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Abstract

Noisy Intermediate-Scale Quantum computers are expected to be available this year. It is
proposed to exploit such a device for decision making under uncertainty. The probabilistic character
of quantum mechanics reflects this uncertainty. Concomitantly, the noise may add to it. The
approach is standard in the sense that Bayes decision rule is used to decide on the basis of maximum
expected reward. The novelty is to model the various action profiles and the development of
‘nature’ as unitary transformations on a set of qubits. Measurement eventually yields samples
of classical binary random variables in which the reward function has to be expressed. In order
to achieve sufficiently low variances for reliable decision making more runs of such a quantum
algorithm are necessary. Some simple examples have been worked out to elucidate the idea. Here
the calculations are still analytically feasible. Presently lacking an operating quantum device, the
QX simulator of Quantum Inspire has been used to generate the necessary samples for comparison
and demonstration. First obtained results are promising and point at a possible useful application
for noisy intermediate-scale quantum computers.

1 Introduction

Large-scale universal quantum computers [I] allowing fault tolerant quantum computing [2] are not
foreseen in the near future. However, Noisy Intermediate-Scale Quantum (NISQ) devices will be
available in the next years [3]. Such quantum computers have a limited number of qubits, say up
to 100 and suffer from noise which reduces the fidelity of the quantum gates. A surface code to
correct errors [2] cannot be implemented. The question therefore arises how to usefully apply NISQ
technology. In the seminal paper [3] such opportunities, especially for computing, have been discussed.

This note proposes another application for NISQ computers, that is decision making in the face
of uncertainty [4]. Classical probabilities and, more generally, probability theory are of course the
essential guidelines in the process of decision making if uncertainties are involved. Probability density
functions and their possible updates have been used in practice, see, e.g., [5]. In our proposal we
do not choose probability distributions, but exploit quantum mechanical probabilities. In essence,
we model the problem in terms of the stat of nature, typically with a uncertain evolution, and
in terms of different actions (alternatives). The latter, in combination with the occurring state of
nature, may give different rewards (payoffs). These actions and the evolution of the state of nature
are modeled quantum mechanically by means a set of unitary transformations on a limited number
of qubits. The latter are supposed to be initialized in their ground states as is commonly assumed in
quantum algorithms. Eventually, we measure the product of all o, operators of the qubits; usually but
somewhat sloppy this is called ‘measuring the qubits’. The measurement yields a number of classical
bits, corresponding to one sample. Repeating the calculation, including the measurements, N times
then yields N samples which are used to estimate the expectation value of the reward (payoff). The
Bayesian decision rule [4] maximizes this expected reward.
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Of course, we need to motivate our choice for a NISQ device in decision making. First, we expect
that even for complex decision making problems the necessary number of qubits is well below the
expected limit of 100 qubits. Although the algorithms are deterministic, the outcome of the measure-
ments is inherently probabilistic. In this way, the uncertainties are simulated in a natural way. The
noise in a NISQ computer obviously also reflects these uncertainties and is therefore no nuisance like in
other applications. Updating probabilities and probability density functions on the basis of previous
experimentation [4] and/or new acquired information [5] is conveniently implemented by means of
controlled quantum operations like a CNOT gate. Note that all two-qubit gates may introduce en-
tanglement in the system, in this way modeling correlated random variables. We emphasize, however,
that the merits of this method need eventually to be demonstrated in practice. Two advantages can
be envisaged. Since the quantum technique is principally different from the classical one, it may be
more reliable and robust. The involved quantum sampling may also speed up the process of classical
decision making where time consuming Monte Carlo simulations are often necessary.

At present, a NISQ computer is not yet available. Quantum simulators, however, are already
available. In our examples, we have used the QX simulator of Quantum Inspire [8]. As of yet, the
simulator supports only one error model which may be used to include the imperfections of a real
device. Quantum Inspire actually aims for a spin-qubit quantum computer in the very nearby future.

There is an obvious relation with quantum sampling where a quantum computer is exploited to
generate samples of a probability density function. Here we also generate samples to obtain classical
bits in which the reward function is expressed. No guiding classical probability distribution is however
used; the guiding principle is the combination of the uncertain state of nature and the various actions.
This needs to be modeled in by unitary transformations on the multi-qubit state. The method has
also some resemblance with quantum random walks [7].

The outline of this note is as follows. First, we very briefly introduce the necessary concepts of
decision making. Next we fix our notation for quantum computing. In section Bl the general concept
of exploiting quantum computing in decision making is presented. It is followed by sections working
out three simple examples with increasing complexity. Finally, some conclusions and an outlook are
presented.

2 Preliminaries

In this section we start by shortly introducing the few aspects of decision analysis and theory which
we actually want to use. The more interested reader may consult the standard textbook [4] and/or the
recent review [9]. Our work is also based on an approach with classical probability density functions
and Bayesian updates [10].

2.1 Decision making

The simplest example of decision making under uncertainty may be to decide whether or not to take
an umbrella while going out. Such a decision is typically based on a weather forecast. It contains
the essential ingredients which are several actions or alternatives to choose from, an eventual ‘state of
nature’ and a resulting reward or payoff. In the example the possible eventual states of nature are rain
or no rain. The reward is the difference between value, dry versus soaked clothes, and cost, carrying
the umbrella. These concepts need to be quantified and often monetary values are usedﬁ. Possibly
unsubstantiated and subjective probabilities or probability distributions are invoked for predicting the
state of nature. The decision maker chooses the optimal action based on some criterion. In [4], three
such criteria are given:

e Maximin payoff
For each action find the minimum reward over all states. Next, find the maximum of these
minimum payoffs. Choose the action whose minimum payoff yields this maximum. Obviously,
it is a pessimistic view and is very cautious.

2The concept utility goes beyond this.



e Maximum likelihood
Identify the most likely state of nature, that is with the highest prior probability. For this state
choose the decision with the highest reward. This criterion excludes low-probability high-payoff
gambling.

e Bayes decision rule
Use the best available estimates of the probabilities (or probability distributions) of the respective
states and calculate the expected reward for the various actions. Choose the one with the
maximum reward.

In this study we restrict ourselves to the latter criterion, that is Bayes decision rule. It obviously
requires more computations (simulations) then the other two.

Up to now, we have described decision making without experimentation. It can be extended to
include experimentation [4] or Bayesian(-like) updates based on the already acquired information.
The aim is to improve the estimated prior probabilities (or density functions). The improvements
are called posterior probabilities (or updated density functions [I0]). For simple examples we refer to
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2.2 Notation quantum mechanics

In this section we define the notation to describe the necessary NISQ quantum mechanical part. For
a single qubit we use as standard or computational basis

0= (5)-m=(})- )

It is straightforwardly extended to more qubits; for two qubits we explicity have
0
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The initial state for n qubits will always be chosen as |0>®". Note that the computational states are
the eigenstates of the Pauli o, (or Z) operators

0.|0) =10), o:[1)=—]1). 3)

The eigenvalues 1, —1 are the possible results of a measurement of Z. They correspond to classical
bits 0,1, thereby refering to the eigenstate. The following NISQ algorithms are always terminated
by a simultaneous measurement of Z, ZI2... and Z[". In this way a classical bit vector § with
s =0,1;k =1,---nis generated. Because of the inherent probabilistic character of quantum physics,
it is produced with some probability depending on the state just before the measurements. This
deterministic state follows from applying unitary operations on the initial state. Repeating the whole
procedure, that is including the final measurement, then yields samples of the classical, random binary
vector §.

3 Concept

The leads us to the concept of decision making under uncertainty by means of a NISQ device. For
each possible action A;, the reward function has to expressed in the classical random binary variables
§

r;(8) = vj(8) — ¢;(8) (4)
with value function v(8) and cost function ¢(§). These functions may be different for the various
actions, but are not necessarily so. Furthermore, they may depend on other deterministic variables or
parameters. The uncertainty is simulated by obtaining the random samples § by means of the NISQ



computer. Apart from the quantum probabilities, the latter actually adds some uncertainty because
of noise.

For each action, a quantum algorithm in terms of unitary operations U, has to implemented.
Usually also the evolution of the state of nature is mimicked by an unitary transformation U(7),
where 7 is a evolution parameter like a dimensionless time. For example, we get the final state

[¥) = UU(r)[0)*". ()

The resulting algorithms have to be performed a number, say N, of times. In this way, N samples
of the classical bits are obtained for each action. Inserting the samples into the reward function
eventually yields samples of various rewards and therefore also their averages as sample means. These
are used as decision criterion, the action with the highest expected reward is selected. Concomitantly,
it is possible to estimate the variances of the rewards function by their sample variance. It of course
yields an impression how sensitive a decision may be for the uncertainties. Specifally, we obtain for
each action the variates 3,k = 1,--- , N and thus the samples r(3}). The estimated expected rewardﬁ
FE follows as

1 N
Elr) =5 > 7(5k)- (6)
k=1

The output is sometimes provided as a list of found different samples §(i),7 = 1, L and their fractions
n;/N which is an estimate of their probabilities p;. In that case, we obtain as average

Blr] = Y- 5r(30) = Y- pir(3(0). (")

This is especially convenient if the number of qubits is small and, consequently, the number of different
variates is not that large. Recall that we do not yet have a NISQ device at our disposal and therefore
use the QX simulator of Quantum Inspire.

Although this concept appears to be simple, some thinking is required if a practical decision
making needs to be solved. First, the set of possible actions has to be identified. Next, one needs to
define appropriate reward functions in terms of the binary random variables § and other parameters.
Obviously, this resembles the approach in classical decision making. Note that there been published a
vast amount of literature on this subject. Exploiting a quantum computer requires that the evolution
of the state of nature and the consequences of the various actions need to be expressed as unitary
transformations. For the case of decision making ‘with experimentation’ we propose to apply controlled
unitary two-qubit gates, for example the CNOT. This leads to a generalized form of eq. ()

W}> =Un U(Tm7 Tm—l) Un-1 U(Tm—la Tm—Z) - Uy U(Th TO) ’O>®n s (8)
where ‘time’ is ordered: 7, > 7,,—1 > --- > 79. The unitary operations Uj,j = 1,--- ,m can be
controlled gates.

4 Taking an umbrella

The decision to be made is (not) taking an umbrella, given a certain probability p, of rain. The
umbrella, however, is heavy — so carrying it has a price. The possible states of nature can be coded
in two classical bits: sg = 0,1 corresponding to rain, no rain and s; = 0,1 corresponding to travelling
light, heavy. The quantum implementation therefore needs two qubits, i.e.,

qubit[0] : |0) no rain, |1) rain,
qubit[l] : |0) light, |1) heavy. (9)

The reward functions therefore depend on the two binary variables sg, s1.

3Below we include a subindex to indicate the action, i.e., E; denotes the expected reward for action A;.



4.1 Simplest case

In the simplest case, we only consider two actions, action 1 is not taking the umbrella whereas action
2 is taking the umbrella. Let us define the value function by noting that is some value v to remain
dry which does not happen if so = 1 and s; = 0; so we take

v(s0,51) = v(l — s0(1 — s1)). (10)
Because the umbrella is heavy the cost is chosen as
c(s0,81) = cs1, (11)

which is independent of sg. These functions apply for both decisions, so we also have only one reward
function in this case

r(s0,81) = v(1 — so(1 — s1)) — ¢es7. (12)
The weather development is described with the unitary one-qubit gate
T . T
Ry(r) [0) = cos (5)[0) — sin (5) 1), (13
that is a y-rotation around 7. It yields a probability of rain
.9, T
pr =sin? (2), (14)

so 7 can be chosen to match the prediction. Despite the subjective experience, rain versus no rain
does not depend on the decisiorH. The complete unitary operation for action 1 is given by the rotation
on the ¢[0] and the identity on ¢[1], resulting in the state

W) = (RY() @ 1) |00) . (15)
Taking the umbrella corresponds to an X-operation on ¢[1], yielding
|W2) = (R (r) @ ol) |00) . (16)

The corresponding complete circuits, i.e., including the measurements are shown in Figure ().
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Figure 1: Corresponding quantum circuits, L.h.s: action 1; r.h.s: action 2
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This example is that simple that we can proceed analytically. Standard quantum mechanical
calculations yields for action 1

p(so =0,81 =0) = cos? (%), p(so=1,51=0) = sin® (%),

p(so=0,s1=1),=p(sop=1,51=1) =0, (17)
and eventually the expected reward
Ey[r] = vcos? (%) (18)

The analogous computations for action 2 give
p(so = 0,51 = 1) = cos (%), p(s1 = 1,51 = 1) = sin® (%),
p(SO :0781 :0)7 :P(SOZ 1731 :0) :07 (19)

4Excluding ‘butterfly effects’.



with expected reward
Esrj=v—c. (20)

Given the probability of rain p, ([[4]), one can now take the ‘best’ decision. It is taking the umbrella
for p, > c/v.

We nevertheless have implemented this example in the QX simulator to generate samples of 5. For
each action 1024 runs have been done, i.e., N = 1024. The resulting expected rewards are consistent
with the analytical results.

4.2 With experimentation - entanglement

We extend this example by adding an third action. It consists out of waiting a certain time and then
taking the decision also on the basis of the weather development thus far. An obvious criterion is rain
at that momen‘ﬁ. A quantum mechanical implementation of this action is

3) = (RP(r —m0) @ I) O (R (70) © M) |00) (21)

where C'y denotes the entangling CNOT gate. It corresponds to the quantum circuit shown in Figure
@). It is furthermore assumed that waiting has its price and for this decision the cost function is

0) — £y(70) Ry(T — 10) [—1A
A

0) D

Figure 2: Circuits

therefore taken as
c3(so,81) = cs1 + d. (22)

Since the cost increases for longer waiting we take d o< 79/7. Although the calculations are somewhat
more involved, one can still proceed analytically. The resulting probabilities follow as

Plso = 0,51 = 0) = cos” (—=2) cos” (),
p(so = 0,51 = 1) = sin? (T — 7-O)SinZ (%),
Plso = 1,51 = 0) = sin® (—=) cos” (),
p(so=1,51 = 1) = cos’ (T _27—0)sin2 (%), (23)
eventually yielding the expected reward
Bl = o{(cot ()0 () s ()} s () - a
= v{1—si1r12(7—_27—0)cos2 (%)}—csim2 (%)—d. (24)

Once again, we also have performed QX simulations and have approximately reproduced the analytical
probabilities for the third action as well.

If all parameters in the reward functions and in the unitary transformations are fixed, the decision
is taken by selecting the one with maximal reward. It may illustrative to show the expected reward as
a function of one the parameters. A natural choice is the probability of rain p,, which determines the
‘time’ (rotation angle) 7. We fix the additional cost as d = 72 and take as parameters v = 1.0,¢ = 0.8.

2T
Figure (3] depicts the rewards for the three possible actions and two waiting times.

5 Alternatives like an updated weather forecast are also reasonable.
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Figure 3: Expected rewards for the three different actions as a function of the rain probability p,.
L.h.s. 70 =0.27,d =0.1; r.h.s 19 = 0.47,d = 0.2.

4.3 Including variances

It is also possible to analytically derive the Varianceﬂ of the expected rewards for the various actions.
In case of only sampling, either by means of the QX simulator or a NISQ computer, these quantities
are replaced by sample variances. For action 1 we get

i) = e () = 1= s e

The variance of the expected reward for action vanishes identically. Sampling with a NISQ device will
yield a finite but hopefully small variance. The expected squared reward for action 3 is obtained as

Es[r?] = (v — d)? cos? (T — 7—0) cos? (%)
+(v—c—d)QsiHQ(%)—i—dQSinQ(T_TO)COSQ(%). (26)

The variance follows from o3 = E3[r?] — (Es[r])?, cf. @4]), but we omit this rather lengthy expression.

It is clear, however, that the resulting standard deviation is of the same order of magnitude as
the expected reward. Consequently, it is impossible to make a decision based on one experiment/run.
Performing N runs with the QX simulator, and eventually on the NISQ device as well, reduces the
standard deviation by a factor of 1/ V/N. Figure (@) shows the expected reward including standard
deviation calculated for N = 1024, at present the maximum number of runs for the QX simulator.
We see that sensible decision making is still possible. The variance for the results generated with a
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Figure 4: Expected rewards and variances for the three different actions as a function of the rain
probability p,; N = 1024. L.h.s. 79 = 0.27,d = 0.1; r.h.s 79 = 0.47,d = 0.2.

NISQ computer may be larger.

6As is well known the standard deviation o is the square root of the variance.



5 Example: entangling nature

5.1 Scenario and model

In this section we extend and modify the previous example. Apart from considering the possibility of
rain the temperature is considered as well. If the temperature is high then one can leave a jacket at
home, which is convenient. However, in case of low temperatures a jacket is necessary. Unfortunately,
it is inconvenient to carry. Hence one needs to decide about taking an umbrella and carrying the
jacket. The possible states of nature are now coded in four classical bits: sg = 0,1 corresponding to
rain and no rain, s; = 0,1 corresponding to warm and cold, so = 0,1 corresponding to travelling light
and heavy and s3 = 0,1 corresponding to travelling conveniently and inconveniently. The quantum
implementation therefore needs four qubits, i.e.,

qubit[0] :  |0) no rain, |1) rain,

qubit[l] : |0) warm, |1) cold,

qubit[2] - |0) light, |1) heavy,

qubit[3] :  |0) convenient, |1) inconvenient. (27)

The reward functions therefore depend on the four binary variables sg, s1, S2, 3. Analogously to the
previous example, we define the value function

v(S0, 1,82, 83) = vo(1 — so(1 — s2)) + v1(1 — s1(1 — s3)). (28)
Since inconvenience has its price, the cost is extended as
c(s0, 51, 82, 83) = Cos2 + €183 (29)

The reward remains value minus cost. Just as above the cost function has to be adapted for one
action; we will get back to this point.

First, we further modify the scenario by assuming that the decision cannot be based on the weather
forecast but only on experience. That tells us that the conditions are either “warm and dry” or “cold
and rainy”, with about 50% probability. Such a (weather) state of nature corresponds with the
following Bell statdl of qubits [0] and [1]

@) = 5v2(|00) + [11)). (30)

The unitary operation Cy H'% transforms |00) to |[®F) and, consequently, we define the fixedd ‘weather
evolution operator’ as

Uy = (28 © 7% @ LY (28 @ 70 0 T @ H1O) =y} = ¢l glo), (31)

where H is the Hadamard gate. Note the introduction of a shorter notation by only indicating the
non-trivial operations and thus omitting identity gates.

We continue by defining the four obvious actions and their implementation. Action 1 is merely
not taking anything. The resulting state therefore is

1) = U (00) ® [00)) = U 00) @ [00) (32)
Carrying a jacket but no umbrella defines action 2. Hence the state is transformed as
[2) = Uw o((00) @ [00)) = Uy 00) @ o} 00) (33)
Action 3 is defined as taking an umbrella and no jacket; the final state follows as

) = U 012(100) @ (00)) = U 00) ® o2 |00) . (34)

TOf course, the Bell state with the relative —sign also does the job.
8No ‘time’ parameter is required here.



Of course one can take an umbrella as well as a jacket - defining action 4. Obviously, it corresponds
to the final state

lba) = U o2 612)(|00) @ [00)) = U |00) @ (0 @ o12) |00) . (35)

It is clear that for actions 1-4 the weather two-qubit state is entangled but that the remaining two
qubits are separable. The quantum circuits are shown in Figures (& []).
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Figure 5: Corresponding quantum circuits, Lh.s: action 1; r.h.s: action 2
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Figure 6: Corresponding quantum circuits, Lh.s: action 3; r.h.s: action 4

Once again, an alternative action 5 is obtained by modeling an intermediate decision moment. It
depends on the actual weather condition and is implemented by a CNOT operation. Explicitly, we
then obtain

[4s) = Un C CNP Uy (|00) @ [00)). (36)

The quantum circuit is depicted in Figure ().
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Figure 7: Quantum circuit for action 5, the CNOTs in the box can be done simultaneously



For action 5 there is an additonal cost d leading to
¢s5(s0, 81) = cpSo + 183 + d. (37)

This action and its implementation may be called ‘with experimentation’.

5.2 Results

The quantum mechanical calculations in this extended example are still analytically feasible. As
above, we supplement and confirm these by the use of the QX simulator. For more complicated use
cases, analtyical predictions are impossible and one has to rely on the QX simulator only. Eventually,
the aim is to get samples from the NISQ computer.

We present the results for each action in terms of probabilities for obtaining the classical bits §
and the eventual expected value for the reward. Note that we only list the non-zero probabilities

e Action 1
p(0,0,0,0) = p(1,1,0,0) = 3, Ex[r] = $(vo + v1). (38)

e Action 2
p(0,0,0,1) =p(1,1,0,1) = 3,  Ex[r] = vg + v1 — c1. (39)

e Action 3
p(0,0,1,0) = p(1,1,1,0) = 3,  Es[r] = 1v1 4+ vo — co. (40)

e Action 4
p(0,0,1,1) =p(1,1,1,1) =1, Eyfr] =vi +v9—co — 1. (41)

e Action 5

p(0,0,0,0) p(1,1,0,0) = p(0,1,1,1) = p(1,0,1,1) = §,

E5[7“] = %(Uo+1)1)—%(00+01)—d. (42)

In principle, there are no free parameters and one just has to compare the expected rewards in order
to take the optimal decision. It can be shown that for d > 0, action 5 is never the best action.

Suppose it would be possible to postpone the intermediate decision to the moment of the truthﬁ.
It is obvious that such an action profile gives better rewards than action 5 and plausible that it is the
best of all for small enough d. In order to check these staements, we define the action 6 as action 5
without the last Uy operation. Its quantum circuit is shown in Figure (8]).

0) —H —— 1A
0) e
0) B N
0) :LO - .

Figure 8: Quantum circuit for action 6, the CNOTs in the box can be done simultaneously

Thus we get as state
) = C&* CR™ Uw (100) © [00)). (43)

9In the quantum model corresponding to the ideal measurement, that is instantaneous projection.
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Of course, the additional cost d has to be included in the reward. The resulting probabilities and
expected reward are obtained as

p(0,0,0,0) =p(1,1,1,1) =1, Eg[r] = v1 +v9 — 3(co + 1) — d. (44)

We illustrate typical outcomes in this example in Figure ([@). The rewards for the various actions
are plotted as a function of the additional cost d in actions 5-6. The value parameters are fixed as
vy = 1.25,U1 = 1.0.
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Figure 9: Expected rewards for the six different actions as a function of the additional cost d. L.h.s.
co=0.5,¢1 =0.4; r.hs ¢g =0.8,¢; = 0.6.

5.3 Including variances

The variances and standard deviations of the rewards can also be straightforwardly calculated for the
various actions. The following results are obtained

o1 = %(UO +v1), o2= %UO, 03 = %Ul, o4 =0,
o5 = %\/%(Uo+v1)2+(co+c1)2—(vo—i-vl)(co—i-cl),
og = %(CQ +Cl). (45)

Also in this example the standard deviations are of the same order of magnitude as the rewards. It
prohibits decision making based on one run. As above, we assume that N = 1024 runs are performed
which reduces the standard deviation by 1/ V/N. The expected rewards including these standard
deviations are depicted in Figure (I0])
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Figure 10: Expected rewards and variances for the six different actions as a function of the additional
cost d. L.h.s. ¢g =0.5,¢1 =0.4; r.h.s ¢g = 0.8,¢1 = 0.6; N = 1024.
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6 Including noise in the QX simulator

At present, only one error model is available in the QX simulator in Quantum Inspire, that is the
“symmetric depolarizing channel” [§]. The per-operation error probability has to be set; typical
values are between 0.001 and 0.01. In order to get a first assessment of the consequences, we have
performed some additional simulations for action 6 of the second example. The parameters are chosen
as in the Lh.s. of Figure (@)); in addition we fix the additional cost as d=0.5. The number of runs
remains N = 1024. The theoretical result for the expected reward and its standard deviation is
Eg[r] = 1.30 £ 0.014. We compare the sample mean and corresponding estimated error to theory for
three error probabilities. In the noiseless case, we obain the same result, for error probability 0.001
we get 1.33 + 0.014, whereas in case of error probability 0.01 we find 1.29 4+ 0.024. Of course, also
these values slightly vary repeating the simulations of 1024 runs. These first results, only based on
the implemented error model in the QX simulator, indicate that noise does not necessarily prohibit
decision making using a NISQ computer. There will be a noise limit/threshold of course. Here we
have seen that for an error probability of 0.1, results appear completely random.

7 Conclusion and outlook

An approach for decision making under uncertainty using a NISQ computer is proposed. According
to Bayes decision rule [4], the decision alternative with the maximum expected reward is chosen. The
reward is defined as the difference between value and cost and these are supposed to be formulated
as functions of classical binary variables. Each binary variable requires a qubit in a NISQ device.
Measuring these qubits in the standard basis generates a sample of the binary variables. Because of
the inherent probabilistic nature of such a quantum measurement, the samples are random thereby
reflecting the uncertainty in the decision problem. The noise in a NISQ computer will also add to
this. The various decision actions and the development of the ‘state of nature’ are modelled as unitary
transformations on the qubits. After initialization, these operations are to be performed on the qubits
before measuring them. Such a quantum program has to run a sufficient number of times.

The idea is demonstrated by means of some simple examples of decision making. In fact, the cal-
culations can still be performed analytically. Nevertheless we have cross-checked results by generating
qubit measurement outcomes to obtain samples. Awaiting a NISQ device, we have actually used the
QX simulator of Quantum Inspire[§]. The results indicate the feasibility of the approach. In order to
reduce the variance in the expected rewards, multiple runs of the quantum algorithm are necessary.
The QX simulator supports 1024 runs, which is sufficient for the problems considered.

In classical decision making in the face of uncertainty, one relies on probabilities and probability
density functions. Judicious choices for such distributions and classical sampling and/or probability
theory computations are necessary. In the proposed quantum approach this is replaced by unitary
transformations and measurement of the qubits. Note that the formulation of the classical reward
function remains in principle the same. It is constrained, however, by its dependence on random
binary variables.

It is planned to test these ideas as soon as a up-and-running NISQ computer is available. A small
device is already scheduled for this year [8]. If these first evaluations are succesful, then larger and
more complex decision making problems may be implemented.
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