure (SBP), diastolic
blood pressure (DBP), heart rate (HR) and cardiac output (CO) were calculated. CO was
estimated using the Liljestrand method [32, 46]. Total peripheral resistance (TPR) was
estimated as 80�MAP CO [41], where MAP (mean arterial pressure) is defined as 2

3 � DB
P þ 1

3 � SBP. The signal quality index algorithm of the toolbox was used to detect abnormal

arterial blood pressure beats. Intervals with abnormal beats were detected and data was linearly
interpolated over these intervals. On average, the BP data contained 99.5% (SD = 0.75%) of
the data per participant.

EDA data was examined in two ways. Firstly, as epochs of raw measured data
(EDA), and secondly, the number and mean amplitude of significant non-specific skin
conductance response (nSCRs) per minute were extracted using the Continuous
Decomposition Analysis method [3] as implemented in the Ledalab toolbox for
Matlab. A skin conductance response was considered significant when the amplitude
of the response was higher than 0.05μS [7].

To analyse the physiological responses at the level of the first three-minute rest block and
the 11-minute threat- and non-threat blocks, the mean of the physiological variables were
calculated over these periods. As indicated above, we refer to this as the ‘overall level’.

To analyse the physiological response at the ‘event level’ in the threat- and non-threat
conditions, data was first z-scored for each physiological measure and each participant using
the overall mean and standard deviation of the data collected during both the threat and non-
threat condition. Next, for each physiological measure the mean value in the period of -10 until
0 s before the tone was subtracted from the complete data trace, running from − 10 to 50 s after
the tone, followed by averaging this data per second.

For the statistical analysis, physiological data from the six epochs in the threat condition
and the six epochs in the non-threat condition for each participant were averaged to reduce
noise, whereas in the classification analysis every individual epoch was used.
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2.5.2 Statistical analysis

R (version 4.0.0) and Matlab (version 2017a) were used for statistical analyses. For all
statistical tests, the level of significance was set at 0.05. Normality of the distributions of the
residuals were tested with Shapiro-Wilk tests. Though in the text below we refer to the
parametric tests, non-parametric tests were used if normality was violated. Table 1 gives an
overview of the used statistical tests.

Task performance At the overall level, to compare cognitive task performance between the
non-threat and threat condition paired t-tests were used. At the event level, two-way repeated
measures ANOVAs were used to test for effects of presence of tone and threat condition on
task performance: average performance in the 10 s before the tone was compared to the
average performance during the 10 s tone for the non-threat and threat condition. The effect of
threat condition on n-back reaction time was not tested at the event level, as too few datapoints
were available for a reliable estimate at the event level.

Subjective measures To compare the three subjective measures (Short-STAI, NASA-TLX,
stress question) between the non-threat and threat conditions paired t-tests were used.

Physiological response To test for effects of threat condition on the physiological data at the
overall level, one-way repeated measures ANOVAs were used comparing the first rest
measurement, the non-threat condition and the threat condition. To compare the physiological
responses between the non-threat and threat condition at the event level, a running t-test was
used to compare all time windows in the range of 0 until 30 s after the tone. In order to deal
with the issue of multiple testing, we followed the approach of Gladwin et al. [26] using a
within-subject cluster-based nonparametric randomization test with 500 randomizations [35].
This approach indicated that the length of continuous time windows with a nominally

Table 1 Overview of statistical tests

Variables Time
scale

Comparisons Parametric test Non-Parametric
test

Task: N-back accuracy,
N-back response time,
tracking distance

Subjective: Short-STAI,
NASA-TLX, stress question

Overall non-threat, threat T-test Wilcoxon
signed-rank test

Physiological: HR, SBP, DBP,
CO, TPR, EDA, number of
nSCRs, amplitude of
nSCRS

Overall rest, non-threat, threat One-way repeated
measures
ANOVA with
post-hoc t-tests

Friedman test with
post-hoc
Wilcoxon
signed-rank tests

Task: N-back accuracy,
racking distance

Event non-threat, threat;
before tone, during tone

Two-way repeated
measures
ANOVA with
post-hoc t-tests

Wilcoxon signed
rank tests for
main effects

Physiological: HR, SBP, DBP,
CO, TPR, EDA, number of
nSCRs, amplitude of
nSCRS

Event non-threat, threat Running t-tests -
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significant effect was 10 for EDA, 5 for SBP and TPR, and 4 for the remaining physiological
measures.

2.5.3 Classification physiological response

A linear support vector machine (SVM) model [16] was used to classify threat and non-threat
epochs (starting at the time of tone onset and ending 30 s later) over participants. Features for
classification were obtained by averaging the pre-processed data of each epoch over 5 s for the
period of 0 until 30 s after the tone, resulting in 6 features for each epoch and each
physiological measure (EDA, HR, SBP, DBP, CO, TPR). Additionally, the mean values of
each physiological measure in the period of -10 until 0 s before the tone were taken as
additional features, resulting in a total of 42 features per epoch. Per participant 6 threat and 6
non-threat epochs were included in the analysis. The data set was randomly split into a training
set with epochs from 18 out of 24 (75%) participants, and a test set of the remaining 6
participants (25%). Leave-one-subject-out cross-validation was performed on the training set.
As including multiple types of signals does not necessarily increase classification performance
in comparison to a single signal modality [33], additional models were trained using fewer
signal modalities. One model was trained with only EDA features because EDA was the most
significant measure from the overall and event level analyses (7 features). Another model was
trained using two modalities (EDA and BP) (21 features).

3 Results

All data of one participant was removed from the dataset because the tone was absent in the
threat of shock condition. Physiological data of another participant was removed because the
physiological measurement failed. In total, the physiological data was analysed for 23
participants, and the task performance and survey data for 24 participants.

3.1 Task performance

3.1.1 Overall level

Performance in terms of 2-back accuracy was slightly but significantly higher, t(23) = -2.09,
p < .05, d = 0.43, in the threat condition (M = 89.1%, SD = 4.1%) compared to the non-threat
condition (M = 88.6%, SD = 4.2%). Tracking distance and 2-back reaction time were not
significantly affected by threat condition, Z = -0.58, p = .57 and Z = -1.03, p = .30,
respectively.

3.1.2 Event level

At the event level, a Wilcoxon signed-rank test on tracking distance showed a significant main
effect of presence of tone, Z = -3.47, p < .001, r = .71, with a slight decrease in tracking
distance during the tone (Mdn= 0.071) compared to before the tone (Mdn = 0.073). No main
effect of condition was found, Z = -0.03, p = .97. This suggests that participants increased their
effort during the tone in both conditions. The repeated measures ANOVA on 2-back accuracy

Multimedia Tools and Applications (2020) 79:35867–35884 35875



showed no significant main effect of presence of tone (F(1,23) = 0.05, p = .83), no main effect
of non-threat/threat condition (F(1,23) = 2.67, p = .12) and no interaction effect (F(1,23) =
3.04, p = .09).

3.2 Subjective measures

The general perception of stress, as measured by the PSS, at the start of the experiment, was on
average 12.67 (SD = 4.44). This indicates that our group of participants showed a normal level
of stress as the norm for males is 12.1 (SD = 5.9) [15]. Paired t-tests showed no statistically
significant differences in self-reported anxiety (short-STAI, t(23) = 1.36, p = .19), workload
(NASA-TLX, t(23) = 0.92, p = .37), or stress (t(23) = 0.74, p = .47) between the non-threat and
threat conditions. Averages and standard deviations are shown in Table 2.

3.3 Physiological response

3.3.1 Overall level

Figure 3 shows the average value for each physiological parameter in the rest, non-threat and
threat task conditions. From the cardiovascular measures, HR, SBP, and CO showed a main
effect of condition (rest, non-threat and threat) (F(1,23) = 32.26, p < .0001, ηp

2 = 0.59; F(1,23)

= 7.02, p < .01, ηp
2 = 0.24; χ² = 16.7, p < .001). Averaged EDA, number of nSCRs and

amplitude of nSCRs all showed a significant main effect of condition (χ² = 7.3, p<.05, W =
0.16; χ² = 10.5, p < .01, W = 0.23; Z = 15.9, p < .001, W = 0.35). DBP and TPR were not
significantly different among conditions (F(1,22) = 1.43, p = .25; F(1,22) = 2.88, p = .08).

Rest versus task Post-hoc comparisons showed that HR was higher in the non-threat and
threat condition compared to the rest condition (t(22,1) = -7.57, p < .001, D = 1.58; t(22,1) = -
6.14, p < .001, D = 1.28, respectively). CO and amplitude of nSCRS were also increased in
both conditions compared to rest (Z = -3.58, p < .001, r = .73; Z = -3.29, p < .01, r = .67; Z = -
1.98, p < .05, r = .40; Z = -3.78, p < .001, r = .77). SBP and number of nSCRs were only
increased in the threat condition compared to rest (t(22,1) = -3.58, p < .01, D = 0.75; Z = -4.11,
p < .001, r = .84). Other post-hoc tests were not statistically significant.

Non-threat versus threat All three EDA measures (averaged EDA, number of nSCRs and
amplitude of nSCRs) were higher in the threat condition than in the non-threat condition (Z = -
2.81, p < .05, r = .57; Z = -2.31, p < .05, r = .47; F = -3.41, p < .01, r = .70, respectively). SBP

Table 2 Mean and standard deviation of questionnaire scores for the non-threat and threat conditions

Non-threat Threat

M SD M SD

Short-STAI 17.42 5.91 16.54 5.91
NASA-TLX 11.26 2.07 10.91 2.77
Stress question 7.38 4.83 8.00 4.63
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was also significantly higher in the threat condition than in the non-threat condition (t(22) = -
2.239, p < .05, D = 0.47). No significant differences were found for HR and CO.

3.3.2 Event level

Figure 4a-f shows respectively averaged EDA, HR, SBP, DBP, CO and TPR over time
from 10 s before the tone onset until 50 s after. The onset of the tone, signalling to
participants to perform the task extra well, induced a response in all variables, both in
the threat and non-threat condition. Differences between the conditions are represented
by asterisks that indicate moments at which the conditions significantly differed
(p < .05) without correcting for multiple comparisons. Following the method by
Gladwin et al. [26] for correcting for multiple comparisons, EDA, CO and TPR reached
the sufficient number of successively significant differences between threat and non-
threat conditions.

For a more continuous impression of when the differences occur for the different variables,
Fig. 5 shows the p-values in one overview. During the period of the tone (0–10 s) p-values for
EDA were low. For CO and TPR, differences between threat and non-threat emerged only
after the tone had ended.

3.4 Classification

Table 3 shows the accuracy with which epochs can be correctly classified as originating from
the threat or non-threat condition, based on combinations of physiological data. EDA in
combination with SBP and DBP resulted in the highest accuracy, with 70% for the test set
(i.e., for a participant that was not used in training the model).

Fig. 3 Overall level averages for each physiological parameter as recorded during the first three minute rest
block, the non-threat and threat task blocks. Error bars represent 95% confidence intervals for within-subject
designs
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4 Discussion

In the current study, we examined the response pattern of a range of physiological indicators derived
from electrodermal activity (EDA), blood pressure (BP) and heart rate (HR) to increased workload
with and without a physical threat. We prompted individuals to perform extra well on a cognitive
demanding dual task during specific time periods, either accompanied by the threat of an ES, or

Fig. 4 a-f Response patterns of EDA, HR, SBP, DBP, CO and TPR over time from 10 s before tone onset until
50 s after. The vertical lines mark tone onset and offset. Individual traces were baselined by subtracting the
average physiological value during the 10 s preceding the onset of the tone from the complete trace. They were
then averaged across participants and condition. Asterisks mark the timepoints where the difference between non-
threat and threat conditions were significant
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without such threat. This was done to examine, in the context of performing a cognitive task, the
response to stress as induced by physical threat in several physiological indicators, self-reported
indicators of stress and workload, and task performance.

During the threat condition, a higher level of EDA (reflected in the average skin conduc-
tance, as well as in the number and amplitude of phasic responses) and SBP was found
compared to the non-threat condition. For HR, DBP, CO and TPR results revealed no
statistically significant effect. When focussing on the response pattern at the event level,
EDA showed a more pronounced rise in response to the tone in the threat condition compared
to the non-threat condition. After the time period of the tone, CO increased and TPR decreased
significantly in the threat compared to the non-threat condition. For HR, SBP and DBP no
significant differences in response pattern between the experimental conditions was observed.
This result shows that in terms of overall levels of physiological variables, SBP and EDA are
good indicators to distinguish between periods of cognitive task performance with or without
the threat of an ES. When focussing on the event-response pattern, EDA, CO and TPR
markers can be used to indicate whether a short event is experienced as threatening or non-
threatening. Classification analysis showed best results when using EDA, SBP and DBP to
predict participants’ responsiveness to a threat vs. non-threat events. We think that this
particular combination of variables worked well in the classification analysis, because they
complement each other with respect to when, relative to the tone onset, they distinguished
between threat and non-threat conditions. In future work it would be interesting to include a
threat condition without a cognitive task and a rest condition with the 10 s beep, to further
disentangle physiological effects of threat and sound [8] in different circumstances in one and
the same experiment.

Fig. 5 P-values of running t-tests comparing the various physiological responses between threat and non-threat
conditions. Time represents the time since the onset of the tone. Tone offset is at 10 s, marked by the vertical line

Table 3 Classification accuracy of different feature sets

Variables included Cross-validation accuracy Test set accuracy

EDA SBP DBP HR CO TPR 0.74 0.68
EDA SBP DBP 0.78 0.70
EDA 0.72 0.62
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In contrast with previous literature on threat by ES [25, 53] both analyses (statistical and
machine learning) showed that HR was not affected by threat, when comparing the result with
the non-threat condition. A potential reason for this discrepancy is that we compared threat and
non-threat conditions that both involve a continuous cognitive task, rather than comparing
threat conditions with a rest condition. This is also reflected in the results that show that both
threat and non-threat conditions revealed a significant increase in HR compared to the rest
condition, suggesting that the increase is caused by increase in workload, rather than by stress
caused by the threat of ES. Therefore, to study the potential of HR as marker for stress, future
studies should compare stress manipulations to control conditions relevant within the stressor
context rather than a resting baseline condition, especially when outcomes are applied in
system support tools and multimedia applications used in real life settings.

While physiological effects of threat condition were found, participants did not report
higher levels of stress or workload during the threat condition compared to the non-threat
condition. We believe that towards the end of the condition participants learned that there will
be no electrical shock. At the time of filling out the surveys at the end of each threat condition,
this may have affected their memory of their earlier experience or their willingness to report
stress.

We were able to correctly distinguish between threat and non-threat epochs using physio-
logical data, even though the current models were trained using only 18 participants with each
6 instances of threat and 6 instances of non-threat data epochs. With more data, we expect
higher classification accuracy. Also note that we focused on a model that classifies data from
participants that were not included at all when training the model. Classification accuracies for
within-participant models could be higher but would be unpractical since for the envisioned
use (detecting stress in a virtual environment to train stress coping skills) we cannot record a
large amount of threat and non-threat data of an individual before starting the training.
Recording substantially more events from one participant using the current paradigm would
also increase the likelihood that participants stop believing that ES are ever administered.
Furthermore, it should be noted that our model distinguishes between episodes of increased
workload and physical threat on the one hand and episodes of increased workload without
physical threat on the other hand. While this more closely reflects the situation that we are
interested in, this is likely more difficult than distinguishing between rest on the one hand, and
increased task load and mental stress on the other hand. In addition, classification accuracies
may improve when optimizing the pre-processing (e.g., selecting other features or using
different outlier criteria) or when optimizing the classification approach, but this was not the
focus of the current study.

In terms of task performance the results showed a lower tracking distance during the tone,
suggesting that participants followed the instructions and increased their performance during
the tone. Our study did not reveal detrimental effects of threat on performance. Indeed, stress
as caused by physical threat does not necessarily decrease task performance and could even
enhance it. However, (physical) stress can affect decision making, due to biased judgments or
impaired cognitive functioning[45, 47, 54] and in the long run stress is considered to be
detrimental for health [42].

We introduced our study with the long-term goal of adapting virtual training programs to
ensure efficient tailoring of the training to the individual person. For example, a stressor can be
made more intense when stress levels decrease. A similar application would be in tailoring
stimuli for traumatic exposure to individuals with PTSD [40, 10]. Without the requirement of
online adaptation, a well-trained stress detection model could be used to examine whether and
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when professionals ‘keep their head cool’ under stressful conditions. This can support
discussing their stress coping skills after the virtual training program. The model could also
be used to evaluate the effectiveness of interventions to learn to cope with stress. Indeed,
military professionals showed an attenuated physiological stress responses to an induced
stressor compared to civilians [47]. However, it is unknown whether this reflects a positive
effect of training or selection (i.e. only individuals who are relatively resilient to stress are
likely to choose or be selected for a military profession). The discrepancy we found between
physiological and self-reported data underlines the added advantage of integrating physiolog-
ical indicators of stress over only self-report measures.

We do not know yet how specific the observed physiological responses are for the currently used
stressor and task. The next step is to generalize a model trained on data following the current
paradigm to situations with other events signalling stress and heightened workload. It may be
required to collect more data using different events that co-occur with stress, followed by slightly
different types of (mental) activity in order to be able to build a model that generalizes across
situations varying in stressor intensity and type and the degree of increased workload.

In conclusion, the results showed that EDA and SBP were good indicators to distinguish
between overall levels of threat and non-threat conditions while performing a cognitive task.
When focussing on the response patterns, EDA, CO and TPR indicators can be used to
indicate whether a short event is experienced as threatening or non-threatening. Classification
analysis showed that the best indicators to differentiate between non-threat and threat were
EDA, SBP and DBP. Another interesting result is that in this study HR, often used as indicator
of stress or threat, was not a sensitive predictor to distinguish between threat and non-threat
conditions.
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