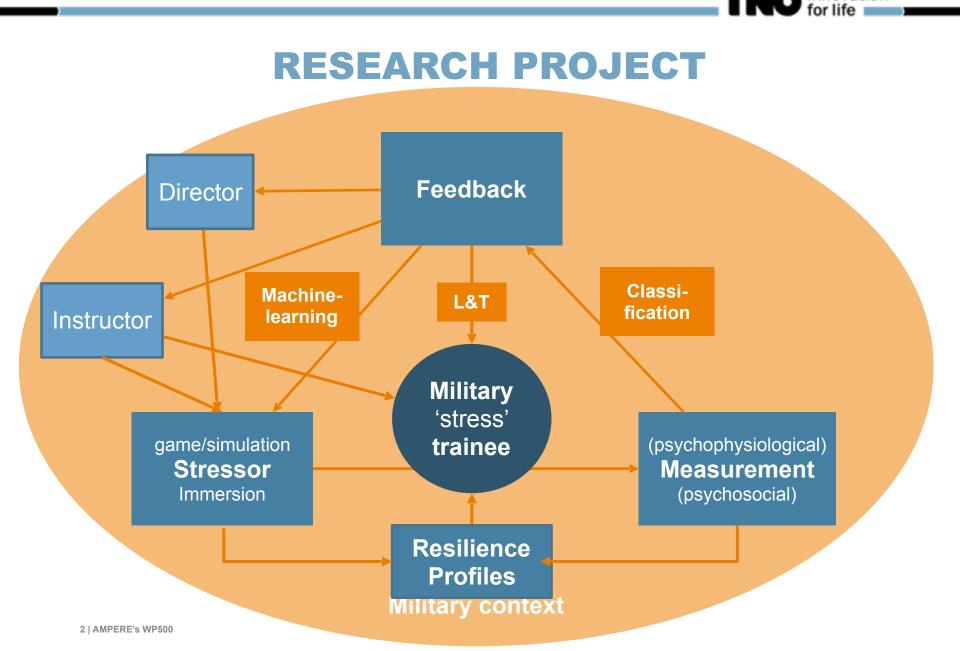
AMPERE

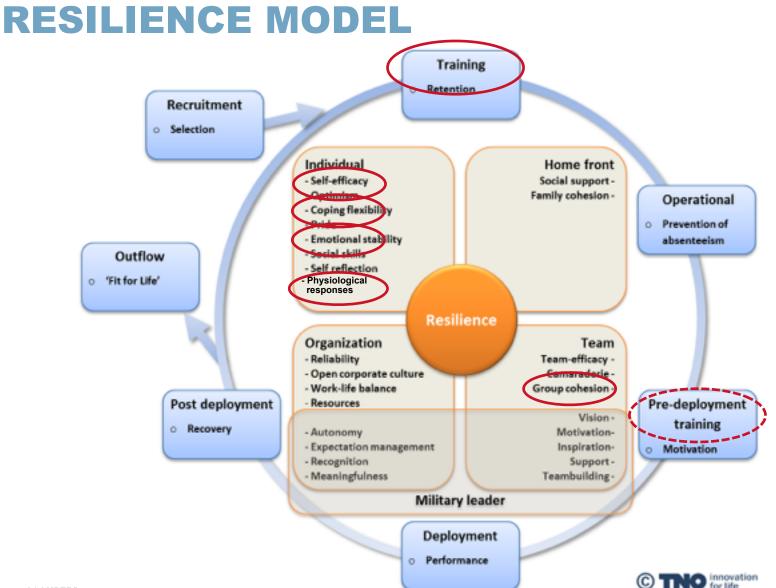
Using the Military Resilience Monitor to Predict Physiological Stress Responses of Soldiers Operating in a Controlled Virtual Reality Training Scenario

Olaf Binsch, Ph.D. and Roos Delahaij, Ph.D.

innovation for life


08

Development and validation of gaming & simulation platforms that induce, measure and feedback stress to enhance the capability of the military to perform better under stressful circumstances


Blascovich, J., & Tomaka, J. (1996). The biopsychosocial model of arousal regulation. In M. P. Zanna (Ed.), Advances in experimental social psychology, 29 (pp. 1-51). New York: Academic.

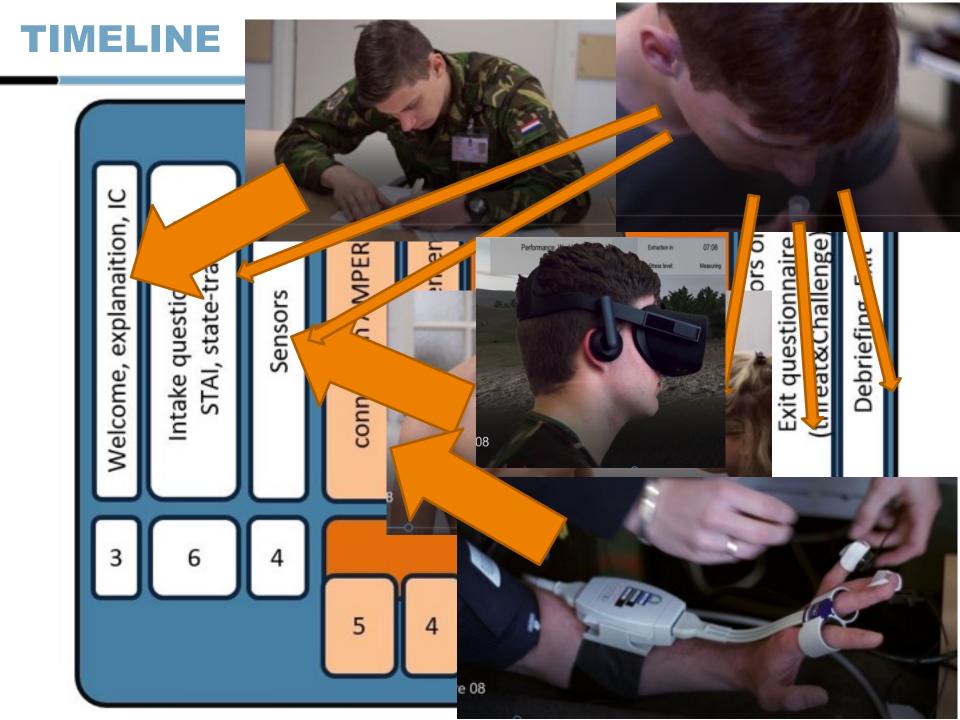
Lazarus. R.S. & Folkman, S. (1984). Stress appraisal and coping. New York: Springer Press.

Vijgh, B., van der, Beun R.J., Rood, M. van, & Werkhoven P. (2014). GASICA: generic automated stress induction and control application design of an application for controlling the stress state. Frontiers Neuroscience, 8, 400.

DESIGN

Cadets of Royal Dutch Military Academy *N* = 65;

Military Resilience Monitor 14 day's prior VR experiment



E.G. IED SCENARIO

8

MEASUREMENTS

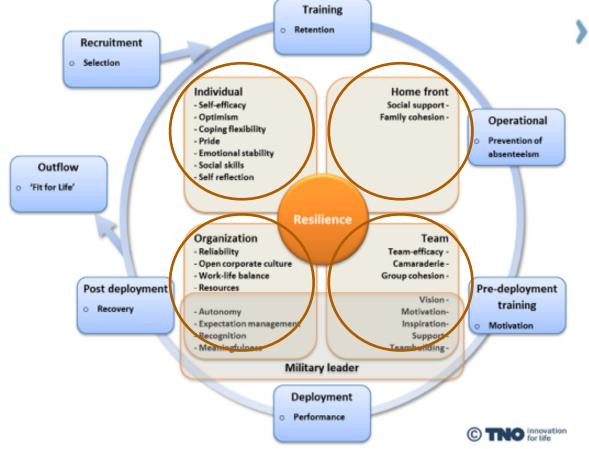
Physiology

Heart Rate (HR)

- Heart Rate Variability (HRV)
- Blood Pressure (BP)
 - Systolic (SBP)
 - Diastolic (DBP)

Cardiac Output (CO)

- Volume of blood pumped per minute
- Total Peripheral Resistance
 - force required to maintain blood flow
- Galvanic Skin Response
 - Average per phase
 - Number of peaks


Salivary Cortisol

(engagement vs stress; cotton swaps)

Questionnaires
STAI trait & state
pre
Threat & Challenge
pre & post
Dutch Military Resilience Monitor
14 days before the experiment
Cognitive Performance Measure
Situational Awareness Score

MRM

Military Resilience Monitor: measures individual, homefront, team and organisational resources in short (30 items) scale. Validated for deployment phase.

Adapted for training setting:

Emotional stability, self-efficacy,

innovation

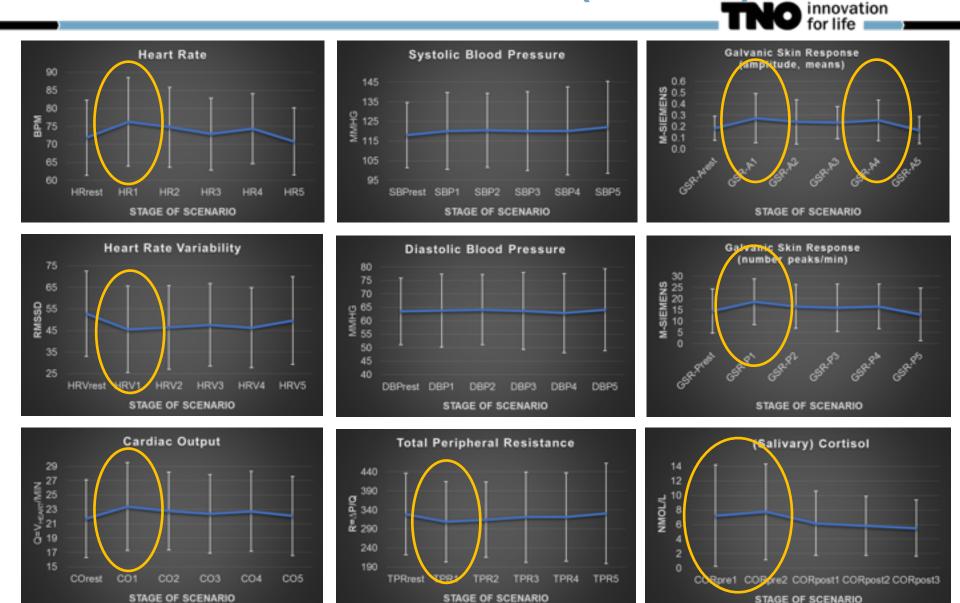
social competence

Coping style (active, avoidance,

social support, humor,

acceptance, spiritual,

reappraisal)


Family support & cohesion

Instructor support

Group/team cohesion

Reliability & open/safe culture

PHYSIOLOGICAL RESULTS (GROUP)

INDIVIDUAL RESULTS

We categorised the physiological responses in threat and challange by applying the biopsychosocial model of stress (Blascovich and Mendes, 2000).
Higher HR, higher CO, <u>no increase</u> of TPR → challenge state (+ stress)
Higher HR, higher CO, <u>increase</u> of TPR → threat state (- stress)

- 29 participants showed challenge states
- 3 participants showed threat states
- (33 participants showed higher HR during the rest measurement in the runup of the experiment compared to the first simulation scenario)
- We used the threat and challenge survey (Drach-Zahavy & Erez, 2002) to examine whether the physiological classification in challenge and threat responders was in line with the individually perceived (psychologica) stress appraisals.

TNO innovation for life

MRM RESULTS (GROUP)

Instructor support \rightarrow higher cortisol level ($r^2 = .42$; p < 0.01)

implying that if the cadets receive more instructor support, that lead to higher (physically) responses of engagement/activation (in the run-up of the experiment)

Coping style 'avoidance' \rightarrow higher cortisol level ($r^2 = -.30$; p < 0.05)

> implying that the applied coping style avoidance would lead to lower (physically) engagement/activation

Coping style 'active' \rightarrow higher cortisol level ($r^2 = .31$; p < 0.05)

> implying that the 'active' coping style lead to higher (physically) engagement/activation

Coping style 'acceptance' \rightarrow peripheral resistance ($r^2 = .27$; p < 0.05)

implying that the emotion regulation to accept a challenging/threatening context lead to higher (threat) stress response.

Coping style 'humor' \rightarrow peripheral resistance ($r^2 = -.29$; p < 0.05)

implying that the emotion regulation to engage a challenging/threatening context with 'humor' lead to lower (threat) stress responses during the simulated scenario's.

Coping style 'humor' \rightarrow higher heart rate and cardiac output

 $(r^2 = .32; p < 0.02; r^2 = .33; p < 0.01, respectively)$

implying that the trait/state of using humor in difficult situation leads to higher heart rate and blood flow during the simulated scenario's.

RELATIONSHIP WITH EARLIER FINDINGS

In 2016, we found that cortisol and optimism were predictors of attrition/ perseverance in a maritime infantry (Marines) training setting.

- Higher levels of cortisol were correlated with higher optimism scores (i.e., training success)
- The relationship between optimism and training perseverance were moderated by higher levels of cortisol.

Binsch, O., Van Wietmarschen, H., & Buick, F. (2016). Relationships Between Cortisol, Optimism, and Perseverance Measured in Two Military Settings. Military Psychology. http://dx.doi.org/10.1037/mil0000146.

CONCLUSIONS

- It is possible to induce and measure arousal and indices of stress within VR gaming & simulation settings, also in the military domain.
- Different stressors are induced, also stressors only indirectly attributable to the VR&M gaming/simulation platform. VR necessary?
- Appling 'fancy' VR technology and add-ons are not a guaranty to induce more arousal and/or stress.
- Not every cadet was susceptible/sensible to VR settings and the simulated (military) VR scenario.
- Cortisol seems to be a reliable biomarker in predicting states of activation in young military service members.
- Relationship with cortisol implies that if the cadets receive more instructor support that lead to higher physical activation, higher chance of perseverance and training success.

QUESTIONS?

THANKS! SEE YOU AT THE NEXT IMTA IN RIGA!

fo