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All these weirdos,
and me getting a little better every day right in the midst of them.

I had never known, never even imagined for a heartbeat,
that there might be a place for people like us.

- Denis Johnson (Jesus’ Son by Denis Johnson, 1992)
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GENERAL INTRODUCTION

1
Atherosclerosis

Prevalence
Cardiovascular disease (CVD) is the number 1 cause of death globally and the annual 
number of deaths from CVD is predicted to rise from 17.5 million in 2012 to 22.2 million by 
2030 (1). Currently, 31% of all deaths worldwide is caused by CVD and low and middle- 
income countries are now most affected. Its major clinical manifestations include ischemic 
heart disease, ischemic stroke and peripheral arterial disease, all caused by the formation 
of atheromatous plaques in the vessels, and comprises 85% of all CVD deaths (1). 

Development of atherosclerotic plaques
The build-up of an atherosclerotic plaque is a complex and slow process, which in humans 
begins in early childhood, and becomes clinical relevant after many decades. Atherogenesis 
begins with the recruitment of inflammatory cells into the intima. As response to irritative 
stimuli (e.g. dyslipidaemia, hypertension or pro-inflammatory mediators) endothelial 
permeability increases, the composition of the extracellular matrix beneath the endothelium 
changes, and the arterial endothelial cells express leukocyte adhesion molecules (2). As a 
result, blood monocytes are captured on the endothelial surface, and cholesterol-
containing low-density lipoproteins (LDL) and remnant particles enter and accumulate  
in the arterial wall and are oxidized (2). Oxidized LDL (oxLDL) promotes monocyte 
adhesion and also binds to scavenger receptors on macrophages which triggers uptake  
of oxLDL leading to the formation of foam cells (type I and II lesions). These cells produce 
pro-inflammatory mediates, reactive oxygen species and tissue factor pro-coagulants, 
that amplify the inflammatory process and further increase endothelial permeability (2,3). 
Smooth muscle cells (SMCs) migrate from the media into the intima, proliferate, and 
produce extracellular matrix molecules, e.g. interstitial collagen, proteoglycans and elastin, 
to form a fibrous cap that overlies the lipid-laden foam cells (2,3). The subendothelial 
proteoglycans entrap LDL and subsequently extra-cellular lipids accumulate (type III 
lesions). Several plaque factors, including excessive inflammation, oxidized lipids and 
cholesterol, trigger macrophage cell death (4) leading to the formation of a pool with 
accumulated cellular debris and extracellular lipids, called the necrotic core of the plaque 
(type IV lesions). Also, as the result of necrosis, calcium deposits develop (type V lesions).  
In the advanced type IV and V lesions, thick layers of fibrous connective tissue cover  
the lipid-rich necrotic core. Activated macrophages and type 1 T-helper cells produce 
metalloproteinases and cytokines that weaken the tensile strength of the collagen cap (4). 
Consequently, lesions may rupture thereby releasing their fatty core into the lumen which 
triggers thrombus formation (type VI lesions) (5). Plaque rupture and subsequent thrombus 
formation can be clinically silent as they may heal, but can also induce CV ischaemic 
events through partial or total occlusion of the affected artery. 
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Risk factors
Several risk factors contribute to the initiation and progression of atherosclerosis 
development and can be divided in non-modifiable and modifiable risk factors. Non- 
modifiable risk factors include personal history of CVD, family history of CVD, age and 
gender. Modifiable risk factors include hypertension, obesity, diabetes mellitus, and 
elevated plasma glucose, LDL-cholesterol, and triglyceride (TG) levels, and lifestyle 
variables (poor dietary patterns, smoking, physical inactivity and harmful use of alcohol). 
Moreover, genetic disorders in the lipoprotein metabolism, e.g. familial dysbetalipo
proteinema or type III hyperlipidemia, add to CVD risk. As lifestyle variables and metabolic 
perturbations are closely linked to each other, patients with CVD commonly present a 
cluster of risk factors. Estimated odds ratios of these risk factors demonstrate that abnormal 
plasma lipids are a major risk factor for atherosclerosis (Table 1) (6), and therefore, 
this thesis mainly focuses on the role of the lipoprotein metabolism in atherosclerosis 
development and CV safety. In addition, the contribution of diabetes and inflammation to 
CV risk will be discussed. 

Table 1  �Risk of acute myocardial infarction associated with risk factors in  
the overall population

Risk factor Odds ratio (99% CI)
adjusted for all risk factors

Current smoking 2.87

Current and former smoking 2.04

Diabetes 2.37

Hypertension 1.91

Abdominal obesity (2 vs 1)† 1.12

Abdominal obesity (3 vs 1)† 1.62

Vegetables and fruit daily 0.70

Exercise 0.86

ApoB/ApoA1 ratio (2 vs 1) § 1.42

ApoB/ApoA1 ratio (3 vs 1) § 1.84

ApoB/ApoA1 ratio (4 vs 1) § 2.41

ApoB/ApoA1 ratio (5 vs 1) § 3.25

The relation between the individual risk factors and first myocardial infarction is indicated. In total 15152 cases and 
14820 controls from 52 countries representing every continent, were enrolled. †Top two tertiles vs lowest tertile. 
§Second, third, fourth, or fifth quintiles vs lowest quintile. Data are extracted from reference (6).
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1
Lipoprotein metabolism

Lipids are transported within the plasma in the form of lipoprotein particles, and, depending 
on their density are classified as chylomicrons, very-low-density lipoprotein (VLDL), inter-
mediate-density lipoprotein (IDL), LDL, and high-density lipoprotein (HDL). LDL and HDL 
predominantly transport cholesterol, whereas chylomicrons and VLDL are enriched in TGs. 
The metabolism of these lipoproteins is divided into two pathways, the exogenous 
pathway and the endogenous pathway (7) and lipids are removed from the peripheral 
tissues by reverse cholesterol transport (Figure 1). 

The exogenous pathway
The exogenous pathway refers to the absorption of dietary lipids by the enterocytes in the 
intestine, where they are assembled with apolipoprotein(apo)B48 into chylomicrons and 
enter the blood stream via the lymphatic vessels. In the blood, the chylomicrons receive 
apoCII and apoE from HDL-particles. ApoCII binds and activates lipoprotein lipase (LPL), 

Figure 1  Pathways of lipoprotein metabolism. The liver plays a central role in the exogenous and 

endogenous pathway of lipid transport. HDL facilitates reverse cholesterol transport. CM, chylomicron; 

CMR, chylomicron remnant; VLDL, very-low-density lipoprotein; IDL, intermediate-density lipoprotein; 

LDL, low-density lipoprotein; HDL, high-density lipoprotein; FFA, free fatty acids; apoCII, apolipoprotein C-II; 

apoE, apolipoprotein E; CE, cholesterol ester; TG, triglycerides; CETP, cholesteryl ester transfer protein;  

LDLR, low-density lipoprotein receptor, SR-B1, scavenger receptor class B type 1.
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an enzyme attached to the luminal surface of endothelial cells in capillaries of adipose, 
heart and skeletal muscle tissue. Upon binding, TGs from the chylomicron particles are 
hydrolysed into glycerol and fatty acids and the remnant particles are cleared by the liver 
through binding of apoE to the LDL receptor (7). 

The endogenous pathway
The liver plays a central role in the endogenous pathway. Triacylglycerols and cholesterol 
esters (CE) are assembled with apoB100 into VLDL, and when they reach the blood stream 
they receive apoCII and apoE from HDL particles. Like chylomicrons, the TGs from the 
VLDL particles are hydrolysed by endothelial LPL and consequently transform into IDL. IDL 
particles are taken up by the liver through binding of the remnant and LDL receptor with 
apoE or apoB100, or are further hydrolysed into LDL. LDL particles contain a relatively high 
cholesterol content and transfer lipids to the peripheral cells or are cleared by the liver 
through LDLR-apoB100 interaction (7). However, more importantly with respect to ather-
osclerosis, LDL can enter the arterial wall, in contrast to the larger VLDL and chylomicrons, 
where they are oxidative and proteolytically modified and contribute to the formation of 
atherosclerotic lesions. 

Reverse cholesterol transport
HDL is the main lipoprotein involved in the reverse cholesterol transport pathway, which 
starts with the formation of nascent HDL by the liver and intestine. HDL particles acquire 
free cholesterol and phospholipids that are effluxed from cells in the peripheral tissues, 
including the vessel wall, a process mediated by ABCA1 resulting in the formation of 
mature HDL. The HDL particles transport the cholesterol to the liver either directly by 
interacting with hepatic scavenger receptor B1 (SR-B1), or the CEs in HDL are exchanged 
for TGs from VLDL or LDL particles through cholesterol ester transfer protein (CETP) (7). 
When remnant particles and LDL are taken up by the liver, unesterified cholesterol can be 
secreted into the bile, or is converted into bile acids. 

The contribution of LDL-C, HDL-C and TGs to CVD risk
1.  LDL-C
LDL-C is recognized as a primary causal risk factor in CVD as evidenced from many 
experimental, epidemiological and genetic studies (8,9). In addition, intervention trials 
with statin therapy confirm a reduced incidence of coronary heart disease as a consequence  
of cholesterol-lowering in LDL (10,11), and recent trials indicate that intensive lipid-lowering  
with statins may be more beneficial in risk reduction than less intensive (or standard) 
therapy (12). According to results from the latter meta-analysis, every 1 mmol/L (39 mg/dL) 
reduction in LDL-C is associated with a 23% reduction in the risk of major vascular events 
(12) suggesting that a 2–3 mmol/L reduction in LDL-C would correspond with a 40–50% 
reduction in events.
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1
2.  HDL-C
Epidemiological studies consistently report an inverse association between coronary heart 
disease risk and HDL-C: results from 4 prospective epidemiologic studies indicate that an 
increase of 1 mg/dL (0.03 mmol/L) in HDL-C is associated with a 2–3% reduction in risk (13).
	 Besides its major role in reverse cholesterol transport, HDL has also been described  
to have anti-inflammatory, anti-oxidant, anti-platelet and vasodilatory properties and may 
therefore have a protective role in coronary heart disease (14). Several therapeutic approaches 
aimed at raising HDL-C levels have since been investigated. However, undisputed proof 
for causality of low HDL-C in CVD is lacking and clinical trials aimed at raising HDL-C to 
prevent disease (AIM-HIGH, HPS2-THRIVE, ILLUMINATE, dal-OUTCOMES, ACCELERATE, 
REVEAL) have failed to meet their primary goals (15–17). In addition, data from Mendelian 
randomization studies show that HDL-C and myocardial infarction risk are not causally 
related (14,18). A systematic review and meta-analysis of relevant preclinical studies and 
clinical trials on the contribution of non-HDL-C/LDL-C lowering versus HDL-C raising 
concluded that the protective role of lowering LDL-C and non-HDL-C is well-established 
(19). However, the contribution of raising HDL-C on inhibition of atherosclerosis and the 
prevention of CVD remains undefined and may be dependent on the mode of action of 
HDL-C-modification. Similar outcome data were found for the prevention of clinical events  
in randomized controlled trials and on inhibition of atherosclerosis in relevant, CETP-
expressing, animals emphasizing the validity/translatability of these animal models to  
the human situation (19).

3.  TGs and remnant cholesterol
Triglycerides are primarily carried by remnants, a combined term for IDL-, VLDL-, and 
chylomicron remnants (20). Because of the small size of remnants, they are able to penetrate 
the arterial wall, thereby promoting accumulation of cholesterol in the intimal space, foam 
cell formation, and atherosclerosis (21). It is most likely that the cholesterol content of 
remnants, and not TGs, causes atherosclerosis because most cells can degrade TGs but not 
cholesterol (20). However, the concentration of TGs is highly correlated with the cholesterol 
content of remnants (22) and Mendelian randomization analyses demonstrated that 
TG-lowering LPL variants and LDL-C lowering LDLR variants were similarly associated with 
lower risk of CVD per unit difference in apoB (23). As a result, targeting TGs has become an 
interesting approach to reduce CV events and several novel therapies that interfere with 
the LPL pathway are under development, including inhibition of apoCIII and angiopoietin- 
like protein 3 (ANGPTL3) (24–26). One of these agents, the ANGPTL3 antibody evinacumab, 
was evaluated in this thesis and is therefore discussed in the next section.

Lipid-lowering interventions
Primary prevention of CVD can be achieved by promoting healthy lifestyle behaviour to 
the general population and at the individual level, and by targeting CV risk factors, e.g. 
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increased blood pressure, plasma lipid and glucose levels (27). Lifestyle modifications to 
improve the plasma lipid profile include quit smoking, reduced intake of dietary 
unsaturated fat, saturated fat and cholesterol, increased intake of dietary fibre, vegetables 
and fruits, reduction of excessive body weight, and increased physical activity (6,27). 
Depending on the estimated total CV risk and plasma LDL-C levels, lifestyle modifications 
can be accompanied by lipid-lowering drugs. For patients that are at high risk, subjects 
with documented CVD, diabetes mellitus or markedly elevated plasma cholesterol, 
additional lipid lowering therapies should always be considered (27). Table 2 summarizes 
the lipid lowering interventions currently available and their relative risk reduction for 
major vascular events. Two of these agents, statins and PCSK9 inhibitors, have been 
evaluated in this thesis and are therefore discussed below. 

1.  Statins
Statins are discovered in 1973 by Akira Endo who isolated the compound compactin from 
the fungus Penicillium citrinum, which was found to be a competitive inhibitor of HMG-CoA 
reductase, the rate-controlling enzyme in hepatic cholesterol synthesis (28). The first 

Table 2  Overview of lipid-lowering interventions currently available

Lipid-lowering 
intervention

Mechanism of LDL-C lowering Relative risk 
reduction for major 
vascular events*1

PCSK9 inhibitors Increased LDL-C clearance through 
upregulation of LDLR.

0.49

Ileal bypass Reduced absorption of cholesterol by the 
intestine and restoration of the metabolic 
response to a meal.

0.65

Statins Decreased cholesterol biosynthesis through 
inhibition of HMG-CoA reductase. 

0.80

Bile acid sequestrants Bind components of the bile in the intestine 
thereby preventing their reabsorption. 

0.78

Dietary interventions Reduced calorie/fat intake and binding of bile 
acids and cholesterol to fibers.

0.83

Fibrates Activation of peroxisome proliferator-activated 
receptor α leading to decreased VLDL particle 
production and increased lipid clearance.

0.88

Ezetimibe Reduced cholesterol absorption in the small 
intestine through blockage of the Niemann-
Pick C1 like 1 transporter, essential for the 
sterol transport across the enterocytes.

0.94

Niacin Increases clearance of VLDL particles. 0.94

*1 Data extracted from reference (12).
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1
commercially available statin based on this discovery was lovastatin, followed by 2 
semi-synthetic statins (simvastatin and pravastatin) and 4 synthetic statins (fluvastatin, 
atorvastatin, rosuvastatin and pitavastatin) (28). Inhibition of HMG-CoA reductase lowers 
intracellular cholesterol concentration which results in a compensatory increased LDLR 
expression on the hepatocytes and consequently, increased LDL-C uptake and decreased 
plasma LDL-C levels. Statins reduce plasma LDL-C levels by 20 to 50%, depending on the 
type of statin and dose (27), and reduce CV risk by 23% per 1.0 mmol/L LDL-C reduction 
(12). Due to their proven efficacy, statins are among the most frequently prescribed drugs 
in the world, although there are some limitations. The response to statins is variable and 
despite maximally tolerated statin doses, a subgroup of patients does not reach their 
LDL-C goals and remain at significant residual risk. Also, meta-analyses demonstrate that 
further LDL-C lowering further reduces CVD risk (12), while an estimated 6% reduction of 
LDL-C is achieved per doubling of the statin dose, the so-called “6% rule” (29). Last, while 
statins are generally well-tolerated, “muscle complaints” have been reported (30,31) and 
are the primary reason for statin non-adherence and discontinuation (30). To overcome 
these limitations, additional therapeutic agents, including proprotein convertase 
subtilisin/kexin 9 (PCSK9) and ANGPTL3 inhibitors, have been introduced or are currently 
under development. 

2.  PCSK9 inhibitors
PCSK9 inhibitors are the most powerful cholesterol-lowering agents currently available. 
PCSK9 is an enzyme that binds to and shuttles the LDL receptor in the intracellular 
lysosomal degradation pathway in the liver and other cells thereby preventing the 
clearance of LDL-C from the plasma. Humans with loss-of-function mutations in the PCSK9 

gene exhibit extremely low levels of LDL-C and are protected from atherosclerosis, 
whereas gain-of-function mutations are associated with hypercholesterolemia (32). 
Consequently, antibodies (evolocumab and alirocumab) against PCSK9 have been 
developed. When administered on top of maximally tolerated doses of statins, these 
antibodies additionally reduce plasma LDL-C levels up to 60% and the risk of CV events by 
15% (33,34). Evolocumab and alirocumab are FDA and EMA approved for subjects with 
heterozygous familial hypercholesterolemia or for those with clinical atherosclerotic CVD 
that do not reach their LDL-C goals despite maximally tolerated statin treatment. 

3.  ANGPTL3 inhibitors
ANGPTL3 is almost exclusively synthesized in the liver, and is an endogenous inhibitor of 
lipoprotein lipase (LPL), thereby reducing the hydrolysis of TGs in capillaries of adipose 
tissue and muscles (25). Genetic loss-of-function of ANGPTL3 causes familial combined 
hypolipidemia, characterized by very low plasma TG, LDL-C and HDL-C concentrations, 
and decreased odds of atherosclerotic CVD (26). Pharmacologic antagonism of ANGPTL3 
with the antibody evinacumab reduced atherosclerotic lesion area in dyslipidemic 
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APOE*3-Leiden.CETP mice, and dose-dependently reduced TG and LDL-C levels in healthy 
subjects evaluated in a phase I trial (26). This novel approach to reduce plasma lipids is 
particularly important for the treatment of patients with familial hypercholesterolemia 
with defects in the LDLR, as statins and PCSK9 inhibitors depend on functional LDLR, as 
well as for patients with the metabolic syndrome and type 2 diabetes, which are associated 
with elevated plasma TG levels (25). Evinacumab is currently being evaluated in a phase III 
trial for patients with homozygous familial hypercholesterolemia. 

Diabetes and CVD risk

Type 2 diabetes is characterized by elevated blood glucose levels and insulin resistance, 
and is commonly associated with obesity and other components of the metabolic 
syndrome (Table 3) (35), including atherogenic dyslipidaemia, which consists of elevated 
plasma concentrations of both fasting and postprandial TG-rich lipoproteins, small dense 
LDL and low HDL-cholesterol (36). Consequently, CVD remains the leading cause of 
morbidity and mortality for patients with type 2 diabetes (36). Despite the close relation 
between hyperglycaemia and CVD, most studies that evaluated intensive glycaemic 
control in diabetic patients failed to show significant benefits in terms of CV morbidity and 
mortality (37), and some agents even increased adverse CV events, e.g. heart failure (38) 
and myocardial infarction (39,40). To establish the safety of new antidiabetic drugs, the 
FDA and EMA mandated all new diabetes drugs to demonstrate CV safety (41,42), of which 
the clinical trials with empagliflozin (EMPA-REG OUTCOME) (43), liraglutide (LEADER) (44) 
and piogliazone (45) were among the first that showed beneficial effects on CVD 
outcomes. 

Table 3  Definition of the metabolic syndrome

Central obesity
Plus any two:

Raised TGs >150 mg/dL (1.7 mmol/L)
Specific treatment for this lipid abnormality

Reduced HDL-C <40 mg/dL (1.03 mmol/L) in men
<50 mg/dL (1.29 mmol/L) in women
Specific treatment for this lipid abnormality

Raised blood pressure Systolic >130 mmHg
Diastolic >85 mmHg
Treatment of previously diagnosed hypertension

Raised fasting plasma glucose Fasting plasma glucose > 100 mg/dL (5.6 mmol/L)
Previously diagnosed type 2 diabetes

Data extracted from reference (35).
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Inflammation in atherosclerosis

The role of inflammation in atherosclerotic disease is well-established and it has been 
shown that inflammatory processes mediate all stages of atherosclerosis: from the 
initiation through progression and eventually, thrombotic complications (46). As a result, 
not only plasma lipid levels, but also plasma levels of the inflammatory biomarker 
C-reactive protein (CRP) are predictive for individual CVD risk (47). Important players in the 
inflammatory pathways are cytokines, that can be classified as pro- or anti-atherogenic. 
Examples of pro-atherogenic cytokines are tumour necrosis factor-α (TNF-α), interleukin 
(IL)-1, and IL-6, whereas transforming growth factor -β (TGF-β), IL-10, and IL-35 are among 
the anti-atherogenic cytokines (48). Cytokines are expressed by a variety of inflammatory 
cells but also by other tissues including white adipose tissue, liver, vascular SMCs and the 
endothelium. Plasma levels of the pro-inflammatory cytokines IL-6, IL-5 and interferon- γ 
(IFN-γ) have been found to be associated with CVD risk (49). From a clinical perspective, 
targeting cytokines would be an interesting approach to reduce inflammation-driven 
atherosclerosis progression. As a result, several therapeutic approaches that modulate 
cytokine production have been developed or are under investigation (48). Examples are 
the anti-IL-6 antibody tocilizumab which has been shown to attenuate the inflammatory 
response after coronary angiography in patients with non-ST-elevation myocardial 
infarction (50), and the CANTOS trial with the anti-IL-1β antibody canakinumab that 
demonstrated a lower rate of recurrent CV events in patients with previous myocardial 
infarction, which was related to the magnitude of CRP reduction (51). In this thesis, the 
pro-inflammatory cytokine Oncostatin M (OSM) has been evaluated as potential 
therapeutic target for CVD. 

OSM
OSM is a member of the IL-6 family cytokines and plays an important role in various 
biologic actions. There are two types of functional OSM receptors, the leukaemia inhibitory 
factor receptor (LIFR) and the OSM receptor (OSMR) (53). OSM signals through both 
receptors in humans, whereas only the OSMR is used in mice (53). OSM is synthesized in 
hematopoietic cells and in various inflammatory cells such as activated T-cells, neutrophils, 
eosinophils, and macrophages (54). OSM has been found to be upregulated in multiple 
chronic inflammatory diseases (55–57) and it is expressed at sites of atherosclerotic lesions 
(58). Epidemiological studies have shown that an elevated serum OSM level is positively 
correlated with the degree of coronary stenosis in patients with coronary artery disease 
(59). Moreover, development of atherosclerosis is attenuated in OSMR-β deficient APOE-/- 
mice (60), indicating the pro-atherogenic properties of OSM. Currently, there are no 
therapies available that target OSM. 
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Experimental atherosclerosis

This thesis describes (I) novel strategies to reduce plasma lipids and atherosclerosis 
development, (II) the (cardio)vascular off-target effects of registered drugs and an 
environmental pollutant, (III) a novel mouse model for diabetic atherosclerosis combining 
modifiable elevated plasma lipid and glucose levels, and (IV) the potential of OSM as novel 
pro-inflammatory CV target. In all these studies we used the APOE*3-Leiden(.CETP) mouse 
model, a humanized model for lipoprotein metabolism and atherosclerosis. 

Mouse versus man
Conventional mouse strains used in preclinical biomedical and toxicological research, for 
example C57BL/6 mice or BALB/c mice, are considered not to be the most appropriate 
animal models to study modulation of lipoprotein metabolism, since lipolysis of TG-rich 
particles as chylomicrons and VLDL and their remnants and clearance of the apoB-con-
taining (non-HDL) lipoproteins via the apoE-LDL-receptor pathway are fast processes as 
compared to humans (61). Consequently, the mice have relatively low plasma TG and 
cholesterol levels with low levels of the atherogenic VLDL and LDL, and the majority of 
cholesterol is contained in HDL (Figure 2A-B). Severe dietary regimens with saturated fat 
and high amounts of cholesterol and cholic acid are required to increase the amount of 
non-HDL-C to some extent, but still lower than in humans (62). As a result, these strains 
only develop small lesions with features of the earliest state of atherosclerosis, but do not 
develop complex atherosclerotic lesions (63) as seen in CVD patients.
	 In humans, lipolysis is slower and removal of apoB-containing lipoproteins is delayed (61). 
In addition, humans unlike mice possess an important player in lipoprotein metabolism, 
CETP, which transfers cholesterol from HDL to (V)LDL in exchange for triglycerides, thereby 
increasing (V)LDL-C levels and decreasing HDL-C. Due to these differences, in man cholesterol is 
contained mainly in the pro-atherogenic LDL and to a lesser extent in HDL (Figure 2C-D).

The APOE*3-Leiden.CETP mouse model
To develop a mouse model with a more human-like lipoprotein metabolism for pharma-
cological, nutritional and toxicological research, the APOE*3-Leiden transgenic mouse 
was generated by the introduction of a genomic human DNA construct carrying the 
mutant APOE*3-LEIDEN gene, the APOCI gene, and all known regulatory elements, 
obtained from a patient with familial dysbetalipoproteinemia (FD) (64). FD or type III 
hyperlipoproteinemia is characterized by elevated levels of plasma cholesterol and an 
increased ratio of cholesterol to TG in the VLDL and IDL fractions, resulting in the 
appearance of β-VLDL particles (65). These mice were cross-bred with mice expressing 
human CETP under control of its natural flanking regulatory DNA-sequences (66) to obtain 
the APOE*3-Leiden.CETP mouse, as a humanized model for FD and mixed dyslipopro-
teinemia (67). While normal wild-type mice have a very rapid clearance of apoB-containing 
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Figure 2  Mice have a fast clearance of apoB-containing lipoproteins and do not express CETP (A), 

as a result the majority of plasma cholesterol is confined to HDL (B), with TC and TG levels of 1.5–2.0 and 

0.2–0.3 mmol/L in C57BL/6 mice. Humans have a slower clearance of apoB-containing lipoproteins 

and do express CETP (C) and normolipidemic man have TC and TG levels of <5.2 and 0.5–1.5 mmol/L, 

respectively, and cholesterol consists mainly of non-HDL-C (VLDL-C/LDL-C) (D). The APOE*3-Leiden.

CETP mouse has a lipoprotein profile similar as in FD patients and a lipoprotein metabolism similar to 

that in man (E), and on a chow diet TC and TG levels are 3.0–4.0 and 2.5–3.0 mmol/L, mainly confined 

to the non-HDL-C fraction (F).

A

C

E

B

D

F
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lipoproteins, APOE*3-Leiden(.CETP) mice have an impaired clearance and increased TG 
level, and are thereby mimicking the slow clearance observed in humans, particularly in 
patients with FD (61,65,68). Similarly as in FD patients, in APOE*3-Leiden and APOE*3-Leiden.
CETP mice, the major part of plasma cholesterol is contained in the VLDL and VLDL-remnant 
particles, leading to formation of β-VLDL particles, which is further increased by cholesterol 
feeding (64,67) (Figure 2E-F). Consequently, APOE*3-Leiden.CETP mice develop advanced 
atherosclerotic lesions with characteristics of human pathology that can be histologically 
classified according to the American Heart Association (AHA) (5) (Figure 3). 
	 Importantly, as compared to the widely used hyperlipidaemic and atherogenic apoE- 
and LDLR-deficient (apoE-/- and LDLR-/-) mice, the APOE*3-Leiden(.CETP) mice possess an 
intact but delayed apoE-LDLR-mediated clearance, which is an essential characteristic of 
human lipoprotein metabolism and for the proper, human-like response on hypolipidemic 
drugs (69,70). APOE*3-Leiden.CETP mice respond well to dietary intervention using 
human-relevant (Westernized) diets with increases in plasma cholesterol and TG and 
these lipids can be titrated to levels mimicking those in humans. Therefore, APOE*3-Leiden.
CETP mice are a translational and predictive animal model for the effect of drugs on 
lipoprotein metabolism and atherosclerosis. Also, the APOE*3-Leiden.CETP mouse model 
has proved to be a suitable model for investigation of the mechanism of action of 
off-target effects of drugs (71) and environmental pollutants (72). Table 4 gives an 
overview of lipid-lowering interventions that have been evaluated in APOE*3-Leiden.CETP 
mice and compares the effects on plasma lipids and atherosclerosis with data in hyperlip-
idaemic and FD-patients. It should be noted that APOE*3-Leiden.CETP mice respond 
similarly as FD-patients to niacin and fibrates, whereas greater (V)LDL-C reductions are 
achieved in APOE*3-Leiden.CETP mice relative to hyperlipidaemic patients (73–75). 

Figure 3  Atherosclerotic lesions in APOE*3-Leiden.CETP mice. Type I: early fatty streaks consist of ≤ 10 

foam cells in the intima. Type II: regular fatty streaks consist of >10 foam cells in the intima. Type III: mild 

plaques consist of foam cells covered with a fibrotic cap. Type IV: moderate plaques consist of foam 

cells, often together with necrosis and cholesterol crystals, and severe disorganization of the intima. 

Inflammatory cells and foam cells infiltrate the media and intimal smooth muscle cells disarrange. Type V: 

severe plaques consist of foam cells, a fibrotic cap, necrosis, cholesterol crystals and calcium deposits. 

The media and adjacent adventitia may contain accumulations of lymphocytes, macrophages, and 

macrophage foam cells. Severe disarrangement of the media with disruption of the elastic fibers. 

Type IIType I Type III Type IV Type V
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Outline of the thesis

This thesis describes a variety of studies on novel interventions and targets in lipid and 
lipoprotein metabolism and atherosclerosis, and on CV safety of anti-cancer drugs and a 
widely used industrial surfactant that persists in the environment. In all studies the 
APOE*3-Leiden(.CETP) mouse model was used as a well-established translational model 
for lipoprotein metabolism and atherosclerosis development.
	 In Chapter 2 we evaluated whether a vaccine against PCSK9 could induce an 
effective immune response against PCSK9, thereby reducing plasma cholesterol levels 
and atherosclerosis progression. However, as most patients at CVD risk are treated after 
development of atherosclerosis, therapies that regress pre-existent lesions are warranted. 
It is known that the magnitude of regression is correlated with the percentage of LDL-C 
reduction, and therefore, Chapter 3 evaluated if aggressive lipid-lowering interventions 

Table 4  �Effects of lipid-lowering interventions in APOE*3-Leiden.CETP mice  
and humans

Lipid lowering 
intervention

APOE*3-Leiden.CETP mice Humans References

Plasma
cholesterol

Atherosclerosis Plasma 
cholesterol

Cardiovascular 
risk

HmgCoA reductase inhibitors/ statins

Atorvastatin ↓ ↓ ↓ ↓ (12,76–79)

Simvastatin ↓ ↓ ↓ ↓ (12,73)

TG-lowering, HDL-raising drugs

Niacin ↓/↑*1 ↓ ↓/↑*1 ↔ (12,16,17,73,75,80)

Fibrates ↓/↑*1 ↓*2 ↓/↑*1 ↓ (12,75,81–85)

HDL-modulating drugs

Anacetrapib ↓/↑*1 ↓ ↓/↑*1 ↓ (74,87,88)

Torcetrapib ↓/↑*1 ↑ ↓/↑*1 ↑ (89,90)

PCSK9 inhibitors

Alirocumab ↓ ↓ ↓ ↓ (12,33,77)

Evolocumab ↓ ↓ ↓ ↓ (69,91)

Miscellaneous

Ezetimibe ↓ ↓ ↓ ↓ (12,78)

Bile acid 
sequestrants

↓*2 nd ↓ ↓ (12,86)

Evinacumab ↓ ↓ ↓ nd (26)

*1 HDL-C increased; *2 In APOE*3-Leiden mice, unpublished data in APOE*3-Leiden.CETP mice; nd, not determined.
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using double and triple treatment with simple or combined inhibition of PCSK9 
(alirocumab) and ANGPTL3 (evinacumab) on top of atorvastatin, could regress pre-existent 
lesions. Chapter 4 describes the CV off-target effects of three generations tyrosine kinase 
inhibitors (TKIs), imatinib, nilotinib and ponatinib, respectively, that are being used for the 
treatment of patients with chronic myeloid leukaemia (CML). In contrast to the safe profile 
of imatinib, CV side effects have been reported in patients receiving nilotinib and 
ponatinib. Also, modulations in plasma lipids occur when CML patients are treated with 
these TKIs, therefore we investigated the mechanism of these lipid modulations in 
Chapter 5. The dose effects of perfluorooctanoic acid (PFOA) on lipoprotein metabolism 
are presented in Chapter 6. PFOA has been widely used as an emulsifier in the manufacture of 
fluoropolymers, is extremely stable and therefore persists in the environment. In addition to 
abnormalities in plasma lipids, diabetes can add to the CVD risk and the development of 
novel anti-diabetic drugs has shifted from solely glucose-lowering agents towards agents 
that additionally reduce CVD risk. This shift requires preclinical translational models that 
combine hyperlipidaemia and hyperglycaemia, and we therefore developed a mouse 
model with both features, the APOE*3-Leiden.glucokinase+/- mouse. The characteristics  
of this novel model are described in Chapter 7. The next two chapters describe the 
evaluation of the cytokine OSM as possible target to reduce endothelial inflammation, 
important in the initiation of atherosclerosis. In Chapter 8 we evaluated the inflammatory 
response to OSM in different human vascular beds, and on markers of endothelial 
inflammation in plasma and the aortic root of APOE*3-Leiden.CETP mice. In Chapter 9, 
mice were prolonged exposed to OSM and atherosclerosis development was examined. 
In addition, we investigated possible associations between plasma OSM levels in CVD 
patients and survival from coronary heart disease. 
	 The results obtained in these studies and future perspectives are discussed in 
Chapter 10.
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Abstract

Objectives: Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a 
promising therapeutic target for the treatment of hypercholesterolaemia and atheroscle-
rosis. PCSK9 binds to the low density lipoprotein receptor and enhances its degradation, 
which leads to the reduced clearance of low-density lipoprotein-cholesterol (LDL-C) and 
a higher risk of atherosclerosis. In this study, the AT04A anti-PCSK9 vaccine was evaluated 
for its therapeutic potential in ameliorating or even preventing coronary heart disease in 
the atherogenic APOE*3-Leiden.CETP mouse model.
Methods and results: Control and AT04A vaccine-treated mice were fed a Western-type 
diet for 18 weeks. Antibody titres, plasma lipids, and inflammatory markers were monitored 
by ELISA, FPLC, and multiplexed immunoassay, respectively. The progression of athero-
sclerosis was evaluated by histological analysis of serial cross-sections from the aortic 
sinus. The AT04A vaccine induced high and persistent antibody levels against PCSK9, 
causing a significant reduction in plasma total cholesterol (-53%, p<0.001) and LDL-C 
compared with controls. Plasma inflammatory markers such as serum amyloid A (SAA), 
macrophage inflammatory protein-1β (MIP-1β/CCL4), macrophage-derived chemokine 
(MDC/CCL22), cytokine stem cell factor (SCF), and vascular endothelial growth factor A 
(VEGF-A) were significantly diminished in AT04A-treated mice. As a consequence, 
treatment with the AT04A vaccine resulted in a decrease in atherosclerotic lesion area 
(-64%, p=0.004) and aortic inflammation as well as in more lesion-free aortic segments 
(+119%, p=0.026), compared with control.
Conclusions: AT04A vaccine induces an effective immune response against PCSK9 in 
APOE*3-Leiden.CETP mice, leading to a significant reduction of plasma lipids, systemic 
and vascular inflammation, and atherosclerotic lesions in the aorta.
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Introduction

Elevated circulating low density lipoprotein cholesterol (LDL-C) is one of the major risk 
factors positively correlated with premature development of cardiovascular disease (CVD) 
(1). The main pathway of LDL-C clearance from the blood circulation involves the low- 
density lipoprotein receptor (LDLR) on hepatocytes (2,3). The serine protease proprotein 
convertase subtilisin/kexin type 9 (PCSK9), mainly synthesized in the liver, binds to the 
LDLR and enhances its degradation, thereby modulating cholesterol levels of circulating 
apoB-containing lipoproteins (i.e., very-low density liporptein (VLDL) and LDL) (4,5).  
By inhibiting PCSK9, LDLR expression and its activity are increased, leading to plasma 
VLDL- and LDL-cholesterol lowering.
	 The current hypothesis relating to the role of cholesterol in cardiovascular disease 
(CVD) is that the effect of lowering LDL-C on CVD is independent of the means by which 
LDL-C is lowered (6). The most commonly-used drugs to treat hypercholesterolaemia are 
3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors, known as statins. Statins in general 
have been shown to reduce LDL-C by 30–60%, providing an estimated 25–30% reduction 
in CVD (7). However, many patients are unable to achieve their optimal lipid levels despite 
intensive statin therapy (8,9), and high doses of statins may increase the incidence and 
severity of multiple adverse events such as myopathy and hepatotoxicity (10). Moreover, 
statins do not only induce a beneficial increase in LDLR, but also increase PCSK9, which 
leads to LDLR degradation, thus causing a negative feedback response that attenuates the 
statins’ lipid effects (11).
	 The most advanced alternative approach for LDL-C lowering is the inhibition of PCSK9 
action by monoclonal antibodies (mAbs). The novel anti-PCSK9 antibodies alirocumab 
and evolocumab, which were recently granted FDA approval, are safe and achieved a 
50–70% reduction in LDL-C when used either as monotherapy or in combination with a 
statin (12,13). They are approved as second line treatment in patients at risk who are unable 
to reach the LDL-C goal despite maximally tolerated statin therapy or for patients who are 
statin-intolerant (14,15). Preclinical efficacy studies with the PCSK9 mAb alirocumab were 
performed in the APOE*3-Leiden.CETP mouse model. These double-transgenic mice 
represent a valuable model for the preclinical evaluation of interventions on atherosclero-
sis development, because of its humanized lipoprotein metabolism. The diet-induced 
development of atherosclerosis in these mice has a pro-inflammatory plaque phenotype, 
and shows responsiveness to all lipid-modulating interventions that are being used in the 
clinic (16–18). In this model, alirocumab was able to decrease plasma lipids and atheroscle-
rosis development, and in combination with atorvastatin the beneficial effects of PCSK9 
mAb treatment were enhanced (18,19). However, mAbs show relatively short in vivo 
half-lives, thus the long-term efficacy of mAb therapy is accompanied by frequent 
application and high costs. We developed an active immunization against the body’s own 
PCSK9 for a widely-applicable and more cost-effective long-term LDL-C cholesterol 
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management (20). This so-called AT04A vaccine was tested for its efficacy in APOE*3-Leiden.
CETP transgenic mice. AT04A was able to induce a high immune response against PCSK9 
without any side-effects; leading to a significant reduction of plasma lipids over the whole 
intervention period. Consequently, a reduction of systemic and vascular inflammation 
and atherosclerotic lesions in the aorta at the end of the intervention period was observed.

Materials and methods

Animals
Female APOE*3-Leiden.CETP transgenic mice on a C57BL/6 background (7-9 weeks of 
age) received a Western-type diet (WTD) containing 15% cacao butter and 0.1% (w/w) 
cholesterol (AB Diets, Woerden, The Netherlands) for a time period of 3 weeks. Thereafter, 
the mice were matched by body weight, total plasma cholesterol (TC), and triglycerides 
(TG), and divided into control (n=15) and vaccine-treated (n=15) groups. The number of 
animals per group was calculated using a probability of 0.05. Based on our experience 
from previous studies, we expected to have a variance of 15% (sigma 40%) in plasma lipids 
and a minimal effect of treatment of 30%, resulting in 15 animals per group. Upon starting 
the immunization, the mice were fed a chow diet (ssniff Spezialdiäten GmbH, Soest, 
Germany) for 4 weeks, followed by WTD for 18 weeks, in order to induce atherosclerotic 
plaques. At the end of the experiment all animals were euthanized by CO2 inhalation, and 
blood was collected via heart puncture. Hearts and livers were isolated to determine liver 
weight, atherosclerotic development, and lesion severity. Animal experiments were 
approved by the Animal Experiment Committee of The Netherlands Organization of 
Applied Scientific Research TNO under registration number 3655.

Vaccines
The proprietary AFFITOME® technology (21) was used to develop short immunogenic 
peptides, which mimic a N-terminal epitope of PCSK9 that is involved in the interaction 
with LDLR. The peptides were synthesized by Fmoc solid phase peptide synthesis and 
HPLC-purified (EMC microcollections GmbH, Germany). These peptides contain an 
additional C-terminal cysteine residue and were activated with the crosslinker N-γ-ma-
leimidobutyryl-oxysuccinimide ester (GMBS, Pierce, ThermoFisher Scientific) according to 
the manufacturer’s protocol, and covalently linked to the carrier protein Keyhole Limpet 
Haemocyanin (KLH, Biosyn GmbH). The KLH-conjugated peptides were adsorbed to 0.2% 
Alhydrogel® (Brenntag Biosector, Denmark). Scrambled peptide conjugated to KLH was 
used as a negative control vaccine. Vaccines were stored at 4°C. Prior to injection, the 
vaccines were brought to room temperature (RT) and carefully mixed.
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Treatment and immunization scheme
Mice were immunized 5 times (subcutaneous, 500 µl in both the right and left flanks) 
either with AT04A or a control vaccine, in bi-weekly intervals. During the first two 
immunizations the mice were fed a chow diet (t=-4 to 0 weeks). The time point at which 
the food was switched to WTD 0.1% (w/w) cholesterol in order to induce atherosclerosis 
development refers to week 0. Three more immunizations were then performed at t=0, 2 
and 4 weeks (Figure 1). Blood was withdrawn every four weeks after a 4 hour fasting 
period at the time points t=-4, 0, 4, 8, 12, and 16 weeks, and the final bleeding was 
performed at week 18 (Figure 1). Plasma samples were prepared and used for titre 
analysis, total cholesterol (t=-4, 0, 4, 8, 12 and 18 weeks) and lipoprotein profile analyses 
(t=-4, 0, 4, 8 and 18 weeks), which were determined from group pooled plasma samples.

ELISA analyses
To determine the titre of AT04A vaccine-induced antibodies, plasma samples were 
collected and analysed by ELISA. Briefly, 1 μM of the antigenic peptides coupled to BSA 
were coated in 0.1 M NaHCO3 (pH 9.2–9.4) to a 96-well Nunc-MaxiSorp plate. In order to 
test the reactivity against the target protein, a recombinant expressed human PCSK9 
(“huPCSK9-V5-His”, AFFiRiS AG) was coated in 1× PBS. Free binding sites were blocked by 
the incubation with blocking buffer (1× PBS, 1% BSA) for 1 h at 37°C. Diluted plasma (1:400 
and 1:100 in 1× PBS/0.1% BSA/0.1% Tween-20 for peptide and protein ELISA, respectively) 
were added, serially diluted 1:2, and incubated for 1 hour at 37°C. Each ELISA plate 
contained a standard antibody as internal control. For the detection, biotinylated anti-mu 
IgG (H + L) (Southern Biotech.; 1:2000) in 1× PBS/0.1% BSA/0.1% Tween-20 was applied and 
incubated for 1 h at 37°C. As a next step, horseradish peroxidase coupled to streptavidin 
(Roche) was added (30 min, 37°C) followed by the addition of the substrate 2,2’-Azinobis 
[3-ethylbenzothiazoline-6-sulfonic acid]-diammonium salt (ABTS) (Bio-Chemica, AppliChem) 
(30 min, RT). The optical density (OD) at 405 nm was measured with a microwell plate 

Figure 1  Study design. Mice were immunised 5 times either with AT04A or a control vaccine. 

Four weeks after prime immunization (t=0 weeks) normal chow was switched to WTD 0.1% 

(w/w) cholesterol. After 18 weeks mice were sacrificed to assess atherosclerosis development. 

Abbreviations: WTD, Western type diet.
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reader (Sunrise, Tecan, Switzerland) and the titres were defined as the dilution factor 
referring to 50% of the maximal optical density (ODmax/2). The mean titres ± SEM of all 
animals per group are presented. 

PCSK9 protein level in circulation
The plasma muPCSK9 concentration was determined by CircuLex muPCSK9 ELISA 
(CircuLex, Cy-8078, MBL), according to the manufacturer’s protocol.

Plasma lipids and lipoprotein analysis 
Plasma TC and TG were determined by the “Cholesterol CHOD-PAP” and “Triglycerides 
GPO-PAP” kit, respectively (Roche/Hitachi). Lipoprotein profiles for TC were measured 
after lipoprotein separation by fast protein liquid chromatography (FPLC) (16).

SAA measurements
Plasma SAA levels were measured at t=4, 8, 12, and 16 weeks after the onset of WTD, 0.1% 
cholesterol and 7 weeks before, as a reference value on normal chow diet. The ELISA kit of 
Tridelta Development Limited was used and analyses were performed according to 
manufacturer’s protocol. 

Immunological analyses
Myriad RBM’s mouse inflammation multi analyte profile (Mouse Inflammation MAP® v.1.0) 
was used for quantitative analysis of multiple inflammatory analytes and pathways 
including cytokines, chemokines, and growth factors.

Histological assessment of atherosclerosis
Atherosclerotic lesion area and severity were assessed in the aortic root area, as reported 
previously (22). Briefly, the aortic root was identified by the appearance of aortic valve 
leaflets, and serial cross-sections of the entire aortic root area (5 µm thick with intervals of 
50 µm) were mounted on 3-aminopropyl triethoxysilane-coated slides and stained with 
haematoxylin-phloxine-saffron (HPS). For each mouse, the lesion area was measured in 4 
subsequent sections. Each section consisted of 3 segments (separated by the valves). For 
determination of atherosclerotic lesion size and severity, the lesions were classified into 
five categories according to the American Heart Association (AHA) criteria (23): type I (early 
fatty streak), type II (regular fatty streak), type III (mild plaque), type IV (moderate plaque), 
and type V (severe plaque). Images were taken with an Olympus BX 51 microscope, and 
areas were measured with Olympus analySIS image processing software cell^D. The total 
lesion area and number of lesions were calculated per cross-section. Lesion severity was 
calculated as relative amount of type I-V lesions in which the lesion-free segments are 
included. From this, the relative amounts of lesion-free segments and diseased segments 
were calculated, and the relative amount of diseased segments was further subdivided 
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into type I–V lesions, where types I-III refer to mild, and types IV-V to severe lesions. Lesion 
composition of type IV and V lesions was assessed after double immunostaining with 
anti-α smooth muscle actin (1:400; PROGEN Biotechnik GmbH, Germany) for α smooth 
muscle cells (αSMC), and anti-mouse MAC-3 (1:200; BD Pharmingen, the Netherlands) for 
macrophages. Sirius red staining was performed to assess collagen content. The necrotic 
area and cholesterol clefts were measured in the HPS-stained slides. Lesion stability index, 
as the ratio of collagen and αSMC area (i.e. stabilization factors) to macrophage and 
necrotic area (i.e. destabilisation factors) was calculated as described previously (18,22). In 
each segment used for lesion quantification, intracellular adhesion molecule 1 (ICAM-1) 
expression, NLR family pyrin domain containing 3 (NLRP3) expression, and the number of 
monocytes adhering to the endothelium were counted after immunostaining with 
mouse monoclonal antibody to ICAM-1 (1:400; Santa Cruz Biotechnology, Dallas, USA), 
rabbit polyclonal antibody to NLRP3 (1:400; Abcam, Cambridge, UK), and AIA 31240 
antibody (1:500; Accurate Chemical and Scientific, New York, USA) respectively (24).

Statistical and correlation analysis
All values were evaluated for homoscedasticity and normality assumption using both 
Kolmogorov–Smirnov and Shapiro–Wilk normality tests. For the comparison of two 
groups, the unpaired two-tailed Student’s t-test was used, followed by the Mann–Whitney 
correction for non-parametric data as indicated in the respective figure legend. A 
Spearman’s rank-order correlation was used to determine the relation between two 
parameters. The software used for statistical analyses were IBM SPSS Statistics version 18. 
All data are presented as mean ± SD unless stated otherwise. The p-values ≤ 0.05 was 
considered statistically significant.

Results

AT04A induces a strong and persistent immune response  
and decreases plasma PCSK9 levels
APOE*3-Leiden.CETP mice were used as a model for atherosclerosis with a pro-inflammatory 
plaque phenotype that can be induced upon a high fat and cholesterol-containing diet. 
A peptide (AFFITOPE®) which was previously designed to mimic the N-terminal epitope of 
the mature human and homolog mouse PCSK9 protein (153aa-692aa) was formulated into 
the AT04A vaccine (20). The mice were immunized with AT04A and control vaccine five 
times in bi-weekly intervals, and an 18-week WTD was started 4 weeks after prime 
immunization, which refers to time point t=0 weeks (Figure 1 and 2). Titre analyses over 
time revealed that AT04A was able to induce a specific and long-lasting immune response 
against PCSK9, which reached a maximum mean titre of 1/12 243 (ODmax/2) 12 weeks after 
prime immunization, which corresponds to t=8 weeks of WTD. The immune response to 
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Figure 2  AT04A immunization induces a high and long-lasting immune response, and decreases 

plasma muPCSK9 levels. Antibody titres were assessed at different time points throughout the study. 

Crosses indicate the time points of the bi-weekly immunizations of control and AT04A vaccine (A). 

The muPCSK9 plasma concentration was determined at different time points throughout the study 

and compared to control (B–C). To compare AT04A and control treated group, the unpaired two-

tailed Student’s t-test was used, followed by the Mann–Whitney correction for non-parametric data.  

Data are presented as group means ± SD (n=15).*p<0.05, ***p<0.001.
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PCSK9 highly varies between individual mice and no statistically significant differences in 
titres of t=4 to 18 weeks were found (Figure 2A). As expected, control immunized mice 
did not show any immune response against PCSK9 (​Figure 2A). As evidence for a direct 
interaction between the induced anti-PCSK9 antibodies and the target protein, the 
plasma concentration of muPCSK9 in AT04A-treated vs. control immunized mice was 
determined over time (Figure 2B and C). At the immunization start (t=−4 weeks) the 
PCSK9 level in AT04A and control treated group was comparable. However, in t=4, 8, 12 
and 18 AT04A vaccine treated mice showed a highly significant decrease in PCSK9 
concentration of 57, 59, 49, and 24%, respectively (p<0.001, p<0.001, p=0.001, and p=0.029, 
respectively) (Figure 2B) demonstrating a consistent and long-lasting effectiveness of the 
AT04A vaccine (Figure 2C). Due to unknown reasons, the plasma PCSK9 level of control 
treated mice dropped in t=18 weeks, however, the difference between AT04A and control 
treated mice remained significant (Figure 2B).

AT04A decreases plasma TC and non-HDL-C levels  
in APOE*3-Leiden.CETP mice
Four weeks after the cholesterol-containing WTD was initiated, control immunized 
APOE*3-Leiden.CETP mice showed a strong increase of plasma TC level from 3.4 mmol/L 
(t=0 weeks) to 15.5 mmol/L (t=4 weeks), which remained elevated until t=18 weeks 
(12.1 mmol/L) (Figure 3A). In contrast, in the AT04A immunized mice a sustained reduction 
of plasma TC from t=0 weeks (2.8 mmol/L, p=0.002) to t=18 weeks (7.8 mmol/L, p=0.002) 
was observed (Figure 3A). Thus, cholesterol exposure over the whole time period of 
atherosclerosis inducing WTD (t=0 to 18 weeks) was decreased by 53% (p<0.001) in AT04A 
vs. control-treated mice (Figure 3B). The TC lipoprotein profile of pooled plasmas per 
group was determined by FPLC (Figure ​3C–F). Plasma levels of HDL-C remained unaffected 
by AT04A vaccination, however the levels of non-HDL-C (VLDL and LDL) were clearly 
reduced (Figure ​3F–H), indicating that the anti-PCSK9 vaccine may be a powerful 
therapeutic approach for long-term non-HDL-C/LDL-C management. A strong positive 
correlation between TC and plasma PCSK9 concentration was found (R2=0.75; p<0.001) 
suggesting a specific and effective targeting of PCSK9 by AT04A vaccine.

AT04A reduces number, size, and severity of atherosclerotic lesions  
in the aorta
In order to assess the effect of AT04A on atherosclerotic development upon 18 weeks of 
WTD, the aortic root was isolated and the lesions as well as the lesion severity were 
determined. AT04A vaccine-treated mice showed a significantly reduced lesion area 
(−64%, p=0.004) (Figure ​4A) and number of lesions per cross-section (−35%, p=0.037) 
(Figure ​4B), compared with controls. Moreover, in AT04A-vaccinated mice a significant 
higher percentage of lesion-free area per section (+119%, p=0.026) was detected (Figure ​4C). 
The lesion severity was categorized according to the American Heart Association guidelines 
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(23). Although the relative amount of mild lesions (type I–III) was similarly distributed 
between AT04A and control immunized mice, the more severe lesions (type IV–V) were 
decreased in AT04A treated mice (−64%, p=0.051) (Figure ​4C). Representative images of 
the differently categorized atherosclerotic lesions in the aortic root of AT04A and control 
immunized mice are depicted in Figure ​4D. A strong positive correlation between the 
atherosclerotic lesion area and plasma TC as well as plasma PCSK9 levels was observed 
(R2=0.75, p<0.001 and R2=0.6, p=0.001, respectively).

Figure 4  AT04A immunization decreases lesion size and severity. After 18 weeks of treatment, 

lesion area (A), number of lesions (B), and lesion severity (C) were determined per cross-section in 

the aortic sinus. Due to a technical error one mouse of the control group was excluded from analysis. 

Lesion severity was classified as mild (type I–III) or severe (type IV–V). Representative images of HPS-

stained type III and V lesions in a cross-section (D). A Mann–Whitney U test was used for statistical 

analysis. Data are presented as group means ± SD (n=14–15). *p<0.05, **p<0.01. Abbreviations: HPS, 

haematoxylin-phloxine-saffron.
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AT04A immunization reduces necrotic core content
The effects of AT04A vaccination on the plaque composition of severe lesions (type IV–V) 
were assessed by immunohistochemistry. The necrotic core areas including cholesterol 
clefts and lesion macrophages were quantified as pro-inflammatory factors, and αSMCs  
in the fibrotic cap and collagen area as fortifying factors (Figure ​5A). Representative 
images are shown in Figure ​5B. All data are expressed as percentages of total plaque 
areas. In AT04A-treated mice the necrotic core area was 1.9 vs. 8.1% in the control-treated 
group, representing a reduction of 77% (Figure ​5A) (p=0.001). Macrophage, αSMCs, and 
collagen content were not significantly altered by AT04A treatment. Despite the decrease 
in necrotic core content, the plaque stability index was not changed, and was 2.3 in 
control and 3.0 in AT04A treated mice.

AT04A reduces vascular inflammation
Since atherosclerosis is not only a lipid-driven disease, but also a chronic low-grade 
inflammatory disease of the vessel wall, the number of monocytes adhering to the 
activated endothelium, the expression of the adhesion molecule ICAM-1 in the 
endothelium as well as the expression of the caspase-1-activating inflammasome protein 
NLRP3 in macrophages was determined in the diseased aortic root area. In the control 
group 2.3 monocytes per cross-section were counted, compared with 1.4 in the 
AT04A-treated group (−38%, p=0.014) (Figure ​6A). The reduction in monocyte adherence 
was reinforced by a similar significant decrease in ICAM-1 expression in endothelial cells 
upon AT04A vaccination (−37%, p=0.018) (Figure ​6B and C). Since NLRP3 is predominantly 
expressed by myeloid cells, we determined the amount of NLRP3 expression in the 
macrophage area and a decrease by 68% in AT04A compared with control treated mice 
was observed (0.3 ± 0.2 vs. 0.9 ± 0.8, p=0.06) (Figure ​6D and E). Together, these findings 
suggest that AT04A immunization results in a reduction of activated endothelial cells and 
pro-inflammatory macrophages.

AT04A decreases inflammatory biomarkers
In order to assess system inflammation upon high-fat diet-induced atherosclerosis in 
APOE*3-Leiden.CETP mice, a panel of plasma inflammatory markers was analysed. The 
liver-derived inflammation marker SAA, reported to be elevated in diet-induced athero-
sclerosis in mice (25), showed a significant reduction in anti-PCSK9 AT04A treated mice at 
t=4 weeks (−21%; p=0.007) and t=8 weeks (−28%; p<0.001) relative to the negative control, 
but was not significantly affected later in the study (Figure 7). Myriad RBM’s mouse 
inflammation multi-analyte profile represents a comprehensive and quantitative analysis 
of multiple inflammatory biomarkers and pathways including cytokines, chemokines, and 
growth factors. In plasma obtained 18 weeks after the start of WTD, 4 markers, namely 
macrophage inflammatory protein-1β (MIP-1β/CCL4), macrophage-derived chemokine 
(MDC/CCL22), the cytokine stem cell factor (SCF), and vascular endothelial growth factor 
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Figure 6  AT04A immunization reduces the number of monocytes adhering to the endothelium, 

ICAM-1 expression and NLRP3 expression in macrophages. (A) The number of monocytes was 

counted per cross-section after staining with AIA 31240 and (B) endothelial ICAM-1 was determined 

as percentage of the endothelial surface in the cross-sections and (C-D) a representative image is 

shown. (E) NLRP3 expression was determined in the severe (type IV–V) lesions after immune staining 

with anti-NLRP3 antibodies and the amount of NLRP3 expression in the macrophage area was 

calculated. (F) Photographs of atherosclerotic plaques stained with αSMC (brown), macrophages 

(green) and NLRP3 (brown). Data are presented as means ± SD (n=14–15 in A–B, n=7–10 in D). *p<0.05. 
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A (VEGF-A), showed a significant reduction in AT04A compared with control-immunized 
mice whereas the decreases in SCF was most pronounced (Table 1). Furthermore, the 
macrophage colony stimulating factor 1 (M-CSF-1) and monocyte chemotactic protein 5 
(MCP-5/CCL12) tended to be decreased (Table 1). A Spearman’s test showed a strong, 
positive correlation between TC and SCF (R2=0.65; p<0.001) and VEGF-A (R2=0.58; p=0.001), 
but not for TC and MIP-1β/CCL4 (R2=0.02; p=0.93) and MDC/CCL22 (R2=0.26; p=0.18).

Safety aspects
No effects on viability, body weight, or food intake were found in the AT04A-compared 
with control-immunized mice (Table 2) Liver weight, which is considered as a sensitive 
indicator for toxicity, was not affected by AT04A vaccine-treated mice (Table 2). Moreover, 
plasma pooled per group showed no apparent differences in AST and ALT values as 
markers of hepatocellular damage (Table 2) Other safety aspects such as absence of 
target-specific T-cell response and absence of cross-reactivity of induced antibodies with 
other endogenous proteins have been previously reported by Galabova et al (20).

Figure 7  The liver-derived inflammation marker SAA was measured over time. SAA concentrations 

were assessed at t=-7, 4, 8, 12 and 16 weeks after the initiation of WTD, 0.1% cholesterol. A Mann-

Whitney U-test was used for statistical analysis. Data are presented as group means ± SD (n=15). 

**p<0.01, ***p<0.001. Abbreviations: SAA serum A amyloid; WTD, Western type diet.
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Table 1  �Quantitative analyses of multiple inflammatory biomarkers using  
the Myriad RBM mouse inflammation multi-analyte profile

Marker*1 Neg. control AT04A AT04A vs control

Mean (n=15) SD Mean (n=15) SD p-value

SCF (pg/mL) 1097.0 235.1 760.6 196.9 0.0002

VEGF-A (pg/mL) 549.1 66.5 246.8 75.5 0,0304

MIP-1 beta (pg/mL) 229.6 60.6 174.0 70.9 0.0319

MDC (pg/mL) 395.5 132.9 308.5 56.5 0.0397

M-CSF-1 (ng/mL) 9.3 1.6 8.2 1.0 0.0533

MCP-5 (pg/mL) 19.9 5.3 16.4 5.1 0.0552

IP-10 (ng/mL) 105.9 22.7 92.0 26.7 0.0848

MIP-3 beta (pg/mL) 3.6 1.3 3.0 0.8 0.1190

TIMP-1 Mouse (ng/mL) 1.7 0.8 1.4 0.3 0.2101

IL-18 (ng/mL) 34.5 12.4 35.1 7.9 0.2576

EGF Mouse (pg/mL) 189.7 30.1 179.7 17.2 0.3605

MCP-1 (pg/mL) 117.7 40.3 112.4 32.3 0.4427

MIP-1 alpha (pg/mL) 7.5 0.9 7.7 2.7 0.5066

MCP-3 (pg/mL) 215.7 83.7 207.2 37.1 0.6186

Thrombopoietin (ng/mL) 48.2 6.8 43.4 12.2 0,7400

IL-1 beta (ng/mL) 12.7 2.4 12.0 2.1 0.7996

Eotaxin (pg/mL) 434.0 90.8 450.7 138.0 0.8034

*1 the inflammatory markers FGF-9, FGF-basic, GM-CSF, KC/GRO, INF-gamma, IL-1 alpha, IL-2, IL-3, IL-4, 
IL-5, IL-6, IL-7, IL-10, IL-11, IL-12, IL-17A, LIF, MIP-2, OSM, TNF-alpha were measured, but were either below 
the limit of detection or the limit of quantification.

Table 2  �Safety aspects of PCSK9 immunisation

Body weight Food intake Liver weight ALT AST

gram gram/mouse/day gram U/L U/L

Baseline 22.5 ± 1.2 3.4 ± 0.1 NA 80 141

Control 25.2 ± 2.7 2.7 ± 0.2 1.5 ± 0.4 69 251

AT04A 25.6 ± 2.8 2.5 ± 0.1 1.4 ± 0.3 74 289

No differences in body weight, food intake (per cage), liver weight, plasma ALT (pooled per group), 
and plasma AST (pooled per group) between the control and AT04A group at sacrifice (t=18 weeks). 
Data are presented as group means ± SD (n=14-15). Abbreviations: alanine transaminase (ALT), 
aspartate transaminase (AST).
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Discussion

The present study shows that active immunization against PCSK9 with the so-called 
AT04A peptide-based vaccine elicits antibodies that effectively bind and remove PCSK9  
from the circulation and reduce circulating TC, (V)LDL-C, TG, and biomarkers of inflammation, 
which is accompanied by reduction of vascular inflammation and atherosclerotic lesions 
and plaques in the aortas of a mouse model of atherosclerosis.
	 PCSK9 plays a fundamental role in LDL metabolism through the binding and degradation 
of LDLR. With respect to LDL-C as one of the major risk factors positively correlated with 
premature development of CVD (1), PCSK9 inhibition is supposed to reduce atherosclerotic 
events. Recently, the human PCSK9 mAbs evolocumab and alirocumab reached FDA 
approval and were recommended in the 2016 ESC/EAS Guidelines (14) as second line 
treatment for high LDL-C for adults whose cholesterol is not adequately controlled by diet 
or statin treatment. However, whereas both mAbs reduced the incidence of cardiovascular 
events in a post-hoc exploratory analysis, trial results whether anti-PCSK9 mAb therapy 
actually reduces atherosclerotic burden and CVD events is still under investigation (13).
	 The main limitation for mAb therapies with broader applications certainly is that their 
use for chronic disorders is cost-prohibitive. Moreover, it has been reported that a substantial 
proportion of patients undergoing a sustained treatment with mAbs lose responsiveness 
over time due to the induction of anti-drug antibodies (26). Thus, an appealing new 
alternative to mAb-based therapies is the active immunization against self-antigens 
involved in chronical disorders (27,28).
	 Previously, we showed that our AFFITOPE®-based anti-PCSK9 active immunization 
approach is able to induce a strong humoral immune response against PCSK9, which 
persisted for up to one year in vaccinated mice (20). Furthermore, TC concentration was 
reduced by up to 30% and LDL-C up to 50% in anti-PCSK9 immunized compared with 
control mice. Immunization against PCSK9 has also been tested by others using different 
approaches (29). In the first approach, human recombinant PCSK9, along with a DNA 
oligonucleotide as an adjuvant, was tested and found to induce an approximately 40% 
reduction of LDL-C in mice (30). Crossey et al.(29) designed a human PCSK9 vaccine where 
PCSK9 peptides are displayed at high valency on the surface of a bacteriophage virus-like 
particle, resulting in a ~55% reduction of TC relative to controls.
	 However, the present study is the first to show that active immunization against 
PCSK9 does not only reduce TC and (V)LDL-C, but also has an impact on systemic and 
vascular inflammation and atherosclerotic development in a mouse model of diet-induced 
atherosclerosis. Vaccination with AT04A, which led to a reduction of TC exposure by 53%, 
had a strong impact on atherosclerotic development. The AT04A vaccine was able to 
induce a specific immune response against PCSK9. In contrast to previously reported 
studies where an anti-PCSK9 peptide vaccine (20) as well as monoclonal anti-PCSK9 
antibodies (19) rather stabilized the target protein and increased the murine plasma PCSK9 
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level, AT04A-treated APOE*3-Leiden.CETP mice showed a reduction of the target protein 
exposure during the study by 48%. Already after the second immunization with AT04A 
vaccine the induced anti-PCSK9 antibody concentration was sufficient to significantly 
decrease TC in APOE*3-Leiden.CETP mice on normal chow (t=0 weeks). Four weeks after 
the onset of WTD the anti-PCSK9 titre in AT04A-vaccinated mice rose to approximately 
1/4000, corresponding to an antibody concentration of ~200 µg/mL, and resulted in a TC 
decrease of 63% compared with control (p<0.001). Although the mean anti-PCSK9 titre 
reached its maximum in week 8, no additional TC lowering was found at this timepoint, 
indicating a plateau effect after 4 weeks with maximally retained efficacy during the study. 
Due to this sustained TC reduction, anti-PCSK9 vaccine-treated mice showed significantly 
less lesion areas (−64%, p=0.004) and severity (−64%, p=0.051) in the aortic root compared 
with control. Consistent with our data, Kühnast et al. (18) reported a dose-dependent 
decrease in atherosclerosis development in APOE*3-Leiden.CETP mice treated with the 
human PCSK9 monoclonal antibody alirocumab. Notably, the AT04A vaccination was 
applied as a stand-alone therapy and thus, future evaluations are required to test whether 
these effects are still ensured on a statin background treatment.
	 For many years, atherosclerosis was considered to be mainly a lipid-driven disease 
caused by the continuous accumulation of cholesterol in the arterial intima. However, it is 
increasingly recognized that atherosclerosis is predominately a chronic low-grade 
inflammatory disease of the vessel wall with an interplay of humoral, cellular, and locally 
produced pro-inflammatory factors (31,32). One of the initial stages of atherosclerotic 
disease is endothelial cell activation and the recruitment of inflammatory cells to the 
vessel wall (31,32). Multi-analyte profiling of inflammatory markers showed a reduction of 
several cytokines with chemotactic activity for monocytes by AT04A vaccine (Table 1) 
which is in line with the reduced expression of endothelial ICAM-1 and adherence of 
monocytes to the vessel wall. The decreased levels of M-CSF-1 and VEGF-A, which activate 
endothelial cells and stimulate monocyte/macrophage migration, may have additionally 
contributed to the reduction in lesion number and size.
	 Interestingly, despite the reduced monocyte adherence, the macrophage content 
was not affected by AT04A immunization. A potential explanation is that the amount of 
macrophages is similar but that the macrophages in the control group are more activated 
and overloaded with cholesterol which may result in damage and necrosis. The necrotic 
core is a major characteristic of advanced atherosclerotic lesions and plays an important 
role in both their progression to a hazardous state and their vulnerability (33). To test this 
hypothesis, we measured the necrotic core and NLRP3 as marker of macrophage 
activation. Morphological analysis indicated that vaccination with AT04A strongly 
decreased the necrotic core content, including cholesterol clefts, by 77%. Overload of 
lipid material in the vessel wall leads to apoptosis and necrosis of foam cells (34), and to 
deposition of cholesterol crystals (35,36), which stimulate caspase-1-activating NLRP3 
inflammasomes and aggravate the inflammatory response (35,37). Indeed NLRP3 
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expression in the macrophage area was three-fold increased in the control mice as 
compared to the AT04-treated mice, which substantiates this hypothesis. Collectively, 
these data indicate that immunization with AT04A diminishes the formation of a necrotic 
core and macrophage inflammation, which may have contributed to the reduced 
inflammatory response in the vessel wall and attenuation of atherosclerotic development.
	 Little is known about the pro-inflammatory role of PCSK9. Inflammatory cytokines were 
measured in the plasma from septic shock patients carrying either a PCSK9 LOF allele or  
a PCSK9 GOF allele. Significantly lower plasma cytokine concentrations in patients carrying  
a LOF allele were found (38). These results mirrored the data obtained from PCSK9 knockout 
mice, which displayed decreases in inflammatory cytokine production in response to LPS (38). 
It was also reported that PCSK9 of macrophage origin directly promotes lesion inflammation 
in mice, independently of systemic lipid changes. PCSK9 accumulated in the artery wall 
induced infiltration of pro-inflammatory Ly6CHigh monocytes into the atherosclerotic lesion, 
indicating a local effect of human PCSK9 on atherosclerotic lesion composition (39). 
Thus, lowering of plasma PCSK9 levels per se may also have direct local effects on vascular 
inflammation and atherosclerotic plaque formation. Unfortunately, we were not able to 
examine the local effects of PCSK9 in aortic plaques due to known technical limitations (40).
	 The current challenge for the prevention of atherosclerotic events is certainly the 
side-effect free lowering of lifetime LDL-C exposure, thus preventing chronic low-grade 
inflammatory disease of the vessel walls. The association between the change in relative 
risk for CHD and the absolute change in LDL-C levels over lifetime due to genetic variation 
has recently been emphasized (41).
	 The AT04A anti-PCSK9 vaccine would be an ideal therapeutic agent to fulfill these 
requirements for long-term LDL-C management, because of its sustained efficacy and 
cost-effective application, accompanied by anti-inflammatory effects. AT04A is currently 
being tested in a phase I clinical trial.
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Abstract

Objectives: Regression of atherosclerotic plaque is modest with the current standard 
therapy, therefore it is beneficial to evaluate new therapeutic options. We investigated the 
effect of aggressive lipid-lowering interventions using double and triple treatment with 
simple or combined inhibition of PCSK9 and ANGPTL3 using the monoclonal antibodies 
alirocumab and evinacumab, respectively, on top of atorvastatin on regression of pre-existent 
atherosclerosis in APOE*3-Leiden.CETP mice. 
Methods and results: Mice were fed a Western-type diet (WTD) for 13 weeks and 
thereafter matched into a baseline group (sacrificed at t=13), and 5 groups that continued 
to receive WTD alone or with treatment for 25 weeks: regression control, atorvastatin, 
atorvastatin and alirocumab, atorvastatin and evinacumab or atorvastatin, alirocumab and 
evinacumab. All interventions decreased plasma total cholesterol (-37% with atorvastatin 
to -80% with triple treatment, all p<0.001) by reduction of non-high-density lipoprotein 
cholesterol (non-HDL-C). Triple treatment decreased non-HDL-C levels at end-point from 
10.7 mmol/L in control to 1.0 mmol/L (-91%, p<0.001). Mono-treatment with atorvastatin 
reduced the progression of atherosclerosis (-28%, p<0.001 vs control), double treatments 
completely blocked further progression and improved plaque stability, whereas triple 
treatment regressed lesion size in the thoracic aorta (-50%, p<0.05 vs baseline) and in the 
aortic root (-36%, p<0.05 vs baseline), diminished macrophage accumulation through 
reduced proliferation and further improved plaque stability.
Conclusions: This preclinical study using APOE*3-Leiden.CETP mice demonstrates that 
high-intensive cholesterol-lowering triple treatment with atorvastatin, alirocumab and 
evinacumab targeting all apoB-containing lipoproteins is a promising approach for regression 
of pre-existent atherosclerosis along with improvement in plaque phenotype.
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Introduction

Atherosclerosis is the main cause of cardiovascular disease (CVD), and the annual number 
of deaths from CVD is predicted to rise from 17.5 million in 2012 to 22.2 million by 2030 (1). 
In addition to lifestyle changes (2), lipid-lowering has proven to be highly effective in 
reducing CVD, as every 1 mmol/L reduction in low-density-lipoprotein-cholesterol (LDL-C) 
is associated with a 23% CVD risk reduction (3). Since most patients at CVD risk are treated 
after development of atherosclerosis, therapies that regress pre-existent lesions are 
warranted. 
	 Currently, statins are the ‘golden standard’ to lower LDL-C and to reduce CVD risk, but 
monotherapy with statins remains suboptimal as the achieved regression is modest, 
reflected by the small reductions in plaque volume (0.3-1.2% per year) (4,5). Furthermore, 
plaque regression is only seen in those patients with LDL-C reductions of >40% (6,7), or at 
plasma LDL-C levels below 78 mg/dL (2.0 mmol/L) (5,7), while a subgroup of patients still 
does not reach their LDL-C goals. Notably, the magnitude of regression is correlated with 
the percentage of LDL-C reduction (5,6), indicating the potential for further lipid-lowering. 
In this context, dual lipid-lowering therapies using ezetimibe or inhibition of proprotein 
convertase subtilisin/kexin type 9 (PCSK9) on top of a statin further reduce plaque volume 
relative to monotherapy with statins (5). While currently available therapies aim mostly to 
decrease plasma LDL-C, remnant cholesterol and triglyceride (TG) levels are considered  
to be an important residual risk factor for CVD as well (8,9). Actually, the clinical benefit of 
lowering TG and LDL-C may be proportional to the absolute change in apoB, implicating 
that all apoB-containing lipoproteins have approximately the same effect on the risk of 
CVD per particle (10). Therefore, novel high-intensive lipid-lowering or combination 
therapies targeting all apoB-containing lipoproteins may provide additional benefit to 
regress atherosclerosis and further reduce clinical events. 
	 Since the severity and progression of coronary atherosclerosis are associated with 
adverse cardiovascular outcomes (4,11), the modest reduction in plaque volume achieved 
by statins cannot fully explain the reduced CVD risk, suggesting an important role for 
improved lesion stability (5,12,13). Animal models represent an opportunity to study 
plaque composition during regression. However, many mouse models have limited 
translational capability due to lack of responsiveness to lipid-lowering treatment (13). In 
this study we utilized APOE*3-Leiden.CETP mice, a well-established model with a 
human-like lipoprotein metabolism and atherosclerosis development (14) that responds 
well to hypolipidemic drugs (15–17). 
	 We tested alirocumab and/or evinacumab on top of atorvastatin as high-intensive 
lipid-lowering strategy to evaluate their effect on regression of pre-existent atherosclerosis in 
APOE*3-Leiden.CETP mice. In addition, we assessed the effects on plaque composition 
and stability, and further looked into the process of macrophage reduction during 
regression. Alirocumab is a fully human monoclonal antibody to PCSK9 that reduces the 
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risk of recurrent ischemic cardiovascular events in patients with acute coronary syndrome 
when administered on top of atorvastatin (18). Evinacumab (REGN1500) is a monoclonal 
antibody against angiopoietin-like protein 3 (ANGPTL3) (19), a circulating protein that 
inhibits the hydrolysis of TG by lipoprotein lipase (LPL) in TG-rich lipoproteins. Loss-of-
function mutations in the ANGPTL3 gene correlate with protection against CVD and 
treatment with evinacumab decreased plasma TG and LDL-C levels in human subjects 
(17,20). 

Methods

Animals
Female APOE*3-Leiden.CETP transgenic mice on a C57BL/6 background (8-12 weeks of 
age) were obtained from the breeding facility of the Organization of Applied Scientific 
Research (TNO). The number of animals per group was calculated using a power of 0.80. 
Based on our experience from previous studies, we expected to have a variance of 23% in 
atherosclerosis, a minimal difference of 40% and a two-sided test with 95% confidence 
interval, which resulted in 16 animals per group. The mice entered the study in a staggered 
way of 5 weeks apart with two equal batches of each 8 mice per group to limit the 
difference in animal age. Groups that received the fully human monoclonal antibody 
evinacumab consisted of 32 (atorvastatin and evinacumab) or 48 (atorvastatin, alirocumab 
and evinacumab) mice as some mice develop mouse-anti-human auto-antibodies to 
evinacumab, leading to loss of efficacy. During the 38-week study with in total 144 mice, 
4 mice were found dead in their cage and 4 mice were sacrificed based on human 
end-point criteria (atorvastatin: 3; atorvastatin and alirocumab: 2; atorvastatin and 
evinacumab: 1; atorvastatin, alirocumab and evinacumab: 2). In total, 48 mice developed 
auto-antibodies to evinacumab, as determined by Elisa (atorvastatin and evinacumab: 18; 
atorvastatin, alirocumab and evinacumab: 30) and were excluded from all analyses. The 
study was performed at the research facility of TNO-Metabolic Health Research, the 
Netherlands, and animal experiments were approved by the Animal Experiment 
Committee of The Netherlands Organization of Applied Scientific Research TNO under 
registration number 3682.

Diet and treatments
Mice were fed a Western-type diet (WTD) with 0.30% cholesterol and 15% saturated fat for 
13 weeks to induce development of atherosclerosis. After 13 weeks mice were matched 
into 6 groups based on age, body weight, plasma total cholesterol (TC) and triglycerides 
(TG), and cholesterol exposure (mmol/L*weeks) measured at 12 weeks, and thereafter 16 
mice were sacrificed as the baseline control group (see Figure 1 for study design). The 
other 5 groups continued to receive WTD alone or with treatment for 25 weeks: regression 
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control, atorvastatin (5-13 mg/kg/d), atorvastatin and alirocumab (10 mg/kg/week), 
atorvastatin and evinacumab (25 mg/kg/week) or atorvastatin, alirocumab and 
evinacumab. Atorvastatin was mixed with the diet in a dose of 5 mg/kg/d (week 13-14), 6 
mg/kg/d (week 15), 13 mg/kg/d (week 16-24) and 7 mg/kg/d (week 25-38). Alirocumab 
and evinacumab were administered by weekly subcutaneous injections. The cholesterol 
content in the diet was decreased from 0.30% to 0.15% in week 24 to reach plasma TC 
levels of an average 11-13 mmol/L to obtain more human-like levels, similarly as observed 
in untreated hyperlipidemic (FH) patients. Body weights, food intake per cage, and plasma 
parameters were measured throughout and the development of atherosclerosis was 
analyzed at t=13 weeks (baseline control group) and at t=38 weeks (control and treatment 
groups) in the aortic arch and aortic root. Lesion severity was determined in the aortic 
root. Plaque composition, monocyte adherence and macrophage proliferation were 
determined in the complex lesions of the aortic root. 

Plasma lipids and lipoprotein analysis 
Plasma TC and TG were determined at week 0, 4, 8, 12, 14, 15, 16, 20, 24, 28, 32, 36 and 38 
using enzymatic colorimetric methods (Roche Diagnostics GmbH, Germany) according  
to the manufacturer’s protocols and total cholesterol exposure was calculated as 
mmol/L*weeks. HDL-C was measured at week 12, 18, 28 and 36 after precipitation of 
apoB-containing particles (21) and non-HDL-C was calculated by subtracting HDL-C from 
total cholesterol.

Figure 1  Study design. Female APOE*3-Leiden.CETP mice were fed a WTD diet for 13 weeks. Next, 

mice were matched in 6 groups based on age, body weight, plasma total cholesterol, triglycerides 

and cholesterol exposure (mmol/L*weeks). The baseline control group was sacrificed at t=13 weeks 

and the other 5 groups continued to receive a WTD alone or with treatment as indicated for 25 

weeks until week 38. The number of mice used for the analyses are depicted, this number exclude 

the mice that died during the study (see Methods section) and mice that were excluded because of 

development of auto-antibodies to the human monoclonal antibody evinacumab. Abbreviations: 

WTD, Western type diet.
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En face determination of atherosclerosis in the thoracic aorta
To determine the total plaque load in the aortic arch, perfusion-fixed aortas (from the 
aortic origin to the diaphragm) were cleaned of extravascular fat, opened longitudinally, 
pinned en face, and stained for lipids with oil-red O (Sigma-Aldrich Chemie BV) as 
described previously (22). Photographs of the aorta’s were taken by an Olympus SZX10 
microscope with an Olympus DP74 camera. Data were normalized for the analyzed 
surface area and expressed as percentage of the stained area.

Determination of lipid content in the thoracic aorta
The thoracic aortas were cleaned of extravascular fat, homogenized in phosphate-
buffered saline, and the protein content was measured using a Lowry protein assay. Lipids 
were extracted as described previously (23), separated by high-performance thin-layer 
chromatography on silica gel plates, stained and analyzed with ChemiDoc Touch Imaging 
System (Bio-Rad). TG, cholesterol ester (CE) and free cholesterol (FC) content were 
quantified using Image-lab version 5.2.1 software (Bio-Rad) and expressed per mg protein.

Histological assessment of atherosclerosis in the aortic root
Atherosclerotic lesion area and severity were assessed in the aortic root area, as reported 
previously (24). Briefly, the aortic root was identified by the appearance of aortic valve 
leaflets, and serial cross-sections of the entire aortic root area (5 µm thick with intervals of 
50 µm) were mounted on slides and stained with haematoxylin-phloxine-saffron (HPS). 
For each mouse, the lesion area was measured in 4 subsequent sections. Each section 
consisted of 3 segments (separated by the valves). The total lesion area and number of 
lesions were calculated per cross-section. Lesion severity was calculated as relative 
amount of early and complex lesions in which the lesion-free segments are included. The 
lesions were classified as early lesions (type I-III according to the American Heart 
Association (AHA)) and complex lesions, which include type IV-V lesions (according to the 
AHA (16,25)) and the so-called ‘regression lesions’. Although the ‘regression lesions’ were 
generally smaller than type IV and V lesions, they could not be defined as early lesions/
fatty streak since they did not consist of macrophages, but mainly of collagen and α- 
smooth muscle cells (SMCs). Slides were scanned by an Aperio AT2 slide scanner (Leica 
Biosystems) and atherosclerotic area was measured in Image Scope (version 12-12-2015).

Histological assessment of plaque composition
Lesion composition in complex lesions was assessed after double immunostaining with 
anti-α smooth muscle actin (1:400; PROGEN Biotechnik GmbH, Germany) for SMCs, and 
anti-mouse LAMP2 (M3/84) (1:500; BD Pharmingen, the Netherlands) for macrophages. 
Anti-α smooth muscle actin was labeled with Vina green (Biocare Medical, Pacheco, USA), 
and LAMP2 with DAB (Vector laboratories, Burlingame, USA). After slides were scanned 
and analyzed, cover slips were detached overnight in xylene and Sirius Red staining for 
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collagen was performed. Color intensity of Sirius Red staining was determined in ImageJ 
and the used threshold was confirmed by evaluation of the sections under polarized light. 
The necrotic area and cholesterol clefts were measured in the Sirius Red-stained slides. 
Lesion stability index, as the ratio of collagen and αSMC area (i.e. stabilization factors) to 
macrophage and necrotic area (i.e. destabilization factors) was calculated as described 
previously (24). In each segment used for lesion quantification, intracellular adhesion 
molecule (ICAM-1) expression and the number of monocytes adhering to the endothelium 
were counted after immunostaining with mouse monoclonal ICAM-1 antibody (1:400; 
Santa Cruz Biotechnology, Dallas, USA) and AIA 31240 antibody (1:500; Accurate Chemical 
and Scientific, New York, USA), respectively (25). The number of proliferating macrophages 
in the plaques was counted after triple staining with Ki67 (1:1600, Abcam, Cambridge, UK) 
for cellular proliferation labeled with DAB (black) (Vector laboratories, Burlingame, USA), 
anti-mouse LAMP2 (M3/84) (1:500; BD Pharmingen, the Netherlands) for macrophages 
labeled with DAB (brown) (Vector Laboratories, Burlingame, USA) and anti-α smooth 
muscle actin (1:400; PROGEN Biotechnik GmbH, Germany) labeled with vina green (Biocare 
Medical, Pacheco, USA). Slides were scanned by an Aperio AT2 slide scanner (Leica 
Biosystems). Monocyte adherence, ICAM-1 expression and the number of Ki67 positive 
macrophages were assessed in Image Scope (version 12-12-2015), and plaque composition 
was measured in Fiji (version 30-5-2017). 

Statistical analysis
Significance of differences between the groups was calculated using a one-way ANOVA, 
followed by Dunnett’s 2-sided post-hoc test for comparisons against the control and 
baseline control group. The Bonferroni post-hoc test was used to correct for multiple 
comparisons between the different treatment groups. For the atherosclerosis 
measurements the non-parametric Kruskall-Wallis test was used to test for differences 
between groups, followed by a Mann-Whitney U test for comparisons against the baseline 
and control group and between the different treatment groups. Linear regression analyses 
were used to assess correlations between variables. IBM SPSS v24.0 was used for all 
analyses. p-values ≤ 0.05 were considered statistically significant.

Results

Double and triple treatment with alirocumab and evinacumab on top 
of atorvastatin gradually decrease total and non-HDL-cholesterol
Mice were fed WTD for 13 weeks which led to increased plasma TC levels of about 
25 mmol/L. At that point, the mice were matched into groups and treatment started. 
All treatments decreased plasma cholesterol (Figure 2A) and cholesterol exposure 
(mmol/L*weeks) in comparison to control (Figure 2B) with a gradual decline in the 
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atorvastatin, double (alirocumab and atorvastatin, evinacumab and atorvastatin) and 
triple (alirocumab, evinacumab and atorvastatin) treatment groups. Triple treatment 
lowered plasma TC levels to 1.8 mmol/L at the end-point and reduced cholesterol 
exposure by 80% (p<0.001) relative to control, and by 68% (p<0.001), 45% (p<0.001) and 
38% (p=0.035) when compared to atorvastatin or double treatment with alirocumab or 
evinacumab, respectively. All treatments, except monotreatment with atorvastatin, 
consistently decreased plasma TG levels (Figure 2C). Non-HDL-C levels were decreased by 
all treatments, with the largest reduction, down to 1.0 mmol/L, achieved by triple 
treatment at the end of the study (-91%, p<0.001), which was significantly lower when 
compared to double treatment with alirocumab (-74%, p=0.010) and evinacumab (-72%, 

Figure 2  Double and triple treatment with alirocumab and evinacumab on top of atorvastatin 

gradually decrease triglycerides and total and non-HDL-cholesterol. APOE*3-Leiden.CETP mice were fed 

a WTD for 13 weeks to induce atherosclerosis and remained on the diet without or with treatment 

until end-point. Plasma TC (A), total cholesterol exposure (mmol/L*weeks) (B), plasma TG (C). 

Non-HDL (D) was calculated by subtracting HDL-C from TC. The dotted line represents start of 

treatment and sacrifice of the baseline group. Data are presented as means ± SEM (n=13-16 per 

group). Figure A and C: *p<0.05 atorvastatin vs control, #p<0.05 atorvastatin + alirocumab vs control, 

†p<0.05 atorvastatin + evinacumab vs control, §p<0.05 atorvastatin + alirocumab + evinacumab vs 

control. Figure B and D: ***p<0.001 compared to control. Abbreviations: WTD, western type diet; 

TC, total cholesterol; TG, triglycerides; HDL-C, high-density-lipoprotein-cholesterol. 
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p=0.033) (Figure 2D). The reduction in TC was confined to the apoB-containing 
lipoproteins (VLDL-LDL) (Figure 3). Altogether, these data demonstrate that evinacumab 
on top of atorvastatin and alirocumab has an additional cholesterol-lowering effect 
resulting in non-HDL-C levels of 1.0 mmol/L.

Triple treatment with alirocumab and evinacumab on top  
of atorvastatin regresses pre-existent lesions and reduces lipid 
content in the thoracic aorta
We assessed the effect of intensive lipid-lowering on the progression and regression of 
pre-existing atherosclerosis at different sites along the aorta, in the thoracic aorta and the 
aortic root. After 13 weeks of WTD (at treatment baseline), 1.6% of the thoracic aorta was 
covered with oil-red-O positive lesions. WTD feeding for 25 more weeks led to further 
progression of atherosclerosis to 5.7% coverage in the control group. Treatment with 
alirocumab or evinacumab on top of atorvastatin fully blocked progression of atheroscle-
rosis (Figure 4A and C). Double treatment with alirocumab and evinacumab decreased 
the amount of CE and double treatment with evinacumab the TG content beyond 
baseline (Figure 4B). Triple treatment did not only block the progression (-86%, p<0.001 
vs control) but also resulted in regression of the pre-existent lesions by 50% (p=0.045) 
compared to baseline. Furthermore, triple treatment reduced CE and TG content beyond 
the baseline level in the thoracic aorta (-45%, p=0.033 and -83%, p=0.001, respectively). 

Figure 3  Lipoprotein profiles at end-point. APOE*3-Leiden.CETP mice were fed a WTD for 13 

weeks to induce atherosclerosis and remained on the diet without or with treatment until end-

point (t=38 weeks). Lipoprotein profiles were assessed by FPLC lipoprotein separation in group-wise 

pooled plasma (n=13-16 per group). Abbreviations: VLDL, very-low density lipoprotein; LDL, low-

density lipoprotein; HDL, high-density lipoprotein; WTD, Western type diet; FPLC, fast protein liquid 

chromatography. 
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The effect of triple and double treatments was stronger than atorvastatin monotreatment 
on all parameters.
	 In the aortic root, 208*1 000 um2 lesion area per cross-section was present at baseline, 
which further increased to 438*1  000 um2 in the control group. Atorvastatin modestly 
decreased lesion size (-28%, p=0.001 vs control), whereas double treatment with alirocumab  
or evinacumab on top of atorvastatin completely blocked the progression (-55%, p<0.001; 
-51%, p<0.001, respectively vs control). Triple treatment further decreased lesion size (-70%, 
p<0.001 vs control) and regressed the atherosclerotic lesion size (-36%, p<0.001 vs 
baseline) (Figure 5A). All treatments led to smaller lesions compared to control and triple 
treatment lesions were smaller than initial lesions size at baseline (Figure 5B). The area 
that consisted of complex lesions was decreased by triple treatment compared to control 

Figure 4  Triple treatment with alirocumab and evinacumab on top of atorvastatin regresses 

pre-existent lesions and reduces aortic lipid content in the thoracic aorta. En face analysis of 

atherosclerosis (A) and lipid content (B) in the thoracic aorta with representative images (C). Data 

are presented as means + SEM (n=12 per group). #P<0.05, ##P<0.01, ###P<0.001 when compared to 

baseline. *p<0.05, **p<0.01, ***p<0.001 when compared to control. Abbreviations: A, atorvastatin; 

ali, alirocumab; evin, evinacumab; FC, free cholesterol; CE, cholesterol ester; TG, triglycerides.
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(-36%, p<0.001), with more early lesions present (Figure 5C). Additionally, triple treatment 
decreased lesion area and improved plaque phenotype as compared to mono- and 
double treatment. Representative images of the aortic root area are shown in Figure 5D. 
These data demonstrate that alirocumab and evinacumab on top of atorvastatin equally 
block the progression of atherosclerosis, but that regression of pre-existent, advanced 
atherosclerotic plaques is only achieved by aggressive lipid lowering using triple combination 
treatment.

The reduction in lesion size is correlated with the decrease 
in plasma cholesterol 
We evaluated whether the reduction in lesion size could be explained by the reduction in 
plasma TC during treatment. The mean TC level at baseline was subtracted from the TC 
levels of each individual mouse at each time point and the cumulative decrease in 
cholesterol exposure was calculated as mmol/L*weeks. These data were plotted against 
the lesion size at end-point minus the mean lesion size at baseline (Figure 6). A strong 
correlation between the difference in lesion area and the cumulative TC decrease during 
treatment was observed (R=0.85, p<0.001), indicating an important role of therapeutic 
cholesterol lowering in lesion regression. 

Figure 6  Correlation between the cumulative decrease in plasma cholesterol exposure and 

atherosclerotic lesion area. Mean TC at baseline was subtracted from TC levels of each individual 

mouse at each time point and the cumulative decrease in TC exposure during treatment was 

calculated as mmol/L*weeks. Data were plotted against the difference in lesion size at end-point 

and mean lesion size at baseline. Linear regression analysis was performed (n=13-16 per group). 

Abbreviations: TC, total cholesterol.  
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Double and triple treatment improve plaque composition
To evaluate whether plaque composition was affected by the treatments, the necrotic 
core, amount of macrophages, collagen and αSMC in the cap were quantified. Only triple 
treatment further decreased the macrophage content (-56%, p=0.012) compared to 
control, in parallel with increased αSMC (+38%, p=0.015) and collagen (+23%, p<0.001) 
content (Figure 7A). The plaque stability index improved by double (+66%, alirocumab 
and +64%, evinacumab, both p<0.001) and triple (+74%, p<0.001) treatment compared to 
control (Figure 7B). Representative images are shown (Figure 7C). 

Triple treatment reduces monocyte adherence  
and macrophage proliferation
Vascular inflammation is recognized to play an important role in both the initiation and 
progression of atherosclerosis, whereas proliferation of macrophages further increases the 
plaque burden. Therefore, we measured endothelial ICAM-1 expression and adherence of 
monocytes to the activated endothelium as markers of vascular inflammation, and 
counted the number of currently proliferating macrophages after immunostaining for 
Ki67. All regimens except monotreatment with atorvastatin decreased ICAM-1 expression 
when compared to control, but only triple treatment decreased ICAM-1 expression when 
compared to baseline (-37%, p=0.010) (Figure 8A and C). In addition, triple treatment 
decreased the number of monocytes adhering to the endothelium when compared to 
baseline (-78%, p<0.001) and control (-69%, p=0.003), whereas mono- and double 
treatment only decreased monocyte adherence when compared to control (Figure 8B). 
The number of proliferating macrophages per plaque (Figure 8D) decreased over time by 
91% (p<0.001; control vs baseline), which was further reduced by monotreatment with 
atorvastatin (-60%, p=0.019), double treatment with alirocumab or evinacumab on top of 
atorvastatin (-87%, p=0.001 and -58%, p=0.012 vs control) and triple treatment (-88%, 
p<0.001 vs control). Representative images are shown (Figure 8E). 
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Figure 7  Double and triple treatment improve plaque phenotype. Necrotic and macrophage 
content as pro-inflammatory factors and αSMCs and collagen as fortifying factors were determined 
in the complex lesions in the aortic root and expressed as percentage of total plaque area (A). Lesion 
stability index, as the ratio of collagen and αSMC area (i.e. stabilization factors) to macrophage 
and necrotic area (i.e. destabilization factors) was calculated (B). Representative images of HPS 
staining, double-immunostaining with α-actin for SMCs (Vina green) and LAMP2 (M3/84) for 
macrophages (DAB, brown), and Sirius Red staining for collagen. The arrows depict necrotic areas, 
including cholesterol clefts (C). Data are presented as means ± SEM (n=13-16 per group). ###P<0.001 
when compared to baseline. *p<0.05 , ***p<0.001 when compared to control. Abbreviations: 
HPS, hematoxylin-phloxine-saffron; SMCs, smooth muscle cells; DAB, 3,3’-Diaminobenzidine; 
Abbreviations: A, atorvastatin; ali, alirocumab; evin, evinacumab.
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Discussion

PCSK9 inhibition with alirocumab has been shown to strongly lower LDL-C and non-HDL-C 
alone and on top of a statin, and reduce the risk of recurrent ischemic cardiovascular events 
in patients with acute coronary syndrome (18). ANGPTL3 monoclonal antibody evinacumab 
was reported to reduce plasma TG and LDL-C levels in healthy subjects and homozygous 
hypercholesterolemia patients (17,20). Recent data suggest not only LDL-C but also remnant 
cholesterol, thus all apoB-containing lipoproteins are important predictors of cardiovascular 
outcome (9,10). The present study was designed to investigate the effect of gradual and 
aggressive reduction of cholesterol in both LDL and remnant lipoproteins by alirocumab 
and/or evinacumab on top of atorvastatin on regression of pre-existent atherosclerosis in 
hyperlipidemic mice. Our data revealed that alirocumab and evinacumab in combination 
with atorvastatin fully block further progression of atherosclerosis and triple treatment 
reduces lesion size beyond the treatment baseline level. In addition, double and triple 
treatments improve lesion morphology and composition in APOE*3-Leiden.CETP mice with 
pre-existent atherosclerosis. This is the first study in mice that shows real regression of lesion 
size using the combination of clinical hypolipidemic drugs.
	 Therapeutic interventions in mice have been hampered due to the lack of responsiveness 
to current lipid-lowering therapies in murine models of regression. Commonly used models 
are the aortic transplant model, the Reversa mouse (Ldlr-/-Apob100/100Mx1-Cre+/+), and 
ApoE-/- and LDLR-/- mice (reviewed in (13,26)). In these models, progression of atherosclerosis 
is induced by a WTD and regression is accomplished by a switch to chow, eventually 
together with genetic alterations or treatment strategies. Regression of atherosclerosis was 
generally defined by a decrease of macrophages or lipid content (13,26), though some 
studies reported a reduced total lesion size using experimental interventions, which was 
independent of plasma TC levels (reviewed in (13,26)). While these models are of great value 
to elucidate the molecular characteristics of the regressive plaque, they are less suitable for 
the evaluation of lipid-lowering interventions and their effect on atherosclerosis regression, 
as they poorly respond to registered lipid-lowering drugs (27,28). In the present study, we 
used the APOE*3-Leiden.CETP mouse, which possesses a delayed but intact apoE-LDLR-me-
diated clearance pathway and expresses CETP (14,28). These mice respond to all lipid-lowering 
drugs used in the clinic, including statins, alirocumab and evinacumab (15–17). Thus, 
treatments of APOE*3-Leiden.CETP mice on WTD with atorvastatin or alirocumab on top of 
the statin in our study decreased TC levels (-31% to -51% vs control and -32% to -52% vs 
atorvastatin, respectively) by a reduction of non-HDL-C, similarly as in humans (18,29). 
Evinacumab has an additive effect on treatment with atorvastatin and alirocumab by further 
reducing TC (-62% to -75% vs atorvastatin; -34% to -63% vs atorvastatin + alirocumab) and, in 
addition, TG levels (-62% to 80% vs atorvastatin; -42% to -65% vs atorvastatin + alirocumab). 
	 We have previously shown that the lipid-modifying effects of PCSK9 and ANGPTL3 
inhibition have an atheroprotective effect in a preventive design (16,17). However, to date, 
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the effect of pharmacological inhibition on regression of atherosclerosis, more closely 
mimicking the human situation, has not been investigated. Here, we show for the first time 
that double treatment with alirocumab or evinacumab on top of atorvastatin completely 
blocks progression of pre-existent atherosclerosis and that triple treatment regresses ather-
osclerosis in the aortic arch and the aortic root. The treatment effects on lesion area were 
mainly predicted by the gradual and aggressive reduction in plasma TC levels as illustrated 
by the strong association between the decreased cholesterol exposure and lesion size 
during treatment (R=0.85). All triple treated mice except one showed a lesion size below that 
at baseline, indicating regression. Reduction of non-HDL-C levels to about 1 mmol/L (38.7 
mg/dL) was required to observe the regression. This finding is in accordance with studies in 
CVD patients that show exclusively reduction of plaque volume at LDL-C lowering of more 
than 40% or at a target level below 2.0 mmol/L (78 mg/dL) (5–7). Similar levels of 1 mmol/L 
were achieved in the recent outcome trials with PCSK9 inhibition which further reduced the 
risk of cardiovascular events as compared to statins and other hypolipidemic therapy (18,30).
	 Vulnerable plaques with high macrophage content, a large necrotic core and a thin, 
collagen-poor, fibrous cap are more prone to rupture (31). Thus, lesion composition, not only 
lesion size, is another important characteristic of the plaque. In the present study, the decline 
in plasma cholesterol reduced the lipid content of the aorta and resulted in smaller and less 
inflamed lesions. Double and triple treatment decreased endothelial expression of ICAM-1 
and consequently reduced monocyte adhesion to the activated vascular endothelium, 
well-recognized processes in the initiation of atherosclerosis. In hypercholesterolemia, 
modified lipoproteins induce endothelium activation, thereby mediating the arrest and 
transmigration of circulating monocytes into the subendothelial space where they 
differentiate into macrophages (32). All treatments in the present study reduced the 
macrophage content, and double and triple treatment increased the amount of collagen in 
the lesions, resulting in a strongly improved plaque morphology. The large reduction in 
macrophage content in the present and other studies is a key feature of regression, and 
depends on the balance between recruitment of monocytes and their differentiation into 
macrophages, proliferation of macrophages, and on apoptosis and migratory egress from 
the plaques. However, whereas impaired monocyte transmigration during the initiation of 
atherosclerosis diminishes plaque volume (33), monocyte depletion per se does not affect 
further progression of plaque burden (34). Local proliferation of aortic macrophages has 
been reported to be a key event in the progression of atherosclerosis and to substantially 
contribute to lesional macrophage accumulation (34). Here we provide evidence that cholesterol 
lowering-induced regression decreases the number of Ki67-positive macrophages, a marker 
of currently proliferating macrophages. This finding suggests that diminished proliferation 
of macrophages is an important process in the reduction in macrophage content during 
regression of atherosclerosis.
	 In conclusion, we show that high-intensive lipid-lowering triple treatment with atorvastatin, 
alirocumab and evinacumab regresses atherosclerosis, improves plaque phenotype, and 
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reduces the proliferation of macrophages in the plaques. These data show that further 
reduction of plasma cholesterol together with TG-lowering to target all apoB-containing 
lipoproteins may be an effective approach to further reduce existing atherosclerosis in 
dyslipidemic patients at CV risk resulting in further decline of clinical events and increase 
of symptom-free years. 
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Abstract

Objectives: Treatment with the second and third generation BCR-ABL1 tyrosine kinase 
inhibitors (TKIs) increases cardiovascular risk in chronic myeloid leukemia (CML) patients. 
Methods and results: We investigated the vascular adverse effects of three generations 
of TKIs in a translational model for atherosclerosis, the APOE*3-Leiden.CETP mouse. Mice 
were treated for sixteen weeks with imatinib (150 mg/kg BID), nilotinib (10 and 30 mg/kg 
QD) or ponatinib (3 and 10 mg/kg QD), giving similar drug exposures as in CML-patients. 
Cardiovascular risk factors were analyzed longitudinally, and histopathological analysis of 
atherosclerosis and transcriptome analysis of the liver was performed. Imatinib and ponatinib 
decreased plasma cholesterol (imatinib, −69%, p<0.001; ponatinib 3 mg/kg, −37%, p<0.001; 
ponatinib 10 mg/kg, −44%, p<0.001) and atherosclerotic lesion area (imatinib, −78%, p<0.001; 
ponatinib 3 mg/kg, −52%, p=0.002; ponatinib 10 mg/kg, −48%, p=0.006), which were not 
affected by nilotinib. In addition, imatinib increased plaque stability. Gene expression and 
pathway analysis demonstrated that ponatinib enhanced the mRNA expression of 
coagulation factors of both the contact activation (intrinsic) and tissue factor (extrinsic) 
pathways. In line with this, ponatinib enhanced plasma levels of FVII, whereas nilotinib 
increased plasma FVIIa activity. 
Conclusions: While imatinib showed a beneficial cardiovascular risk profile, nilotinib and 
ponatinib increased the cardiovascular risk through induction of a pro-thrombotic state.
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Introduction

Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm caused by a translocation 
of the chromosomes 9 and 22 that results in formation of the Bcr-Abl1 oncogene (1) and a 
constitutively active c-Abl kinase domain, which drives uncontrolled cell growth and 
tumorigenesis.
	 Patients with CML are treated with specific tyrosine kinase inhibitors (TKIs). The first-line TKI 
imatinib is widely used and has proven to be successful in the treatment of CML. However, 
relapses are seen in up to 17% of patients treated with imatinib (2) due to amplification 
and mutations in the Bcr-Abl1 gene (3) that lead to imatinib resistance. The second and 
third generation TKIs, nilotinib and ponatinib among others, are effective against these 
mutations (3), and promising results have been found in relapsed patients (4). Unfortunately, 
side effects have been reported in patients receiving these TKIs including myocardial 
infarction and progressive arterial occlusive disease (PAOD) (5–7). As a result, ponatinib 
was temporarily removed from the US market, and was later reintroduced for the treatment 
of patients with T315I-positive CML or those in whom no other TKI was indicated.
	 Since the first reports of vascular adverse effects (VAEs), many authors related the 
adverse effects of TKI treatment to atherosclerosis and abnormal platelet function (4,7–9). 
However, it is still unclear whether the side effects are caused by enhanced vascular 
inflammation and endothelial dysfunction, atherosclerosis development, increased thrombotic 
activity per se, or a combination of these processes. Furthermore, the underlying disease 
has been reported to affect metabolic parameters (10) and coagulation (11), which may 
interfere with the onset of the side-effects upon treatment. Therefore, to elucidate the 
role of TKI treatment on VAE’s independently of a background of leukemia, we performed 
a detailed experimental study in healthy pro-atherogenic mice. The aim of this study was 
to assess the (cardio)vascular side effects of the second and third generation of TKIs, 
nilotinib and ponatinib, and to compare their effects to the first generation TKI imatinib.
	 In this study, we used the APOE*3-Leiden.CETP mouse as a well-established model  
for dyslipidemia and atherosclerosis, with a human-like lipoprotein metabolism and athero- 
sclerosis development. These mice show a human-like response to all lipid-modulating 
interventions that are being used in the clinic (12–18) and have been used previously to 
investigate the underlying mechanism of cardiovascular safety issues (19).
	 We found that imatinib and ponatinib decreased plasma cholesterol, which was 
associated with decreased atherosclerosis development. Gene expression and pathway 
analysis demonstrated adverse alterations in genes involved in coagulation which were in 
line with increased plasma levels of FVII and FVIIa by ponatinib and nilotinib respectively, 
pointing towards thrombosis instead of atherosclerosis as inducer of the VAEs.
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Materials and methods

Animals
Female APOE*3-Leiden.CETP transgenic mice (9 to 14 weeks of age) from the SPF breeding 
stock at TNO-Metabolic Health Research (TNO-Leiden) were used in this study. Females 
were used because they are more responsive to dietary cholesterol and fat than males. 
APOE*3-Leiden females have a higher VLDL production (20) than males resulting in  
higher plasma total cholesterol (TC) and triglyceride (TG) levels and more pronounced 
development of atherosclerosis (21,22). During the study, mice were housed under 
standard conditions with a 12 h light-dark cycle and had free access to food and water. 
Body weight, food intake and clinical signs of behavior were monitored regularly during 
the study. Animal experiments were approved by the Institutional Animal Care and Use 
Committee of The Netherlands Organization for Applied Research under registration 
number 3557.

Experimental design and analyses
Mice were fed a semi-synthetic diet, containing saturated fat from 15% (w/w) cacao butter 
and 0.15% cholesterol (Western-type diet [WTD]; Hope Farms, Woerden, The Netherlands). 
All studies started after a run-in period of 3 weeks on WTD, which is designated as t=0 
weeks/baseline, after which mice were matched into groups based on body weight, total 
cholesterol (TC), plasma triglycerides (TG) and age. For the pharmacokinetic (PK) study, 
mice were randomized in 3 groups (n=9 per group) and received a single oral gavage with 
imatinib (100 mg/kg), nilotinib (50 mg/kg) or ponatinib (5 mg/kg). At 0.5, 1 and 2 h after 
oral gavage, blood was sampled from 3 mice per group per time point, and at 4, 7 and 24 
h blood was collected by heart puncture after sacrifice. For the (cardio)vascular risk factor 
and atherosclerosis study, mice were randomized in 6 groups (n=15 per group, n=20 in 
control group) and received, based on the results of the PK study, a once-daily oral gavage 
with nilotinib (10 or 30 mg/kg), ponatinib (3 or 10 mg/kg), or a twice-daily gavage with 
imatinib (150 mg/kg). The TKIs were suspended in 5% carboxymethyl cellulose and all 
mice except the imatinib group received a second oral gavage with the vehicle alone (5% 
carboxymethyl cellulose). The TKIs were purchased at LC laboratories, Woburn (MA), USA. 
After 12 weeks 5 mice of the control group were sacrificed to asses atherosclerosis 
development and to determine the end-point of the study. After sixteen weeks of 
treatment all animals were sacrificed by CO2 inhalation. Plasma cholesterol, TG, high-density 
lipoprotein cholesterol (HDL-C), lipoprotein profiles, serum amyloid A (SAA), E-selectin and 
monocyte chemoattractant protein 1 (MCP-1), aspartate transaminase (AST) and alanine 
transaminase (ALT) were measured throughout the study. Blood pressure was measured 
at 2 and 15 weeks of treatment. Measurement of hepatic lipid and protein content; protein 
and albumin content in broncho-alveolar lavage (BAL) fluid; urinary albumin/creatinine 
levels; and histology of lung and hearts was performed at 16 weeks. Total FVII coagulant 
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activity was measured at 4 and 12 weeks and FVIIa activity at 4 weeks. Gene expression 
analysis using Next Generation Sequencing with the Illumina Nextseq 500 and subsequent 
pathway analysis of liver of 8 mice per group was performed following established 
protocols (23,24).

PK analysis and plasma drug concentrations
EDTA plasma samples collected during the 24-hour PK study and at week 16 of the (cardio)
vascular risk factor-atherosclerosis study were subsequently stored at -80°C until analysis. 
Thawed plasma samples (50 μL) were de-proteinized with two volumes of acetonitrile 
containing an appropriate src-inhibitor chemotype as internal standard for each analyte. 
Following deproteinization, a 5 μL portion of clear supernatant was then subjected to 
solvent gradient separation in an Agilent 1100 series HPLC system interfaced to a 
Micromass triple-quadrupole mass spectrometer, which was operated in the positive ion 
electrospray MRM mode to obtain daughter ions for quantitation: Ion transitions used for 
quantitation were as follows: imatinib [494.3 -> 394.2], nilotinib [530.2 -> 289.2], ponatinib 
[533.3 -> 260.3]. Standard curves ranging from 1 nM to 6 µM were fitted with a quadratic 
regression weighted by reciprocal concentration (1/x). LLOQ for the purposes of this assay 
was between 1 and 2 nM for all compounds analyzed. QC samples at three levels in the 
range of the standard curve were used to accept individual analytical sets, and all results 
were calculated as the mean of triplicate determinations ± standard error. Tmax, Cmax and 
AUCs were calculated using the software Berkeley Madonna (version 8.3.18).

Biochemical analyses and blood pressure
EDTA plasma samples were collected throughout the study. Plasma cholesterol and 
triglycerides were determined every 4 weeks using enzymatic kits (Roche/Hitachi) according to 
the manufacturer’s protocols and average plasma levels over week 4 to 16 were calculated. 
HDL-C was measured after precipitation as described previously (17). The distribution of 
cholesterol over plasma lipoproteins was determined in group wise-pooled plasma by 
fast protein liquid chromatography (FPLC) (25). The inflammatory markers SAA, E-selectin 
and MCP-1 were measured using the ELISA kits from Tridelta (SAA) and R&D (MCP-1, 
E-selectin) according to the manufacturer’s instruction. Plasma ALT and AST were 
determined using a spectrophotometric assay (Boehringer Reflotron system) in group 
wise-pooled samples. Systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart 
rate were measured using the tail cuff method in 8 mice per group at 2 and 15 weeks (26).

Hepatic lipid analysis 
Livers were isolated and partly homogenized (30 s at 5000 rpm) in saline (~10% wet wt/
vol) using a mini-bead beater (Biospec Products, Inc., Bartlesville, OK). Lipids were extracted as 
described (27) previously and separated by high-performance thin-layer chromatography 
(HPTLC). Lipid spots were stained with color reagent (5 g MnCl2.4H2O, 32 mL 95–97% 
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H2SO4 added to 960 mL of CH3OH:H2O 1:1 vol/vol) and quantified using TINA version 2.09 
software (Raytest, Straubenhardt, Germany) (27).

BAL and urinary albumin/creatinine
The lungs were flushed two times with 750 µL PBS into the trachea using a BD 20G 
angio-catheter to collect broncho-alveolar lavage (BAL) fluid. Protein and albumin content 
in BAL fluid were determined in the supernatant using the protein determination kit from 
Pierce and the mouse albumin ELISA kit (ALPCO, Salem, USA). Urinary albumin and 
creatinine levels were determined using the mouse albumin ELISA kit (ALPCO, Salem, USA) 
and the creatinine kit (Exocell, Philadelphia, USA) according to manufacturer’s instruction.

Flow cytometric analysis
White cell profiling was performed via fluorescence activated cell sorting (FACS) using the 
BD FACS Canto II apparatus (Becton Dickinson, Franklin Lakes, New Jersey, USA). After 12 
weeks of treatment, peripheral blood mononuclear cells (PBMCs) were isolated from fresh 
blood samples of 8 mice per group, and were sorted into CD11b+/CD11c- (monocytes), 
and further divided into CD11b+/Ly6CLow and CD11b+/Ly6CHigh monocytes. The following 
conjugated monoclonal antibodies, all from eBiosciences, were used: CD11b-FITC, CD11c- 
PE/Cy7, Ly6C-APC. 

Coagulation factor VII and VIIa
Total clotting FVII and FVIIa activity were measured on a STA compact apparatus 
(Diagnostica Stago Inc. Parsippany, NJ). For the determination of total clotting FVII a one 
stage Prothrombin assay with Dade Innovin PT reagent (Siemens) and Hemoclot FVII 
reagent (Hyphen Biomed) as deficient agent were used and calibration was performed 
with pooled normal mouse plasma. Staclot VIIa rTF (Diagnostica Stago Inc.) and Hemoclot 
FVII reagent (Hyphen Biomed) were used to determine FVIIa activity, calibrated with 
Novoseven® (Novonordisk).
  
Histological assessment of lung morphology and atherosclerosis
Tissues were isolated, fixed in formalin, and embedded in paraffin. The caudal lung was 
cross sectioned (3 µm thick) and stained with hematoxylin-eosin (HE), Sirius Red for 
collagen, and with isolectin B4 (1:50; Sigma-Aldrich, Missouri, USA) for endothelial cells. 
Hearts were sectioned perpendicular to the axis of the aorta, starting within the heart and 
working in the direction of the aortic arch. Once the aortic root was identified by the 
appearance of aortic valve leaflets and smooth muscle cells instead of collagen-rich tissue, 
serial cross sections (5 µm thick with intervals of 50 µm) were taken and mounted on 
AAS-coated slides. These sections were stained with hematoxylin-phloxine-saffron (HPS) 
for histological analysis. For each mouse, atherosclerosis was measured in 4 subsequent 
cross-sections. Each section consisted of 3 segments. The average total lesion area per 
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cross-section was then calculated (17,28). For determination of lesion severity the lesions 
were classified into five categories according to the American Heart Association 
classification (29): 0) no lesion I) early fatty streak, II) regular fatty streak, III) mild plaque, IV) 
moderate plaque, and V) severe plaque. The percentage of each lesion type was calculated, 
where type I-III lesions were classified as mild lesions and type IV-V lesions were classified 
as severe lesions (17,28). In the aortic root, lesion composition was determined for the 
severe lesions (type IV-V) as a percentage of lesion area after immunostaining with 
anti-human alpha-actin (1:400; PROGEN Biotechnik GmbH, Germany) for smooth muscle 
cells (SMC), and anti-mouse Mac-3 (1:50; BD Pharmingen, the Netherlands) for macrophages 
followed by Sirius Red staining. After Sirius Red staining for collagen, color intensity was 
determined in ImageJ and the used threshold was confirmed by evaluation of the sections 
under polarized light (30). Necrotic area and cholesterol clefts were measured after HPS 
staining (17,28,31). Lesion stability index was calculated as described previously (17,31). In 
each segment used for lesion quantification, the number of monocytes adhering to the 
endothelium were counted after immunostaining with AIA 31240 antibody (1:1000; 
Accurate Chemical and Scientific, New York, New York, USA) (16,17).
 
Gene expression analysis
Messenger RNA was isolated from liver of 8 mice per group, using the NEBNext Ultra RNA 
sample Prep Kit. After fragmentation of the mRNA, cDNA synthesis was performed. The 
quality and yield after sample preparation was measured with the Fragment Analyzer. 
Clustering and DNA sequencing was performed using the Illumina Nextseq 500. The 
genome reference and annotation file Mus_Musculus.GRCm38 was used for analysis in 
FastA and GTF format. The reads were aligned to the reference sequence using Tophat 
2.0.14 combined with Bowtie 2.1.0, and based on the mapped read locations and the gene 
annotation HTSeq-count version 0.6.1p1 was used to count how often a read was mapped 
on the transcript region. Calculated p-values <0.01 were used as threshold for significance. 
Selected differentially expressed genes (DEGs) were used as an input for pathway analysis 
through Ingenuity Pathway Analysis (IPA) suite (www.ingenuity.com, accessed 2015). Gene 
set enrichment analysis was used to highlight the most important processes and pathways. 
Relevance of these pathways and processes is indicated as p-value and visualized in a 
graph by calculating the –log(p-value).

Statistical analysis
Significance of differences between the groups was calculated in SPSS 22.0 for Windows. 
Normally distributed data was tested parametrically using a one-way ANOVA for multiple 
comparisons with a Dunnett’s post-hoc test. Non-parametric data were compared 
separately with a Mann-Whitney U test with adjusted rejection criteria using a Bonfer-
roni-Holm correction. Correlations between lesion size (after square root transformation) 
and cholesterol exposure were calculated with a Pearson’s correlation test. All groups 
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were compared with the control group. Values are presented as means ± SD and p-values 
<0.05 were considered statistically significant.

Results

PK analysis and plasma drug concentrations
Pharmacokinetic analysis was performed after a single dose of imatinib (100 mg/kg), 
nilotinib (50 mg/kg) or ponatinib (5 mg/kg) (Table 1) and based on these results the doses 
for the atherosclerosis study were adjusted to twice daily 150 mg/kg for imatinib, once 
daily 10 or 30 mg/kg for nilotinib and once daily 3 or 10 mg/kg for ponatinib. The relatively 
high dose of imatinib needed to achieve plasma concentrations comparable to those in 
CML-patients was due to the short half-life of the drug in mice and is in line with previous 
reports (32). Drug exposure after repeated dosing was measured in sacrifice plasma and 
calculated AUCs were similar to those in CML-patients for imatinib and the low doses of 
nilotinib and ponatinib (Table 1).

Safety aspects of treatments with TKIs
No clinical signs of deviant behavior and no effects on body weight and food intake were 
noted in any treatment group as compared with control. Plasma ALT and AST, measured 
at the start and after 16 weeks of treatment, showed no aberrant results (Table 2). The 
number of circulating peripheral blood mononuclear cells (PBMC’s) in the blood as 
measured by FACS analysis at 12 weeks (Table 2) was reduced by imatinib (−42%, p=0.006) 
and by the high-dose ponatinib (−44%, p=0.003). In addition, imatinib and the high doses 
of nilotinib and ponatinib decreased pro-inflammatory Ly6CHigh monocytes, all consistent 
with the mode of action of TKIs. Two mice (ponatinib 3 mg/kg) died during blood pressure 
measurements at t=15 weeks, and one mouse (nilotinib 30 mg/kg) was excluded from 
atherosclerosis measurement due to deviating heart anatomy.

(Cardio) vascular risk factors
Imatinib and ponatinib reduce plasma cholesterol levels 
As dyslipidemia is a major risk factor for cardiovascular disease, we measured plasma 
cholesterol and triglyceride levels throughout the study, and HDL-C at the end point. The 
WTD resulted in an average plasma cholesterol of 17.3 ± 3.5 mmol/L, TGs of 3.3 ± 1.0 
mmol/L, and an HDL-C level of 1.4 ± 0.2 mmol/L in the control group. When compared to 
the control group, imatinib reduced average cholesterol and TG levels by 69% (p<0.001) 
and 36% (p=0.019), respectively. Ponatinib decreased cholesterol levels by 37% (3 mg/kg, 
p<0.001) and 44% (10 mg/kg, p<0.001), whereas nilotinib had no significant effect on 
plasma lipid levels (Figure 1A–D). At 16 weeks of treatment, HDL-C was decreased by 
ponatinib in both the low (−30%, p=0.003) and high (−25%, p=0.016) dose. The reduction 
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of plasma cholesterol by imatinib and ponatinib was mainly confined to VLDL-LDL (i.e., 
non-HDL) (Figure 1C). These findings show that imatinib decreases plasma cholesterol 
and TG levels in APOE*3-Leiden.CETP mice, which is consistent with the cholesterol-low-
ering effect observed in patients (37–40).

Ponatinib and imatinib decrease hepatic lipid content 
Liver lipid storage may give insight into how lipid metabolism is affected by imatinib and 
ponatinib. Therefore, hepatic lipid content was measured by HPTLC. Free cholesterol 

Figure 1  Imatinib and ponatinib reduce plasma cholesterol levels and imatinib decreases average 

TGs. Plasma cholesterol was measured throughout the 16 week study (A) and average plasma 

cholesterol (B) and TGs (D) were calculated. Lipoprotein profiles were assessed by FPLC lipoprotein 

separation after 16 weeks of treatment (C). Data are presented as means ± SD (n = 13–15 per group). 

*p < 0.05, **p < 0.01 ***p < 0.001. Abbreviations: FPLC, Fast protein liquid chromatography; VLDL, 

very-low-density-lipoprotein; LDL, low-densitylipoprotein; HDL, high-density-lipoprotein; TGs, 

triglycerides. 
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content was decreased by 10 mg/kg ponatinib (−21%, p=0.007) (Figure 2A), cholesterol 
ester content was decreased by imatinib (−30%, p=0.001) and by both the low (−49%, 
p<0.001) and high (−61%, p<0.001) dose of ponatinib (Figure 2B). TG content was 
decreased by the low (−32%, p=0.048) and high (−43%, p=0.005) dose of ponatinib 
(Figure 2C). These data point to a shortage of cholesterol in the liver and suggest that not 
cholesterol clearance, but VLDL production and/or intestinal absorption of cholesterol are 
affected by ponatinib and imatinib.

Blood pressure and vascular dysfunction 
Increased blood pressure and endothelial activation may lead to vascular dysfunction and 
atherosclerosis. SBP, measured after 2 and 15 weeks of treatment, was 91 ± 7 and 86 ± 5 
mmHg, respectively, in the control group, and heart rate was 726 ± 46 and 716 ± 29 beats 
per minute. SBP and heart rate were not affected by imatinib, nilotinib or ponatinib 
treatment. As markers of vascular integrity and leakage or edema formation, we evaluated 
lung histology, determined the wet/dry weight ratio of the lungs and measured the 
amount of protein in the BAL fluid. None of the anti-CML drugs showed significant effects 
on histology and wet/dry weight ratio (data not shown), and ponatinib decreased the 
amount of protein in BAL fluid by 51% (3 mg/kg, p=0.029) and by 47% (10 mg/kg, p=0.041) 
(Table 3). In contrast, ponatinib increased the urinary albumin/creatinine ratio (approximately 
13-fold, N.S.), mainly due to 3 mice with very high levels of urinary albumin (Table 3). These 
data indicate that the anti-CML drugs did not cause damage to the microvasculature in the 
lungs but that ponatinib may lead to microvascular dysfunction in the kidney.

Figure 2  Imatinib and ponatinib decrease hepatic lipid content. Hepatic free cholesterol (A), 

cholesterol ester (B) and triglyceride (C) content were measured by HPTLC after 16 weeks of 

treatment. Data are presented as means ± SD (n=8 per group).*p < 0.05, **p < 0.01 ***p < 0.001. 

Abbreviations: HPTLC, high-performance thin-layer chromatography.
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Ponatinib increases plasma E-selectin 
Inflammation is widely considered as an important contributing factor to cardiovascular 
events (41). Therefore, we measured plasma levels of macrophage-derived chemokine 
MCP-1, the adhesion molecule E-selectin as marker of endothelial activation, and SAA, an 
acute phase protein mainly produced by the liver (Table 3). None of the inflammatory 
markers were significantly altered by imatinib. The WTD increased MCP-1 relative to 
baseline (t=0 weeks) (+126%, p=0.015), as did nilotinib (10 mg/kg, +220%, p<0.001; 30 mg/
kg, +160%, p<0.001). Ponatinib increased SAA relative to baseline (+123%, p=0.013), but not 
relative to control. In four of the fifteen ponatinib-treated mice, E-selectin levels were 3 to 
10 times increased, leading to an overall increase of 161% (p<0.001) when compared to 
control, which may point to endothelial activation by ponatinib. Collectively, these data 
confirm the safety profile of imatinib and suggest endothelial activation and potential 
endothelial dysfunction in some animals by ponatinib.

Atherosclerosis
Imatinib and ponatinib reduce lesion size and severity 
Next we analyzed the effects of long-term exposure of the anti-CML TKIs on the 
progression of atherosclerosis as a cardiovascular endpoint, as shown by representative 
images (Figure 3). Sixteen weeks of WTD resulted in the development of 4.0 ± 0.8 athero-
sclerotic lesions and 156 ± 61*1 000 µm2 lesion area per cross-section in the control group 
(Figure 4A). Approximately 55% of these lesions were severe (type IV–V) lesions and only 
10% of the segments were unaffected (Figure 4B). The total number of lesions was not 

Table 3  Ponatinib increases markers of inflammation

Treatment Dose BAL fluid Urinary ureum/
creatinine ratio

MCP-1 SAA E-selectin

mg/kg Protein 
(µg/mL)

Albumin 
(µg/mL)

pg/mL µg/mL ng/mL

Baseline - - - - 45 ± 23 6.8 ± 4.4 87 ± 9

Control - 405 ± 291 243 ± 168 12.4 ± 4.6 102 ± 44† 10.1 ± 1.2 96 ± 18

Imatinib 150 330 ± 176 192 ± 94 20.5 ± 9.6 54 ± 44 9.6 ± 0.5 71 ± 18

Nilotinib 10 400 ± 207 235 ± 126 10.5 ± 8.8 144 ± 82‡ 10.6 ± 1.0 79 ± 23

30 265 ± 103 168 ± 66 10.1 ± 2.6 117 ± 60‡ 10.6 ± 1.1 99 ± 17

Ponatinib 3 198 ±75* 129 ± 54 12.3 ± 6.0 78 ± 29 10.4 ± 1.9 77 ± 22

10 215 ± 61* 144 ± 38 158.2 ± 371.9 92 ± 68 15.2 ± 21.1† 250 ± 307**/‡

Effect of imatinib, nilotinib and ponatinib on BAL fluid, urinary ureum/creatinine ratio and inflammatory markers 
as measured at baseline (t=0 weeks) and after 16 weeks of treatment. Data are presented as means ± SD (n = 8–15  
per group).*p<0.05, **p<0.001 as compared to control, †p<0.05, ‡p<0.001 as compared to baseline. Abbreviations: 
BAL, broncho-alveolar lavage; MCP-1, monocyte chemoattractant protein-1; SAA, serum amyloid A.
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affected by any treatment (data not shown), but imatinib and ponatinib diminished the 
lesion area by 78% (p<0.001), 52% (3 mg/kg, p=0.002), and 48% (10 mg/kg, p=0.006), 
respectively (Figure 4A). In addition, the total lesion area that consisted of severe lesions 
was reduced by imatinib (−56%, p<0.001) (Figure 4B). Next, we evaluated whether this 
anti-atherogenic effect of imatinib and ponatinib could be explained by the reduction in 
plasma cholesterol levels. The square root of the lesion size was positively correlated with 

Figure 3  Effect of imatinib, nilotinib and ponatinib on plaque composition. Representative 

images of HPS staining, immunostaining with α-actin for SMCs, Sirius red staining for collagen 

and immunostaining with Mac-3 for macrophages. The arrows depict necrotic areas, including 

cholesterol clefts. Abbreviations: HPS, hematoxylin-phloxine-saffron; SMCs, smooth muscle cells; 

MAC-3, Purified anti-mouse CD107b Mac-3 Antibody.

Control
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plasma cholesterol exposure (mmol/L*weeks) in control, imatinib and high dose nilotinib 
and ponatinib treated mice (control R2=0.79, p=0.001; imatinib R2=0.71, p=0.003; ponatinib 
10 mg/kg R2=0.79, p<0.001; nilotinib 30 mg/kg R2=0.63, p=0.016) (Figure 5). Lesion size 
per cross-section was not correlated with inflammation markers or blood pressure, 
indicating a dominant role of plasma cholesterol and cholesterol-lowering by the drugs in 
the development of atherosclerosis.

Figure 4  Imatinib and ponatinib reduce atherosclerotic progression. After 16 weeks of treatment, 

the total lesion area per cross-section was assessed (A). Lesion severity was assessed, categorized 

as no lesions/undiseased, mild lesions (type I-III) and severe lesions (type IV-V) and expressed as 

percentage of total lesion area. (B). Data are presented as means ± SD (n=13–15 per group).**p<0.01 

***p<0.001. 

Figure 5  Atherosclerotic lesion area is correlated with cholesterol exposure. Correlation between 

cholesterol exposure (mmol/L*weeks) and the square root of the lesion area was calculated with a 

Pearsons’s correlation test (n=13–15 per group). 
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Imatinib improves plaque morphology 
To assess the plaque phenotype as a marker for vulnerability to rupture, lesion morphology 
was analyzed in the type IV and V lesions from mice treated with imatinib and the high 
dosages of nilotinib and ponatinib, as shown by representative images (Figure 3). The 
macrophage and necrosis content were quantified as factors that decrease plaque 
stability, and smooth muscle cell area in the cap of the lesions and collagen as factors that 
improve plaque stability (17,26,31) (Figure 6A). Average macrophage, necrotic core, 
collagen and αSMC content in the control group were 24 ± 8%, 4 ± 2%, 42 ± 10% and 4 ± 
3%, respectively (Figure 6A). Imatinib increased the collagen content by 47% (62 ± 17%, 
p=0.004) and tended to increase αSMC content (+38%, p=0.050), resulting in an enhanced 
lesion stability index (+216%, p=0.004) (Figure 6B). Nilotinib (10 mg/kg) decreased 
collagen content (−32%, p=0.003), resulting in a decreased lesion stability index (−43%, 
p=0.003). Ponatinib (3 mg/kg) decreased necrotic core content (−58%, p=0.001) without 
affecting plaque stability. Collectively, these data indicate that imatinib induces a more 
stable plaque phenotype with collagen-rich lesions.

Transcriptome analysis
Ponatinib adversely alters gene expression of coagulation factors 
To find early molecular signatures of other clinically relevant processes induced by the 
anti-CML drugs, gene expression and pathway analysis was performed in the liver as the 
central organ in lipid metabolism and synthesis of coagulation factors. To identify 
drug-specific molecular responses and overlap between the various treatments, the total 

Figure 6  Imatinib increases plaque stability. Necrotic and macrophage content as pro-inflammatory 

factors, and αSMCs and collagen as fortifying factors, were determined in the severe (type IV-V) 

lesions and expressed as percentage of total plaque area (A). Plaque stability index was calculated 

(B). Data are presented as means ± SD (n=13–15 per group). **p<0.01. Abbreviations: aSMC; α smooth 

muscle cells.
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number of differentially expressed genes (DEGs) was assessed and a Venn-diagram was 
constructed comprising all DEGs compared to control group. Both ponatinib and nilotinib 
displayed a dose-dependent increase in the total number of DEGs as compared to control 
and the molecular response of the high-dose ponatinib had more overlapping genes 
with imatinib than nilotinib (Figure 7).
	 General categorization of biological functions showed that all anti-CML drugs affect 
canonical pathways associated with mitochondrial dysfunction and oxidative phosphor-
ylation, most likely induced by oxidative stress and leading to reduced energy production, 
and processes involved in protein synthesis and cell growth (EIF2 signaling), confirming 
the target-related molecular responses of anti-CML drugs. (Figure 8).
	 The processes relevant to (cardio)vascular (side) effects of the anti-CML drugs are 
highlighted in Figure 9 and Figure 10. Although gene expression data from the liver 
cannot be directly extrapolated to atherosclerosis signaling in the vascular wall, gene 
expression profiles of different organs have affiliation with each other and may be 
predictive for these biological processes. Therefore, the transcriptome data of the liver as 
predicting organ are given. As compared to the other TKI’s, imatinib showed the most 
pronounced effects on atherosclerosis signaling, with favorable regulation of genes 
involved in cell adhesion (Integrin β2 and α4, Icam1, Vcam1, Psgl-1), macrophage activation 
(Cd40, Tnfrsf14, Scara1, Nfκb), lipid regulation (Lpl, Apoa1, Apoa2, Apoc2, Apoc4, Pla2g7), 
inflammatory processes (Cd40, Nfκb, Il1a, Tnfrsf14, Icam1, Vcam1) and genes related to 
extracellular matrix modulation (Col1a2, Col3a1, Col1a1, Mmp13, Tgf-β) (Figure 9). Ponatinib 
showed similar effects, but to a lesser extent, whereas these effects were not observed 
after nilotinib treatment (Figure 9).
	 As the site of synthesis of a large number of coagulation factors, the liver plays an 
important role in the regulation of hemostatic and thrombotic processes. Although all 
three TKIs to some extent affected the coagulation pathways, ponatinib had the most 
adverse profile (Figure 10). Ponatinib increased the gene expression of members of the 
intrinsic or contact activation pathway, Kng1a and Klkb1, mainly involved in growth of a 
thrombus, and of the extrinsic or tissue factor pathway F7, involved in initiation of thrombus 
formation, and decreased gene expression of Upa and Tpa, both involved in fibrinolysis. 
Nilotinib showed down-regulation of the expression of F5, F9, and Protein S, while Serpina1 
(PAI-1) was up-regulated. Imatinib down-regulated the expression of Upa, Tpa and Protein 

S and up-regulated Serpina1 and Protein C. This analysis demonstrates that among the 
three anti-CML drugs investigated ponatinib most prominently induces adverse alterations 
in the gene expression of coagulation factors in both the intrinsic and extrinsic pathway, 
which may lead to a state of hypercoagulability.
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Figure 8  To identify the most relevant processes affected by TKI treatment, we calculated the 

canonical biological processes/ pathways affected by imatinib 150 mg/kg (A), nilotinib 10 mg/kg 

(red bars) and 30 mg/kg (blue bars) (B) and by ponatinib 3 mg/kg (red bars) and 10 mg/kg (blue 

bars) (C). The relevance of each process is indicated by a pvalue of overlap. The p-value of overlap 

is calculated based on Fisher’s exact test which is set standard for overlap analysis in IPA-software. 

For visualization purposes the –log of the p-value of the top 20 processes are plotted on the x-axes 

(n=8 per group).

A

B
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Figure 8  Continued.

C

Figure 9  TKI treatment regulates many genes related to atherosclerosis signaling, with the most 

pronounced effect by imatinib. The heat map shows all significantly upregulated (red) and down-

regulated (green) genes involved in atherosclerosis signaling of mice treated with imatinib (150 mg/kg), 

nilotinib (30 mg/kg) or ponatinib (10 mg/kg) as compared to control mice. P-values of <0.01 were 

used as cut-off (n=8 per group).
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Coagulation
Ponatinib increases plasma factor VII and nilotinib increases factor VIIa activity 
Next, we measured total factor VII coagulant activity (FVII) and VIIa activity (FVIIa) in 
plasma. Ponatinib increased FVII after 4 weeks (10 mg/kg, +265%, p<0.001) and 12 weeks 
of treatment (3 mg/kg, +28%, p=0.07; 10 mg/kg + 82%, p<0.001) (Figure 11A). In addition, 
nilotinib increased the activity of FVIIa at 4 weeks by 82% (30 mg/kg, p<0.001) (Figure 11B). 
Together, these data confirm our findings on gene expression analysis and reveal the 
pro-thrombotic characteristics of nilotinib and ponatinib.

Figure 10  Genes in the coagulation system regulated by imatinib, nilotinib and ponatinib. The heat 

map shows all significantly (p<0.01) upregulated (red) and downregulated (green) genes involved 

in coagulation of mice treated with imatinib (150 mg/kg), nilotinib (30 mg/kg) or ponatinib (10 mg/

kg) as compared to control mice (A). Imatinib regulates genes involved in anti-coagulation and 

fibrinolysis (B). Factor 9a and 5a were down-regulated and SERPINA1 up-regulated by nilotinib 

(C). Ponatinib showed the most adverse profile with upregulation of genes in both the contact 

activation and tissue factor pathway, together with downregulation of genes involved in fibrinolysis 

(D). pvalues of <0.01 were used as cut-off (n=8 per group).

Imatinib 150 mg/kg

Nilotinib 30 mg/kg Ponatinib 10 mg/kg

Genes in coagulation system 
A

C

B

D
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Discussion

This is the first study that compared the effect of a first, second and third generation 
BCR-ABL1 tyrosine kinase inhibitor on (cardio)vascular risk factors and atherosclerosis. 
Imatinib and ponatinib decreased plasma cholesterol and atherosclerosis, while nilotinib 
and ponatinib activated coagulation. The pharmacokinetic data we provide enabled us to 
use drug exposures translatable to CML-patients and can be used to optimize future TKI 
research. In addition, we provide a robust data set obtained by gene expression and 
pathway analysis of the liver, which predicted that ponatinib may lead to a pro-coagulant 
state by adversely affecting coagulation factors of both the contact activation (intrinsic) 
and tissue factor (extrinsic) pathways, which was confirmed by increased levels of the 
coagulation factor VII. In addition, nilotinib increased activity of FVIIa. These findings can 
be used by clinicians to carefully monitor coagulation parameters in CML-patients to 
predict risk of cardiovascular events.
	 The choice to perform this study in a non-leukemic mouse model has several reasons. 
First, there is, inherent to the diagnosis and progression of the disease, a shortage of 
suitable high quality plasma samples of CML patients collected at both baseline and 
follow-up under similar conditions. Second, CML affects both metabolic (10) and 
coagulation (11) parameters which makes it difficult to elucidate the role of TKI treatment 
on the reported VAEs independently of the underlying disease. Last, we were able to 
investigate a broad range of parameters, including atherosclerosis and gene expression 
and pathway analysis of the liver, which is not possible in CML-patients.

Figure 11  Ponatinib increases factor VII and nilotinib increases factor VIIa activity. Factor VII was 

measured after 4 and 12 weeks of treatment as the percentage of activity in reference pooled mouse 

plasma (A). Factor VIIa activity was measured after 4 weeks of treatment (B). Data are presented as 

means ± SD (n=6–20 per group).***p<0.001. 
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Imatinib and ponatinib, but not nilotinib, decreased plasma cholesterol contained in the 
pro-atherogenic apoB-containing lipoproteins. Cholesterol reduction and even normalization 
in hypercholesterolemic CML-patients is repeatedly described in retrospective studies with 
CML-patients for imatinib (37–39,42) and is consistent with our findings. Data on ponatinib 
are scarce (42) and it is unclear whether nilotinib affects plasma cholesterol in CML-patients. 
Some studies reported increased plasma cholesterol (5,8,40,42), whereas others question 
this (43). These opposing findings may be explained by the response to the underlying 
disease. It should be noted that nilotinib is often prescribed as a second-line treatment 
after resistance to imatinib. Reduced caloric intake induced by the leukemia and increased 
energy requirements imposed by tumor growth may result in lower cholesterol levels at 
baseline, while a positive response to treatment is often accompanied by increased 
cholesterol levels in oncologic patients (44). This response-related cholesterol elevation 
may be abolished by the cholesterol-lowering effects of imatinib and ponatinib per se as 
found in our study, resulting in decreased (imatinib) or normalized (ponatinib) plasma 
cholesterol levels in CML patients.
	 Several mechanisms are involved in cholesterol homeostasis, including intestinal 
uptake, hepatic uptake and secretion as lipoproteins, synthesis and storage, and fecal 
excretion. The decreased hepatic lipid content in imatinib and ponatinib treated mice 
(Figure 2) points to a shortage of cholesterol in the liver and suggests that not lipoprotein 
clearance, but VLDL production and/or intestinal absorption of cholesterol are affected by 
imatinib and ponatinib. Indeed, when myeloid tumor cells are treated with imatinib, de 
novo fatty acid synthesis is reduced, pointing towards decreased VLDL particle production 
(45). However, besides the shared activity of TKIs used for CML-treatment against the 
BCR-ABL1 tyrosine kinase, the potency and activity to affect off-target kinases differs 
markedly, and thus different processes may be involved. To our knowledge, no in vivo 
studies are available that investigated the effects of TKI treatment on cholesterol and 
lipoprotein metabolism, and functional studies are required.
	 Important observations from our study are the reduced development of atherosclero-
sis by imatinib and ponatinib which was correlated to decreased plasma cholesterol levels, 
and the increased plaque stability induced by imatinib, which has not been reported 
previously by others. There are no reports that describe the effect of ponatinib on athero-
sclerosis development in an animal model, and there are inconsistent reports on imatinib 
and nilotinib. In line with our findings, imatinib reduced atherosclerosis in STZ-induced 
diabetic ApoE−/− mice (46) and high fat fed ApoE−/− mice (47), though lesion reduction was 
independent of plasma cholesterol lowering and attributed to vascular wall remodeling and 
reduced inflammation. Interestingly, and in contrast with previous (46–48) and the present 
findings, Hadzijusufovic et al (49). did not find an effect of imatinib on atherosclerosis in 
ApoE−/− mice, but reported increased atherosclerosis by nilotinib. In addition, a direct pro- 
atherogenic effect on human endothelial cells was found, as shown by upregulation of 
adhesion factors ICAM-1, E-selectin and VCAM-1 (49), which is in line with the increase of 
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markers of endothelial activation found in CML patients treated with nilotinib (50). Unfortunately, 
no data on plasma cholesterol and markers of endothelial activation in the mice were 
provided. We do not have a clear explanation for the discrepancy with our findings, but the use 
of different animal models and dosages, as well as the underlying disease may play a role.
	 Ponatinib increased plasma E-selectin and urinary albumin/creatinine in some 
animals, suggesting endothelial activation and potential endothelial dysfunction, wherein 
aberrant angiogenesis might be involved. Indeed, an in vitro study using human umbilical 
vein endothelial cells (HUVECs) demonstrated the potential of ponatinib to reduce 
endothelium viability, and to induce apoptosis, reduce migration, inhibit tube formation, 
and to negatively affect endothelial progenitor cell function, all important for angiogenesis 
(51). In addition, ponatinib reduced von Willebrand factor (vWF) expression on lung 
endothelial cells in rats (52), which is an interesting finding, because vWF is not only a 
specific marker for endothelial cells, but also functions in coagulation.
	 Although there were no clinical signs of thrombosis or bleeding in our long-term 
study, an unbiased and exploratory transcriptome analysis revealed that ponatinib 
treatment lead to a pro-thrombotic state by affecting important players in the activation 
of the coagulation pathway. Ponatinib increased gene expression of Klkb1, Kng1a (part of 
the intrinsic or contact activation pathway) and F7 (part of the extrinsic or tissue factor 
pathway) and decreased expression of Upa and Tpa, which function in resolution of thrombi 
by fibrinolysis. Consistent with the increased gene expression, plasma levels of factor VII 
were increased by 265%. Nilotinib had less pronounced effects on gene expression of 
coagulation factors but increased activity of FVIIa by 82%. Using a different experimental 
design, Alhawiti et al. (50) recently reported that a single dose of nilotinib but not imatinib 
increased platelet aggregation and thrombus growth ex vivo and in vivo in mice, and 
increased ex vivo platelet adhesion and thrombin generation in CML-patients receiving 
nilotinib (50). On the other hand, Loren et al. (53) demonstrated that ponatinib, but not 
imatinib and nilotinib, inhibited ex vivo human platelet activation, spreading and aggregation, 
and hypothesized that the cardiovascular events observed in patients treated with ponatinib 
may be the result of effects on other organs and cell types. Indeed, we show that FVII is 
involved, which is produced by the liver, and is an important factor in the coagulation 
pathway. Mice lacking FVII have delayed thrombus formation (54) and pharmacological 
doses of rFVIIa induce hemostasis in severe hemophilia and in non-hemophilia patients with 
profuse, heavy bleeding (55). Collectively, these data indicate that nilotinib and ponatinib 
can both potentiate a pro-thrombotic state via different mechanisms of action.
	 The presence of one or more risk factors for (cardio)-metabolic disease together with 
the increased platelet aggregation and increased plasma activity of factor VII/VIIa may 
contribute to the onset of thrombosis, especially when combined with increased levels of 
tissue factor (TF), which activates the TF pathway (Figure 10). Hypercoagulability has 
been described in a variety of malignancies, including hematological malignancies (55,56), 
and many tumor cells express high levels of TF, the primary initiator of the extrinsic 
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coagulation pathway (57). Therefore, we propose that nilotinib and ponatinib induce 
(athero) thrombosis in a subgroup of CML-patients through a combination of (cardio)-
metabolic risk factors, enhanced levels of TF and increased plasma levels of coagulation 
factors. Our findings can be used to develop a multivariate risk model for CVD in CML 
patients, which include (cardio) vascular risk factors and coagulation parameters at 
baseline and during treatment, facilitating an early detection strategy for patients prone 
to cardiovascular events, which will improve therapy decision and patient care.
	 In conclusion, using a comprehensive approach to measure the cardiovascular effects  
of various BCR-ABL1 inhibitors, we demonstrate that first, second and third generation 
BCR-ABL1 inhibitors have very distinct effects on lipid metabolism, blood coagulability 
and atherosclerosis. The first-generation inhibitor imatinib was proven safe, with evident 
benefit for plasma lipid concentrations, atherosclerotic plaque size and stability. The third- 
generation inhibitor ponatinib showed similar, albeit less pronounced effects on lipid 
concentrations and atherosclerosis, but also showed a hypercoagulable phenotype. 
These data perfectly match retrospective clinical observations on cardiovascular effects of 
BCR-ABL1 inhibitors, and besides providing a biological basis for these observations, may 
well contribute to safer application of these drugs in the future.
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Abstract

Objectives: Chronic myeloid leukemia (CML) is treated with BCR-ABL1 tyrosine kinase 
inhibitors (TKIs), but modulations in plasma lipids occur. The objectives of this study were 
to evaluate the effect of three generations TKIs on plasma cholesterol and triglyceride (TG) 
metabolism and to investigate the underlying mechanism using APOE*3-Leiden.CETP 
mice, a model that mimics human lipoprotein metabolism. 
Methods and results: Mice were fed a Western-type diet and were treated for 6 weeks 
with either imatinib, nilotinib or ponatinib at drug exposures relevant to CML patients.  
The effects on plasma and liver lipids, lipoprotein metabolism, and fecal lipid excretion 
were assessed. Imatinib decreased plasma non-high-density lipoprotein cholesterol 
(non-HDL-C) (-52%) and TG (-42%) mainly by reducing VLDL-TG and VLDL-apolipoprotein-B 
production, and reduced cholesterol ester (CE) content of the VLDL particles. This was 
accompanied by a reduction in the majority of the lipid classes (triacylglycerols, CEs, glyc-
erophospholipids), including the pro-atherogenic sphingolipids, as determined by 
lipidomics analysis. Ponatinib decreased plasma non-HDL-C levels (‑26%) by lowering 
intestinal cholesterol absorption. Moreover, ponatinib reduced the CE content in the liver 
and in the VLDL particles. Nilotinib did not affect lipoprotein metabolism.
Conclusions: Our data confirm the lipid-lowering effects of imatinib in CML-patients and 
provide an explanation by showing that imatinib and ponatinib affect lipoprotein metabolism 
through distinct mechanisms. 
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Introduction

BCR-ABL1 tyrosine kinase inhibitors (TKIs) are the standard of care for treatment of chronic 
myeloid leukemia (CML). The first line TKI imatinib is effective and safe, but not all patients 
do have a complete cytogenetic response or develop drug resistance. Consequently, 
novel and more potent TKIs have been developed, e.g. nilotinib and ponatinib, the latter 
as the only TKI with activity against the T315I mutation. Unfortunately, cardiovascular 
safety issues including ischemic heart disease and progressive arterial occlusive disease 
(PAOD) have been reported with nilotinib and ponatinib (1–4), which preferentially 
developed in those patients having a (very) high cardiovascular risk according to the 
SCORE chart (5,6).
	 Several studies describe plasma lipid modulations in CML-patients during TKI 
treatment. Imatinib consistently decreases plasma cholesterol, and even normalization in 
hypercholesterolemic CML-patients has been reported (7–10). Retrospective analysis of 
phase III studies revealed a lower incidence of cardiovascular events in patients treated 
with imatinib relative to patients treated without TKIs (11). In contrast, several studies with 
nilotinib reported increased plasma cholesterol levels (1,10,12,13), although these findings 
are not consistent (14). Data on ponatinib are scarce but one study reported no alterations 
in plasma lipids (10).
	 It is worth noting that in the setting of CML, both indirect effects of the underlying 
disease as well as direct effects of TKI-treatment may modulate cardiovascular risk factors, 
including plasma lipid levels. Therefore, we have previously investigated the (patho)
physiology of the decreased cardiovascular risk by imatinib and the increased 
cardiovascular risk by nilotinib and ponatinib using a mouse model without CML, the 
APOE*3-Leiden.CETP mouse (15). At similar drug exposures as in CML-patients, we found 
that imatinib reduced plasma cholesterol and triglyceride (TG) levels, decreased athero-
sclerotic lesion size and improved lesion stability, all in line with the reported lipid 
reductions and improved cardiovascular outcome in CML-patients during imatinib 
treatment (7–11). Furthermore, ponatinib reduced plasma cholesterol levels and athero-
sclerosis progression, whereas nilotinib did not affect plasma lipid levels or atherosclerosis. 
Interestingly, nilotinib and ponatinib adversely affected genes involved in coagulation 
and increased plasma levels of FVII (ponatinib) and FVIIa (nilotinib) (15), important factors 
in the pathogenesis of atherothrombotic events. These findings suggest that not enhanced 
atherosclerosis progression, but changes in coagulation are related to the observed 
cardiotoxicity by nilotinib and ponatinib. 
	 The lipid-modulating effects of imatinib are well described, but there are no reports 
that provide a mechanistical explanation for the observed effects. Also, little is known 
about the ability of ponatinib to affect lipoprotein metabolism, and the inconsistent 
effects of nilotinib on plasma lipids in CML-patients require further investigation. Therefore, 
the aim of this study was to investigate the mechanism underlying the ability of these TKIs 
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to affect lipid homeostasis. As in our previous study, we used the APOE*3-Leiden.CETP 
mouse model, since these mice, like humans, have a delayed clearance of apolipoprotein-B 
(apoB)-containing lipoproteins and express cholesteryl ester transfer protein (CETP), 
resulting in a lipoprotein profile similar as in patients with familial dysbetalipoproteinemia,  
and a human-like lipoprotein metabolism (16). This mouse model responds to all hypo-
lipidemic drugs used in the clinic similarly as patients (17–19) and has been widely used  
to study the effect of drugs and other compounds on atherosclerosis (18–21), lipoprotein 
metabolism (22–26) and cardiovascular safety (27), including our previous study with 
BCR-ABL1 inhibitors (15).

Materials and methods

Animals
Eighty female APOE*3-Leiden.CETP transgenic mice on a C57BL/6 background (9 - 12 
weeks of age) were obtained from the breeding facility of the Netherlands Organization 
of Applied Scientific Research (TNO), Leiden, the Netherlands. In this study, 4 groups of 16 
- 17 mice were used, and per treatment group the mice were divided into two groups of 
each 8 - 9 mice as two different endpoint experiments were performed (Table 1). The 
number of mice was based on our experience from previous studies and was calculated 
using a probability of 0.05. We expected to have a variance of 18% in the endpoint 
experiments (VLDL clearance or VLDL production), a minimal difference of 50% and a 
two-sided test with 95% confidence interval, which resulted in 8 animals per experiment. 
Since, it is known that approximately 20% of the APOE*3-Leiden.CETP mice do not respond 
properly to the Western-type diet with respect to increasing their plasma cholesterol (TC) 
and TG (i.e. low-responders), the study initially started with 80 mice. Mice were fed a 
semi-synthetic diet, containing 15% (w/w) saturated fat from cacao butter and 0.15% 
(w/w) cholesterol (Western-type diet [WTD]; Altromin, Tiel, the Netherlands) for 3 weeks, 
and subsequently the low-responder mice were selected based on TC and TG levels and 
removed from the study prior to allocation into groups (Table 1). Since there were less 
low-responders as predicted, 67 mice were randomized according to body weight, age, 
plasma TC, and TG levels in 4 groups of 16 - 17 mice. The mice entered the study in a 
staggered way of 1 week apart with two batches of each 8 - 9 mice per group. During the 
study, mice were group-housed (4 - 5 mice per cage) under standard conditions with a 
12-h light-dark cycle and had free access to food and water. Body weight, food intake and 
clinical signs of discomfort were monitored regularly during the study. The care and use of 
all mice in this study was carried out at the animal facility of TNO in accordance with 
national and EU ethical regulations. Animal experiments were approved by the Institutional 
Animal Care and Use Committee of TNO under registration number 3682. 
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Experimental design
Upon randomization, mice received, based on the results of a previous pharmacokinetic 
(PK) study (15), an once-daily oral gavage with nilotinib (30 mg/kg), ponatinib (10 mg/kg), 
or a twice-daily gavage with imatinib (150 mg/kg) for 3 weeks to confirm our previous 
findings on plasma lipids (15), after which the doses were reduced for nilotinib (10 mg/kg) 
and ponatinib (3 mg/kg) to match better with relevant human doses (15). Doses and dose 
intervals were based on data obtained from a previously performed PK study (15). All The 
TKIs were suspended in 5% carboxymethyl cellulose (CMC) and all mice except the 
imatinib group received a second oral gavage with the vehicle (5% CMC). Body weight, 
food intake, plasma TC, TG, and high-density lipoprotein-cholesterol (HDL-C) were 
measured throughout and non-HDL-C was calculated by subtracting HDL-C from TC. 
Feces were collected in week 5 for the determination of bile acids and fecal neutral sterols. 
Lipidomics analysis was carried out in 4-hour fasted plasma of 8 mice per treatment group 
from week 6. After 6 weeks of treatment, two different endpoint experiments were 
performed: (I) very-low density-lipoprotein (VLDL)-like particle clearance was determined 
in 8 mice per treatment group, and (II) VLDL production and de novo apoB synthesis was 

Table 1  Study design

Time 
(weeks)

All mice (n = 80)

-3 to 0 Run-in/acclimatization on a Western type diet

0 Selection and exclusion of low-responders (n = 13)

0 Matching in 4 groups based on plasma cholesterol, triglycerides, age and body weight

Time 
(weeks)

In life phase (4 groups of 16 - 17 mice)

0, 3, 6 Body weight, food intake and plasma parameters

5 Fecal neutral sterols and bile acids 

5 Cholesterol absorption

6 Lipidomics

Time 
(weeks)

End-experiment 1 (n = 8 per group) End-experiment 2 (n = 8 - 9 per group)

6 VLDL clearance VLDL production

Hepatic lipid content

After a run-in period of 3 weeks on a Western-type diet mice were matched in 4 groups of each 16   17 mice and 
were treated for 6 weeks with 3 generations TKIs, imatinib (150 mg/kg BID), nilotinib (30 mg/kg QD for the first 3 
weeks and 10 mg/kg QD during the last 3 weeks) or ponatinib (10 mg/kg QD first 3 weeks and 3 mg/kg QD last 3 
weeks). After 6 weeks, mice were divided into 8 - 9 mice per group per experiment to assess VLDL clearance and 
VLDL production. Abbreviations: VLDL, very-low-density-lipoprotein



535938-L-sub01-bw-Pouwer535938-L-sub01-bw-Pouwer535938-L-sub01-bw-Pouwer535938-L-sub01-bw-Pouwer
Processed on: 16-9-2019Processed on: 16-9-2019Processed on: 16-9-2019Processed on: 16-9-2019 PDF page: 112PDF page: 112PDF page: 112PDF page: 112

112

CHAPTER 5

assessed in 8 - 9 mice per treatment group as described previously (26). Hepatic lipid 
content was analyzed in mice of experiment 1 (Table 1). 

Plasma biochemical analysis
Plasma samples were collected in week 0, 3 and 6 after a 4-hour fast. Plasma TC and TG 
were determined using enzymatic kits (TC: Roche/Hitachi, catalogue# 11491458216, TG: 
Roche/Hitachi, catalogue# 11730711216) according to the manufacturer’s protocols. HDL-C was 
measured after precipitation as described previously (21). Alanine aminotransferase (ALT) 
and aspartate aminotransferase (AST) enzymatic activity was measured by reflectance 
photometry using a Reflotron® Plus analyzer (Hoffman-La Roche, Basel, Switzerland).

Excretion of fecal sterols and bile acids
Fecal excretion of bile acids and neutral sterols was determined in feces, collected per 
cage during a 48- to 72-hour time period at three consecutive time points at week 5, 
by gas chromatographic analysis as described by Post et al (28). 

In vivo clearance of VLDL-like particles 
Mice (8 per treatment group) were fasted for 4 hours and injected in the tail vein with 
VLDL-like particles (80 nm) containing 3H-labelled fatty acids (FA) (as glycerol tri[3H]-
oleate, [3H]-TO) and 14C-labelled cholesteryl oleate (as [14C]-cholesteryl oleate, [14C]-CO). 
At t=2, 5, 10 and 15 minutes post-injection, blood was collected to determine the plasma 
decay of [3H]-TO and [14C]-CO. At 15 minutes, mice were euthanized by cervical dislocation  
and perfused with heparin 10 U/mL in ice-cold PBS for 5 minutes. Organs (i.e. small 
intestine, right kidney, heart, spleen, lung, brown adipose tissue (BAT), gonadal white 
adipose tissue (gWAT), subcutaneous WAT (sWAT), femoral muscle and liver) were 
harvested and saponified overnight in 500 μl Solvable (Perkin-Elmer, Wellesley, MA) to 
determine [3H]-TO and [14C]-CO uptake. Retention of radioactivity in the saponified 
tissues was measured as % of the injected dose, and the half-life of VLDL-[3H]-TO and 
VLDL-[14C]-CO was calculated from the slope after linear fitting of semi-logarithmic decay 
curves as described previously (22,25,26,29).

Hepatic VLDL-TG and VLDL-apoB production
Mice (8 - 9 per treatment group) were fasted for 4 hours prior to the start of the experiment. 
During the experiment, mice were sedated with acepromazine-midazolam-fentanyl intra-
peritoneally [6.25 mg/kg acepromazine (Ceva Santé Animale), 6.25 mg/kg midazolam 
(Actavis), and 0.3125 mg/kg fentanyl (Bipharma)]. At t=0 minutes, blood was taken via tail 
bleeding and mice were intravenously (IV) injected with 100 µl phosphate buffered saline 
(PBS) containing 20 μCi Trans[35S]-labelled methionine/cysteine (ICN Biomedicals, Irvine, 
CA) to measure de novo apoB synthesis. After 30 minutes, the mice received a Triton 
WR1339 IV injection (500 mg/kg body weight), which inhibits lipoprotein lipase (LPL) 
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mediated lipolysis, thereby blocking VLDL clearance. Blood samples were drawn at 0, 15, 
30, 60 and 90 minutes after Triton WR1339 injection and used for determination of the 
plasma TG concentration. After 90 minutes, the animals were sacrificed by cervical 
dislocation and blood was collected by heart puncture for subsequent isolation of VLDL 
by density-gradient ultracentrifugation. [35S]-apoB was measured in the VLDL fraction 
after apoB-specific precipitation, and VLDL-apoB production rate was calculated as 
disintegration per minute (dpm)/h, as previously reported (22,25,26,29). The free 
cholesterol (FC), cholesterol ester (CE), TG and phospholipid (PPL) content of the VLDL 
particles was determined using the kits “Cholesterol CHOD-PAP” (Roche, Mannheim, 
Germany), “Free cholesterol E” (Instruchemie, Delfzijl, the Netherlands), “Triglycerides 
GPO-PAP” (Roche, Mannheim, Germany), and “Phospholipids” (Instruchemie, Delfzijl, the 
Netherlands), respectively. 

Hepatic lipid analysis
Frozen liver tissue samples of lobus sinister lateralis hepatis were homogenized at 4oC in 
phosphate-buffered saline, and the protein content was measured using a Lowry protein 
assay. Lipids were extracted, separated by high-performance thin-layer chromatography 
on silica gel plates, stained as described previously (30), and analyzed with ChemiDoc 
Touch Imaging System (Bio-Rad). TG, CE and FC content were quantified using Image-lab 
version 5.2.1 software (Bio-Rad) and expressed per mg liver protein.

Lipidomics analysis in plasma
Lipidomics analysis was carried out in 4-hour fasted plasma collected at week 6 of 8 mice 
per treatment group on the commercial Lipidyzer platform, according to the manufacturer’s 
instructions (Sciex).

Excluded data
Of one mouse, a TC/non-HDL-C value misses (t=0 weeks) and of three mice, a HDL-C/
non-HDL-C value misses (control t=0 weeks, 1 mouse; imatinib t=3 weeks, 1 mouse; 
ponatinib t=6 weeks, 1 mouse) as there was not enough plasma to measure TC and/or 
HDL-C. Six mice were excluded from analysis of the VLDL clearance experiment because 
the VLDL-like particles containing [3H]-TO and [14C]-CO, were not fully intravenously 
injected as confirmed by the absence of [14C]-CO in plasma collected at t=0 minutes 
(control, 1 mouse; nilotinib, 2 mice), or because the clearance curve showed aberrant 
results (i.e. higher [14C]-CO levels compared to the previous time point) (ponatinib, 3 
mice). Four mice were excluded from the VLDL-TG production experiment: in two mice 
the [35S]-label was not fully intravenously injected demonstrated by absence of 
[35S]-decay in the plasma (control, 1 mouse; nilotinib, 1 mouse) and two mice were 
excluded as there was no plasma left to measure [35S]-decay (imatinib, 1 mouse; ponatinib, 
1 mouse). 
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Data and statistical analysis
Data are presented as means ± SEM. A Kruskal–Wallis test was used to determine the 
significance of differences between the groups. Significance of differences of the individual 
groups with the control was calculated nonparametrically using a Mann–Whitney U-test. 
The lipidomics data were analyzed using a one-way ANOVA, and when the significance 
level of F was P < 0.05, a Dunnett’s post hoc test was used to compare the treatment 
groups with the control group. IBM SPSS v24.0 was used for all analyses and P values < 0.05 
were considered statistically significant. The data and statistical analysis comply with the 
recommendations on experimental design and analysis in pharmacology (31).

Results

Plasma drug concentrations 
Based on data of our previously performed PK study (15) treatment with imatinib (150 mg/
kg, BID), nilotinib (10 mg/kg, QD) and ponatinib (3 mg/kg, QD) resulted in similar drug 
exposures as reported in CML-patients (15).

Safety aspects of TKI treatment
No clinical signs of deviant behavior were noted in any treatment group. TKI treatment did 
not affect food intake or body weight in the mice (Table 2). Plasma ALT and AST, measured 
after 3 and 6 weeks of treatment, showed no aberrant results (Table 2). Mean body 
weight, food intake, ALT and AST were similar for mice of experiment 1 (VLDL clearance) 
and experiment 2 (VLDL production) for each treatment group (Table 2). Analogous to 
this short-term study, no adverse/toxic side-effects of the drugs were noted during 
long-term (16 weeks) exposure to the same doses for imatinib (150 mg/kg, BID), nilotinib 
(30 and 10 mg/kg, QD) and ponatinib (10 and 3 mg/kg, QD), as reported previously (15).

The effect of TKI treatment on plasma lipids
Imatinib and ponatinib decreased plasma cholesterol
The effect of TKI treatment on plasma lipids was assessed throughout the study (Figure 1 
and Table 2). Imatinib markedly decreased plasma TC (Figure 1A), non-HDL-C (i.e. 
apoB-containing lipoproteins) (Figure 1B) and TG (Figure 1C) levels after 3 and 6 weeks 
of treatment, and ponatinib decreased plasma TC and non-HDL-C levels (Figure 1A and C). 
Nilotinib reduced plasma TG after 6 weeks of treatment (Figure 1C). These data confirm 
our previous findings (15) and correspond with the lipid-lowering properties of imatinib in 
patients (7–10).
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Figure 1  Imatinib and ponatinib decrease plasma lipids. Mice received a Western-type diet and 

were treated for 6 weeks with 3 generations TKIs, imatinib (150 mg/kg BID), nilotinib (30 mg/kg QD 

for the first 3 weeks and 10 mg/kg QD during the last 3 weeks) or ponatinib (10 mg/kg QD first 

3 weeks and 3 mg/kg QD last 3 weeks). At baseline (t0) and after 3 and 6 weeks of intervention, 

4-h fasted blood was taken and plasma was assayed for TC (A), non-HDL C (B) and TG (C). Non-HDL-C 

was calculated by subtracting HDL-C from TC. Data are presented as means + SEM. n=16-17 per 

group. *p<0.05 as compared to the control group. Abbreviations: TC, total cholesterol; (non)-HDL-C, 

high-density lipoprotein-cholesterol; TG, triglycerides
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The effect of TKI treatment on lipoprotein and lipid metabolism
Imatinib decreased de novo VLDL synthesis and CE content of VLDL lipoproteins
Plasma VLDL levels are defined by the balance between VLDL production and VLDL 
clearance. We first determined the clearance and tissue uptake of glycerol tri[3H]oleate 
([3H]-TO), representing FFAs and TGs, and [14C]cholesteryl oleate ([14C]-CO) by several 
organs at t=6 weeks in experiment 1. The clearance and tissue uptake of [3H]TO (Figure 
2A-B) and of [14C]CO (Figure 2C-D) were not affected by TKI treatment, indicating that 
the lipid-modulating effects of imatinib and ponatinib cannot be explained by an 
increased VLDL clearance.

Figure 2  TKI treatment does not affect VLDL clearance and uptake. At t=6 weeks, 4-h fasted mice 

in experiment 1 were injected with glycerol tri[3H]oleate ([3H]TO) and [14C]cholesteryl oleate ([14C]

CO)-labeled emulsion particles. [3H]TO plasma decay was plotted (A) and clearance of ([3H]TO) in 

individual organs was determined (B). [14C]CO plasma decay was plotted (C) and clearance of [14C]

CO in individual organs was determined (D). Data are represented as mean ± SEM (n=5-8 per group). 

Abbreviations: Intestine, small intestine; BAT, brown adipose tissue; gWAT, gonadal white adipose 

tissue; sWAT, subcutaneous white adipose tissue; muscle, muscle femoralis
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Next, we determined the VLDL-TG and VLDL-apoB production rate and the composition of 
the VLDL particles. Imatinib reduced VLDL-TG production (Figure 3A-B) and de novo 
VLDL-apoB synthesis (Figure 3C). Consequently, the TG production per apoB was not 
affected by imatinib (Figure 3D), indicating that the number of newly synthesized VLDL 
particles is decreased. Furthermore, imatinib and ponatinib decreased the amount of CE 
in the VLDL particles (Figure 3E). In contrast, nilotinib did not affect VLDL production. 
Altogether, these data demonstrate that imatinib reduced plasma TC and TG levels by 
decreasing the number of newly synthesized VLDL particles and the CE content of the 
VLDL particles, whereas ponatinib decreased the CE content of the particles.

Figure 3  Imatinib decreases de novo VLDL-apoB production. At t=6 weeks, 4-h fasted mice in 

experiment 2 were injected with Tran[35S]-label and Triton after which blood samples were drawn 

up to 90 minutes. Plasma VLDL-TGs were plotted (A) and used to calculate the TG production rate (B) 

from the slope of individual curves. Ninety minutes after Triton injection plasma was used to isolate 

VLDL by ultracentrifugation, and the rate of de novo apoB synthesis was determined (C). Next, we 

calculated the TG production per apoB (D) and determined the lipid composition of the isolated 

VLDL particles (E). Data are represented as mean ± SEM (n=7-9 per group). *p<0.05 as compared to 

the control group. Abbreviations: FC, free cholesterol; CE, cholesterol ester; TG, triglycerides; PPL, 

phospholipids; apoB, apolipoprotein B.
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Ponatinib decreased hepatic CE content and cholesterol absorption
Because a decreased VLDL-apoB particle production rate may be the result of changes in 
hepatic lipid metabolism, we determined hepatic lipid content and fecal excretion of bile 
acids and neutral sterols. 
	 Imatinib did not affect hepatic lipid content (Figure 4A), indicating that the reduced 
VLDL particle production does not result in hepatic lipid accumulation, nor is the 
consequence of reduced availability of lipids for VLDL synthesis. Interestingly, ponatinib 
decreased hepatic CE content (Figure 4A), which may be related to reduced intestinal 
cholesterol absorption (30,32). Therefore, we measured fecal neutral sterol excretion and 

Figure 4  Ponatinib decreases hepatic CE content, bile acid excretion and cholesterol absorption. 

At t=6 weeks, livers were isolated from mice in experiment 1 and hepatic lipid content per mg 

liver protein was assessed (A). At t=5 weeks, feces from both experiments were collected per cage 

during a 48-72h period at 3 consecutive time points, in which neutral sterol excretion (B) was 

determined using gas chromatography. Total cholesterol balance (C) was calculated by subtracting 

fecal cholesterol excretion from dietary cholesterol intake. Bile acids (D) were determined in feces 

using gas chromatography, and Cyp7a1 mRNA expression was measured in the liver (E). Data are 

represented as mean + SEM (n=8 mice per group; n=4 cages and 3 time points per group). *p<0.05 

as compared to the control group. Abbreviations: FC, free cholesterol; CE, cholesterol ester; TG, 

triglycerides.
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calculated the net cholesterol absorption by subtracting the fecal neutral sterol excretion 
from the average dietary cholesterol intake (Figure 4C). Indeed, ponatinib increased the 
total cholesterol excretion (Figure 4B), thereby decreasing the net cholesterol absorption 
by 12.7 µmol/100 gram mouse per day (Figure 4C). Imatinib and nilotinib did not affect 
intestinal cholesterol absorption (Figure 4C). In addition, both imatinib and ponatinib 
reduced bile acid excretion (Figure 4D), via downregulation of the expression of 
Cholesterol 7alpha-hydroxylase (Cyp7a1), encoding the rate-limiting enzyme in bile acid 
synthesis (Figure 4E). Altogether, these data indicate that ponatinib reduced intestinal 
cholesterol uptake and consequently hepatic CE content, whereas imatinib did not affect 
hepatic lipid storage. 

Plasma lipidomics analysis
Imatinib reduced the majority of lipid classes in plasma
Bioactive lipids, in particular sphingolipids including ceramides, are major regulators of 
lipid homeostasis (33) and together with (lyso-)glycerophospholipids play a role in 
atherogenesis (34–36). Therefore, we performed lipidomic analyses of plasma samples to 
identify characteristic molecular lipid changes of TKI treatment. Concentrations of almost  
all lipid classes were reduced by imatinib (Figure 5A), and the reductions in CE (-62%)  
and triacylglycerols (TAG) (-60%) were comparable with the observed reductions in 
plasma cholesterol (-49%) and TG (-42%) at 6 weeks of treatment (Figure 1A and C). These 
decreases were accompanied by reductions in the concentrations of glycerophospholipids 
(phosphatidylcholines and phosphatidylethanolamines), a subgroup of lipids that form 
the outer layer of lipoproteins, but are also recognized for their role in atherosclerosis 
development (36). Moreover, imatinib reduced the concentration of the pro-atherogenic 
sphingomyelins (-49%), ceramides (-55%), hexosylceramides (-50%) and lysophosphatidyl-
cholines (LPC) (-45%) (Figure 5A). In contrast, ponatinib only reduced the concentration 
of CE by 38% (Figure 5C), in line with the decrease in plasma TC, without affecting TAG, 
phospholipids or sphingolipids. Nilotinib did not affect any of the lipid classes (Figure 5B). 
Normalization for plasma non-HDL-C levels revealed that the majority of the observed 
changes was associated with plasma non-HDL-C levels (Figure 5 D-F), except for the 
concentration of FFA in imatinib-treated mice, which was increased by 100% per µM 
non-HDL-C (Figure 5D) as expected, since FFA is bound to albumin and not present as 
such in lipoproteins. Collectively, the combined reduction in CE, TAG and phospholipids 
by imatinib confirms our finding that the drug decreases the number of VLDL particles, 
while the decreased concentration of sphingomyelins is in accordance with a more 
favorable cardiovascular profile of imatinib.  The absolute concentrations for each lipid 
class quantified in mouse plasma are presented in Table 3.
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Figure 5  Differences in lipid class concentrations in plasma of mice treated with imatinib and 

ponatinib. After 6 weeks of treatment, 4-h fasted blood was taken, lipids were extracted from the 

plasma and the concentration (nmol/gram plasma) of 13 lipid classes was determined by MS/MS. The 

mean changes in concentration (%) for each lipid class compared to the control group are depicted 

for imatinib (A), nilotinib (B) or ponatinib (C). Next, the mean change in concentration (%) per µM 

plasma non-HDL cholesterol was calculated for each lipid class compared to the control group and 

depicted for imatinib (D), nilotinib (E) and ponatinib (F). Significance of differences between the 

treatment groups versus control was calculated using an one-way ANOVA with Dunnett post-hoc 

test using the data of which the means are depicted in Table 3. (n=8 mice per group). *p<0.05 as 

compared to the control group with significant changes shown in blue bars.  Abbreviations: Non-

HDL-C, non-high density-lipoprotein cholesterol; TAG, triacylglycerols; DAG, diacylglycerols; CE, 

cholesteryl esters; FFA, free fatty acids; PC, phosphatidylcholines; PE, phosphatidylethanolamines; 

LPC, lyso-phosphatidylcholines; LPE, lyso-phosphatidylethanolamines; SM, sphingomyelins; CER, 

ceramides; DCER, dihydroceramides; HCER, hexosylceramides; LCER, lactosylceramides.
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Discussion

To our knowledge, this is the first in vivo study that investigated the effects of three 
different BCR-ABL1 tyrosine kinase inhibitors on lipoprotein metabolism, of which the 
results are summarized in Table 4. We confirm the lipid-lowering ability of imatinib as 
reported in CML patients, and provide evidence using APOE*3-Leiden.CETP mice that  
this is caused by a reduction of the VLDL particle production and CE content of the VLDL 
particles. This observation is supported by lipidomics analysis showing a reduction of 
glycerophospholipids in the plasma, which form the outer layer of the VLDL particles.  
The decreased concentration of the pro-atherogenic sphingomyelins, ceramides and 
(lyso‑)phospholipids further contributes to the favorable cardiovascular safety profile of 
imatinib (11,15). Ponatinib also reduced plasma cholesterol, but the identified mechanism 
of action differed from imatinib. A decrease of intestinal cholesterol absorption led to a 
reduction of hepatic CE content, an accumulative process as long-term (16-week) exposure to 
ponatinib further decreased hepatic lipid content, including FC and TG (15). As a consequence 

Table 3  Plasma concentrations of lipid classes

Concentration (nmol/gram plasma)

Lipid class Control Imatinib Nilotinib Ponatinib

TAG 3697 ± 1798 1478 ± 901* 2979 ± 825 3551 ± 1926

DAG 52.6 ± 21.0 25.3 ± 13.3* 41.7 ± 5.9 62.4 ± 24.5

CE 10905 ± 4036 4092 ± 1012* 8407 ± 2383 6800 ± 2435*

FFA 1352 ± 474 1001 ± 151 1008 ± 177 1309 ± 388

PC 3854 ± 1237 1724 ± 503* 2973 ± 551 3411 ± 1246

PE 117.6 ± 39.2 60.8 ± 15.4* 91.8 ± 13.7 114.8 ± 46.6

LPC 1035 ± 345 571 ± 134* 871 ± 162 974 ± 299

LPE 13.3 ± 5.1 6.8 ± 1.7* 11.2 ± 1.9 13.0 ± 5.1

SM 1086 ± 385 550 ± 164* 862 ± 171 940 ± 345

CER 19.1 ± 7.4 8.6 ± 3.3* 14.9 ± 2.6 16.4 ± 6.0

DCER 1.9 ± 0.8 1.3 ± 0.7 1.3 ± 0.3 1.5 ± 0.4

HCER 18.9 ± 8.3 9.4 ± 2.6* 14.9 ± 3.7 19.9 ± 7.0

LCER 1.1 ± 0.7 0.6 ± 0.3 1.1 ± 0.2 1.2 ± 0.5

After 6 weeks of treatment lipidomic analysis was performed in 4-hour fasted blood (n=8 mice per group). 
*p<0.05 as compared to the control group. Abbreviations: TAG, triacylglycerols; DAG, diacylglycerols; CE, 
cholesteryl esters; FFA, free fatty acids; PC, phosphatidylcholines; PE, phosphatidylethanolamines; LPC, lyso-
phosphatidylcholines; LPE, lyso-phosphatidylethanolamines; SM, sphingomyelins; CER, ceramides; DCER, 
dihydroceramides; HCER, hexosylceramides; LCER, lactosylceramides.
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of the limited substrate availability for lipoprotein synthesis, the CE content of the VLDL 
particles was reduced. In contrast to imatinib, the VLDL-TG production rate was maintained 
and thus, plasma TG levels were not affected. Ponatinib did not additionally reduce sphingolipids, 
which contributes to the pro-atherogenic profile of the drug (2,3). Importantly, nilotinib 
had no effect on lipoprotein metabolism and it is reasonable to believe that the lipid 
elevations reported with nilotinib in CML-patients (1,10,12,13,37) are caused by response  
to treatment rather than being a direct effect of off-target (kinase) inhibition.
	 In CML-patients, it is challenging to distinguish between disease-related lipid modulation 
or off-target effects of TKI treatment on lipoprotein metabolism. Reduced caloric intake 
and increased energy requirements imposed by tumor growth may result in reduced 
plasma cholesterol and TG levels at the moment of diagnosis (38), whereas good response 
to treatment increases plasma lipid levels again (39,40). In addition, early versus late 
diagnosis, individual patient characteristics, the presence of one or more risk factors, and 
previous or current treatment with other TKIs or drugs may affect plasma cholesterol 

Table 4  �Summary of the (cardio)metabolic effects of imatinib, nilotinib and ponatinib 
in APOE*3-Leiden.CETP mice

Effects in APOE*3-Leiden.CETP mice

Imatinib Nilotinib Ponatinib

Plasma parameters

Total cholesterol ↓ ↓

Non-HDL cholesterol ↓ ↓

Triglycerides ↓ ↓*1

Pro-atherogenic sphingolipids ↓

Lipoprotein metabolism

VLDL particle production rate ↓

CE content of the VLDL particles ↓ ↓

Hepatic lipid content ↓

Intestinal lipid absorption ↓

Cardiovascular safety effects*2

Atherosclerosis progression ↓ ↓

Coagulation ↑ ↑

Mice received a Western-type diet and were treated for 6 weeks with 3 generations TKIs, imatinib (150 mg/kg 
BID), nilotinib (30 mg/kg QD for the first 3 weeks and 10 mg/kg QD during the last 3 weeks) or ponatinib (10 mg/
kg QD first 3 weeks and 3 mg/kg QD last 3 weeks). Plasma parameters were measured after 3 and 6 weeks of 
treatment. Intestinal lipid absorption was measured after 5 weeks of treatment, and the parameters regarding 
lipoprotein metabolism were measured at end-point. *1 reduced at t=6 weeks, not at t=3 weeks. *2 The effects on 
atherosclerosis and coagulation were determined in our previous study (15).
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levels. To exclusively focus on the off-target effects of TKI-treatment, we have used a mouse 
model without CML, but with a human-like lipoprotein metabolism, the APOE*3-Leiden.
CETP mouse model. Unlike wildtype rodents, these mice have a delayed apoE-LDLR-
mediated clearance pathway of atherogenic apoB-containing lipoproteins and express CETP 
(16), and develop hypercholesterolemia upon a Western-type diet. This well-characterized 
model has been widely used to study lipoprotein metabolism (22,24–26,41) and responds 
similarly as humans do to hypolipidemic drugs used in the clinic, including statins, fibrates, 
niacin and PCSK9-inhibitors (18,19,25,42,43). To further improve the translatability of our 
results, the dose and dose interval of the treatments were based on data of our previously 
performed PK study (15), resulting in drug concentrations similar as in CML-patients. The 
lipid-lowering effects of imatinib and ponatinib were induced within 3 weeks and the 
magnitude of the changes in plasma lipid levels were consistent with our previous 
observations in APOE*3-Leiden.CETP mice (15). Moreover, the lipid-lowering properties of 
imatinib are in line with findings in CML-patients (7–10). 

Cardiovascular safe profile of imatinib
Our previous study suggested that the lower incidence of cardiovascular events in patients 
treated with imatinib (11) are the result of reduced plasma lipids and atherosclerosis 
progression without adverse pro-thrombotic effects as observed with other TKIs (15). In 
this study, we provide evidence that this is the result of reduced VLDL particle synthesis, 
illustrated by the decreased (I) VLDL-TG and VLDL-apoB production, (II) CE content of the 
VLDL particles, and (III) the concentration plasma glycerophospholipids. In line with our 
findings, de novo fatty acid synthesis is reduced when myeloid tumor cells are treated with 
imatinib (44), pointing towards decreased VLDL particle production.
	 Parallel to the lipid-modulating effects, imatinib decreased the concentration of pro- 
atherogenic sphingolipids, amphiphilic molecules that are associated with lipoproteins, of 
which VLDL and LDL contain most of the sphingomyelins and ceramides (34). Relevant 
pro-atherogenic processes that are promoted by sphingomyelins and ceramides include 
lipoprotein aggregation, induction of macrophage foam cell formation, plaque instability 
and stimulation of pro-inflammatory responses (reviewed in (34,45)). Moreover, imatinib 
reduced the concentration LPCs, which increase endothelial inflammation (36) and 
activate signal-transduction cascades involved in the initiation and progression of athero-
sclerosis (46). Plasma concentrations of ceramides and sphingomyelins are elevated in 
patients with unstable angina pectoris and acute myocardial infarction (47), specific 
ceramides are associated with plaque instability and cardiovascular death (48,49), and 
some LPC species are identified as diagnostic markers for myocardial infarction (50), 
indicating that the lipid-associated reduction in sphingolipids as observed in our study is 
relevant for CML-patients treated with imatinib. The reduction of plasma TC, TG and 
pro-atherogenic sphingolipids may all have contributed to the reduced atherosclerosis 
development (15) and the favorable cardiac profile in CML-patients (11). 
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Cardiovascular toxic effects of nilotinib and ponatinib
In contrast to the cardiovascular safe profile of imatinib, the second and third line BCR-ABL1 
tyrosine kinase inhibitors nilotinib and ponatinib increase the onset of arterial occlusive 
events (1–4,12), especially in those patients having a high or very high cardiovascular risk 
according to the SCORE chart that includes sex, age, smoking habits, systolic blood 
pressure and TC levels (5,6). Nilotinib did not directly affect lipoprotein metabolism and 
the lipid elevations reported in nilotinib-treated CML-patients are probably related to 
response to treatment (39,40). Nevertheless, these elevations may add to the cardiovascular 
risk (reviewed in (2)), and it is therefore recommended to monitor plasma cholesterol 
levels when subscribing nilotinib. 
	 Interestingly, ponatinib decreased plasma TC levels by reducing intestinal cholesterol 
absorption and we previously reported that such a decrease was correlated to reduced 
atherosclerosis progression (15). Despite, these favorable processes are probably dominated  
by several negative effects. The decrease in plasma cholesterol and subsequently reduced 
atherosclerosis development in APOE*3-Leiden.CETP mice was less pronounced with 
ponatinib as compared to imatinib (15), and therefore might be abolished by response to 
treatment in patients. In addition, whereas imatinib reduced the concentration of pro-ath-
erogenic glycerophospholipids in the plasma, this was not observed with ponatinib. More 
importantly, however, we and others have shown that both nilotinib and ponatinib 
increase blood coagulability (15,51–54), essential in the pathogenesis of atherothrombotic 
events. These findings, together with the observation of the strongly increased risk in 
patients predisposed with adverse traditional cardiovascular risk factors (2,5,6) underline 
the importance to carefully monitor patients during nilotinib and ponatinib treatment. 
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Abstract

Objectives: Epidemiological studies have reported positive associations between serum 
PFOA and total and non-high-density lipoprotein cholesterol (non-HDL-C) although the 
magnitude of effect of PFOA on cholesterol lacks consistency. The objectives of this study 
were to evaluate the effect of PFOA on plasma cholesterol and triglyceride metabolism at 
various plasma PFOA concentrations relevant to humans, and to elucidate the mechanisms 
using APOE*3-Leiden.CETP mice, a model with a human-like lipoprotein metabolism.
Methods and results: APOE*3-Leiden.CETP mice were fed a Western-type diet with 
PFOA (10, 300, 30 000 ng/g/d) for 4-6 weeks. PFOA exposure did not alter plasma lipids in 
the 10 and 300 ng/g/d dietary PFOA dose groups. At 30  000 ng/g/d, PFOA decreased 
plasma triglycerides (TG), total cholesterol (TC) and non-HDL-C, whereas HDL-C was 
increased. The plasma lipid alterations could be explained by decreased very low-density 
lipoprotein (VLDL) production and increased VLDL clearance by the liver through 
increased lipoprotein lipase activity. The concomitant increase in HDL-C was mediated by 
decreased cholesteryl ester transfer activity and changes in gene expression of proteins 
involved in HDL metabolism. Hepatic gene expression and pathway analysis confirmed 
the changes in lipoprotein metabolism that were mediated for a major part through 
activation of the peroxisome proliferator-activated receptor (PPAR)α. 
Conclusions: Our data confirmed the findings from a phase 1 clinical trial in humans that 
demonstrated high serum or plasma PFOA levels resulted in lower cholesterol levels. The 
study findings do not show an increase in cholesterol at environmental or occupational 
levels of PFOA exposure, thereby indicating these findings are associative rather than 
causal.
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Introduction

Salts of perfluorooctanoic acid (PFOA) were widely used as an emulsifier in the manufacture  
of fluoropolymers. Because PFOA is extremely stable (due to strong carbon-fluorine bond 
strength) and nonflammable, it cannot be readily degraded by strong acids, alkalis, 
or oxidizing agents; and as a result, it persists in the environment and is detected ubiquitously  
in humans and wildlife (1).
	 In general populations with ambient exposures or a community exposed to 
environmental levels of PFOA, several cross-sectional epidemiological studies have reported 
associations of serum PFOA with increased serum concentrations of total cholesterol (TC) 
and low-density lipoprotein cholesterol (LDL-C) in adults and children (2–8). However, the 
magnitude of effect on cholesterol appears to be less in more highly exposed occupational 
workers (9–16). In addition, there has been no reported increased risk for coronary artery 
disease incidence related to PFOA exposure in an exposed community (17) or in 
occupational cohorts when using internal referent comparisons (18,19).
	 Several studies have evaluated the effect of PFOA on plasma lipids, including mice 
(20–22), rats (20,23), and monkeys (24). In general, plasma lipids were either lowered or 
unchanged under these toxicological study conditions. These findings were consistent 
with one of the known toxicodynamic properties of PFOA in which it can activate nuclear 
receptor peroxisome proliferator-activated receptor alpha (PPARα) and subsequently 
leads to increased fatty acid (FA) oxidation and an overall lowering of serum/plasma lipid 
levels (25–27). The activation of PPARα is the operative mechanism of fibrate drugs that 
reduce serum/plasma lipids in both laboratory animals and humans (28,29). In a phase 1 
clinical trial study, PFOA was investigated as an antitumor agent due to its ability to inhibit 
PIM kinase activity (30). These patients received weekly ammonium PFOA doses that 
ranged between 50 and 1200 mg for 6 weeks. A reduction in plasma TC levels (LDL, not 
HDL-C) occurred at plasma PFOA concentrations between 420 and 565 µM (175 
000–230 000 ng/mL). Albeit the exact mechanism was not fully elucidated, the finding 
reported by Convertino et al. (30) was consistent with the toxicodynamic property of 
PFOA described previously where hypolipidemic responses were observed in laboratory 
animals (20,22,23).
	 It is worth noting that, unlike humans, rodent lipoprotein metabolism is characterized 
by fast clearance of apoB-containing lipoproteins and the absence of cholesteryl ester 
transfer protein (CETP) resulting in a higher proportion of HDL-C relative to LDL-C (31). 
CETP is responsible for transferring cholesterol ester (CE) from HDL-C to the apoB-contain-
ing lipoproteins in exchange for triglycerides (TG). In contrast, human and nonhuman 
primates have a higher proportion of LDL-C relative to HDL-C due to the presence of CETP 
(31). Given the difference in lipid-handling that can hamper the extrapolation of rodent 
lipid data to human (31), we undertook this study to evaluate the effects of PFOA on lipid 
metabolism using the APOE*3-Leiden.CETP mouse model. This genetically engineered 
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mouse model was designed to mimic the human lipoprotein metabolism with CETP 
expression and a delayed apoB clearance (31). It has been widely used to study the effect 
of drugs on atherosclerosis (32–35), cardiovascular safety (36,37), and lipid metabolism 
(38–40). Therefore, the objectives of the study reported herein are to (I) evaluate the effect 
of PFOA on plasma cholesterol at different PFOA concentrations that had been reported 
in human observational and experimental studies; and (II) elucidate the mechanism for 
the hypolipidemic responses with PFOA exposures, including hepatic gene expression 
and pathway analysis.

Materials and methods

Animals
Sixty-four male APOE*3-Leiden.CETP transgenic mice of 7–12 weeks (experiment 1) and 
6–10 weeks (experiment 2) of age at the start of the experiment were used in this study. 
Mice were housed under standard conditions with a 12-h light-dark cycle and had free 
access to food and water. When fasting was required, only food was removed for the 
length specified by the study protocol. Body weight, food intakes, and clinical signs of 
behavior were monitored regularly during the study. Animal experiments were approved 
by the Institutional Animal Care and Use Committee of The Netherlands Organization for 
Applied Research (TNO) under registration number 3682. All procedures involving animals 
were conformed to Guide for the Care and Use of Laboratory Animals (41).

Human plasma samples
Plasma from healthy anonymized donors was obtained after their written informed 
consent from Sanquin blood bank (the Netherlands), in accordance with the Declaration 
of Helsinki.

Materials
PFOA ammonia salt (FC-143, lot 332) was provided by 3M Company (St Paul, Minnesota). It 
consisted of 77.6% linear and 22% branched (12.6% internal monomethyl (nonalpha), 9% 
isopropyl, 0.2% tert-butyl, 0.1% gem-dimethyl, and 0.1% alpha monomethyl). This test 
material, a white solid, was 97.99% pure and was stored at room temperature. All other 
chemicals were reagent-grade.

Study design
In this study, mice were fed a semisynthetic Western-type diet (WTD) for 4 weeks of a 
dietary run-in (acclimation) period prior to group allocation (Figure 1). The semisynthetic 
WTD consisted of 0.25% cholesterol (wt/wt), 1% corn oil (wt/wt), and 14% bovine fat (wt/
wt; Hope Farms, Woerden, The Netherlands).
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For test material administration, ammonium PFOA was incorporated into this WTD at 
either 10, 300, or 30  000 ng/g/d (verification by liquid chromatography-tandem mass 
spectrometry [LC-MS/MS]). These dietary PFOA doses were chosen to achieve serum or 
plasma PFOA concentrations that had been reported in human observational or 
experimental studies. At the end of 4–6 weeks of dietary PFOA treatment at either 10, 300, 
or 30 000 ng/g/d, the mice were aimed to achieve comparable plasma PFOA levels found 
in the mid-Ohio river valley residents whose drinking water was contaminated with PFOA 
(ie, environmental exposure), fluorochemical production workers (ie, occupational 
exposure), or laboratory toxicological studies where reduced serum/plasma lipids were 
observed (ie, toxicological exposure), respectively.

Experiment 1 (6-week dietary treatment containing ammonium PFOA)
At the end of the 4-week run-in period (t=0 weeks), mice were randomized into 4 four 
groups based on age, body weight, and baseline plasma TC, TG, and HDL-C levels 
measured at the end of run-in period (n = 8 mice per dose group) after a 4-h fast by tail 
vein bleeding. Upon randomization, mice were fed with the WTD alone (control group) or 
WTD containing ammonium PFOA at either 10, 300, or 30 000 ng/g/d for 6 weeks (Table 1). 
Body weight and food intakes were monitored and recorded throughout the study for all 
mice. At the end of week 4, plasma TC, TG, free fatty acids (FFA), glycerol and alanine ami-
notransferase (ALT) were measured in blood samples from 4-h fasted mice collected by 
tail vein bleeding. At the end of week 5, hepatic lipase (HL) and lipoprotein lipase (LPL) 
activities were determined in plasma (after heparin injection). In addition, total fat mass 
was determined by EchoMRI image and 48–72 h feces were collected to measure excretion 
of bile acids and neutral sterols. At the end of week 6, in addition to plasma TC, TG, FFA, 
glycerol, and ALT determination, very low-density lipoprotein (VLDL) production was 
measured for all mice (Figure 1). Aliquots of plasma samples (approximately 20 μl) were 
collected from mice at week 0, 4, and 6 for PFOA concentration determination by LC-MS/
MS. All mice were euthanized at the end of week 6, and perigonadal white adipose tissue 
(pWAT) and brown adipose tissue (BAT) were weighed.

Experiment 2 (4-week dietary treatment containing ammonium PFOA)
Similar to experiment 1, at the end of the 4-week run-in period (t=0 weeks), mice were 
randomized into 4 groups based on age, body weight, and baseline plasma TC, TG and 
HDL-C levels measured at the end of the run-in period (n=8 mice per dose group) after a 
4-hour fast by tail vein bleeding. Upon randomization, mice were either fed with WTD 
alone (control group) or WTD containing ammonium PFOA at 10, 300, or 30 000 ng/g/d 
similar to experiment 1 described above (Table 1). Body weight and food intakes were 
monitored and recorded throughout the study for all mice. At the end of week 4, plasma 
TC, TG and ALT enzyme activity were measured for all mice in addition to VLDL-clearance 
evaluation. Aliquots of plasma samples (approximately 20 μl) were collected from mice at 
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6week 0 and 4 for PFOA concentration determination by LC-MS/MS. In experiment 2, all 
mice were euthanized on week 4 for liver-related analysis, including microscopic 
evaluation, detailed hepatic lipid profiling, and transcriptome analysis (Figure 1).

Determination of serum and dietary concentrations of PFOA
Dietary PFOA concentrations were determined by LC-MS/MS. Briefly, one gram of each 
dietary sample (sampled from top, middle, and bottom of the bag) were pulverized and 
followed by addition of 50% methanol in water (9 mL). After overnight incubation at room 
temperature on a roller shaker, samples were then sonicated for 15 min followed by 
centrifugation (2500 × g, 5 min). One hundred microliters of the top layer was transferred 
to a new tube which contained a fixed amount of the stable isotope-labeled internal 
standard (13C-PFOA), followed by the addition of 1 N formic acid (1 mL) and 100 μl of 
saturated ammonium sulfate. The solution was mixed by vortexing and then subjected to 
solid phase extraction (SPE) with Phenomenex Strata-X 3-ml SPE columns and LC-MS/MS 
according to the method described in Ehresman et al. (42). Serum PFOA concentrations 
were also determined by LC-MS/MS as described previously (42).

Plasma biochemical analysis
EDTA plasma samples were collected in week 0, 4, and 6 after a 4-h fast. Plasma TC, TG, FFA, 
and free glycerol were determined using enzymatic kits (TC: Roche/Hitachi, Mannheim, 

Table 1  Dietary PFOA intake and mean plasma concentrations of PFOA

Control 10 ng/g/d
PFOA

300 ng/g/d
PFOA

30000 ng/g/d
PFOA

[PFOA] in diet
 (ng/g)

<0.5 9 ± 1 273 ± 12 26 380 ± 683

Experiment 1 Dietary PFOA intake
 (ng/g bw/day)

0.0 10 291 30 238

Plasma [PFOA],
t=4 weeks (ng/mL)

<1.0 49 ± 4 1 350 ± 88 90 663 ± 8 867

Plasma [PFOA],
t=6 weeks (ng/mL)

5 ± 1 65 ± 7 1 524 ± 54 144 000 ± 13 406

Experiment 2 Dietary PFOA intake 
(ng/g bw/day)

0.0 10 298 29 476

Plasma [PFOA],
t=4 weeks (ng/mL)

<1.0 51 ± 5 1 395 ± 100 93 713 ± 4 827

Mice received a Western-type diet without or with 10, 300 or 30 000 ng/g/d PFOA, for 6 weeks (experiment 1) or 
4 weeks (experiment 2). Dietary and plasma PFOA concentrations were measured by LC-MS/MS and dietary PFOA 
intake was calculated. Data are presented as mean ± SD. (n=8 mice per group, n=6 dietary samples).
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Germany, catalogue# 11491458216 TG: Roche/Hitachi, catalogue# 11730711216, FFA: Wako 
diagnostics, Richmond, USA, catalogue# 434-91795 and 436-91995, free glycerol: 
Sigma-Aldrich, St. Louis, USA, catalogue# F6428) according to the manufacturer’s protocols. 
HDL-C was measured after precipitation as described previously (35). Non-HDL-C levels 
were calculated by subtracting HDL-C from TC. The distribution of cholesterol over plasma 
lipoproteins was determined in group-wise pooled plasma by fast protein liquid 
chromatography (FPLC) (43). ALT enzymatic activity was measured by reflectance 
photometry using a Reflotron® Plus analyzer (Hoffman-La Roche, Mannheim, Germany).

CETP activity assay
Differences in CETP activity between APOE*3-Leiden.CETP mice and humans may affect 
the magnitude of the PFOA-induced increase of plasma HDL-C. Therefore, endogenous 
CETP activity was measured in human and mouse plasma with a fluorescent assay using 
donor liposomes enriched with nitrobenzoxadiazole-labeled cholesteryl esters (RB-CETP, 
Roar Biomedical, New York, New York) as described previously (44).

Hepatic VLDL-TG and VLDL-apoB production
All mice were fasted for 4 h prior to the start of the experiment. During the experiment, 
mice were sedated with acepromazine-midazolam-fentanyl intraperitoneally [6.25 mg/kg 
acepromazine (Ceva Santé Animale B.V., Naaldwijk, The Netherlands), 6.25 mg/kg 
midazolam (Actavis, Baarn, The Netherlands), and 0.3125 mg/kg fentanyl (Bipharma B.V., 
Almere, The Netherlands)]. At t=0 min, blood was taken via tail bleeding and mice were 
intravenously (IV) injected with 100 µl phosphate-buffered saline (PBS) containing 20 μCi 
Trans35S-labeled methionine/cysteine (ICN Biomedicals, Irvine, California) to measure de 
novo apoB synthesis. After 30 min, the mice received a Triton WR1339 IV injection (500 mg/
kg body weight), which inhibits LPL-mediated lipolysis, thereby blocking VLDL clearance. 
Blood samples were drawn at 0, 15, 30, 60, and 90 min after Triton WR1339 injection and 
used for determination of the plasma TG concentration. After 90 min, the animals were 
sacrificed by cervical dislocation and blood was collected by heart puncture for 
subsequent isolation of VLDL by density-gradient ultracentrifugation. 35S-apoB was 
measured in the VLDL fraction after apoB-specific precipitation, and VLDL-apoB 
production rate was calculated as disintegration per minute (dpm)/h, as previously 
reported (40,45,46). 

In vivo clearance of VLDL-like particles
All mice were fasted for 4 h and injected in the tail vein with VLDL-like particles (80 nm) 
containing 3H-labeled FA (as glycerol tri[3H]-oleate, [3H]-TO) and 14C-labeled cholesteryl 
oleate (as [14C]-cholesteryl oleate, [14C]-CO). At t=2, 5, 10, and 15 min post-injection, blood 
was collected to determine the plasma decay of [3H]-TO and [14C]-CO. At 15 min, mice 
were euthanized by cervical dislocation and perfused with heparin 10 U/mL in ice-cold 
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PBS for 5 min. Organs (ie, liver, subcutaneous WAT [sWAT], BAT, spleen, lung and skeletal 
femoral muscle) were harvested and saponified overnight in 500 μl Solvable (Perkin-Elmer, 
Wellesley, Massachusetts) to determine [3H]-TO and [14C]-CO uptake. Retention of 
radioactivity in the saponified tissues was measured as % of the injected dose and the 
half-life of VLDL-[3H]-TO and [14C]-CO was calculated from the slope after linear fitting of 
semilogarithmic decay curves as described previously (40,45,46). 

HL and lipoprotein lipase assay
Lipolytic activity of both LPL and HL was determined at t=5 weeks. To liberate LPL from 
the endothelium, 4-h fasted mice were injected IV with heparin (0.1 U/g body weight; Leo 
Pharmaceutical Products BV, Weesp, The Netherlands) and blood was collected after 
20 min. Postheparin plasma was incubated with 0.2 ml of TG substrate mixture containing 
triolein (4.6 mg/mL) and [3H]-TO (2.5 μCi/mL) for 30 min at 37°C in the presence or absence 
of 1 M NaCl, which completely inhibits LPL activity, to estimate both the HL and LPL 
activity. The LPL activity was calculated as the fraction of total triacylglycerol hydrolase 
activity that was inhibited by the presence of 1 M NaCl and is expressed as the amount of 
FFAs released per hour per mL of plasma (45,47).

Liver histology
Liver samples (lobus sinister medialis hepatis) were collected, fixed in formalin and paraffin 
embedded, and sections (3 µm) were stained with hematoxylin and eosin (HE). The level 
of macrovesicular and microvesicular steatosis and hypertrophy relative to the total liver 
area was determined by a board-certified pathologist and expressed as the percentage of 
total liver area. Inflammation was scored by counting the number of aggregates of 
inflammatory cells per mm2. Inflammatory aggregates, as marker of liver inflammation, are 
defined as a cluster, not a row, of ≥ 5 inflammatory cells (48).

Hepatic lipid analysis
Liver tissue samples of lobus sinister lateralis hepatis were homogenized in phos-
phate-buffered saline, and the protein content was measured using a Lowry protein assay. 
Lipids were extracted as described previously (49), separated by high-performance 
thin-layer chromatography on silica gel plates, stained and analyzed with ChemiDoc 
Touch Imaging System (Bio-Rad Laboratories Inc, Hercules, USA). TG, CE, and free 
cholesterol (FC) content were quantified using Image-lab version 5.2.1 software (Bio-Rad 
Laboratories Inc, Hercules, USA) and expressed per mg liver protein.

Excretion of fecal sterols and bile acids
Fecal excretion of neutral sterols and bile acids was determined in feces, collected during 
a 48- to 72-h time period at 2 consecutive time points at week 5, by gas chromatographic 
analysis as described previously (47).
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Hepatic gene expression and pathway analysis
Total RNA was extracted from the liver using the RNAbee isolation kit (Tel-Test Inc., 
Friendswood, USA, catalogue# CS-105B) and the Nucleospin RNA II mini spin kit (Macherey-
Nagel GmbH & Co, Düren, Germany, catalogue# 740.955.50). Total RNA concentration was 
determined spectrophotometrically using Nanodrop 1000 (Isogen Life Science, De Meern, 
The Netherlands), and RNA quality was assessed using the 2100 Bioanalyzer (Agilent 
Technologies, Amstelveen, The Netherlands). The NEBNext Ultra Directional RNA Library 
Prep Kit for Illumina was used to process the samples according to the protocol “NEBNext 
Ultra Directional RNA Library Prep Kit for Illumina” (NEB #E7420S/L). Strand-specific 
messenger RNA sequencing libraries were generated and sequenced at GenomeScan 
(Leiden, The Netherlands). The libraries were multiplexed, clustered, and sequenced on an 
Illumina NextSeq 500 with a single-read 75-cycle sequencing protocol, 15 million reads 
per sample. The genome reference and annotation file Mus_Musculus.GRCm38 was used 
for analysis in FastA and GTF format. The reads were aligned to the reference sequence 
using Tophat 2.0.14 combined with Bowtie 2.1.0, and based on the mapped read locations 
and the gene annotation. HTSeq-count version 0.6.1p1 was used to count how often a 
read was mapped on the transcript region. Selected differentially expressed genes (DEGs) 
were used as an input for pathway and upstream regulator analysis through Ingenuity 
Pathway Analysis suite (www.ingenuity.com; Accessed November 2016). Calculated 
p-values <0.01 were used as threshold for significance in all analysis except for those in the 
30 000 ng/g/d dose group for which we used the adjusted p-value of <0.05, the latter 
indicating a higher level of stringency. Gene set enrichment analysis was used to highlight 
the most important processes and pathways ranked based on their p-value of overlap 
(37,45,48).

Statistical analysis
Data are presented as means ± SD. A Kruskal–Wallis test was used to determine the 
significance of differences between the groups. Significance of differences of the 
individual groups with the control was calculated nonparametrically using a Mann–
Whitney U-test and the rejection criteria were adjusted using a Bonferroni–Holm 
correction. IBM SPSS v24.0 was used for all analyses. p-Values ≤0.05 were considered 
statistically significant.
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Results

Clinical observations and food intakes
No clinical signs of abnormal behavior were noted in any treatment group during the 
study. There was no PFOA treatment-related mortality observed in the study and PFOA 
dietary treatment did not appear to affect food intakes in the mice. Four mice died in 
experiment 1 due to anesthetic complications (2 mice in 10 ng/g/d, 1 mouse in 300 ng/g/d, 
and 1 mouse in 30 000 ng/g/d) and this was not considered to be treatment related.

Dietary and plasma concentrations of PFOA
Dietary PFOA concentrations were determined for each dose group and based on 5–6 
samples per dose group. The mean dietary PFOA concentrations were 8.5 ± 0.8, 273.0 ± 11.6, 
and 26 380 ± 683.3 ng/g for the 10, 300, and 30  000 ng/g/d dose groups, respectively, 
which represented 89.1 ± 8.6%, 95.0 ± 4.0%, and 91.8 ± 2.4% of the target doses (Table 1). 
Based on body weight and food intake, these dietary PFOA intakes are approximately 10, 
300 and 30 000 ng/g/d, respectively (Table 1).
Mean plasma PFOA concentrations were measured in all animals from both experiments 
and are presented in Table 1. In both experiments, there were dose-dependent increases 
in plasma PFOA concentrations. After 4 weeks of dietary PFOA exposures, plasma PFOA 
concentrations in either experiment 1 or experiment 2 were very similar; they were at 
49–51 ng/mL (from 10 ng/g dose group), 1350–1395 ng/mL (from 300 ng/g dose group), 
and 90 663–93 713 ng/mL (from 30 000 ng/g/d dose group). In experiment 1, plasma PFOA 
concentrations continued to increase through week 6 (Table 1).

Body weight and liver weight
In experiment 1, there was a statistically significant decrease in body weight of the 
30  000 ng/g/d dose group mice at t=4 weeks (−10%, p<0.01) and at t=6 weeks (−18%, 
p<0.001) when compared with control. The body weight reduction was not observed in 
week 4 in experiment 2 (Table 2). There was also a statistically significant increase in liver 
weight from the 30 000 ng/g/d group in experiment 1 (+150%, p<0.001) and in experiment 
2 (+190%, p<0.001), but not with the 10 or 300 ng/g/d dietary dose (Table 2).

The effect of PFOA on plasma lipids
PFOA decreased plasma TC and TG and increased HDL-C
PFOA exposure did not alter plasma lipids at 10 and 300 ng/g/d dietary PFOA dose groups, 
respectively (Figure 2A–D). In contrast, at 30  000 ng/g/d dietary dose group where 
plasma PFOA reached 144 000 ng/mL after 6 weeks of dietary PFOA exposure, it decreased 
plasma TG (−72%, p<0.001) (Figure 2A), TC (−33%, p<0.001) (Figure 2B), and non-HDL-C 
(−69%, p<0.001) (Figure 2C) relative to controls. There was a concomitant increase in 
HDL-C (+130%, p<0.001) (Figure 2D). The lipoprotein profile at this high PFOA exposure 
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Table 2  �Body weight, food intake, liver weight, and plasma parameters of mice in 
experiment 1 and experiment 2

Experiment 1 (t=4 weeks)

Control 10 ng/g/d 300 ng/g/d 30 000 ng/g/d

Body weight (gram) 28.9 ± 1.9 28.5 ± 2.5 28.5 ± 2.4 25.9 ± 1.1**

Food intake (gram/day/mouse) 2.8 ± 0.1 3.0 ± 0.4 2.8 ± 0.3 2.8 ± 0.3

Liver weight (gram) NA NA NA NA

Liver weight (% of body weight) NA NA NA NA

ALT (U/L) 145 ± 84 83 ± 27 217 ± 151 437 ± 112***

TC (mmol/L) 6.2 ± 0.9 6.8 ± 1.5 5.9 ± 1.1 4.3 ± 0.7**

HDL-C (mmol/L) 1.8 ± 0.3 1.5 ± 0.3 1.7 ± 0.3 3.6 ± 0.5***

non-HDL-C (mmol/L) 4.4 ± 0.9 5.3 ± 1.4 4.2 ± 1.1 0.7 ± 0.2***

TG (mmol/L) 1.7 ± 0.4 1.6 ± 0.3 1.2 ± 0.2 0.3 ± 0.0***

Experiment 1 (t=6 weeks)

Control 10 ng/g/d 300 ng/g/d 30 000 ng/g/d

Body weight (gram) 30.2 ± 1.9 28.9 ± 3.0 29.6 ± 2.4 25.5 ± 1.0***

Food intake (gram/day/mouse) 3.0 ± 0.1 2.9 ± 0.4 3.0 ± 0.4 2.6 ± 0.3

Liver weight (gram) 1.4 ± 0.1 1.4 ± 0.3 1.5 ± 0.3 3.5 ± 0.2***

Liver weight (% of body weight) 4.5  ±  0.3 4.8  ±  0.5 5.2  ±  0.6 13.6  ± 0.1***

ALT (U/L) 95 ± 27 118 ± 70 123 ± 90 740 ± 161**

TC (mmol/L) 7.6 ± 1.3 6.9 ± 1.5 7.8 ± 2.7 5.1 ± 0.6***

HDL-C (mmol/L) 1.4 ± 0.3 1.5 ± 0.4 1.5 ± 0.2 3.2 ± 0.3***

non-HDL-C (mmol/L) 6.3 ± 1.4 5.4 ± 1.2 6.3 ± 2.7 2.0 ± 0.5***

TG (mmol/L) 1.8 ± 0.4 1.5 ± 0.4 1.5 ± 0.4 0.5 ± 0.0***

Experiment 1 (t=4 weeks)

Control 10 ng/g/d 300 ng/g/d 30 000 ng/g/d

Body weight (gram) 27.6 ± 1.9 28.7 ± 2.5 28.3 ± 1.6 25.8 ± 1.9

Food intake (gram/day/mouse) 2.7 ± 0.2 3.0 ± 0.2 2.9 ± 0.1 2.6 ± 0.1

Liver weight (gram) 1.3 ± 0.1 1.4 ± 0.1 1.5 ± 0.1 3.8 ± 0.3***

Liver weight (% of body weight) 4.9 ± 0.4 4.8 ± 0.4 5.2 ± 0.2 14.8 ± 0.6***

ALT (U/L) 178 ± 52 211 ± 118 533 ± 950 553 ± 81**

TC (mmol/L) 6.1 ± 0.7 6.4 ± 1.5 6.0 ± 1.1 4.9 ± 1.2

HDL-C (mmol/L) 2.4 ± 0.4 2.2 ± 0.3 2.0 ± 0.2 4.5 ± 0.9***

non-HDL-C (mmol/L) 3.7 ± 0.9 4.3 ± 1.5 4.0 ± 1.1 0.3 ± 0.2***

TG (mmol/L) 1.5 ± 0.5 1.6 ± 0.5 1.5 ± 0.2 0.4 ± 0.1***

Mice received a Western-type diet without or with 10, 300 or 30 000 ng/g/d PFOA for 6 weeks in experiment 1 or 
for 4 weeks in experiment 2. All parameters were measured individually, except for food intake which was 
measured per cage. Data are presented as mean ± SD (n=8 per group, n=5–7 per group for ALT, n=3–4 cages per 
group). **p<0.01, ***p <0.001 as compared with the control group. Abbreviations: ALT, alanine transaminase; 
HDL-C, high-density lipoprotein cholesterol; NA, not applicable; non-HDL-C, non-high-density lipoprotein 
cholesterol; TC, total cholesterol; TG, triglycerides.
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Figure 2  PFOA at low dose does not alter plasma lipids. Mice received a Western-type diet without 

or with 10, 300 or 30 000 ng/g/d PFOA. At baseline (t0) and after 6 weeks of exposure (t6), 4-h fasted 

blood was taken and plasma was assayed for TG (A), TC (B), non-HDL-C (C), and HDL-C (D). After 

4 weeks of intervention, cholesterol distribution over lipoproteins was determined by FPLC in 

group-wise pooled plasma (E). Data are presented as means + SD (n=8 per group). ***p < .001 as 

compared with the control group. Abbreviations: FPLC, fast protein liquid chromatography; HDL-C, 

high-density lipoprotein cholesterol; VLDL/LDL, (very) low-density lipoprotein.
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exhibited a distribution pattern where most cholesterol was confined to large cholesterol 
ester-rich HDL (43) and almost none in VLDL-LDL (non-HDL) (Figure 2E).

PFOA decreased plasma FFA, plasma glycerol, pWAT, and BAT weight
After 6 weeks of PFOA exposure at the high dietary dose of 30 000 ng/g/d, total body fat 
mass (−66%, p<0.01), pWAT (−61%, p<0.01), and intrascapular BAT (−47%, p<0.001) were 
decreased compared with control (Table 3). These observations were accompanied by 
decreased plasma FFAs (−48%,  <0.001) and glycerol levels (−42%, p<0.001) (Table 3), both 
of which are primarily derived from TG lipolysis in adipose tissue.

PFOA increased plasma HDL-C levels by reducing CETP activity
Because high dose of PFOA at 30 000 ng/g/d did result in increased plasma HDL-C levels 
and HDL size (Figure 2D and E), we investigated whether this was caused by reduction of 
CETP activity. Indeed, PFOA significantly reduced CE transfer activity by 20% (p<0.01) in 
plasma of APOE*3-Leiden.CETP mice (Figure 3A). When we compared the CETP activity in 
plasma of the control APOE*3-Leiden.CETP mice with the activity in human plasma, we 
found a 7.5-fold higher activity in mice (Figure 3B). Taken together, the HDL-raising effect 
observed in this mouse model with PFOA treatment appears to be a consequence of the 
reduced CETP activity. This effect might be less pronounced in humans due to substantially 
lower CETP activity as illustrated in Figure 3B.

Table 3  �PFOA decreases plasma FFAs, plasma glycerol and body fat

Control 10 ng/g/d 300 ng/g/d 30 000 ng/g/d

Total body fat (gram) 3.5 ± 1.9 2.8 ± 0.9 3.3 ± 1.2 1.2 ± 0.3**

pWAT (gram) 0.8 ± 0.3 0.7 ± 0.3 0.6 ± 0.2 0.3 ± 0.1**

BAT (gram) 0.15 ± 0.03 0.13 ± 0.02 0.12 ± 0.02 0.08 ± 0.03**

FFA (mmol/L) 0.9 ± 0.1 0.9 ± 0.1 0.8 ± 0.2 0.5 ± 0.1***

Free glycerol (mmol/L) 0.4 ± 0.1 0.3 ± 0.0 0.3 ± 0.1 0.1 ± 0.0***

Mice received a Western-type diet without or with 10, 300 or 30 000 ng/g/d PFOA. In experiment 1, total body fat 
was measured by EchoMRI at week 5. At week 6, blood samples were taken after a 4-hour fast and plasma was 
assayed for FFAs and glycerol. At the end of experiment 1, BAT and pWAT were collected and weighted. Data are 
presented as mean ± SD (n=6-8 per group). ** P< 0.01, *** P<0.001 as compared to the control group. 
Abbreviations: pWAT, perigonadal white adipose tissue; BAT, brown adipose tissue; FFAs, free fatty acids; MRI, 
magnetic resonance imaging
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PFOA decreased hepatic VLDL-production rate
Because a decreased VLDL production may contribute to the overall TC- and TG-lowering 
effects, the VLDL production rate was determined in mice after 6 weeks of PFOA exposure. 
The VLDL-TG production rate was markedly decreased (−87%, p<0.001) by high dose PFOA 
exposure (30 000 ng/g/d dietary dose group) (Figure 4A and B) and a similar decrease 
was observed in the VLDL-apoB production rate (−86%, p<0.001) (Figure 4C). When 
normalized by apoB, the overall TG production rate per apoB was similar across all dose 
groups (Figure 4D), indicating that PFOA reduced the production rate of VLDL particles 
but did not alter the ratio between TG to apoB. These findings also provide an explanation 
for the marked reduction in total fat and pWAT and intrascapular BAT mass, and the corre-
spondingly decreased plasma FFAs and glycerol levels through a reduced supply of VLDL-
TG-derived FFAs for storage in adipose tissue. In contrast, VLDL production was not 
affected by either 10 or 300 ng/g/d dietary PFOA dose groups.

PFOA increased plasma VLDL clearance through enhanced LPL activity
Plasma VLDL-TG levels are defined by the balance between VLDL-TG production and 
VLDL-TG clearance, hence this part of the experiment evaluated the plasma clearance and 
tissue uptakes of [3H]-TO- and [14C]-CO-labeled VLDL-like particles after 4 weeks of PFOA 
exposure. At 10 or 300 ng/g/d dietary PFOA exposures, VLDL clearance was not affected 

Figure 3  PFOA at high dose increases HDL-C by reducing CETP activity. Mice received a Western-

type diet without or with PFOA in 3 different doses, 10, 300 and 30 000 ng/g/d. After 6 weeks of PFOA 

exposure in experiment 1, CETP activity was determined (A), and the activity in mice of the control 

group was compared with the activity in human plasma samples (B). Data are represented as mean 

+ SD (n=6–8 mice per group and n=4 human plasma samples). **p<0.01 as compared with the 

control group and ***p<0.001 as compared with control APOE*3-Leiden.CETP mice. Abbreviations: 

CETP, cholesteryl ester transfer protein.
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(Figure 5). The uptake of [3H]-TO, representing FFAs and TGs, was increased by the high 
dose dietary PFOA treatment as indicated by decreased plasma [3H]-TO at t=15 min (−49%, 
p<0.05; Figure 5A), resulting in a significantly decreased half-life time (−30%, p<0.05; 
Figure 5B) relative to control. This effect was mainly due to increased [3H]-TO uptake by 
the liver (+54%, p<0.05), sWAT (+180%, p<0.01) and BAT (+90%, p<0.01; Figure 5C). The 
uptake of [14C]-CO, representing cholesteryl oleate, was not affected by PFOA exposure 
(Figure 5D–F).

Figure 4  PFOA at high dose decreases VLDL-TG production and apoB synthesis. Mice received a 

Western-type diet without or with 10, 300 or 30 000 ng/g/d PFOA. After 6 weeks, 4-h fasted mice 

of experiment 1 were injected with Tran35S-label and Triton after which blood samples were drawn 

up to 90 min. Plasma VLDL-TGs (A) were plotted and used to calculate the rate of TG production (B) 

from the slope of the individual curves. Ninety minutes after Triton injection plasma was used to 

isolate VLDL by ultracentrifugation, and the rate of de novo ApoB synthesis was determined (C). The 

TG production per apoB was then calculated (D). Data are represented as mean ± SD (n=6–8 per 

group). ***p<0.001 as compared with the control group. Abbreviations: apoB, apolipoprotein B; TG, 

triglycerides; VLDL, very low-density lipoproteins.
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Because these data are consistent with increased lipolytic processing of VLDL particles, 
lipolytic activities (LPL and HL) were evaluated in experiment 1. After 5 weeks of PFOA 
exposure, mice were injected with heparin to liberate LPL from the endothelium, and LPL 
and HL activities were measured in plasma samples. HL activity was not affected by PFOA 
in any treatment group, but LPL activity was increased by the high PFOA dose at 
30 000 ng/g/d (+39%, p <0.05) (Figure 6), providing an explanation for the increased FFA 
uptake by the liver and the adipose tissues. Collectively, these data indicate that high 
PFOA dose at 30 000 ng/g/d increased the hepatic uptake of FFAs, which together with 
the reduced VLDL production contributed to the decreased plasma lipid levels.

PFOA resulted in hepatic hypertrophy without altering hepatic lipid contents
Consistent with previous findings in rodents (50,51) and monkeys (24), high dose PFOA at 
30 000 ng/g/d resulted in increased ALT (Table 2) and hepatic hypertrophy, which was 
absent in control mice and was minimally observed in the 2 lower PFOA dose groups 
(Figure 7A). Because the decreased VLDL-TG production rate and increased VLDL 
clearance may be the result of changes in hepatic lipid metabolism, we evaluated liver 
pathology and measured hepatic lipid content and fecal excretion of bile acids and 
neutral sterols. Microscopically, macrovesicular steatosis was not observed with PFOA 
exposure (Figure 7A). While there was no microvesicular steatosis present in livers of 
control mice or in mice administered with the high PFOA dose group at 30 000 ng/g/d, a 
low amount (<5% of total liver area) of the liver area consisted of microvesicular steatosis 
(2.3 ± 5.2% and 4.7 ± 12.3%) in mice treated with 10 and 300 ng/g/d PFOA, respectively. The 

Figure 6  PFOA at high dose increases LPL activity. Mice received a Western-type diet without or 

with 10, 300 or 30 000 ng/g/d PFOA. After 5 weeks, 4-h fasted mice of experiment 1 were injected 

with heparin (0.1 U/g body weight) and postheparin plasma was collected. Plasma was incubated 

with a [3H]-TO-containing substrate mixture in the absence or presence of 1M NaCl, to estimate both 

the HL and LPL activity. Data are represented as mean + SD (n=5–8 per group). *p<0.05 as compared 

with the control group. Abbreviations: FFA, free fatty acids; HL, hepatic lipase; LPL, lipoprotein lipase; 

NaCl, sodium chloride.
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number of inflammatory aggregates per mm2, defined as a cluster of ≥5 infiltrating 
inflammatory cells (48), was not affected by any of the dietary PFOA groups.
	 Hepatic FC, CE, and TG contents were also not altered by any of the PFOA doses 
(Figure 7B). Similarly, no changes were observed in the excretion of bile acids (which are 
solely produced by the liver) and neutral sterols (Figure 7C and D). These data indicate 
that the decreased rate in VLDL-TG production is not explained by reduced availability of 
liver lipids for VLDL synthesis.

PFOA affected hepatic expression of genes involved in TG and cholesterol metabolism
To further investigate the mechanism by which PFOA affects lipid metabolism, gene 
expression of selected genes related to TG and cholesterol metabolism was determined 
in the liver as central organ in lipid metabolism. There were no significant changes in 
hepatic expression of lipid-related genes at the 2 lower PFOA dose groups. All significantly 
DEGs related to lipid metabolism in the liver mediated by the 30 000 ng/g/d PFOA dose 
group are depicted in Table 4. Although LPL expression in the liver is low as compared 
with heart, muscle, and adipose tissue, this PFOA exposure increased the expression of Lpl 
and decreased Apoc3 expression, which is in line with the increased LPL activity and 
VLDL-TG clearance. Genes involved in FA/TG synthesis and VLDL assembly (Scd3, Acss1, 

Scd2, Acsl3, Acsl4, Acsl5, Acsl1, Fasn, Acaca, Acss2, and Mttp), FA β-oxidation (Acss1, Ehhadh, 

Cpt1b, Acca1b, Acox1, Acsl3, Acsl4, Acsl5, Acsl1, Acca1a, and Acss2), and uptake, transport, and 
binding of FAs (Slc27a1, Fabp4, Cd36, Slc27a4, and Fabp1) were increased. Collectively, these 
data indicate that PFOA in the liver increases FA oxidation, binding and activation, and 
mobilizes FA for TG synthesis and secretion as VLDL. Most likely, the latter 2 pathways are 
surpassed by increased FA uptake and transport. Additionally, the expression of Apob was 
decreased, which provides an explanation for the decreased VLDL-apoB formation.

PFOA affected hepatic expression of genes involved in HDL-C metabolism
High dose PFOA at 30  000 ng/g/d affected genes involved in HDL-C metabolism by 
decreasing the expression of Apoa1 (the major gene in the formation of HDL), Scarb1 (the 
principle gene in HDL-C clearance), and Lipc (plays a role in remodeling of HDL), and by 
increasing the expression of Pltp (which plays an important role in the remodeling of HDL 
by facilitating phospholipid transfer to HDL during its maturation from discoidal HDL into 
spherical HDL) (Table 4). Thus, together with the decreased CETP activity, changes in 
gene expression leading to reduced HDL-C uptake and formation of larger particles have 
contributed to the increased plasma HDL-C plasma levels and HDL size.
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6

TG metabolism

Protein Gene Fold 
change

Padj

Lipolysis

LPL Lpl 4.3 <0.001

HL Lipc 0.5 <0.001

APOC3 Apoc3 0.5 <0.001

APOA5 Apoa5 0.4 <0.001

Fatty acid/TG synthesis

SCD Scd3 157.6 <0.001

ACS Acss1 39.4 <0.001

SCD Scd2 18.4 <0.001

ACS Acsl3 2.5 <0.001

ACS Acsl4 2.3 <0.001

ACS Acsl5 2.3 <0.001

ACS Acsl1 2.1 <0.001

FAS Fasn 2.1 0.001

ACC Acaca 1.9 0.001

ACS Acss2 1.7 0.010

DGAT1 Dgat1 1.4 0.030

ACS Acsm3 0.7 0.020

DGAT2 Dgat2 0.7 0.030

SREBP1a/c Srebf1 0.7 0.040

ACS Acsm1 0.6 <0.001

ACS Acsm5 0.6 0.002

ACS Acsl6 0.1 0.006

Beta oxidation

ACS Acss1 39.4 <0.001

bifunctional 
enzyme

Ehhadh 34.3 <0.001

CPT1 Cpt1b 4.6 <0.001

thiolase Acaa1b 3.0 <0.001

ACO Acox1 2.6 <0.001

ACS Acsl3 2.5 <0.001

ACS Acsl4 2.3 <0.001

ACS Acsl5 2.3 <0.001

ACS Acsl1 2.1 <0.001

thiolase Acaa1a 1.7 <0.001

ACS Acss2 1.7 0.010

ACO Acox3 0.7 0.010

ACS Acsm3 0.7 0.020

ACS Acsm1 0.6 <0.001

ACS Acsm5 0.6 0.002

PGC1alpha Ppargc1a 0.6 0.007

ACS Acsl6 0.1 0.006

FA uptake, transport, binding

FATP Slc27a1 9.8 <0.001

FABP Fabp4 8.6 <0.001

CD36 Cd36 7.5 <0.001

FATP Slc27a4 2.8 <0.001

FABP Fabp1 1.7 0.010

FATP Slc27a5 0.6 <0.001

FABP Fabp2 0.5 <0.001

VLDL assemblage/formation

MTTP Mttp 1.5 0.020

APOB Apob 0.8 0.050

Cholesterol metabolism

Protein Gene Fold 
change

Padj

HDL maturation

LCAT Lcat 0.6 <0.001

HDL formation and remodeling/
destabilisation

APOA1 Apoa1 0.2 <0.001

PLPT Plpt 3.2 <0.001

HL Lipc 0.5 <0.001

HDL uptake

SRB1 Scarb1 0.5 <0.001

Table 4  �The effect of 30 000 ng/g/d PFOA dose on hepatic expression of genes 
encoding proteins and transcription factors involved in TG and cholesterol 
metabolism
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PFOA regulated pathways related to lipid and xenobiotic metabolism, coagulation, 
and inflammation
To further investigate the mechanism by which PFOA affects lipid metabolism and to 
explore its effect on other biological processes, pathway analysis was performed in the 
liver. The total number of DEGs was assessed (Table 5) and used to identify overlap 
between the various treatments and PFOA-specific molecular responses.
	 There were no statistically significant changes in gene transcripts in the liver with  
the low PFOA dose group at 10 ng/g/d. In silico prediction of transcription factor activity 
in the liver (Table 6), based on the DEGs (padj <0.05), predicted activation of genes 
regulated by PPARα (p=1E-75, Z-score 6.5) at 30 000 ng/g/d PFOA dose. This dose of PFOA 
also activated the transcription factor PXR (Nr1i2), a nuclear receptor that functions as 
sensor of endobiotic and xenobiotic substances. Analysis of the magnitude of the effect 
of PFOA on these 2 master regulators of PFOA-induced gene expression showed that 
these upstream regulators are activated in the order PPARα ≥ PXR.
	 In addition to modulation of lipid and xenobiotic metabolism, the 30  000 ng/g/d 
PFOA dose displayed significantly regulated pathways related to coagulation and 
inflammation (Table 7). With the 300 ng/g/d PFOA dose group, there were also statistically 

Synthesis

HMGCS Hmgcs1 2.8 <0.001

HMG CoA 
synthase

Hmgcs2 1.7 0.001

Storage

ACAT2 Acat2 1.6 0.001

ACAT1 Acat1 1.5 0.020

Uptake

VLDLR Vldlr 32.0 <0.001

LRP Lrp11 2.5 0.002

LRP Lrp1 0.6 0.010

SORT-1 Sort1 0.5 0.004

LRP Lrp2 0.2 0.002

Metabolism

BSEP Abcb11 0.5 <0.001

NTCP Slc10a1 0.3 <0.001

CYP7A Cyp7a1 0.2 <0.001

IBAT Slc10a2 0.1 0.001

Excretion

ABCG5 Abcg5 0.6 0.010

Transcription factors

Protein Gene Fold 
change

Padj

HNF4A Hnf4a 1.6 0.001

PGC1alpha Ppargc1a 0.6 0.007

CAR Nr1i3 0.6 0.009

Table 4  �Continued

Mice received a Western type diet without or with 30 000 ng/g/d PFOA and livers were collected after a 4-hour 
fast after the VLDL-clearance experiment (experiment 2) at t=4 weeks. Total RNA was extracted from liver of 
individual mice (n=8 mice per group) and gene expression analysis was performed using the Illumina Nextseq 
500. A selection of genes involved in lipid metabolism is depicted with only those DEGs with an adjusted P-value 
<0.05. Data represent fold change as compared with the control. Abbreviations: Padj, adjusted P-value; TG, 
triglycerides; FA, fatty acids; VLDL, very-low-density-lipoprotein; HDL, high-density-lipoprotein.
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significant changes in the gene transcripts related to hepatic activation of inflammation 
and immune responses (Table 7). Because the biological processes of inflammation and 
immune response are complex (52) and involve various organs other than liver, the 
biological significance of these gene transcripts, as they relate to the assessment of 
cardiovascular risk, remains unclear.

Table 5  The number of DEGs in the liver

pval< padj<

0.05 0.01 0.001 0.05 0.01 0.001

Control vs 10 ng/g/d 293 63 12 2 2 1

Control vs 300 ng/g/d 1109 379 103 20 4 3

Control vs 30 000 ng/g/d 5170 3603 2364 3379 2370 1640

Mice received a Western-type diet without or with 10, 300 or 30 000 ng/g/d PFOA, mRNA was isolated from liver 
tissue, and after further processing next generation sequencing analysis was performed. The table indicates the 
number of DEGs when compared to control. DEGs depicted in green were used for the pathway analysis in IPA 
(n=8 mice per group). Padj <0.05 indicates a higher level of stringency as compared to Pval <0.01. Abbreviations: 
DEGs, differentially expressed genes; pval, p-value; padj, adjusted p-value; IPA, ingenuity pathway analysis.

Table 6  �In silico prediction of transcription factor activity based on the expression 
changes of known target genes at 30 000 ng/g/d PFOA dose

Upstream regulator Activation  
state

Z-score P of  
overlap

PPAR Peroxisome proliferator-activated  
receptor α (PPARα)

activated 6.5 1E-75

HNF1A Hepatocyte nuclear factor 1 homeobox A inhibited -3.6 1E-26

HNF4A Hepatocyte nuclear factor 4 alpha inhibited -2.4 1E-25

ESR1 Estrogen receptor 1 activated 2.4 1E-25

NFE2L2 Nuclear factor, erythroid 2 like 2 activated 3.3 1E-22

NR1L2 Pregnane X receptor (PXR) activated 5.4 1E-20

Mice received a Western type diet without or with 30 000 ng/g/d PFOA, mRNA was isolated from liver tissue and 
gene expression analysis was performed using the Illumina Nextseq 500. To determine the activation status of 
transcription factors, an upstream regulator analysis was performed. A positive Z-score >2 indicates activation 
and a negative Z-score <-2 inhibition. All DEGs with an adjusted P-value <0.05 were used for the analysis (n=8 
mice per group).
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Table 7  �Hepatic pathways significantly regulated at 30 000 ng/g/d PFOA dose

30 000 ng/g/d PFOA 300 ng/g/d PFOA

Canonical pathway P-value Canonical pathway P-value

FXR/RXR activation 1E-15 Phagosome formation 1E-7

LPS/IL-1 mediated inhibition of 
RXR function

1E-13 Leukocyte extravasation signaling 1E-6

Stearate biosynthesis I (animals) 1E-11 Role of pattern recognition receptors 
in recognition

1E-6

Fatty acid β-oxidation I 1E-10 Role of NFAT in regulation of the 
immune response

1E-6

Coagulation system 1E-10 Production of nitric oxide and reactive 
oxygen species

1E-6

LXR/RXR activation 1E-9 FCγ receptor-mediated phagocytosis 
in macrophages

1E-5

Acute Phase Response Signaling 1E-8 Dendritic cell maturation 1E-5

Tryptophan degradation III (Eukaryotic) 1E-7 Natural killer cell signaling 1E-5

Superpathway of citrulline metabolism 1E-7 Virus entry via endocytic pathways 1E-5

Complement system 1E-7 CD28 signaling in T helper cells 1E-5

Intrinsic prothrombin activation pathway 1E-6 IL-8 signaling 1E-5

Estrogen biosynthesis 1E-6 TREM1 signaling 1E-4

Bile acid biosynthesis, neutral pathway 1E-6 CTLA4 signaling in cytotoxic 
T lymphocytes

1E-4

Role of tissue factor in cancer 1E-6 Macropinocytosis signaling 1E-4

Isoleucine degradation I 1E-6 T cell receptor signaling 1E-4

Glutathione-mediated detoxification 1E-6 NF-κB activation by viruses 1E-4

Atherosclerosis signaling 1E-6 Tec kinase signaling 1E-4

Glutaryl-CoA degradation 1E-5 Reelin signaling in neurons 1E-4

Triacylglycerol biosynthesis 1E-5 Granulocyte adhesion and diapedesis 1E-4

Aryl hydrocarbon receptor signaling 1E-5 fMLP signaling in neutrophils 1E-4

Citrulline biosynthesis 1E-5 Epoxysqualene biosynthesis 1E-4

Nicotine degradation III 1E-5 Endothelin-1 signaling 1E-4

Xenobiotic metabolism signaling 1E-5 CD40 signaling 1E-4

Superpathway of melatonin degradation 1E-5 Inflammasome pathway 1E-3

PXR/RXR activation 1E-5 PKCL signaling in T lymphocytes 1E-3

Mice received a Western type diet without or with 30 000 ng/g/d PFOA or 300 ng/g/d, mRNA was isolated from 
liver tissue and gene expression analysis was performed. Differentially expressed genes (DEGs) (Table 5) were 
used as input for pathway analysis through ingenuity pathway analysis (IPA) suite. All DEGs with an adjusted 
P-value <0.05 were used for the analysis of the 30 000 ng/g/d dose group, and all DEGs with an P-value <0.01 
were used for the analysis of the 300 ng/g/d PFOA dose group. The top 25 most relevant canonical pathways are 
shown (n=8 mice per group). Abbreviations: FXR, farnesoid X receptor; RXR, retinoid X receptor; LPS, lipopolysac-
charides; LXR, liver X receptor; PXR, pregnane X receptor; DEGs, differentially expressed genes.
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Discussion

In this study, we have investigated the effects of 3 different doses of PFOA on plasma lipid 
levels and lipid metabolism in APOE*3-Leiden.CETP mice, a mouse model with a human- 
like lipoprotein metabolism (31). At the end of the study, the low dose group at 10 ng/g/d 
resulted in a mean plasma PFOA concentration of approximately 50 ng/mL, which is 
similar to the range reported in a community population in the mid-Ohio river valley area 
that had known PFOA exposure in its drinking water (median 27 ng/mL, mean 80 ng/mL) 
(8). Likewise, the mid-dose group at 300 ng/g/d resulted in a plasma concentration of 
approximately 1500 ng/mL which is within the range reported in different occupational 
studies among fluorochemical production workers (9,10,12,15). At 30  000 ng/g/d PFOA 
achieved a plasma concentration that approached the level reported in the phase 1 
clinical trial where a decrease in total cholesterol was clearly observed to occur (30).
	 This differentiation of plasma PFOA concentrations is a major strength of this study to 
understand lipid-related associations, or lack of, in human observational and experimental 
studies. Plasma PFOA concentrations were translatable to the human exposure scenarios 
and we conclude that, using the APOE*3-Leiden.CETP mouse model, plasma PFOA levels 
at either 50 ng/mL (community drinking water exposed) or 1500 ng/mL (occupationally 
exposed) did not alter plasma lipids. PFOA exposure did decrease plasma TG, TC, and 
non-HDL-C levels and increased HDL-C level when plasma PFOA concentrations reached 
90 663 ng/mL (at the end of the 4-week treatment) or 144 000 ng/mL (at the end of the 
6-week treatment). We have demonstrated that environmentally and occupationally 
relevant PFOA exposures did not affect plasma lipids or lipoprotein metabolism using this 
mouse model. Our data are consistent with the findings by Convertino et al. (30) that high 
serum or plasma PFOA levels resulted in lower cholesterol levels. Our current study data 
do not show an increase in cholesterol at environmental or occupational levels of PFOA 
exposure as shown in some observational epidemiological studies, suggesting these 
findings are likely associative rather than causal.
	 Consistent with our data, toxicological PFOA concentrations (>30 000 ng/g/d or 0.02% 
wt/wt) in mice and rats decreased plasma TC (20,22,23). While the major lipid in wild-type 
rodents are limited to HDL-C, it is interesting that cholesterol contained in the HDL-C 
fraction was reported to be increased in C57BL/6 and BALB/c mice fed a high cholesterol 
and high fat diet containing PFOA (560 μg/kg/d) (21). However, given the inherent 
difference in rodent lipid metabolism (vs human), it is difficult to extrapolate these results 
to the human situation, emphasizing the importance to select an animal model resembling 
human lipid metabolism (31). The APOE*3-Leiden.CETP mouse used in our study is a 
well-characterized model for its human-like lipoprotein metabolism with delayed 
apoE-LDLR clearance and expression of CETP, and these characteristics are absent in 
wild-type rodents, including C57BL/6 and BALB/c mice.
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Unlike wild-type rodents, nonhuman primates and humans express CETP. Butenhoff et al., 
(24) found no effect on lipid levels when cynomolgus monkeys were administered with 
daily oral doses of PFOA for 6 months (24). In that study, serum PFOA concentration 
approximated 158 000 ± 100 000 ng/mL; however, there was no distinction made between 
cholesterol in non-HDL-C or HDL-C hence precluding direct comparison with the present 
data. In humans, Convertino et al. (30) reported a decline in TC and LDL-C with high 
(toxicological exposure) plasma concentrations of PFOA, however, unlike our study, they 
did not observe any change in HDL-C. This discrepancy could be due to the higher CETP 
activity measured in APOE*3-Leiden.CETP mouse plasma than human (Figure 3B).  
The concomitant increase in HDL-C observed in our study resulted from downregulation of 
CE transfer activity in plasma by PPARα activation (of which PFOA has been shown to be an 
activator), the strong downregulation of Scarb1 (the principle gene in HDL-C clearance) and 
Lipc (plays a role in remodeling of HDL), and by the increased expression of Pltp (resulting 
in formation of larger HDL particles) (39,53,54).
	 Most reports studying the effects of PFOA in experimental animals do not provide a 
mechanistic explanation for the observed changes in lipoprotein metabolism. Our studies 
revealed that high PFOA exposure decreased (V)LDL levels by severely impairing the 
production of VLDL and increasing VLDL clearance by the liver through increased LPL- 
mediated lipolytic activity, accompanied by hepatomegaly with cellular hypertrophy. Gene 
expression and pathway analysis confirmed that lipid metabolism was regulated by PFOA 
mainly through activation of PPARα. Although not evaluated in this study, the hepatocellular 
hypertrophy is likely reversible, as has been reported in rats (50) and monkeys (24).
	 The increased VLDL clearance accompanied by augmented uptake of FFAs by the 
liver and LPL-expressing organs, such as sWAT and BAT, can be explained by upregulation 
of Lpl and downregulation of an inhibitor of LPL (Apoc3), resulting in increased plasma LPL 
activity. The strongly decreased VLDL-TG and VLDL-apoB production rate (equally 
diminished by as much as 85%) is not caused by PPARα activation as fenofibrate enhances 
VLDL-TG secretion (28) or by reduced availability of lipids for VLDL synthesis because 
hepatic lipid content was not reduced by PFOA. More likely, PFOA prevents VLDL particle 
formation and secretion from the liver by reduced apoB de novo synthesis caused by 
decreased Apob mRNA expression. In line with this contention, treatment of cultured rat 
hepatocytes with PFOA decreased the VLDL secretion through disturbance of the 
association of apoB48 with VLDL particles, a process independent of PPARα (55), and 
toxicological PFOA exposure reduced apob100 mRNA expression in BALB/c mice (56) as 
well. Therefore, we conclude that at toxicological PFOA exposure the decreased plasma 
TC and TG levels result from increased VLDL clearance and diminished VLDL-TG and 
VLDL-apoB production, the latter caused by a reduced supply of apoB substrate which is 
essential for the assemblage of the VLDL particles.
	 Fecal neutral sterol and bile acid excretion, the latter as marker of hepatic bile acid 
synthesis, were not affected by PFOA despite a decrease in Cyp7a1 mRNA expression, 
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indicating that there is sufficient supply of substrate for bile acid synthesis. Consistently, 
we found no changes in hepatic lipid content, implying that despite reduced VLDL 
production, hepatic cholesterol and TG homeostasis is maintained. In contrast, the mass 
of adipose tissue was decreased in spite of enhanced plasma lipolytic activity. LPL-mediated 
delivery of VLDL-TG–derived FA is a strong determinant of WAT mass and obesity (57). 
However, the reduced VLDL-TG production limits the availability of substrate for LPL on 
peripheral tissues, leading to less FA delivery to WAT and skeletal muscle. This can explain 
the reduced pWAT mass induced by toxicological PFOA exposure, accompanied by a 
reduction of plasma FFAs and glycerol that are mainly derived from TG lipolysis in adipose 
tissue.
	 Gene expression and pathway analysis revealed that FA oxidation and individual 
genes involved therein, all under control of PPARα, were enhanced, in line with previous 
reports in mice (58), rat (50) and human hepatocytes (25,59). In silico prediction of 
transcription factor activity predicted PPARα as the principal transcription factor regulated 
by toxicological PFOA not only based on the regulation of lipid metabolism-related genes, 
but of all DEGs in the liver. Upstream regulator analysis also predicted the involvement of 
the xenosensor receptor PXR (Nr1l2) in the regulation of biological processes, whereas CAR 
(Nr1l3) mediated processes were affected to a much lesser extent, in line with literature 
(26). Next to its role in xenobiotic metabolism, PXR activation is also involved in lipid 
metabolism, as it reduces the hepatic expression of Apoa1, Lcat, and Hl, players in the 
formation, maturation, and remodeling of HDL-C in APOE*3-Leiden.CETP mice (38) as also 
observed in the present study. While accumulation of TG and cholesterol in the liver can 
be induced by constitutive PXR expression (60) or the PXR agonist PCN (38), it was not 
observed in our study, most likely because the PXR-induced effect was negated by the 
strong PPARα activation, leading to decreased hepatic lipid content in APOE*3-Leiden.
CETP mice (28), provoked at the applied PFOA exposure at high (toxicological) level.
	 At 30 000 ng/g/d PFOA, inflammation-related gene pathways were observed to have 
statistically significant changes. Activation of both PPARα and PXR is known to attenuate 
the inflammatory response (61–63), and toxicological exposure to PFOA has been reported 
to reduce inflammatory pathways and responses (64–67). In contrast, PFOA at 300 ng/g/d 
upregulated pathways involved in inflammatory and immune response processes. The 
physiological consequences hereof, however, are unknown and require further research.
	 In conclusion, we have demonstrated that in APOE*3-Leiden.CETP mice, dietary PFOA 
exposure at 30  000 ng/g/d reduced plasma TG and TC levels by affecting VLDL-TG 
production through decreased apoB synthesis and by increasing VLDL clearance. This was 
not observed with lower PFOA doses. Our data confirmed the findings from a phase 1 
clinical trial in humans that demonstrated high serum or plasma PFOA levels resulted in 
lower cholesterol levels. The study findings do not show an increase in cholesterol at 
environmental or occupational levels of PFOA exposure, thereby indicating these findings 
are associative rather than causal.
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Abstract

Objectives: There is a lack of predictive preclinical animal models combining atheroscle-
rosis and type 2 diabetes. APOE*3-Leiden (E3L) mice are a well-established model for 
diet-induced hyperlipidemia and atherosclerosis, and glucokinase+/− (GK+/−) mice are a 
translatable disease model for glucose control in type 2 diabetes. The respective mice 
respond similarly to lipid-lowering and antidiabetic drugs as humans. The objective of this 
study was to evaluate/characterize the APOE*3-Leiden.Glucokinase+/− (E3L.GK+/−) mouse 
as a novel disease model to study the metabolic syndrome and diabetic complications. 
Methods and results: Female E3L.GK+/−, E3L, and GK+/− mice were fed fat- and cholesterol-
containing diets for 37 weeks, and plasma parameters were measured throughout. 
Development of diabetic macro- and microvascular complications was evaluated. 
Cholesterol and triglyceride levels were significantly elevated in E3L and E3L.GK+/− mice 
compared to GK+/− mice, whereas fasting glucose was significantly increased in E3L.GK+/− 
and GK+/− mice compared to E3L. Atherosclerotic lesion size was increased 2.2-fold in E3L.
GK+/− mice as compared to E3L (p=0.037), which was predicted by glucose exposure 
(R2=0.636; p=0.001). E3L and E3L.GK+/− mice developed NASH with severe inflammation 
and fibrosis which, however, was not altered by introduction of the defective GK 
phenotype, whereas mild kidney pathology with tubular vacuolization was present in all 
three phenotypes. 
Conclusions: We conclude that the E3L.GK+/− mouse is a promising novel diet-inducible 
disease model for investigation of the etiology and evaluation of drug treatment on 
diabetic atherosclerosis.
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Introduction

The metabolic syndrome consists of a cluster of cardiovascular risk factors, including 
abdominal obesity, elevated blood pressure, elevated fasting plasma glucose, high serum 
triglycerides, and low high-density lipoprotein (HDL) levels, and drives the global 
epidemics of type 2 diabetes (T2D) and cardiovascular disease (CVD). Diabetes increases 
the CVD risk about twofold (1–3), which is the leading cause of death worldwide, and 
aggravates nonalcoholic steatohepatitis (NASH) (4) and diabetic nephropathy (5). These 
comorbidities emphasize the need for antidiabetic treatments that are effective against 
both T2D and associated cardiovascular complications.
	 Animal models can be used to learn more about the underlying pathology of diabetic 
complications and the effect of pharmacological interventions thereon, and a wide range 
of mouse models combining atherosclerosis and diabetes are described (6). Most available 
models are dyslipidemic mice, e.g., apoE−/− and LDLr−/− mice, with chemically (STZ) or 
genetically (ob/ob, db/db, and IRS2−/−) induced diabetes (6). Although these models are 
widely used in biomedical research and drug development, they do not sufficiently reflect 
human disease. First, deficiency of the Apoe or Ldlr gene and STZ treatment result in 
extreme hyperlipidemia and hyperglycemia, respectively, and may result in overestimation 
of the contribution of hyperglycemia to diabetic complications. Besides, STZ treatment is 
difficult to control and creates a type 1 diabetic-like condition. Second, commonly used 
animal models of T2D (ob/ob and db/db mice) have a wide but unstable hyperglycemic 
range (7,8) and are monogenic models of obesity thereby inducing hyperglycemia, which 
weakens their translatable value as obesity is seldom caused by a monogenic mutation 
(7,9). Last, apoE−/− and LDLr−/− mice do not respond well to lipid-lowering drugs used in 
the clinic (10,11), making these models unsuitable in the development of novel therapeutic 
strategies against hyperlipidemia and vascular complications.
	 The objective of this study was to develop a translational mouse model for the 
metabolic syndrome and diabetic complications by combining diet-induced dyslipidemia 
and hyperglycemia, with plasma levels translatable to the human situation: the 
APOE*3-Leiden.Glucokinase+/− mouse (E3L.GK+/−). We have generated the E3L.GK+/− 
mouse by cross-breeding dyslipidemic APOE*3-Leiden (E3L) mice with hyperglycemic 
heterozygous glucokinase knockout (GK+/−) mice. The E3L mouse was initially developed 
as an animal model for mixed dyslipoproteinemia and was generated by the introduction 
of a DNA construct obtained from a patient with Familial Dysbetalipoproteinemia (FD) or 
type III hyperlipoproteinemia containing the human APOE*3LEIDEN and APOC1 genes (12). 
Apoc1 is an inhibitor of lipoprotein lipase (LPL) and inhibits lipolysis of triglyceride-rich 
lipoproteins. The E*3-Leiden mutation results in a dysfunctional protein with reduced 
binding to the low-density lipoprotein receptor (LDLr) which leads to impaired clearance 
of triglyceride- and cholesterol-rich lipoproteins (chylomicron and VLDL remnants), 
thereby mimicking the slow clearance observed in humans, particularly in FD patients. E3L 
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mice are prone to develop hyperlipidemia and atherosclerosis upon feeding a Western- 
type diet containing saturated fat and cholesterol (13), and they respond similarly as 
humans do to lipid-modulating interventions that are being used in the clinic (e.g., statins, 
fibrates, niacin, and PCSK9 inhibitors) (11,14–22).
	 Glucokinase (GK) catalyzes the first and rate-limiting step in glycolysis, phosphorylation 
of glucose to glucose-6-phosphate, and acts as a “glucose sensor” in controlling glucose-
stimulated insulin secretion (23). Loss of function mutations in the GK gene in man results 
in persistent hyperglycemia, referred to as maturity-onset diabetes of the young type 2 
(MODY2) (24,25). Various transgenic animals with global or tissue-specific GK knockouts 
have been generated, each with specific characteristics with respect to metabolic control 
(26). In this study, we used the global heterozygous GK knockout mouse, which has 
reduced GK activity in both liver and pancreatic β-cells (26). GK+/− mice are moderately 
hyperglycemic when on chow, become diabetic on a high-fat diet (HFD) (26), and respond 
well to glucose-lowering therapeutic agents (e.g., metformin, sitagliptin, insulin, and 
exendin-4) (8,27).

Materials and methods

Animals and breeding
10–23-week old female E3L, GK+/−, and E3L.GK+/− mice (n=6-10/sex/genotype) were used 
in the study. Both E3L and GK+/− mice are bred on a C57BL/6J background. Since 
homozygous E3L mice are not viable in utero, these mice are bred heterozygously by 
breeding E3L X C57BL/6J. GK+/− mice are bred heterozygously (GK+/− X C57BL/6J) as 
described previously (26), because the homozygous deletion of GK is postnatally lethal. 
E3L.GK+/− mice were generated by cross-breeding E3L mice with GK+/− mice, thereby 
generating 27 to 40% offspring of each genotype. Mice were crossed once and were not 
backcrossed. E3L mice are huApoE3Leiden-huApoC1 double transgenic mice, with both 
genes located on one genomic DNA construct (12), and therefore, the presence of the E3L 
phenotype was evaluated by genotyping for APOC1. The presence of the GK+/− phenotype 
was evaluated by qPCR as described previously (26). Females were used because E3L 
females are more responsive to dietary cholesterol and fat than males. E3L females have a 
higher VLDL production than males (28) resulting in higher plasma total cholesterol (TC) 
and triglyceride (TG) levels and development of atherosclerosis (12,29). All mice were 
housed under standard conditions with a 12 h light-dark cycle and had free access to food 
and water. Body weight was monitored regularly during the study. Animal experiments 
were approved by the Regional Animal Ethics Committee for Experimental Animals, 
Göteborg University. All in vivo activities were carried out conforming to the Swedish 
Animal Welfare Act and regulations SJVFS 2012: 26.
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Experimental design and analyses
First, mice were fed a semisynthetic diet, containing saturated fat with 15% (w/w) cacao 
butter (Western-type diet (WTD); Hope Farms, Woerden, the Netherlands) and 0.15% 
cholesterol for 7 weeks to study the effect of a mildly lipid-elevating diet on plasma lipid 
and glucose levels. Subsequently, this diet was supplemented with 10% glucose in the 
drinking water in weeks 6–7 to investigate whether dietary glucose did modulate these 
plasma levels. During the following 30 weeks, mice were fed a WTD + 1.0% cholesterol to 
induce atherosclerosis (20) (Figure 1). EDTA blood samples were drawn after a 4-hour fast, 
and plasma parameters were evaluated at different time points throughout the study. The 
last blood sample was drawn at week 36, and all animals were sacrificed by CO2 inhalation 
at week 37. Plasma TC, TG, glucose, and insulin were measured throughout the study, and 
HbA1c was measured at week 36. TC and glucose exposure were calculated by adding up 
for all intervals the products of the mean cholesterol or glucose level during that interval 
times the duration of that interval and expressed as mmol/L*weeks. Lipoprotein profiles, 
alanine transaminase (ALT), and aspartate transaminase (AST) were measured in group 
wise-pooled unfasted sacrifice plasma. Urinary albumin:creatinine levels were measured 
in spot urine collected in week 36. Hepatic lipid content was analyzed in homogenized, 
snap-frozen liver samples as described previously (30). Heart and aorta, liver, and kidneys 
were collected for histopathological analysis of atherosclerosis, NAFLD/NASH and liver 
fibrosis, and diabetic nephropathy.

Biochemical analyses 
Plasma TC and TG were determined throughout the study using enzymatic colorimetric 
methods (TC: kit no. A11A01634, Horiba ABX, France and TG: kit no. 12146029, Roche 
Diagnostics GmbH, Germany) according to the manufacturer’s protocols and TC exposure 
was calculated. HDL-C was measured after precipitation of apoB-containing particles (31). 
The distribution of cholesterol over plasma lipoproteins was determined in group 
wise-pooled unfasted sacrifice plasma by fast protein liquid chromatography (FPLC) (32). 
Blood glucose and HbA1C levels were measured in one drop of blood obtained from the 

Figure 1  Study design. Female E3L.GK+/−, E3L, and GK+/− mice were fed different diets throughout 

the study. Blood samples were drawn at weeks 0, 4, 8, 12, 18, 30, and 36 as depicted in grey. All mice 

were sacrificed at week 37. +glucose: 10% glucose drinking water.

Termination

0 1 2 3 4 5 6 7 8 12 18 30 36 37

Diet 1: Western type diet  
+ 0.15% cholesterol

Diet 1 
+ glucose

Diet 2
Western type diet + 1.0% cholesterol
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tail in awake mice, using Accu-Chek (Roche, REF 05599415370) and HbA1C Now+ (Bayer, 
REF81611409-3038), respectively, and total glucose exposure was then calculated. Plasma 
insulin levels were measured with a radioimmunoassay (SRI-13K, Millipore Corporation, 
USA) on a 1470 Automatic Gamma Counter (PerkinElmer, USA). Plasma ALT and AST were 
determined using a spectrophotometric assay (Boehringer Reflotron system) in group 
wise-pooled samples. Urinary albumin and creatinine levels were determined using the 
mouse albumin ELISA kit (ALPCO, Salem, USA) and the creatinine kit (Exocell, Philadelphia, 
USA). All assays were performed according to manufacturer’s instruction. Hepatic lipid 
content was analyzed in homogenized, snap-frozen liver samples and analyzed with 
TINA2.09 software (Raytest Isotopen Meβgeräte, Straubenhardt, Germany). 

Histological assessment of atherosclerosis
Hearts were fixed in formalin, embedded in paraffin and sectioned perpendicular to the 
axis of the aorta. Serial cross sections (5 µm thick with intervals of 50 µm) were stained 
with hematoxylin-phloxine-saffron (HPS) for histological analysis. The average total lesion 
area per cross-section was then calculated (31,33). For determination of lesion severity the 
lesions were classified into five categories according to the American Heart Association 
classification (34): 0) no lesion, I) early fatty streak, II) regular fatty streak, III) mild plaque, IV) 
moderate plaque, and V) severe plaque. Lesion composition was determined for the type 
III-V lesions as a percentage of lesion area after immunostaining with anti-human 
alpha-actin (1:400; PROGEN Biotechnik GmbH, Germany. Cat#:61001) for smooth muscle 
cells (SMC), anti-mouse Mac-3 (1:50; BD Pharmingen, the Netherlands. Cat#: 550292) for 
macrophages and Sirius Red staining for collagen. Necrotic area and cholesterol clefts 
were measured after HPS staining. Lesion stability index was calculated as described 
previously (31,33). In each segment used for lesion quantification, the number of 
monocytes adhering to the endothelium was counted after immunostaining with AIA 
31240 antibody (1:1000; Accurate Chemical and Scientific, New York, New York, USA. Cat#: 
J1857) (31). Lesion areas were measured using Cell D imaging software (Olympus Soft 
Imaging Solutions).

Histological assessment of liver steatosis and fibrosis
Liver samples (lobus sinister medialis hepatis) were collected from non-fasted mice, fixed 
in formalin and paraffin embedded, and sections (3 µm) were stained with hematoxylin 
and eosin (HE) and Sirius Red. Hepatic steatosis was scored blinded by a board-certified 
pathologist in HE-stained cross-sections using an adapted grading system of human 
NASH (35,36). Hepatic fibrosis was identified using Sirius Red stained slides and evaluated 
using an adapted grading system of human NASH (35,37), in which the presence of 
pathological collagen staining was scored as either absent (0), observed within 
perisinusoidal/perivenular or periportal area (1), within both perisinusoidal and periportal 
areas (2), bridging fibrosis (3) or cirrhosis (4). In addition, liver fibrosis (expressed as the 
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percentage of the total liver tissue area) was quantified automatically using ImageJ 
software (version 1.48, NIH, Bethesda, MD, USA) (38).

Histological assessment of diabetic nephropathy
Left kidneys were fixed in formalin, embedded in paraffin and sections (3 μm) were 
stained with HE, Masson’s trichrome (MTC), periodic acid–Schiff (PAS) and immunohisto-
chemically for nephrin. Nephrin was stained using a Ventana Discovery with an antibody 
raised in guinea pig (ab6698, Abcam) diluted 1:1000, Link Rb@GP (Abcam) diluted 1:500, 
followed by OmniMap@Rb HRP (ROCHE) and ChromoMap DAB-kit (Roche) was used  
to detect the positive reaction. Sections were finally counterstained with HE (Roche).  
An overall score based on the combination of all evaluated parameters was determined 
blinded by a board-certified pathologist where 0 indicates no change in morphology and  
5 indicates severe morphological changes. Vacuolized tubuli were scored as 0 indicating 
that no vacuolized tubuli are present, 1 indicating small and few vacuoles and 2 indicating 
large and many vacuoles. Sections stained with HE were evaluated for the presence of 
renal damage focusing on glomerular damage, including mesangial matrix expansion, 
and tubule-interstitial damage, including interstitial inflammation, fibrosis and tubular 
abnormalities, as central causes for loss of kidney function. MTC was used for detection of 
fibrosis, PAS for scoring of matrix expansion and protein deposition in the tubuli, and 
nephrin for confirmation of matrix expansion and deletion of nephrin. 

Statistical analysis
The E3L.GK+/− phenotype was compared to E3L and GK+/−, and significance of differences 
was calculated parametrically using a one-way ANOVA with Dunnett’s post hoc test. 
Differences in plasma parameters between the different time points were calculated for 
each genotype using a one-way ANOVA with a Bonferroni post hoc test. Significance of 
differences between the E3L.GK+/− and E3L mice in atherosclerotic lesion number, severity, 
and composition was calculated using an independent sample t-test. A multiple regression 
analysis was performed to predict the effect of variables on lesion size, and linear 
regression was used to assess correlations between variables. SPSS 22.0 for Windows was 
used for statistical analysis. Values are presented as means ± SD. All reported p-values < 
0.05 were considered statistically significant.
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Results

Safety aspects 
No clinical signs of deviant behavior were noted in any of the phenotypes. From week 0 
to 36, all three phenotypes gained 5 ± 2 gram body weight (Table 1). Plasma pooled per 
group showed lower AST and ALT values as markers of hepatocellular damage in GK+/- 
mice when compared to E3L.GK+/- and E3L (Table 1). One mouse was terminated during 
the study based on human end-point criteria.

Plasma parameters for metabolic disease and response to diets
E3L.GK+/- mice are hyperlipidemic and hyperglycemic
Plasma TC and TG levels in E3L.GK+/- mice were similar to E3L mice and increased by 540% 
(TC) and 450% (TG) when compared to GK+/- mice (Figure 2A and B), resulting in a 
significantly increased cholesterol exposure (mmol/L*weeks) (+316%, p<0.001) (Figure 2D). 
Cholesterol in the E3L and E3L.GK+/- mice was mainly contained in VLDL and LDL, and in 
GK+/- in HDL (Figure 2C). Glucose levels were significantly elevated at all time points 
except at t=4 weeks when compared to E3L mice (Figure 2E). Total glucose exposure 
(mmol/L*weeks) was 429 ± 60, 299 ± 14 and 492 ± 52 mmol/L for E3L.GK+/-, E3L and GK+/-, 
respectively, and significantly increased in E3L.GK+/- when compared to E3L mice (+40%, 

Table 1  Biochemical parameters in E3L. GK+/-, E3L and GK+/- mice

E3L.GK+/- E3L GK+/-

Weight gain (g) 5 ± 2 5 ± 2 5 ± 2

Weight gain (% of body weight at t=0) 23 ± 6 24 ± 6 24 ± 11

Liver weight (g) 1.9 ± 0.3† 2.0 ± 0.4 1.4 ± 0.3

Liver weight (% of body weight at t=36) 8 ± 1†† 8 ± 2 6 ± 1

Cholesterol (mmol/L) 14 ± 3††† 12 ± 3 2 ± 1

Triglycerides (mmol/L) 2.0 ± 0.8††† 1.7 ± 0.4 0.5 ± 0.1

Glucose (mmol/L) 10 ± 1*** 8 ± 1 12 ± 2

Insulin (ng/mL) 0.4 ± 0.3 0.1 ± 0.1 0.2 ± 0.1

HbA1c (%) 5.1 ± 0.6** 4.3 ± 0.2 5.4 ± 0.4

ALT (U/L) 272 199 30

AST (U/L) 660 402 125

Urinary albumin:creatinin 19 ± 11 16 ± 2 31 ± 34

All depicted parameters are measured at week 36, except for liver weight (week 37). ** P<0.01, *** P<0.001 when 
compared to E3L; †P<0.05, †† P<0.01, ††† P<0.001 when compared to GK+/- . Data are presented as means ± SD 
(n = 8-10 per group and insulin n=4-8 per group).
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Figure 2  E3L.GK+/− mice have comparable lipid levels and higher glucose levels as E3L mice. 

Plasma cholesterol (A) and triglycerides (B) were measured throughout the study. Lipoprotein 

profiles were assessed by FPLC lipoprotein separation in group wise-pooled unfasted sacrifice 

plasma (C). Cholesterol exposure over time was calculated as mmol/L*weeks (D). Plasma glucose 

(E) and insulin (F) were measured throughout, HbA1c (%) was measured at week 36 (G), and glucose 

exposure was calculated as mmol/L*weeks (H). Data are presented as means ± SD (n=8-10 per group 

and for insulin n=4-8 per group). E3L.GK+/− compared to E3L. *p<0.05, **p<0.01, and ***p<0.001; 

E3L.GK+/− compared to GK+/−: †p<0.05, ††<0.01, and ††† p<0.001. Abbreviations: FPLC, fast protein 

liquid chromatography; HbA1c, hemoglobine A1c.
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p<0.001) (Figure 2H). Insulin levels did not differ between the strains (Figure 2F). HbA1c 
was increased by 17% when compared to E3L mice (p=0.005) (Figure 2G). In conclusion, 
these data show that E3L.GK+/- combine both adverse phenotypes with increased lipid 
levels as in E3L mice and mildly elevated glucose levels as of GK+/- mice. 

Plasma cholesterol levels are modulated by the diet in E3L.GK+/- and E3L mice
Different diets were used in this study to evaluate the response of the mouse model to 
dietary interventions. Plasma TC, but not TG, increased in both E3L.GK+/- and E3L mice 
when switched from a chow diet (t=0 weeks) to a WTD with 0.15% cholesterol added 
(+143%, p=0.038; +173%, p=0.001), whereas plasma lipid levels were not affected in GK+/- 
mice (Table 2). Plasma glucose and insulin levels were not affected by the WTD with 0.15% 
cholesterol added, except for glucose which increased in E3L mice (+26%, p=0.010). 
Adding 10% glucose to the drinking water further increased plasma TC levels: when 
compared to t=0 weeks (chow) TC levels increased by 215% in E3L.GK+/- mice (p=0.001) 
and by 224% in E3L mice (p<0.001). However, this increase was not significant when 
compared to t=4 (WTD with 0.15% cholesterol) (Table 2 Increasing the amount of 
cholesterol in the diet to 1.0%, further increased plasma TC levels in E3L.GK+/- and E3L mice 
when compared to t=0 and when compared to t=8 (+89%, p<0.001; +43%, p=0.013). 
Insulin levels dropped in E3L mice at t=36 weeks when compared to t=0 weeks (-60%, 
p=0.020) and t=8 weeks (-66%, p=0.010), whereas this effect was less pronounced in GK+/- 
mice ( -41%, p=0.081 compared to t=8 weeks), and absent in E3L.GK+/- mice. Interestingly, 
plasma glucose levels in E3L.GK+/- and GK+/- mice were not modulated by glucose in the 
drinking water, indicating that despite reduced glucokinase activity (26) the mice maintain 
their glucose homeostasis at increased glucose supply. Altogether, these data show that 
plasma lipids can be modulated in the E3L.GK+/- mouse model, as in E3L mice, whereas the 
elevated glucose levels on chow are not further increased by these dietary interventions. 

Diabetic macro- and microvascular complications in E3L.GK+/- mice
Atherosclerotic lesion size and severity are aggravated in E3L.GK+/- mice
One of the most important diabetic complications is increased risk for CVD (1–3) and 
therefore, we assessed atherosclerotic lesion size, lesion severity and plaque phenotype, 
as marker of vulnerability to rupture, in the aortic root. E3L mice developed 0.4 ± 0.5 mild 
(I-II), 3.6 ± 2.3 moderate (III) and 1.6 ± 1.8 severe (IV-V) lesions per cross-section. The number 
of severe lesions was significantly increased in E3L.GK+/- mice (2.8-fold; p=0.038) (Figure 3A). 
When lesion severity was depicted as the percentage of total plaque area that consisted 
of mild or severe lesions, there was no difference between E3L and E3L.GK+/- mice (Figure 3B). 
However, the total atherosclerotic lesion size was significantly increased by 2.2-fold in the 
E3L.GK+/- mice (68 ± 42 *1000 µm2) as compared to E3L (32 ± 29 *1000 µm2) (p=0.037) 
(Figure 3C). There were no lesions visible in the GK+/- mice (Figure 3C). The plaque 
composition was analyzed in the type III-V lesions, as illustrated by representative images 
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in Figure 4. There were no significant differences between E3L.GK+/- and E3L mice in 
plaque composition (Figure 3D), plaque stability index or monocyte adherence to the 
endothelium (data not shown). Collectively, these data show that atherosclerotic lesion 
size is aggravated in E3L.GK+/- as compared to E3L mice without affecting plaque 
composition and monocyte adherence.

Figure 3  Atherosclerotic lesion size and severity are aggravated in E3L.GK+/- mice which is 

correlated to glucose exposure. The number of lesions (A), lesion severity classified as mild (type I-II 

lesions), moderate (type III) and severe (type IV and V) lesions (B), and atherosclerotic lesion size per 

cross-section (C). Necrotic and macrophage content as pro-inflammatory factors, and αSMCs and 

collagen as fortifying factors, were determined in type III-V lesions and expressed as percentage of 

total plaque area (D). Linear regression analyses were performed on the square root of the lesion 

area plotted against glucose exposure (E) or cholesterol exposure (F). Data are presented as means 

± SD (n = 6-8 per group).*P<0.05 when compared to E3L; ††† P<0.001 when compared to GK+/-. 
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Figure 4  Plaque composition in a severe plaque of a E3L and E3L.GK+/- mouse. Representative 

images of HPS staining, Movat staining, Sirius red staining for collagen, immunostaining with 

α-actin for SMCs and immunostaining with Mac-3 for macrophages. The arrows depict necrotic 

areas, including cholesterol clefts. Abbreviations: HPS, hematoxylin-phloxine-saffron; SMCs, smooth 

muscle cells.
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Elevated plasma glucose levels contribute to the increased development of 
atherosclerosis in E3L.GK+/- mice
To explore the contribution of the elevated plasma glucose levels to the increased lesion 
size, a multiple regression analysis was performed with cholesterol and glucose exposure 
as covariates after square root transformation of the lesion area. Lesion size was predicted 
only by glucose exposure (p<0.001). In addition, univariate regression analysis showed a 
clear association of lesion size with glucose exposure (R2=0.636, p=0.001) (Figure 3E) but 
not with cholesterol exposure (Figure 3F), pointing towards an important role for glucose 
in the accelerated atherosclerosis development in E3L.GK+/- mice. 

The GK+/- phenotype does not aggravate hepatic steatosis, inflammation or fibrosis
NAFLD/NASH is strongly associated with the metabolic syndrome and type 2 diabetes 
(39,40). To assess whether the GK+/- phenotype worsens the development of NASH, liver 
sections were examined for hepatic steatosis, inflammation and fibrosis, and liver lipid 
content was measured. Hepatic macrosteatosis did not differ between the phenotypes 
(Figure 5A), whereas hepatic microsteatosis was significantly elevated by 2.7-fold 
(p=0.003) in E3L.GK+/- mice when compared to GK+/- (Figure 5B), and both E3L.GK+/- and 
E3L had severe liver inflammation which was 6.8-fold increased (p<0.001) in E3L.GK+/- 
relative to GK+/- (Figure 5C). Furthermore, mean fibrosis stage in E3L.GK+/- was significantly 
elevated when compared to GK+/- (2.3-fold, p<0.001) (Figure 5D), as well as the percentage 
Sirius red positive area of total liver area (6.1-fold, p=0.011) (Figure 5E). Liver lipids did  
not differ between the phenotypes (Figure 5F-H). Representative images are shown 
(Figure 5I-N). Collectively, these data show that E3L and E3L.GK+/- mice, but not GK+/-, 
develop NASH with severe inflammation and fibrosis, which is not worsened by increased 
glucose levels. This indicates a dominant role for the combination of the E3L phenotype 
and dietary cholesterol in the progression of NASH and liver fibrosis.

Mild kidney pathology is present in all three phenotypes
Diabetic nephropathy is becoming an increasingly important cause of morbidity and mortality 
worldwide and is related to the increasing prevalence of type 2 diabetes. Therefore, kidneys 
were analyzed for the presence of renal damage focusing on glomerular damage, including 
mesangial matrix expansion, and tubulo-interstitial damage, including interstitial inflammation, 
fibrosis and tubular abnormalities, as central causes for loss of kidney function. Nephrin staining 
was performed to study renal filtration barrier function. There were no differences in in-
flammation, fibrosis (data not shown), mesangial matrix expansion (Figure 6A) or nephrin score 
(Figure 6B) between the phenotypes. Abnormal tubular structures were observed in all three 
phenotypes but were most pronounced in GK+/- mice, wherein the tubuli showed vacuolization 
(Figure 6C). The pathological changes did not affect permeability in the glomerulus, 
as measured by the urinary albumin:creatinine ratio (Table 1). Altogether, we can conclude  
that mild pathological changes are present, which are not aggravated in E3L.GK+/- mice.  
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Discussion

In the present study, we evaluated the E3L.GK+/- mouse as an animal model for diet-induced 
hyperlipidemia and hyperglycemia and the pathological consequences thereof. We 
showed that plasma lipids can be titrated to desired and for humans relevant levels by 
adding cholesterol and fat to the diet, and that these levels remain stable for a long period 
(up to 37 weeks). In addition, E3L.GK+/- mice were mildly hyperglycemic and developed 
more atherosclerosis than E3L mice, which was related to the higher glucose levels in the 
E3L.GK+/- mice. E3L and E3L.GK+/- mice both developed hepatic steatosis with severe 
inflammation and fibrosis, which, however, was not altered by introduction of the 
defective GK phenotype, whereas only mild kidney pathology with tubular vacuolization 
was present in all three phenotypes. 
	 Translatability of animal models is essential when investigating the pathogenesis of 
diabetic complications and evaluating drug treatment thereon. Plasma cholesterol and 
glucose levels in the diet-induced E3L.GK+/- mouse model were similar to levels in patients 
with increased cardiovascular risk (2,41). Partial deletion of the Gk gene in the E3L mice did 
not affect the response of plasma lipids to dietary modulation, and in both E3L.GK+/- and 
E3L mice plasma cholesterol levels raised similarly upon feeding a WTD with increasing 
amounts of cholesterol. Interestingly, glucose and insulin levels were not affected by the 
diet, but remained stable representing mild hyperglycemia in E3L.GK+/- and GK+/- mice 
(10.4 ± 1.4 mmol/L and 14.1 ± 2.6 mmol/L at end-point, respectively). In contrast, glucose 
levels in male GK+/- mice increase over time on a high-fat diet with plasma levels reaching 
18.9 ± 1.0 mmol/L and impaired glucose tolerance (8,26). This gender difference may be 
explained by the C57BL/6J background of the E3L and GK+/- transgenic mice. Upon a 
high-fat diet, insulin and glucose levels increase over time in C57BL/6J males, consistent 

Figure 6  Mild matrix expansion and vacuolized tubuli in all phenotypes. Presence of matrix 

expansion (A), nephrin score (B) and vacuolized tubuli (C) was scored in a range of 0-5. Data are 

presented as means ± SD (n = 7-10 per group). . 
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with insulin resistance and glucose intolerance, whereas C57BL/6J females have normal 
serum insulin concentrations and glucose levels remain constant (42). Estrogens affect 
different metabolic pathways in the glucose hemostasis (43), thereby protecting against 
the risk of developing type 2 diabetes in both pre-menopausal women (44) and mice (43). 
	 We observed a markedly increased atherosclerotic lesion size in E3L.GK+/- as compared 
to E3L mice which was highly significantly correlated with glucose exposure (R2=0.636, 
p=0.001), suggesting a pro-atherogenic role of glucose in the development of athero
sclerosis. Indeed, it is known that prolonged exposure to hyperglycemia negatively affects 
the endothelium, vascular smooth muscle cells and macrophages, and it increases thrombosis 
while impairing fibrinolysis, leading to formation of atherosclerotic plaques (45). This may 
explain the association of diabetes type 2/hyperglycemia with cardiovascular disease as 
found in both humans (1,2,45,46) and hyperglycemic mice (6), including E3L.GK+/- mice. 
	 In the present study, both the hyperglycemic GK+/- mice as well as the hyperlipidemic 
E3L and E3L.GK+/- mice developed hepatic steatosis, in line with the pathogenesis of NAFLD 
wherein both metabolic overload and hyperlipidemia contribute to the accumulation of 
triglycerides and cholesterol in the liver. Interestingly, E3L and E3L.GK+/-, but not GK+/- 

mice, developed extensive inflammation and hepatic fibrosis, pointing towards a role for 
cholesterol in the transition of NAFLD to NASH. Consistent with this view, when cholesterol 
is supplied to HFD diet, E3L mice develop NASH and liver fibrosis as well (47), and E3L and 
E3L.CETP mice have been shown to be established diet-induced NASH and liver fibrosis 
models (47,48). In a previous study with E3L mice, an increased amount of hepatic cholesterol 
crystals was found and intrahepatic free cholesterol levels were positively correlated with 
the number of inflammatory aggregates and the expression of hepatic pro-inflammatory 
and pro-fibrotic genes (49). Similarly, it has been shown that accumulation of free cholesterol 
leading to the formation of cholesterol crystals in hepatocyte lipid droplets may trigger 
the progression of simple steatosis to NASH both in patients and in mice (50). Since no 
additional effects of glucose were observed on hepatic inflammation or fibrosis in E3L.
GK+/- mice, we suggest that hyperlipidemia rather than hyperglycemia is an initiator of 
hepatic inflammation and fibrosis.
	 Chronic kidney disease is a largely irreversible disease characterized by tubulo-
interstitial inflammation, fibrosis, and glomerulosclerosis. The present study describes only 
mild kidney pathology without microalbuminuria in all three phenotypes. In addition to 
risk factors investigated in this study (hyperglycemia and dyslipidemia), hypertension 
plays a central role in renal injury through increasing renal tubular reabsorption and 
causing a hypertensive shift of renal-pressure natriuresis (5). Studies on nephropathic 
patients showed that decreased blood pressure reduced the incidence of renal events 
and improved kidney function (51,52). In the present study blood pressure was not 
measured. However, it is known that E3L mice do not develop hypertension upon a WTD, 
but do respond to anti-hypertensive treatment (15,17), and although there are no reports 
in GK+/- mice, GK deficiency in humans does not aggravate blood pressure (25). 
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Previously, the GK+/-ApoE-/- mouse model has been developed as model combining 
hyperlipidemia and hyperglycemia, which had impaired glucose tolerance and a minimal 
increase of atherosclerosis relative to ApoE-/- mice (53). A disadvantage of this model is the 
ApoE-/- background. ApoE-/- mice are, like LDLR-/- mice, a severe model for hyperlipidemia, 
and due to the absence of a functional apoE-LDLR-mediated clearance pathway these 
mice do not respond well to lipid-lowering drugs (e.g. statins (10), PCSK9 inhibitors (11)) 
and therefore cannot be used for the evaluation of combination treatment. In contrast, 
E3L mice are very suited to study lipoprotein metabolism and lipid modulation (10,54).
	 In Figure 7 we give an overview of all registered cholesterol- and glucose-lowering 
drugs that have been evaluated in E3L and GK+/- mice, respectively. E3L mice respond 
similarly as humans do to lipid lowering agents, including statins, fibrates, niacin and 
PCSK9-inhibitors (11,14–22), whereas glucose levels are successfully reduced in GK+/- mice 
by standard therapeutic agents as insulin, metformin, exendin-4 and GKAs at doses 
corresponding to therapeutic drug levels in man (8,27). Although these interventions have  
not been assessed in E3L.GK+/- mice yet, we carefully speculate about the effects and 
discuss how the model can be of value for future research. As E3L.GK+/- mice have similar 
lipid and glucose levels as their parent models, and respond in a similar way to dietary 
modulations, we propose that both lipid and glucose lowering agents will be effective in 
the combined model. Also, we propose that E3L.GK+/- mice can be used to examine 
interactions between glucose and lipid metabolism, e.g. how statin treatment increases 
the risk of diabetes incidence (55). Last, atherosclerosis development and CV safety can be 
evaluated in the E3L.GK+/- model, which is especially interesting regarding the currently 
unknown mechanisms by which glucose-lowering agents (e.g. empagliflozin, liraglutide, 
semaglutide) improve CV outcome (56–58). 
	 Altogether, we conclude that the E3L.GK+/- mouse is a promising translatable diet- 
inducible model, combining dyslipidemia and hyperglycemia with human-like plasma 
cholesterol and glucose levels and aggravated atherosclerosis, to study the etiology of 
diabetic atherosclerosis and for the evaluation of lipid-lowering and anti-diabetic drugs 
and their combination thereon.
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Figure 7  Overview of intervention studies with cholesterol- and glucose-lowering drugs performed 

in the E3L and GK+/- mouse models. The effects of cholesterol-lowering interventions on plasma 

TC levels were evaluated in E3L mice in long-term (5-28 weeks) exposure studies. The effects of 

glucose-lowering interventions on free-feeding blood glucose profiles were evaluated in GK+/- mice 

after single or repeated*3 dosing. In all studies, mice where fed a high fat or high fat/cholesterol 

containing diet. Data are extrapolated from published studies (see references). The depicted plasma 

parameters were measured at end-point in the present study. *1: Data shown of both APOE*3-Leiden 

and APOE*3-Leiden.CETP mice. *2: Unpublished. See reference 58 for data obtained from APOE*3-

Leiden.CETP mice. *3: Repeated dosing. *4: As doses in diabetic patients are generally adapted to 

reach the desired plasma glucose level of < 8 mM, reductions are not depicted as percentages. 

Abbreviations: TC, total cholesterol; TG, triglycerides; GKA, glucokinase activator 
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Abstract

Objectives: Endothelial activation is involved in many chronic inflammatory diseases, 
such as atherosclerosis, and is often initiated by cytokines. Oncostatin M (OSM) is a 
relatively unknown cytokine that has been suggested to play a role in both endothelial 
activation and atherosclerosis. We comprehensively investigated the effect of OSM on 
endothelial cell activation from different vascular beds and in APOE*3-Leiden.CETP mice.
Methods and results: Human umbilical vein endothelial cells, human aortic endothelial 
cells and human microvascular endothelial cells cultured in the presence of OSM express 
elevated MCP-1, IL-6 and ICAM-1 mRNA levels. Human umbilical vein endothelial cells and 
human aortic endothelial cells additionally expressed increased VCAM-1 and E-selectin 
mRNA levels. Moreover, ICAM-1 membrane expression is increased as well as MCP-1, IL-6 
and E-selectin protein release. A marked increase was observed in STAT1 and STAT3 phos-
phorylation indicating that the JAK/STAT pathway is involved in OSM signaling. OSM 
signals through the LIF receptor alfa (LIFR) and the OSM receptor (OSMR). siRNA knockdown 
of the LIFR and the OSMR revealed that simultaneous knockdown is necessary to 
significantly reduce MCP-1 and IL-6 secretion, VCAM-1 and E-selectin shedding and STAT1 
and STAT3 phosphorylation after OSM stimulation. Moreover, OSM administration to 
APOE*3-Leiden.CETP mice enhances plasma E-selectin levels and increases ICAM-1 
expression and monocyte adhesion in the aortic root area. Furthermore, Il-6 mRNA 
expression was elevated in the aorta of OSM treated mice.
Conclusions: OSM induces endothelial activation in vitro in endothelial cells from different 
vascular beds through activation of the JAK/STAT cascade and in vivo in APOE*3-Leiden.
CETP mice. Since endothelial activation is an initial step in atherosclerosis development, 
OSM may play a role in the initiation of atherosclerotic lesion formation.
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Introduction

The endothelium is involved in many processes including maintenance of the endothelial 
barrier function, prevention of spontaneous blood clot formation, inflammatory cell 
recruitment upon injury and regulation of the vascular tone (1–3). Impairment of one or 
more of these functions is often referred to as endothelial dysfunction, and may lead to 
the development of atherosclerosis, angiogenesis in cancer, vascular leakage, infectious 
diseases or stroke (4).
	 Although endothelial dysfunction is often described as the inability to dilate vessels, 
endothelial dysfunction is also characterized by endothelial activation, which is marked by 
increased cytokine release, adhesion molecule expression and endothelial permeability. 
The released cytokines attract leukocytes to the site of the activated endothelium, where 
the leukocytes bind to the endothelial barrier, which is enabled by enhanced adhesion 
molecule expression. Firmly adhered leukocytes then migrate through the endothelial 
barrier into the underlying tissue (5).
	 The process of endothelial activation can occur both, locally on well-known predilection 
sites and systemically, and is often triggered by traditional cardiovascular risk factors such as 
hypercholesterolemia, hypertension, smoking or diabetes and is initiated by inflammatory 
cytokines. One such a cytokine, which was first discovered in the cancer field, is oncostatin 
M (OSM). This relatively unexplored cytokine is an interleukin-6 (IL-6) family member that 
can signal through the leukemia inhibitory factor receptor (LIFR) and the OSM receptor 
(OSMR), which are both dependent on heterodimerization with the gp130 receptor to 
form a functional receptor complex (6). OSM is upregulated in multiple chronic inflammatory 
diseases including periodontitis, rheumatoid arthritis and inflammatory bowel diseases 
and is known to induce angiogenesis and smooth muscle cell proliferation and migration, 
both processes that are involved in atherosclerosis development (7–16). Other pro-inflam-
matory cytokines that promote angiogenesis, smooth muscle cell proliferation and 
endothelial activation, such as TNFα and IL-18, have already been proven to accelerate 
atherosclerosis (17–24). Furthermore, OSM is found in human carotid atherosclerotic 
plaques and in the intima and media of atherosclerotic mice (16).
	 Based on these findings and on the knowledge that endothelial cells are very high 
expressers of OSM receptors (25), we hypothesized that OSM may be involved in athero-
sclerosis development partially by inducing endothelial activation as a first step in the 
development of atherosclerosis. In this study, we incubated human endothelial cells with 
OSM to investigate if OSM induces systemic or local endothelial activation. As the cell 
heterogeneity among endothelial cells is huge (26,27) and endothelial cells from different 
vascular beds show different responses/ behave different to physiological stimuli (28,29), 
we tested the effect of OSM in endothelial cells derived from multiple vascular beds, 
human umbilical vein endothelial cells (HUVECs), human aortic endothelial cells (HAECs) 
and human microvascular endothelial cells (HMEC-1). Of which HAECs are the most 
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suitable endothelial cell type to study atherosclerosis development as atherosclerosis 
mainly affects the medium and large-sized arteries (30). To validate our findings in cultured 
endothelial cells in vivo, we administered OSM to APOE*3-Leiden.CETP mice, a translational 
mouse model for hyperlipidemia and atherosclerosis (31,32). The mildly pro-inflammatory 
state that is present in this animal model of hyperlipidemia makes it a suitable model to 
investigate the role of OSM in atherosclerosis prone conditions. We found that OSM 
induces endothelial activation in all different investigated human endothelial cell types 
and in mice after chronic administration and identified the JAK/STAT pathway as a key 
player in this process.

Materials and methods

Cell culture
Two different batches of pooled primary human umbilical vein endothelial cells (HUVECs, 
Lonza, the Netherlands), a single batch of primary human aortic endothelial cells from 
one single donor (HAECs, ATCC, Manassas, VA, USA) and a human dermal microvascular 
endothelial cell line (HMEC-1, ATCC, Manassas, VA, USA) were cultured in EBM®-2 medium 
(Lonza, Walkersville, MD) supplemented with EGMTM-2 SingleQuots® (Lonza, Walkersville, 
MD) under normoxic conditions (21% O2). Throughout the study, passage 6 was used for 
HUVECs and HAECs, while passage 27 was used for the HMEC-1 cell line. All experiments 
were performed in 70% subconfluent HUVECs, HAECs, or HMEC-1 cells. After each experiment, 
cells and conditioned medium were collected for subsequent RNA or protein analysis. 
Repetitive experiments were only started if the previous experiment had been finished.

In vitro RNA expression
Human OSM (R&D systems, Minneapolis, MN) was added to HUVECs, HAECs and HMEC-1 
cells in a concentration range from 0–20 ng/mL. After 3 or 6 hours, RNA was isolated 
with the NucleoSpin® RNA kit (Macherey-Nagel, Düren, Germany) according to the 
manufacturer’s protocol. Isolated RNA (500 ng) was reverse transcribed into cDNA with 
the qSCript™ cDNA Synthesis Kit (Quanta Biosciences, Beverly, MA) and analyzed by 
real-time fluorescence assessment of SYBR Green signal (iQ™ SYBR® Green Supermix, 
Bio-Rad, Hercules, CA) in the CFX96™ Real-Time Detection System (Bio-Rad, Hercules, CA). 
Each sample was measured in duplicates. Primers were designed for the human genes 
of interest, sequences are listed in Table 1. mRNA levels were analyzed and corrected 
for the housekeeping gene ACTB. Experiments were repeated 4–7 times.
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In vitro cytokine release
To determine the effect of OSM on endothelial activation, HUVECs, HAECs or HMEC-1 cells 
were incubated with 5 ng/mL OSM. 3h and 6h after OSM treatment, conditioned medium 
was collected. To investigate the effect of OSM on endothelial activation after siRNA 
knockdown of the LIFR and OSMR, siRNA transfected HUVECs were treated with 5 ng/mL 
OSM 48h post transfection. 6h after OSM treatment conditioned medium was collected. 
Conditioned medium was analyzed with the ProcartaPlex Mix&Match Human 6-plex 
(Thermo Fisher, Waltham, MA) according to the manufacturer’s protocol and measured  
on the Bio-plex® 200 system (Bio-Rad, Hercules, CA) to determine the release of MCP-1, 
IL-6, soluble E-selectin, soluble P-selectin and soluble VCAM-1. Experiments were repeated 
3–7 times.

Table 1  Primer sets for qPCR analysis

Gene Species Direction Primer sequence (5’-3’)

MCP-1 Human Forward TGGAATCCTGAACCCACTTCT

Reverse CAGCCAGATGCAATCAATGCC

IL-6 Human Forward AGTGAGGAACAAGCCAGAGC

Reverse GTCAGGGGTGGTTATTGCAT

ICAM-1 Human Forward TTGAACCCCACAGTCACCTAT

Reverse CCTCTGGCTTCGTCAGAATCA

VCAM-1 Human Forward TGGGAAAAACAGAAAAGAGGTG

Reverse GTCTCCAATCTGAGCAGCAA

E-SELECTIN Human Forward AAGCCTTGAATCAGACGGAA

Reverse TCCCTCTAGTTCCCCAGATG

ACTB Human Forward GATCGGCGGCTCCATCCTG

Reverse GACTCGTCATACTCCTGCTTGC

Mcp-1 Murine Forward TTAAAAACCTGGATCGGAACCAA

Reverse GCATTAGCTTCAGATTTACGGGT

Il-6 Murine Forward CTATACCACTTCACAAGTCGGA

Reverse GAATTGCCATTGCACAACTCTTT

Icam-1 Murine Forward TCCGCTACCATCACCGTGTAT

Reverse TAGCCAGCACCGTGAATGTG

Hprt Murine Forward TCAGGAGAGAAAGATGTGATTGA

Reverse CAGCCAACACTGCTGAAACA
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Flow cytometry
5 ng OSM was added to HUVECs, HAECs, or HMEC-1 cells for 18h. Cells were washed with 
PBS and detached with accutase. Subsequently, cells were fixed with 1% PFA and incubated 
with 2.5 μL antibodies/ 1,000,000 cells against VCAM-1, ICAM-1, P-selectin and, E-selectin 
all obtained from Thermo Fisher. The experiment was repeated 3 times.

siRNA transfection
Knockdown of LIFR and OSMR was achieved by transfection with a mix of 4 specific siRNA 
sequences directed against the human mRNA sequence (SMARTpool siGENOME, 
GE Dharmacon, Lafayette, CO) in 70% subconfluent HUVEC cultures. Cells were incubated 
for 1 hour in a small volume of EGM-2 medium supplemented with DharmaFECT 1 
(GE Dharmacon, Lafayette, CO) according to manufacturer’s instructions. After 2 hours 
cells were supplemented with extra EGM-2 medium to complement medium volumes. 
As controls, HUVECs were transfected with a mix of 4 scrambled, non-targeting siRNAs 
(siSham Smartpool; GE Dharmacon, Lafayette, CO). siRNA transfected HUVECs were treated 
with OSM 48h after siRNA transfection.

Western blot
HUVECs were lysed with cOmplete™ Lysis-M, EDTA-free reagent (Sigma Aldrich, Saint 
Louis, MO) for 15 minutes on ice. Next, protein concentration was determined with the 
Pierce™ BCA protein Assay Kit (Thermo Scientific, Waltham, MA). The protein sample was 
treated with NuPAGE™ Sample Reducing Agent (Thermo Scientific, Waltham, MA) and 
NuPAGE™ LDS Sample Buffer (Thermo Scientific, Waltham, MA). Subsequently, the solution 
was boiled at 70°C for 10 minutes. Samples were loaded on a Bolt™ 4–12% Bis-Tris Plus gel 
(Thermo Scientific, Waltham, MA), run for 50 minutes at 160V and transferred to an iBlot®2 
PVDF Stack (Thermo Scientific, Waltham, MA) with the iBlot®2 Gel Transfer Device (Thermo 
Scientific, Waltham, MA). Blots were incubated with the primary antibody overnight at 4°C. 
Subsequently, blots were incubated with the appropriate secondary antibody conjugated 
with horseradish peroxidase (HRP) for 1h at RT. Peroxidase labeled antibodies were 
detected with Chemiluminescent Peroxidase Substrate (Sigma, Saint Louis, MO).

Animals and treatments
Thirty-two female APOE*3-Leiden.CETP transgenic mice (15–22 weeks of age) were used. 
The number of animals per group was calculated with Java Applets for Power and Sample 
Size [Computer software], from http://homepage.stat.uiowa.edu/~rlenth/Power/index.html 
using a one-way ANOVA with a probability of 0.05 and a Dunnett’s correction, a SD of 20%, 
a power of 80% and a minimal expected difference of 35%. Mice were housed under 
standard conditions with a 12h light-dark cycle and had free access to food and water. 
Body weight, food intake and clinical signs of behavior were monitored regularly during 
the study. Mice received a Western type diet (WTD) (a semi-synthetic diet containing 
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15 w/w% cacao butter and 0.15% dietary cholesterol, Altromin, Tiel, the Netherlands). 
At t=0 weeks, after a run-in period of 3 weeks, mice were matched based on plasma total 
cholesterol levels, plasma triglyceride levels, body weight, and age in 4 groups of 8 mice. 
Two mice died during the diet intervention period, 1 in the 1 μg/kg/day OSM group and 1 
in the 10 μg/kg/day OSM group. At t=7 weeks, an ALZET® Osmotic Pump Type 1004 
(4-week release duration, Durect, Cupertino, CA) containing either 1, 3 or 10 μg/kg/day 
murine OSM (R&D systems, Minneapolis, MN) or PBS was placed subcutaneously in the 
flank. Doses were based on previous studies, which gave a single or double injection of 
5–50 μg/kg OSM resulting in local increased permeability, edema, swelling, infiltration of 
immune cells, increased serum VEGF levels and increased angiopoietin 2 expression 
(33–36). All solutions, also PBS of control group, contained 1% mouse serum to prevent 
OSM from sticking to plastics. Prior to surgery, mice received the analgesic Carprofen 
(5 mg/kg s.c.) and were anesthetized with isoflurane (induction 4%, maintenance 2%). 
At t=10 weeks, mice were euthanized by gradual CO2 inhalation (6 L/min in a 20 Liter 
container). CO2 flow was maintained for a minimum of 1 minute after respiration ceased 
(as observed by lack of respiration and faded eye color). Death was confirmed by 
exsanguination (via heart puncture). Hearts were isolated for immunohistochemistry in 
the aortic root and aortas were isolated for RNA expression analysis. EDTA blood samples 
were drawn after a 4 hour fast at t=0 and t=10 weeks. All animal experiments were 
performed conform the guidelines from Directive 2010/63/EU of the European Parliament 
on the protection of animals used for scientific purposes or the NIH guidelines. The care 
and use of all mice in this study was carried out at the animal facility of The Netherlands 
Organization for Applied Research (TNO) in accordance with the ethical review committee 
“TNO-DEC” under the registration number 3683. Animal experiments were approved 
by the Institutional Animal Care and Use Committee of TNO under registration number 
TNO-202.

Plasma parameters
Plasma cholesterol and triglycerides were measured spectrophotometrically with 
enzymatic assays (Roche diagnostics). The inflammatory markers, E-selectin and monocyte 
chemoattractant protein 1 (MCP-1) were measured with ELISA kits from R&D. Plasma 
alanine transaminase (ALT) and aspartate transaminase (AST) were determined using a 
spectrophotometric assay (Boehringer Reflotron system) in group wise-pooled samples 
from sacrifice plasma. All assays were performed according to the manufacturer’s 
instruction.

Histological assessment of vascular inflammation
Vascular inflammation was assessed in the aortic root area as reported previously by 
Landlinger et al. (37) in control mice and mice receiving 10 μg/kg/day OSM. Briefly, the 
aortic root was identified by the appearance of aortic valve leaflets and serial cross-sections 
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of the entire aortic root area (5 μm thick with intervals of 50 μm) were mounted on 
3-aminopropyl triethoxysilane-coated slides and stained with hematoxylin-phloxine-saf-
fron (HPS). Each section consisted of 3 segments (separated by the valves) and in 4 
sections ICAM-1 expression and the number of monocytes adhering to the activated 
endothelium was counted after immunostaining with mouse monoclonal ICAM-1 
antibody (Santa Cruz) and AIA 31240 antibody (Accurate Chemical and Scientific) 
respectively . One mouse from the control group was excluded from analysis due to a 
technical error, resulting in 7 and 8 mice per group.

RNA isolation murine tissue
To isolate RNA from aortic tissue, RA1 lysis buffer (Macherey-Nagel, Düren, Germany) 
containing 1% DTT was added to the tissue, which was cut in tiny pieces and subsequently 
minced. RNA was isolated with the RNeasy® Plus Micro Kit (Qiagen, Hilden, Germany) 
according to the RNeasy Fibrous Tissue Mini Kit protocol (Qiagen, Hilden, Germany). 
Isolated RNA (500 ng) was reverse transcribed into cDNA with the qSCript™ cDNA Synthesis 
Kit (Quanta Biosciences, Beverly, MA) and analyzed by real-time fluorescence assessment 
of SYBR Green signal (iQ™ SYBR® Green Supermix, Bio-Rad, Hercules, CA) in the CFX96™ 
Real-Time Detection System (Bio-Rad, Hercules, CA). Each sample was measured in 
duplicates. Primers were designed for the murine genes of interest, sequences are listed  
in Table 1. mRNA levels were analyzed and corrected for the housekeeping gene Hprt. 
RNA isolation was unsuccessful in one mouse from the 3 μg/kg/day OSM group resulting 
in 6, 7 and 8 mice per group.

Statistical analysis
qPCR data was analyzed according to the ΔΔCt method, statistical tests were performed 
on ΔCt values. Two-way ANOVA was used to analyze in vitro data to take into account 
day-to-day variation of the experiments. Not normally (Gaussian) distributed parameters 
were transformed with the natural logarithm or in case of undetectable values analyzed 
with the appropriate non-parametric test. Dose-dependency was determined by a 
Pearson correlation. All statistical analyses were performed in SPSS statistics version 21.0. 
A two-tailed p-value of 0.05 was regarded statistically significant in all analyses. Graphs 
were made in GraphPad Prism version 7.02 for Windows (GraphPad Software, La Jolla 
California USA, www.graphpad.com).
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Results

OSM induces endothelial activation in human endothelial cells
To investigate whether OSM induces endothelial activation, we first examined cytokine 
mRNA expression in HUVECs, HAECs and HMEC-1 cells treated with 5 ng/mL OSM for 3 or 6 
hours. OSM treatment was found to increase mRNA expression of the cytokines MCP-1 
(p<0.01) and IL-6 (p<0.001) in HUVECs, HAECs (p<0.001) and HMEC-1 cells (p<0.001) at both 3h 
and 6h time points (Figure 1A–F). Since these cytokines are released by activated endothelial 
cells, we next measured MCP-1 and IL-6 protein concentrations in conditioned medium of 
OSM treated HUVECs, HAECs and HMEC-1 cells. Both MCP-1 (p<0.05) and IL-6 (<0.001) release 
were increased in OSM treated HUVECs, HAECs (p<0.05 and p<0.01 respectively) and HMEC-1 
cells (p<0.001) at both time points (Figure 1G–L). Subsequently, we measured adhesion 
molecule expression, which is another feature of endothelial activation. ICAM-1 mRNA 
expression was increased by OSM treatment in HUVECs (p<0.001) and HAECs (p<0.01) again 
at both 3h and 6h time points and in HMEC-1 cells 3h after addition of OSM (p<0.01)(Figure 
2A–C). VCAM-1 mRNA expression was upregulated in HUVECs at 3h (p=0.008) and in HAECs 
at both 3h and 6h (p<0.001)(Figure 2D and E). Moreover, we observed an upregulation in 
E-selectin mRNA expression in both HUVECs and HAECs at both 3h and 6h (p<0.001 and 
p<0.05)(Figure 2F and G), while VCAM-1 and E-selectin mRNA levels were too low expressed  
in HMEC-1 cells. In addition, ICAM-1 membrane expression was increased in HUVECs (p<0.05), 
HAECs (p<0.05) and HMEC-1 cells (p<0.05) (Figure 2H–J), but not membrane expression of 
VCAM-1, P-selectin or E-selectin (data not shown). Since these adhesion molecules can also 
be shed upon endothelial activation (38), we measured P-selectin, E-selectin, soluble 
VCAM-1 and soluble ICAM-1 levels in conditioned medium. Soluble VCAM-1 was upregulated 
in conditioned medium of HUVECs 6h after OSM addition (p<0.05) and in HAECs at both 3h 
and 6h post OSM addition (p<0.01) (Figure 2K and L). Soluble VCAM-1 was not detectable in 
conditioned medium of HMEC-1 cells. Additionally, E-selectin levels were upregulated at 
both time points in conditioned medium of OSM treated HUVECs (p<0.05) and HAECs 
(p<0.01) and 6h post OSM addition in HMEC-1 cells (p<0.05) (Figure 2M–O). P-selectin levels 
were not detectable. Overall, these results indicate that OSM consistently induces endothelial 
activation in vitro in the different human endothelial cell types. Therefore, subsequent 
mechanistic studies were conducted in HUVECs.

JAK/STAT signaling is involved in OSM induced endothelial activation
IL-6 family members signal through the Janus kinase/signal transducers and activators of 
transcription (JAK/STAT) pathway, a pathway that is often involved in cytokine and growth 
factor signaling (39–41). Therefore, we investigated whether this pathway is also involved 
in OSM induced endothelial activation. STAT1 and STAT3 phosphorylation were markedly 
increased (p<0.05) (Figure 3) upon addition of OSM indicating that the JAK/STAT pathway  
is involved in OSM induced endothelial activation as well.
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Figure 1  OSM increases cytokine release in different endothelial cells. HUVECs, HAECs and HMEC-1 

cells were incubated with 5 ng/mL OSM for the indicated period of time. All values are relative values 

compared to control, which was given an arbitrary value of 1. Values were normalized to ACTB 

and calculated with the ΔΔCt method. (A-F). MCP-1 and IL-6 release was measured in conditioned 

medium of HUVECs, HAECs and HMEC-1 cells incubated with 5 ng/mL OSM for 3 or 6h. Values too 

high to measure were arbitrarily set on 100,000 and are indicated with ● or . (G-L). All data represent 

geometric mean ± geometric SD. *p<0.05 **p<0.01 ***p<0.001 compared to control (n = 4–7).
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Figure 2  OSM increases adhesion molecule expression and release in different endothelial cells. 

HUVECs, HAECs and HMEC-1 cells were incubated with 5 ng/mL OSM for the indicated period of time. 
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All values are relative values compared to control, which was given an arbitrary value of 1. Values were 

normalized to ACTB and calculated with the ΔΔCt method. (A-C). ICAM-1 membrane expression was 

determined in HUVECs, HAECs and HMEC-1 cells treated with 5 ng/mL OSM for 18h. (D-F). Shedding 

of VCAM-1 and E-selectin was determined in conditioned medium of HUVECs, HAECs and HMEC-1 

cells treated with 5 ng/mL OSM for 3 or 6h by measuring soluble VCAM-1 and E-selectin. Soluble 

VCAM-1 values too low to measure were arbitrarily set on 1 and are indicated with ● or . Soluble 

E-selectin values too low to measure were arbitrarily set on 100 and are indicated with . (G-K).  

All data represent geometric mean ± geometric SD, except for flow cytometry data which shows  

a representative histogram of control and OSM treated cells (n = 3–7). *p<0.05 **p<0.01 ***p<0.001 

compared to control, ns = not significant.

Figure 3  JAK/STAT pathway is involved in OSM induced endothelial activation. HUVECs were 

incubated with 5 ng/mL OSM for 15 or 30 min. A representative picture shows STAT1 phosphorylation 

at Tyr701, STAT1, STAT3 phosphorylation at Tyr705, STAT3 and GAPDH (A). Bar graphs show relative 

STAT1 and STAT3 phosphorylation (B,C). Data represent mean ± SD (n = 5). *p<0.05 **p<0.01 

***p<0.001 compared to control.
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OSM induces endothelial activation by simultaneous signaling 
through the LIFR and OSMR
As OSM can signal through both the OSMR and the LIFR, a siRNA knockdown was 
performed to investigate which of these receptors is involved in OSM induced endothelial 
activation. LIFR mRNA expression was decreased to 25 ± 6% (mean ± SD), and OSMR mRNA 
expression to 52 ± 15%. Simultaneous knockdown resulted in a decrease of the LIFR to 31 
± 8% and of the OSMR to 45 ± 11% (Figure 4A and B). Single knockdown of LIFR did 
significantly decrease MCP-1 (p=0.019) and IL-6 secretion (p = 0.005), but not VCAM-1 or 
E-selectin shedding. Single knockdown of OSMR did only decrease IL-6 secretion (p<0.001), 
while MCP-1 secretion was significantly increased (p=0.007). VCAM-1 and E-selectin 
shedding were both not significantly changed. Double knockdown did not only decrease 
IL-6 (p<0.001) and MCP-1 (p<0.001) secretion, but also VCAM-1 (p=0.009) and E-selectin 
(p<0.001) shedding compared to non-targeting siRNA treated cells (Figure 4C and D). 
A similar effect was observed for STAT1 and STAT3 phosphorylation, which was only 
reduced by double knockdown (p<0.05) compared to control (Figure 4E and F). 
Altogether, these data indicate that OSM signals through LIFR and OSMR simultaneously 
in human endothelial cells.

OSM induces an inflammatory response in APOE*3-Leiden.CETP mice
To investigate whether OSM activates the endothelium in vivo as well, hyperlipidemic 
APOE*3-Leiden.CETP mice were administered OSM for 3 weeks. No clinical signs of deviant 
behavior and no significant effects on food intake were noted in any treatment group as 
compared to control. Plasma ALT and AST, measured at end-point as safety markers, 
showed no aberrant results (Table 2). Also, no significant difference in body weight, 
triglyceride, or cholesterol levels were observed compared to control (Figure 5A–C). 
As endothelial activation goes hand in hand with a pro-inflammatory response, plasma 
levels of inflammatory markers MCP-1 and E-selectin were measured. Plasma MCP-1 
tended to be increased (p=0.107) and plasma E-selectin was increased (p<0.001) in mice 
treated with 10 μg/kg/day OSM compared to the control group (Figure 5D and E). 
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Figure 4  Simultaneous downregulation of LIFR and OSMR decreases IL-6 and MCP-1 release and 

prevents STAT1 and STAT3 phosphorylation. LIFR (A) and OSMR (B) mRNA expression levels were 

downregulated by siRNA transfection in HUVECs. 48h post transfection, HUVECs were treated with 

5 ng/mL OSM for 6h to determine IL-6 and MCP-1 secretion and VCAM-1 and E-selectin shedding 

(C-F) or for 15 min to determine STAT1 and STAT3 phosphorylation (G-J). All data represent mean ± 

SD (n = 3–4). *p<0.05 **p<0.01 compared to control, ns = not significant. 
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Table 2  Average food intake and ALT and AST levels in mice

Dose
µg/kg/day

Food intake
(g/mouse/day)

ALT
(U/L)

AST
(U/L)

Control - 2.4 ± 0.2 53.1 324

OSM 1 2.7 ± 0.4 52.5 333

OSM 3 2.4 ± 0.3 92.1 669

OSM 10 2.4 ± 0.3 59.4 293

Food intake is measured per cage (n=2-4 mice per cage) and ALT and AST is measured in plasma pooled per 
group. Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase

Figure 5  OSM enhances plasma levels of inflammatory markers in APOE*3-Leiden.CETP mice 

treated with OSM. After 3 weeks of OSM treatment, body weight (A), triglyceride (B), cholesterol (C), 

E-selectin (D) and MCP-1 (E) levels were measured and compared to control mice. All data represent 

geometric mean ± geometric SD, except for body weight which represents mean ± SD (n = 7–8). 

***p<0.001 compared to control, ns = not significant.
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OSM induces endothelial activation in the vasculature of 
APOE*3-Leiden.CETP mice
To further investigate if OSM is able to induce endothelial activation, the aortic root area 
was examined for relevant markers. ICAM-1 protein expression tended to be elevated 
from 39 ± 15% (mean ± SD) to 59 ± 22% (p=0.067) and an increase in monocyte adhesion 
to the activated endothelium was observed from 5.7 ± 3.0 to 10.3 ± 4.7 monocytes (mean 
± SD, p<0.05) in mice treated with 10 μg/kg/day OSM (Figure 6). Furthermore, aortic 
mRNA expression analysis revealed a dose-dependent increase in Il-6 expression (p<0.001) 
and Icam-1 expression tended to be increased in the 1 μg/kg/day and 10 μg/kg/day OSM 
treated groups (p=0.101 and p=0.133, respectively) compared to control. Mcp-1 mRNA 
expression was not enhanced (Figure 7). These results show that OSM does not only 
induce endothelial activation in vitro, but also in vivo in a hyperlipidemic mouse model.

Figure 6  OSM increases ICAM-1 expression and monocyte adherence in the aortic root area in OSM 

treated APOE*3-Leiden.CETP. Representative pictures showing the endothelial ICAM-1 expression 

(brown staining) in a control (A) and a 10 μg/kg/day OSM treated (B) mouse and monocyte adherence 

(arrows) in a control (C) and a 10 μg/kg/day OSM treated (D) mouse. Endothelial ICAM-1 expression 

was determined as percentage of the endothelial surface in the cross-sections (E) and adhering 

monocytes were counted per cross-section after staining with AIA 31240 (F). Data represent mean  

± SD (n = 7–8). Data represent mean ± SD. *p<0.05.
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Discussion

The present study demonstrates that OSM induces endothelial activation in cultured 
human endothelial cells as well as in vivo in APOE*3-Leiden.CETP mice. The data show 
increased release of inflammatory markers and adhesion molecule expression, both 
features of endothelial activation. Furthermore, OSM increased monocyte adhesion in the 
aortic root area, as functional marker of endothelial activation.
	 We studied OSM induced endothelial activation in vitro by investigating the effect of 
OSM in three different types of human endothelial cells. Our data add to and expand on 
previous data that showed that OSM increases IL-6, IL-8 and MCP-1 secretion, ICAM-1 and 
VCAM-1 membrane expression and PMN adhesion to endothelial cells in vitro (34,42,43). 
Consistently, increased VCAM-1 and E-selectin shedding was observed in all three 

Figure 7  OSM increases Il-6 mRNA expression in aortic tissue of APOE*3-Leiden.CETP mice treated 

with OSM. After 3 weeks of OSM treatment, mRNA was isolated from the aorta and analyzed  

by qPCR. Il-6 (A), Mcp-1 (B) and Icam-1 (C) mRNA expression were quantified. All values are relative 

values compared to the control group, which was given an arbitrary value of 1. Values were 

normalized to Hprt and calculated with the ΔΔCt method. Data represent geometric mean ± 

geometric SD (n = 6–8). All values were compared to control. *p<0.05 ***p<0.001 compared to 

control, ns = not significant.

0 1 3 10
0

2

4

6

8

10

12

Il-6 mRNA

OSM (µg/kg/day)

R
el

at
iv

e
Il-

6
m

R
N

A
ex

pr
es

si
on * ****

0 1 3 10
0

1

2

3

4

5

Mcp-1 mRNA

OSM (µg/kg/day)

R
el

at
iv

e
M

cp
-1

ex
pr

es
si

on ns nsns

0 1 3 10
0

1

2

3

Icam-1 mRNA

OSM (µg/kg/day)

R
el

at
iv

e
Ic

am
-1

m
R

N
A

ex
pr

es
si

on

p=0.101 p=0.133ns

A B

C

A

C

B



535938-L-sub01-bw-Pouwer535938-L-sub01-bw-Pouwer535938-L-sub01-bw-Pouwer535938-L-sub01-bw-Pouwer
Processed on: 16-9-2019Processed on: 16-9-2019Processed on: 16-9-2019Processed on: 16-9-2019 PDF page: 204PDF page: 204PDF page: 204PDF page: 204

204

CHAPTER 8

endothelial cell types. ICAM-1 is an important adhesion molecule in monocyte binding as 
ICAM-1-/- endothelial cells show a strong attenuation in monocyte binding compared to 
control endothelial cells (44). Although we did not observe an increase in membrane 
E-selectin and VCAM-1 expression, OSM did increase soluble E-selectin and VCAM-1. 
Soluble VCAM-1 was previously shown to serve as a monocyte chemoattractant agent 
and soluble E-selectin enhances leukocyte migration and binding to endothelial cells 
(45,46). Taken together, these observations show that OSM induces different biomarkers of 
endothelial activation in cultured endothelial cells.

Previous short term in vivo studies in healthy wildtype mice with OSM administered for 
only 6 to 24 hours have shown signs of acute endothelial activation, such as increased 
angiopoietin 2 expression in cardiac tissue, increased plasma VEGF levels and increased 
permeability and infiltration of inflammatory cells (33–36). It is important to note that 
publicly available datasets show that Osmr and Lifr mRNA are expressed in aortic 
endothelial cells from mice as well (data accessible at NCBI GEO database (47), accession 
GSE114805 and (48), accession GSE115618).
	 The aim of the present study was to investigate the effect of chronic OSM exposure 
on endothelial activation in a hyperlipidemic mouse model, the APOE*3-Leiden.CETP 
mouse. This mouse model features elevated lipid levels, representing humans with 
hyperlipidemia and mild chronic inflammation who have an increased risk of developing 
atherosclerosis (31,32,37). We found that OSM tended to increase plasma MCP-1 and 
significantly increased plasma E-selectin, both markers of activated or dysfunctional 
endothelium (5,49) after 3 weeks of chronic OSM administration. Moreover, mRNA 
expression of Il-6 was increased dose-dependently in aortic tissue of OSM treated mice. 
We also observed a trend towards increased ICAM-1 expression in the aortic root of OSM 
treated mice and a markedly enhanced monocyte binding as functional marker of 
activated endothelium, thus demonstrating augmented endothelial activation. ICAM-1 
expression and adhesion of monocytes are strongly related, as previous studies show 
increased monocyte binding upon enhanced ICAM-1 expression and decreased 
monocyte binding upon reduced ICAM-1 expression (44,50). Collectively, these findings 
provide evidence that OSM does not only induce endothelial activation in vitro, but also in 

vivo on top of the inflammatory state that is present in hyperlipidemic mice, resulting in 
increased monocyte recruitment and adherence.
	 Even though, endothelial cells are directly activated by OSM in vitro, it is important to 
note that the in vivo situation is much more complex and other cell types may have 
contributed to the observed effects as well. For instance, the increase in plasma MCP-1 
and cardiac Il-6 expression can partly be caused by fibroblasts or smooth muscle cells, as 
these two cell types also show increased IL-6 and MCP-1 expression upon OSM treatment 
in vitro (51,52). Furthermore, OSM can promote growth factor and cytokine release in cell 
types other than endothelial cells, these released growth factors and cytokines can in turn 
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activate the endothelium, thereby inducing indirect endothelial activation (51–53). An 
example of such a growth factor is vascular endothelial growth factor (VEGF), which can 
be upregulated by OSM in multiple cell types (35,54–56) and is known to induce 
endothelial activation by increasing adhesion molecule expression and leukocyte 
adhesion (57).
	 Although our in vivo study was not aimed at and was too short to investigate whether 
chronic OSM exposure aggravates atherosclerosis, our results do give clues that OSM may 
be involved in the initiation of the atherosclerotic process. Some of the diverse hallmarks 
of endothelial activation that we observed, have previously been associated with athero-
sclerosis development in humans (49,58). Further indications come from reports showing 
that OSM is present in both murine and human plaques (16), and higher mRNA expression 
levels of OSM in PBMCs derived from coronary artery disease patients compared to healthy 
individuals (59). Moreover, a recent paper showed that prevention of OSM signaling, as 
opposed to stimulation of OSM signaling in our study, in OSMR-β-/-ApoE-/- mice resulted 
in less and smaller atherosclerotic lesions and less macrophages compared to ApoE-/- 
mice (60).
	 Other studies have shown that partial inhibition of endothelial activation by knockdown  
of E-selectin, P-selectin, ICAM-1 or MCP-1 attenuates atherosclerosis development in mice 
(61,62). Therefore, lowering of plasma OSM levels or intervention in OSM signaling might 
be worth investigating as a possible future approach in the treatment of atherosclerosis.
	 As it is currently unknown which of the OSM receptors is involved in OSM induced 
endothelial activation, we performed a siRNA knockdown of the LIFR and the OSMR.  
Single knockdown experiments showed that solely LIFR or OSMR downregulation is not 
sufficient to prevent OSM induced endothelial activation or JAK/STAT signaling. Only 
simultaneous knockdown of both receptors was able to dramatically decrease IL-6 and 
MCP-1 release, VCAM-1 and E-selectin shedding and STAT1 and STAT3 phosphorylation. 
Hence, it is essential to block both receptors simultaneously or to target OSM when 
considering intervening in OSM signaling as a possible future therapy. Targeting both 
receptors or OSM itself could be a relative safe approach since OSM-/- mice are viable and 
healthy (63).
	 Taken together, our comprehensive study provides new evidence that OSM induces 
activation of human endothelial cells from different vascular beds and in APOE*3-Leiden.
CETP mice chronically treated with OSM. Moreover, we provided data indicating both 
receptors for OSM as well as OSM itself as potential therapeutic targets in atherosclerosis 
and other chronic inflammatory diseases in which endothelial activation is involved such 
as rheumatoid arthritis, abnormal angiogenesis and thrombosis (64–67).
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Abstract

Objectives: Previous studies indicate a role for Oncostatin M (OSM) in atherosclerosis and 
other chronic inflammatory diseases for which inhibitory antibodies are in development. 
However, to date no intervention studies with OSM have been performed, and its relation 
to coronary heart disease (CHD) has not been studied. 
Methods and Results: Gene expression analysis on human normal arteries (n=10) and 
late stage/advanced carotid atherosclerotic arteries (n=127) and in situ hybridization on 
early human plaques (n=9) showed that OSM, and its receptors, OSM receptor (OSMR) and 
Leukemia Inhibitory Factor Receptor (LIFR) are expressed in normal arteries and athero-
sclerotic plaques. Chronic OSM administration in APOE*3-Leiden.CETP mice (n=15/group) 
increased plasma E-selectin levels and monocyte adhesion to the activated endothelium 
independently of cholesterol but reduced the amount of inflammatory Ly-6CHigh 
monocytes and atherosclerotic lesion size and severity. Using aptamer-based proteomics 
profiling assays high circulating OSM levels were shown to correlate with post incident 
CHD survival probability in the AGES–Reykjavik study (n=5457). 
Conclusions: Chronic OSM administration in APOE*3-Leiden.CETP mice reduced athero-
sclerosis development. In line, higher serum OSM levels were correlated with improved 
post incident CHD survival probability in patients, suggesting a protective cardiovascular 
effect.
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Introduction

Cytokines have an indisputable role in all stages of atherosclerosis development. In the 
initial stages of the disease, cytokines induce endothelial activation leading to endothelial 
adhesion molecule expression and leukocyte recruitment to the activated endothelium. 
In later stages of the disease, cytokines are involved in smooth muscle cell (SMC) migration, 
foam cell formation and enhanced MMP activity leading to plaque destabilization (1,2). 
	 Similarly, a role for Oncostatin M (OSM) in atherosclerosis has been suggested (3,4). 
This cytokine is secreted by activated macrophages and neutrophils and signals through 
the Leukemia Inhibitory Factor Receptor (LIFR) and the OSM receptor (OSMR) (5–7).  
OSM induces endothelial activation by increasing cytokine release, adhesion molecule 
expression, and leukocyte adhesion to the activated endothelium in cultured endothelial 
cells (8–10). Moreover, OSM reduces vascular integrity of rat blood brain barrier endothelial 
cells and enhances angiogenesis (11,12). Next to its effects on the endothelium, OSM 
enhances SMC proliferation, migration and differentiation (4,12,13).
	 Additional evidence for this potential role of OSM in atherosclerosis, was provided  
by Albasanz-Puig et al., who showed that OSM is expressed in both murine and human 
atherosclerotic plaques (13). Furthermore, in ApoE-/- mice, OSMR deficiency attenuated 
atherosclerosis development and increased plaque stability (14). 
	 Using a different approach, we recently demonstrated that short-term OSM 
administration (for 3 weeks) to APOE*3-Leiden.CETP mice increased plasma E-selectin 
levels, Interleukin (IL)-6 mRNA expression in the aorta and Intercellular Adhesion Molecule 1 
(ICAM-1) expression and monocyte adherence to the activated endothelium in the aortic 
root (10). Collectively, these findings suggest that OSM may be involved in atherosclerosis 
development but so far this has never been studied. 
	 The aim of this study is to investigate whether OSM is involved in atherosclerosis 
development in a humanized mouse model and in man. Therefore, we first investigated if 
OSM and its receptors are expressed in human normal and atherosclerotic arteries and if 
circulating OSM levels correlate with markers of endothelial activation in humans. Next, 
we explored the effect of long-term OSM administration on endothelial activation, athero
sclerosis development and lesion composition in APOE*3-Leiden.CETP mice, a translational 
model for human lipoprotein metabolism and atherosclerosis development (15). Finally, 
we investigated if circulating OSM levels were associated with survival probability post 
coronary heart disease (CHD) in humans.
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Materials and methods

Microarray on BiKE study material
Late stage/advanced atherosclerotic plaques were obtained from patients undergoing 
surgery for high grade (>50%) carotid stenosis and retained within the BiKE study. Normal 
artery controls were obtained from nine macroscopically disease-free iliac arteries and 
one aorta from organ donors without history of cardiovascular disease. All samples were 
collected with informed consent from patients or organ donor guardians. 127 plaques 
from BiKE patients and 10 normal arteries were analyzed by Affymetrix HGU133 plus 2.0 
GeneChip microarrays. Robust multiarray average normalization was performed and 
processed gene expression data was transformed in log2-scale. The microarray dataset is 
available from Gene Expression Omnibus (GSE21545). The BiKE study cohort demographics, 
details of sample collection, processing, and analyses were previously described (16). 

In situ hybridization (ISH) on SOCRATES study material
Early stage atherosclerotic lesions for in situ hybridization were obtained from the 
SOCRATES biobank (Leiden University Medical Center, the Netherlands). Details of this 
biobank have been described previously (17). Briefly, this biobank contains aortic wall 
patches obtained during kidney transplantation with grafts derived from cadaveric 
donors. Sample collection and handling were performed in accordance with the 
guidelines of the Medical and Ethical Committee in Leiden, the Netherlands, and the code 
of conduct of the Dutch Federation of Biomedical Scientific Societies (https://www.federa.
org/?s=1&m=82&p=0&v=4#827). Chromogenic mRNA-ISH was essentially performed as 
previously described (18,19) on 9 atherosclerotic lesions from the SOCRATES biobank. For 
detection of the OSM, OSMR and LIFR mRNAs, ISH was performed in a Ventana Discovery 
ULTRA instrument (Ventana Medical Systems Inc., AZ, USA) using the ACD RNAscope® 2.5 
Red Kit (Advanced Cell Diagnostics, Newark, CA, USA) and the mRNA Discovery ULTRA 
RED 4.0 procedure. RNAscope® 2.5 VS. Probes for Hs-OSM (#456389), Hs-OSMR-tv1 
(#445699) and Hs-LIFR (#441029) were designed by the probe manufacturer (Advanced 
Cell Diagnostics). FFPE sections (5 µm) were applied to Superfrost Plus (Thermo Fisher 
Scientific) slides, and all operations including deparaffinization, pretreatment, ISH and 
counterstaining using hematoxylin were performed in a Ventana Discovery ULTRA 
instrument. Following the ISH-procedure in the Ventana instrument, slides were washed 
in lukewarm tap water with detergent until oil from the slides was fully removed. 
Subsequently, slides were washed in demineralized water, air dried and mounted in 
EcoMount mounting medium (Advanced Cell Diagnostics) prior to scanning in a 
bright-field whole-slide scanner (Axio Scan.Z1, Zeiss, Oberkochen Germany) using a 20x 
objective. The resulting digital images were inspected and regions of interest were 
selected. 
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Proteomics on AGES-Reykjavik study material
Association between OSM levels and IL-6, vascular cell adhesion molecule (VCAM)-1, 
P-selectin, E-selectin, ICAM-1 and Monocyte chemoattractant protein-1 (MCP-1) levels, 
and between OSM levels and survival were explored in the AGES-Reykjavik cohort 
(n=5457) (20), a single-center prospective population-based study of deeply phenotyped 
elderly European Caucasians (aged 66 through 96, mean age 75±6 years) who survived 
the 50-year-long prospective Reykjavik study. Phenotype description, patient numbers 
and other details related to the present study have been described previously (21). The 
AGES-Reykjavik study was approved by the NBC in Iceland (approval number VSN-00-063), 
the National Institute on Aging Intramural Institutional Review Board (USA), and the Data 
Protection Authority in Iceland. We applied a custom version of the Slow Off-rate Modified 
Aptamer (SOMAmer) platform targeting proteins known or predicted to be found in the 
extracellular milieu, including the predicted extracellular domains of single- and certain 
multi-pass transmembrane proteins, as previously described (21). 
	 For survival analysis post CHD, we used 698 incident CHD cases exhibiting 307 deaths 
during the survival follow-up period of 12 years. Follow-up time for survival post incident 
CHD was defined as the time from 28 days after an incident CHD event until death from 
any cause or end of follow-up time. 

Animals and treatments
Sixty-five female in-house bred APOE*3-Leiden.CETP transgenic mice (10-15 weeks of age) 
were used. Mice were housed under standard conditions with a 12h light-dark cycle and 
free access to food and water. Body weight, food intake and clinical signs of behavior were 
monitored regularly. Mice received a Western type diet (semi-synthetic containing 15 
w/w% cacao butter and 0.15% dietary cholesterol, Altromin, Tiel, the Netherlands). At t=0 
weeks, after a run-in period of 3 weeks, mice were matched based on body weight, age, 
plasma total cholesterol and E-selectin levels in 4 groups: a control group, and three 
intervention groups, two of which were treated with 10 or 30 µg/kg/day OSM for 16 weeks, 
and an initial priming group, which received 30 µg/kg/day OSM for the first 5.5 weeks only. 
All groups consisted of 15 mice except for the control group which had an additional 5 
mice to monitor the atherosclerosis development. Five mice were removed from the 
study based on human end-point criteria and were excluded from all analyses: 2 mice in 
the 16 week 30 µg/kg/day OSM group and 1 in each of the other 3 groups. At t=0 weeks, 
an ALZET® Osmotic Pump Type 1004 (Durect, Cupertino, CA) containing either 10 or 30 
µg/kg/day murine OSM (R&D systems, Minneapolis, MN) or the vehicle (PBS + 1% mouse 
serum) was placed subcutaneously in the flank and were replaced at t=5.5 and 11 weeks. 
Doses were based on our previous research (10). Prior to surgery, mice received the 
analgesic Carprofen (5 mg/kg s.c.) and were anesthetized with isoflurane (induction 4%, 
maintenance 2%). EDTA blood samples were drawn after a 4 hour fast at t=0, 4, 8, 12 and 
16 weeks for determination of total cholesterol and inflammatory markers. At t=12 weeks, 



535938-L-sub01-bw-Pouwer535938-L-sub01-bw-Pouwer535938-L-sub01-bw-Pouwer535938-L-sub01-bw-Pouwer
Processed on: 16-9-2019Processed on: 16-9-2019Processed on: 16-9-2019Processed on: 16-9-2019 PDF page: 216PDF page: 216PDF page: 216PDF page: 216

216

CHAPTER 9

4 mice from the control group were euthanized to assess atherosclerosis development for 
the determination of the end-point of the study. At t=16 weeks, mice were euthanized by 
gradual CO2 inhalation. Death was confirmed by exsanguination (via heart puncture) and 
hearts were isolated. All animal experiments were performed conform the guidelines 
from Directive 2010/63/EU of the European Parliament on the protection of animals used 
for scientific purposes or the NIH guidelines. Approval was granted by the ethics committee  
on animal experiments (approval reference number DEC-3683) and the institutional animal 
welfare body (approval reference number TNO-255).

Plasma parameters
Plasma cholesterol was measured spectrophotometrically with enzymatic assays (Roche 
Diagnostics). E-selectin and MCP-1 were measured with ELISA kits from R&D (Minneapolis, 
MA, USA), and Serum Amyloid A (SAA) with an ELISA kit from Tridelta Development Limited 
(Maynooth, County Kildare, Ireland). All assays were performed according to the 
manufacturer’s instructions. 

Histological assessment of atherosclerosis and plaque composition
Atherosclerotic lesion area and severity were assessed in the aortic root area, as reported 
previously (22,23). Briefly, the aortic root was identified by the appearance of aortic valve 
leaflets, and serial cross-sections of the entire aortic root area (5 µm thick with intervals of 
50 µm) were mounted on 3-aminopropyl triethoxysilane-coated slides and stained with 
haematoxylin-phloxine-saffron (HPS). For each mouse, the lesion area was measured in  
4 subsequent sections. Each section consisted of 3 segments (separated by the valves). 
For determination of atherosclerotic lesion severity, the lesions were classified into five 
categories according to the American Heart Association (AHA) criteria (24): type 1 (early 
fatty streak), type 2 (regular fatty streak), type 3 (mild plaque), type 4 (moderate plaque), 
and type 5 (severe plaque). The total lesion area was calculated per cross-section. Due to 
a technical error one mouse of the OSM (30 µg/kg, 16 weeks) was excluded from analysis. 
Lesion severity was calculated as relative amount of type I-V lesions in which the lesion-free 
segments are included. From this, the relative amounts of lesion-free segments and 
diseased segments were calculated, and the relative amount of diseased segments was 
further subdivided into type I–V lesions, where types I-III refer to mild, and types IV-V to 
severe lesions. Lesion composition of type IV and V lesions was assessed after double 
immunostaining with anti-α smooth muscle actin (1:400; PROGEN Biotechnik GmbH, 
Germany) for smooth muscle cells (SMC), and anti-mouse MAC-3 (1:400; BD Pharmingen, 
the Netherlands) for macrophages. Anti-α smooth muscle actin was labeled with Vina 
green (Biocare Medical, Pacheco, USA), and MAC-3 with DAB (Vector laboratories, 
Burlingame, USA). After slides were scanned and analyzed, cover slips were detached 
overnight in xylene and Sirius Red staining for collagen was performed. The necrotic area 
was measured in the Sirius Red-stained slides. Lesion stability index, as the ratio of collagen 
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and αSMC area (i.e. stabilization factors) to macrophage and necrotic area (i.e. destabiliza-
tion factors) was calculated as described previously (22). Lesion composition was assessed 
in all type IV-V lesions with a mean of 5.9 ± 3.1 lesions in control, 5.6 ± 2.5 lesions in OSM 
10 µg/kg/d, 2.9 ± 2.0 lesions in OSM 30 µg/kg/d temporary and 2.8 ± 2.9 lesions in OSM 30 
µg/kg/d. Eight mice were excluded from analysis as there were no type IV-V lesions 
present (n=1 in control; n=4 in OSM 30 µg/kg/d temporary and n=3 in OSM 30 µg/kg/d). 
In each segment used for lesion quantification, ICAM-1 expression and the number of 
monocytes adhering to the endothelium were counted after immunostaining with 
mouse monoclonal ICAM-1 antibody (1:400; Santa Cruz Biotechnology, Dallas, USA) and 
AIA 31240 antibody (1:500; Accurate Chemical and Scientific, New York, USA) respectively 
(25). NLRP3 expression in the macrophages was quantified after staining with rabbit 
polyclonal antibody to NLRP3 (1:400; Abcam, Cambridge, UK). All slides were scanned by 
an Aperio AT2 slide scanner (Leica Biosystems). Atherosclerotic area, monocyte adherence 
and ICAM-1 expression were measured in Image Scope (version 12-12-2015), and the area 
that stained positive for αSMA, MAC-3, Sirius Red and NLRP3 in the plaques was quantified 
automatically in Fiji (version 30-5-2017) using a threshold method. 

Flow cytometry
To analyze the different monocyte subsets, 25 µL whole blood was incubated with 
antibodies against CD11b (APC-eFluor780-conjugated, eBioscience, San Diego, California, 
USA), Ly-6C (eFluor450-conjugated, eBioscience, San Diego, California, USA) and Ly-6G 
(A647-conjugated, Biolegend, San Diego, California, USA) for 30 min at RT. Erythrocytes 
were lysed with lysis buffer (deionized water with 168 mM ammonium chloride (Merck, 
Darmstadt, Germany), 9.99 mM potassium bicarbonate (Merck, Darmstadt, Germany) and 
0.11 mM Na2EDTA (Sigma-Aldrich, St. Louis, MO, USA)) for 10 min on ice and remaining 
erythrocytes were lysed with fresh lysis buffer for 5 min on ice. After washing, cells were 
fixed in 1% paraformaldehyde for 10 min on ice, measured with flow cytometry (Gallios, 
Beckman Coulter Fullerton, CA, USA) and analyzed with Kaluza Flow Analysis Software 
Version 2.1 (Beckman Coulter). Monocytes were defined as CD11b+Ly-6G-. 

Statistics
BiKE transcriptomic dataset analyses were performed with GraphPad Prism 6 and 
Bioconductor software using a linear regression model adjusted for age and gender and 
a two-sided Student’s t-test assuming non-equal deviation, with correction for multiple 
comparisons according to Bonferroni, as previously described (16). Data are presented as 
mean ± SD and adjusted p<0.05 was considered to indicate statistical significance.
	 Prior to protein data analyses, we applied a Box-Cox transformation on the proteins to 
improve normality, symmetry and to maintain all protein variables on a similar scale (21). 
For protein to protein correlation we used linear regression analysis. Given consistency in 
terms of sample handling including time from blood draw to processing, same personnel 
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handling all specimens and the ethnic homogeneity of the Icelandic population we 
adjusted only for age and sex in all our regression analyses. 
	 Mouse data analyses were performed with GraphPad Prism 7.04 and IBM SPSS v25.0. 
Data are presented as mean ± SD. Normally (Gaussian) distributed mouse parameters 
were analyzed with a t-test or one-way ANOVA and not normally distributed mouse 
parameters with a Kruskal-Wallis test followed by a Mann-Whitney U test if significant. A 
significant difference between the 16 week 10 and 16 week 30 µg/kg/day groups was 
considered as a dose-dependent difference. The rejection criteria were adjusted using a 
Bonferroni-Holm correction. Correlation between plaque size and Ly-6CHigh monocytes 
was tested with a Pearson correlation. A two-tailed p-value of 0.05 was regarded 
statistically significant in all analyses. 
	 Cox proportional hazards regression was used for post incident CHD and Kaplan-Meier 
plots were applied to display survival data. 

Results

mRNAs coding for OSM, OSMR and LIFR are present in human 
atherosclerotic plaques
To explore if OSM signaling can be involved in human plaque development, we first 
investigated if OSM mRNA and the mRNAs for the receptors for OSM, OSMR and LIFR, were 
present in late-stage human carotid plaques from the BiKE study. Gene expression analysis 
revealed presence of OSMR, LIFR and OSM mRNAs at low to moderate levels. mRNA 
expression of both receptors was significantly downregulated in plaques (p<0.0001) 
compared to normal arteries, while OSM expression was significantly increased (p=0.003) 
(Figure 1A-C). OSM mRNA expression positively correlated with macrophage markers and 
negatively with SMC markers (Table 1). Subsequent in situ hybridization confirmed the 
presence of OSMR, LIFR and OSM mRNAs in all investigated atherosclerotic plaque stages 
(Figure 1D-O), which is reflected in Table 2. 
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Figure 1  OSM, OSMR and LIFR mRNA expression is present in human atherosclerotic plaques. mRNA 

expression was measured in normal arteries and in carotid plaques by microarray analysis (A-C) and 

ISH was used to visualize OSM, OSMR and LIFR mRNA expression (red spots and shown by the black 

arrows) in two different stages of atherosclerosis development, the late fibroatheroma (D-I) and intimal 

xanthoma (J-O). ***p<0.001, ****p<0.0001. Abbreviations: ISH, in situ hybridization.
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Table 1  Correlation between OSM and genes of interest in plaques

  Gene symbol Pearson r p-value Significance level

Cell type markers

Smooth muscle cells

Myosin heavy chain 11 MYH11 -0.4327 < 0.0001 ****

Smoothelin SMTN -0.4437 < 0.0001 ****

Alpha smooth muscle actin ACTA2 -0.3476 < 0.0001 ****

Myocardin MYOCD -0.4119 < 0.0001 ****

Transgelin TAGLN -0.3127 0.0004 ***

Endothelial cells

von Willebrand factor VWF 0.1486 0.0967 ns

Pecam-1 (CD31) PECAM1 0.3009 0.0006 ***

Dendritic cells

Itgax (CD11c) ITGAX 0.4738 < 0.0001 ****

Ly75 (CD205) LY75 -0.03098 0.7295 ns

CD80 CD80 0.6013 < 0.0001 ****

T Lymphocytes

CD11b ITGAM 0.4048 < 0.0001 ****

ITGAL ITGAL 0.5012 < 0.0001 ****

CD27 CD27 0.107 0.233 ns

CD28 CD28 0.2859 0.0012 **

CD3 delta CD3D 0.3678 < 0.0001 ****

CD4 CD4 0.1078 0.2295 ns

CD8A CD8A 0.2258 0.0107 *

PTPRC (CD45RA) PTPRC 0.3758 < 0.0001 ****

CD69 CD69 0.4909 < 0.0001 ****

ITGAE ITGAE 0.2827 0.0013 **

FABP4 FABP4 0.3884 < 0.0001 ****

Macrophages

CD83 CD83 0.5474 < 0.0001 ****

CD86 CD86 0.4934 < 0.0001 ****

CD163 CD163 0.4434 < 0.0001 ****

TNFRSF9 TNFRSF9 0.3696 < 0.0001 ****

CD40 CD40 0.3422 < 0.0001 ****

CD36 CD36 0.4466 < 0.0001 ****

Inflammation/ Apoptosis Calcification markers

IL-1beta IL1B 0.5657 < 0.0001 ****

NFkB NFKB1 0.1764 0.0481 *
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Table 1  Continued

  Gene symbol Pearson r p-value Significance level

Inflammation/ Apoptosis Calcification markers

MCP-1 CCL2 0.5311 < 0.0001 ****

Caspase-3 CASP3 0.2726 0.002 **

Caspase-7 CASP7 0.05738 0.5233 ns

Caspase-9 CASP9 0.2318 0.009 **

BCL2 BCL2 0.2761 0.0018 **

RANTES CCL5 0.3821 < 0.0001 ****

BMP4 BMP4 -0.1434 0.1091 ns

Extracellular matrix/ degradation

MMP9 MMP9 0.4202 < 0.0001 ****

TIMP1 TIMP1 0.3891 < 0.0001 ****

Growth factors

TGFB1 TGFB1 0.4113 < 0.0001 ****

TGFA TGFA 0.328 0.0002 ***

IGF1 IGF1 0.256 0.0038 **

PDGFA PDGFA -0.02346 0.7943 ns

PDGFB PDGFB 0.2417 0.0064 **

PDGFC PDGFC -0.2382 0.0072 **

PDGFD PDGFD -0.2889 0.001 **

Chemokines and receptors

Interferon gamma IFNG 0.2032 0.0225 *

IL2  IL2 0.2446 0.0058 **

IL4 IL4 0.03414 0.7043 ns

IL5 IL5 0.1947 0.0289 *

IL6 IL6 0.5659 < 0.0001 ****

IL9 IL9 0.05453 0.5442 ns

IL10 IL10 0.4213 < 0.0001 ****

Pearson correlation analyses were calculated from n=127 human plaque microarrays, p-values are corrected for 
multiple comparisons according to the Bonferroni method. Correlation considered weak if r < 0.3 moderate if 0.3 
< r < 0.5 and strong if r > 0.5. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001
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OSM is associated with endothelial activation markers IL-6 and 
VCAM-1 in humans
We previously found that OSM induces endothelial activation both in vitro in human 
endothelial cells and in vivo in APOE*3-Leiden.CETP mice (10). To investigate if OSM can  
be linked with markers of endothelial activation in a human setting as well, we measured 
serum levels of OSM and several circulating endothelial activation markers in the AGES- 
Reykjavik study. OSM levels modestly correlated with IL-6 (β = 0.210, p=5*10-56) and 
VCAM-1 (β = 0.130, p=4*10-20) levels, but inversely with P-Selectin (β = -0.115, p=5*10-17), 
E-Selectin (β = -0.092, p=2*10-11) and ICAM-1 (β = -0.013, p=5*10-7) levels (Figure 2). 
No correlation of OSM with MCP-1 was observed. 

Table 2  Quantification of ISH signal in various atherosclerotic plaque stages

mRNA expression

OSM OSMR LIFR

Adaptive Intimal Thickening Neo-intima 1 2 2

Media 1 3 2

Adventitia 1 3 3

Intimal Xanthoma Neo-intima 1 2 2

Media 0 2 3

Adventitia 0 2 3

Pathological Intimal Thickening Neo-intima 1 2 2

Media 1 3 2

Adventitia 1 3 3

Early Fibroatheroma Neo-intima 2 2 2

Media 1 2 2

Adventitia 1 3 3

Late Fibroatheroma Neo-intima 2 2 2

Media 2 2 2

Adventitia 1 2 4

Fibrous Calcified Plaque Neo-intima 2 2 2

Media 1 3 2

Adventitia 1 3 2

The amount of ISH signal was scored in various atherosclerotic plaque stages. A general score and a single cell 
score was given. 0 = no signal, 1 = few cells expressing mRNA, 2 = low expression, 3 = moderate expression and 
4 = high expression. Abbreviations: ISH, in situ hybridization.
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Chronic exposure to OSM results in a pro-inflammatory vascular 
phenotype in APOE*3-Leiden.CETP mice
The above and our previous data (10) suggest a role for OSM in atherosclerosis 
development. Therefore, we performed a long-term study in which we administered OSM 
to APOE*3-Leiden.CETP mice for 16 weeks. To specifically investigate the effect of OSM on 
the initiation of atherosclerosis, we added an initial priming group that was treated with 
OSM only for the first 5.5 weeks of the study. As previous studies had a much shorter 
duration (ranging from 6 hours to 3 weeks), we first investigated if long-term OSM 
treatment persistently causes an inflammatory phenotype by measuring E-selectin, MCP-1 
and SAA plasma levels, as markers of vessel wall, general and liver-derived inflammation. 
Treatment groups receiving either 10 µg/kg/day (p=0.002) or 30 µg/kg/day (p<0.001) OSM 
for 16 weeks showed markedly increased E-selectin levels at all time points and a 
dose-dependent increase at t=4 (p<0.01) and 8 weeks (p<0.01). The group receiving 5.5 
weeks 30 µg/kg/day OSM treatment also showed markedly increased E-selectin levels at 
t=4 (p<0.001), though after discontinuation of OSM treatment, E-selectin levels dropped 
and declined to similar levels as the control group. MCP-1 and SAA levels did not differ 
between the OSM treated groups and control (Figure 3A-C). Also, no statistical difference 

Figure 2  OSM is associated with endothelial activation markers. Association of serum IL-6 (A), VCAM-1 

(B), P-selectin (C), E-selectin (D), ICAM-1 (E) and MCP-1 (F) levels (y-axis) with quintiles of increasing 

OSM serum levels (x-axis) using specific aptamers measured in 5457 subjects of the AGES cohort. 

Linear regression analyses were used to test for association. 
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was observed in ICAM-1 expression at the endothelium in the aortic root area (Figure 3D). 
In contrast, monocyte adhesion, as functional marker of endothelial activation, in the 
aortic root area was increased from 4.9 ± 3.3 monocytes per cross-section in the control 
group to 17.9 ± 10.7 in the 16 weeks 30 µg/kg/day group (p=0.003) (Figure 3E). These 
results indicate that continuous OSM exposure results in a sustained pro-inflammatory 
vascular phenotype, even after 16 weeks of treatment.

Figure 3  OSM induces a pro-inflammatory vascular phenotype in APOE*3-Leiden.CETP mice. 

Plasma E-selectin, MCP-1 and SAA (A-C) were measured at multiple time points during the study. 

Monocyte adhesion (D) and endothelial ICAM-1 expression were assessed per cross-section in 

the aortic root area (E). Data represent mean ± SD (n=12-20). ‡ p<0.05 compared to 10 µg/kg/day; 

**p<0.01 compared to control; ‡‡ p<0.01 compared to 10 µg/kg/day; ***p<0.001 compared to control.
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OSM reduces atherosclerotic lesion area and severity in 
APOE*3-Leiden.CETP mice
Total plasma cholesterol levels, a risk factor for cardiovascular disease, did not differ 
between any of the groups (data not shown). Atherosclerotic lesion size and severity were 
investigated in the aortic root area of which representative pictures are shown in Figure 4. 
The control group had an average lesion size of 119 ± 64 *1000 µm2. In the 5.5 week 30 µg/
kg/day OSM group, plaque size was reduced by 59% (p=0.002) and in the 16 week 30 µg/
kg/day OSM group by 58% (p=0.002), while the 16 week 10 µg/kg/day OSM treated group 
did not differ from the control (Figure 5A). The decrease in plaque area was 
dose-dependent (p=0.006). In the control group, 62 ± 27% of the lesions were classified as 
severe lesions, while only 23 ± 22% (p=0.001) and 26 ± 24% (p=0.002) of the lesions were 
severe in the 16 week 30 µg/kg/day and 5.5 week 30 µg/kg/day OSM treated group, 

Figure 4  Effect of OSM on plaque composition in APOE*3-Leiden.CETP mice. Representative 

pictures showing severe lesion types (type IV and V) stained with HPS staining, SMC staining (green), 

macrophage staining (brown) and collagen staining (red) to determine the effect of OSM on the 

lesion composition.
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Figure 5  OSM reduces lesion size and severity in APOE*3-Leiden.CETP mice. The atherosclerotic 

lesion size was determined in the aortic root area (A) and the lesions were classified as mild (type 

I-III) or severe (IV and V) lesions (B). Furthermore, the amount of necrosis, macrophages, smooth 

muscle cells and collagen was quantified (C) and the lesion stability index was calculated by dividing 

the summed proportions of SMCs and collagen, as stabilizing factors, by the summed proportions 

of necrosis and macrophages, as destabilizing factors (D). Additionally, the amount of NLRP3 

expression was examined as percentage of the macrophage area (E). Data represent mean ± SD 

(n=9-15). *p<0.05 **p<0.01 compared to control; ‡‡ p<0.01 compared to 10 µg/kg/day.    
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respectively. Again, the 16 week 10 µg/kg/day OSM treatment group did not differ from 
the control group. In line with plaque area, we observed a dose-dependent decrease in 
lesion severity (p=0.003) (Figure 5B). Collectively, these results show that early continuous 
exposure to OSM reduces atherosclerotic lesion size and severity independently from 
plasma cholesterol in APOE*3-Leiden.CETP mice.

OSM has no effect on the stability of severe lesions in  
APOE*3-Leiden.CETP mice
To assess the effect of OSM treatment on plaque stability of the severe lesions, we 
determined the amount of necrosis and macrophages, as indicators of unstable plaques 
and the amount of SMCs and collagen, as indicators of stable plaques (Figure 5C) in the 
severe lesions. Lesions in the control group consisted of 6 ± 3% necrosis, 37 ± 18% 
macrophages, 5 ± 2% SMCs and 38 ± 10% collagen. The amount of necrosis was decreased 
to 3 ± 1% in the 5.5 week 30 µg/kg/day OSM group (p=0.012) and to 2 ± 1% in the 16 week 
30 µg/kg/day OSM group (p=0.01), while the macrophage content was slightly increased 
in the 16 week 30 µg/kg/day OSM group (55 ± 10%) (p=0.016) only. The collagen content 
was decreased in the 5.5 week 30 µg/kg/day OSM group to 28 ± 17% (p=0.012) and to 27 
± 13% in the 16 week 30 µg/kg/day OSM group (p=0.018). No difference was observed in 
SMC content. The plaque composition of the 16 week 10 µg/kg/day OSM group was 
similar as in the control group. No differences were observed in the plaque stability ratio 
between the control and OSM treated groups (Figure 5D). As the amount of macrophages 
is not necessarily a measure for macrophage activity, we measured the expression of the 
caspase-1-activating inflammasome protein NLRP3 as marker of macrophage activation 
(26). No significant difference was observed in NLRP3 expression in the plaque area 
(Figure 5E). In conclusion, although OSM does affect lesion composition by slightly 
increasing the amount of macrophages and decreasing the amount of necrosis and 
collagen, it does not affect overall plaque stability of the severe lesions.

OSM reduces the inflammatory Ly-6CHigh monocyte subset
No difference in the percentage of circulating CD11b+ cells was observed between the 
groups (Figure 6A). As the Ly-6CHigh monocyte subset is linked to atherosclerosis 
development (27), we investigated the effect of OSM on the circulating monocyte subtype 
composition (Figure 7). In the control group 20.8 ± 6.5% of the monocytes belonged to 
the Ly-6CHigh subset and 79.2 ± 6.5% to the Ly-6CLow+Intermediate subset. The amount of 
Ly-6CHigh monocytes was decreased to 13.2 ± 3.8% in the 16 week 30 µg/kg/day OSM 
group (p=0.004) and the amount of Ly-6CLow+Intermediate monocytes increased to 86.8 ± 
3.8% (p=0.004) (Figure 6B and C). The Ly-6CHigh subset showed a positive correlation 
with lesion size (r=0.303, p=0.029), supporting a role of the Ly-6CHigh monocytes in the 
development of atherosclerosis (Figure 6D). Thus, OSM decreases the percentage of 
Ly-6CHigh monocytes which may contribute to the smaller atherosclerotic lesion size. 
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Serum OSM levels are associated with increased post incident CHD  
in humans
We next explored if variable levels of OSM in the human circulation were associated with 
survival probability in the AGES-Reykjavik study. We found that higher serum OSM levels 
were associated with increased survival probability post incident CHD (HR=0.838, p=2*10-6) 
(Figure 8A), also using adjusted survival curves for the Cox model (28) (Figure 8B). Thus, 
elevated levels of OSM predicted reduced mortality in humans. 

Figure 6  OSM reduces the percentage of circulating Ly-6CHigh monocytes. No difference in 

percentage of CD11b+ cells was observed between the groups (A). But, APOE*3-Leiden.CETP 

mice treated with OSM have a higher percentage of circulating Ly-6CHigh monocytes (B) and a 

lower percentage of circulating Ly-6CLow+Intermediate monocytes (C). The percentage of Ly-6CHigh 

monocytes was correlated with an increased lesion size (D). Data represent mean ± SD (n=12-20). 
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Figure 7  Representative pictures of the distribution of the Ly-6C monocyte subsets. Based on the  

Ly-6C expression, monocytes were distributed into 3 monocyte subsets, the Ly-6CLow, Ly-6CIntermediate 

and Ly-6CHigh monocyte subset.
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Discussion

In the present study, we showed that mRNAs coding for OSM as well as its receptors, 
OSMR and LIFR, were expressed in human normal arteries and carotid atherosclerotic 
plaques. We demonstrated that serum OSM levels in humans were positively correlated 
with several but not with other well-known markers of endothelial activation. Chronic 
OSM administration to APOE*3-Leiden.CETP mice reduced atherosclerotic lesion size and 
severity even after initial priming. In line with these data, increased OSM levels in humans 
were associated with decreased post incident CHD mortality. 
	 Extending the previous finding by Albasanz-Puig et al (13), who showed that OSM is 
present in both human and murine atherosclerotic plaques, we here demonstrated the 
presence of OSMR and LIFR mRNA in human normal and atherosclerotic arteries as well. 
The relatively higher OSMR and LIFR expression in normal arteries compared to athero-
sclerotic arteries may be explained by the high expression of the receptors on endothelial 
and vascular SMCs (8,29). These cells make up a relatively large proportion of the normal 
artery, but less of the atherosclerotic plaque, in which there is influx and proliferation of 
inflammatory cells, which might dilute OSMR and LIFR expression. The opposite can be 
reasoned for the increased OSM expression in atherosclerotic arteries, as OSM is mainly 
produced by activated macrophages and neutrophils (5,6,30). Moreover, OSMR and LIFR 
expression may be downregulated in endothelial and SMCs in plaques compared to 

Figure 8  High OSM is associated with reduced post CHD mortality. Serum OSM levels of CHD 

patients were significantly associated with CHD related mortality rates when comparing the lower 

25% quantile to the upper 75% quantile in OSM levels (hazard ratio (HR)=0.838, p=2*10-6) (A), and in 

the adjusted survival curves for the Cox model for three groups of OSM protein levels (top vs. bottom 

HR=0.618, p=0.0005) (B). 

A B
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endothelial and SMCs in normal arteries. Besides, the chronic inflammatory state during 
atherosclerosis development drives vascular SMC differentiation, which reduces the 
expression of SMC specific markers (31) and may therefore also reduce expression of LIFR 
and OSMR. This contention is in line with our observation that OSM is negatively correlated 
with SMC markers and with Kakutani et al., who showed that OSM induces SMC differenti-
ation (4).
	 The correlation of OSM with IL-6 and VCAM-1 in the AGES-Reykjavik study is in line 
with previous findings in vitro (10). However, the inverse association of OSM with E-selectin 
and ICAM-1 contradicts with previous data showing increased levels induced by OSM in 
human endothelial cells in vitro (10) and increased serum E-selectin levels in APOE*3-Leiden.
CETP mice. The absence of a positive correlation between OSM and ICAM-1, E-selectin and 
P-selectin may be caused by statin use in the AGES-Reykjavik study (approx. 22%) (21), as 
statins reduce ICAM-1, E-selectin and P-selectin plasma levels in patients with coronary 
artery disease (32). Regardless, mice treated with OSM in the present study did show 
increased serum E-selectin levels which dropped after discontinuation of OSM treatment, 
indicating a causal relationship between OSM and E-selectin in vivo in mice. 
	 As our present study had a much longer duration than previous intervention studies 
with OSM in mice (9,10), we first verified if the previously observed short-term inflammatory 
state (10) is also present after 16 weeks of OSM administration. OSM increased plasma 
E-selectin levels and monocyte adhesion in the aortic root area, similarly as in our previous 
study (10), indicating that OSM induces a sustained inflammatory state even after 
long-term OSM treatment. Although inflammation has been reported to contribute to 
atherosclerosis development (33), our results show, to our knowledge for the first time, 
that long-term chronic OSM treatment independently of cholesterol-lowering, results in 
significantly smaller and less severe atherosclerotic lesions in APOE*3-Leiden.CETP mice, 
clearly indicating that prolonged exposure to OSM has anti-atherogenic effects. Previously, 
Zhang et al., using a different approach, showed that OSMR deficient ApoE-/- mice have 
smaller and more stable plaques than their OSMR expressing littermates (14), suggesting 
that signaling via the LIFR alone or prevention of IL-31 and OSM signaling through OSMR 
(34) has a similar beneficial effect. 
	 No difference was observed in the lesion stability index, and although we observed 
a slight increase in the amount of macrophages as percentage of the total plaque area, the 
amount of NLRP3 expression was very low and did not differ between any of the groups, 
indicating that the pro-inflammatory macrophage activity was not affected (26). In line 
with this, the percentage of pro-inflammatory Ly-6CHigh monocytes (35) was decreased 
and the percentage of non-inflammatory Ly-6CLow+Intermediate monocytes, which actively 
patrol the luminal site of the endothelium where they remove debris and damaged cells 
and are associated with reparative processes (35), was increased in OSM treated mice. The 
decrease in Ly-6CHigh monocytes plausibly contributes to the reduced amount of 
macrophages and the attenuated atherosclerosis development. 
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Although our findings are counter-intuitive with several previously described pro-inflam-
matory characteristics of OSM (9,36), they are in line with studies addressing the anti-in-
flammatory properties of OSM. It has been shown that OSM administration suppresses 
TNFα (37) and IL-1β release in vitro (38), whereas TNFα, IL-1β and IFN-γ expression is 
increased in adipose tissue of OSMR knockout mice (39). Both cytokines are involved in 
atherosclerosis progression in mice as TNFα promotes atherosclerosis (40) and IL-1β 
knockout mice have smaller and less severe atherosclerotic lesions (41). In humans, anti-in-
flammatory treatments targeting TNFα or IL-1β are associated with decreased risk of 
myocardial infarction and overall cardiovascular events (42,43). Collectively, these and our 
data indicate that OSM has anti-inflammatory effects as well which may contribute to its 
anti-atherogenic properties. Moreover, OSM has been reported to induce endothelial 
proliferation (12,44) and to increase expression of adhesion molecules that bind endothelial 
progenitor cells (45,46), suggesting that OSM stimulates replacement of leaky, dysfunctional 
endothelial cells by new and healthy endothelial cells (47) and may therefore attenuate 
atherogenesis in the initial stages of the disease. This contention is in line with our finding 
that mice treated with OSM for only 5.5 weeks had a similar lesion size and severity as mice 
receiving OSM during a 16 week period and suggests that the observed anti-atherogenic 
effects of OSM have taken place during the initial stages of atherosclerosis development. 
Furthermore, although the observed increase in SMCs observed in this study was not 
significant, others have reported that OSM significantly enhances SMC proliferation in 
vitro (13), which is a contributor to a stable plaque phenotype (48). To conclude, OSM may 
contribute to attenuation of plaque development and improvement of plaque severity by: 
(I) its anti-inflammatory properties, (II) regenerating the endothelial barrier, (III) induction of 
SMC proliferation, and (IV) reducing the pro-inflammatory monocyte phenotype and 
promoting a more regenerative phenotype (48). 
	 The anti-atherogenic effect of OSM in APOE*3-Leiden.CETP mice is consistent with 
the increased post incident CHD survival probability in humans with higher OSM levels in 
the AGES-Reykjavik study. Similarly, OSM treatment increased survival in a mouse injury 
model of acute myocardial infarction (49), emphasizing the regenerative properties of this 
cytokine (44,50). 
	 As OSM has been suggested to have a progressive effect in chronic inflammatory 
diseases such as, rheumatoid arthritis (RA) (51) and inflammatory bowel disease (36,52), it 
has been proposed as a possible pharmaceutical target to suppress inflammation in these 
diseases (36,51,52) and the effect of anti-OSM treatment in RA has already been investigated 
in a phase 2 clinical trial (51). However, considering the anti-atherogenic effects and 
positive effect of OSM on survival in the present study, we strongly recommend that 
cardiovascular disease markers and survival are carefully monitored when testing an  
OSM inhibiting approach. In addition, since this study shows that OSM has beneficial 
immune modulating effects, the role of OSM in inflammatory diseases possibly needs  
to be reconsidered. 
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Taken together, our study provides more insight into the role of OSM in atherosclerosis 
development. APOE*3-Leiden.CETP mice treated with OSM had smaller and less severe 
plaques associated with a decrease in pro-inflammatory Ly-6CHigh monocytes. In line with 
the favorable effect in mice, we found an increased survival probability in humans that 
have high OSM levels, suggesting an atheroprotective effect for OSM. 
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General discussion and future perspectives

Cardiovascular disease (CVD) is currently globally the major cause of mortality and 
morbidity, and 85% of all CVD deaths are caused by the formation of atheromatous 
plaques in the vessels, leading to ischemic heart disease, ischemic stroke and peripheral 
arterial disease (1). The build-up of an atherosclerotic plaque is a slow process that starts 
with accumulation of low-density lipoproteins (LDL) into the intima and subsequent the 
recruitment of inflammatory cells (2). Chronic exposure to cardiovascular risk factors, such 
as hypertension, smoking, dyslipidemia and diabetes (3), can increase the rate and severity 
of atherosclerosis. Primary prevention of CVD is achieved through early identification and 
modification of ‘lifestyle risk factors’, eventually in combination with interventions to 
reduce plasma lipids or blood pressure (4). These strategies slow disease progression but 
do not heal, shifting CVD into a chronic disease. This thesis described a variety of studies 
that aimed to reduce CVD risk by (I) evaluation of novel lipid-lowering interventions to 
prevent or regress atherosclerosis development, (II) identification of CV side-effects of 
registered drugs and an environmental pollutant, (III) development of a novel animal 
model combining dyslipidemia and diabetes, and (IV) evaluation of the cytokine 
oncostatin M (OSM) as potential target for CVD.
	 Mouse models have been extensively used for the study of CVD and permit 
experimental conditions to be controlled. Moreover, preclinical models enable the 
investigation of molecular and pathophysiological mechanisms and provide platforms for 
the development and evaluation of novel pharmaceuticals. Disadvantages are differences 
in lipoprotein metabolism between commonly used mouse models and man (5), which 
hamper the translation of preclinical findings to valuable clinical applications. All studies 
described in this thesis used the APOE*3-Leiden(.CETP) mouse as model for diet-induced 
hyperlipidemia and experimental atherosclerosis. These mice were initially developed as 
an animal model for Familial Dysbetalipoproteinemia (FD) or type III hyperlipoprotein-
emia, and were generated by the introduction of a DNA-construct containing the human 
APOE*3LEIDEN and APOC1 genes (6,7). Subsequent insertion of the CETP gene (8), encoding 
for cholesteryl ester transfer protein (CETP) that transfers cholesteryl esters from 
high-density lipoprotein (HDL) to apolipoprotein-B (apoB)-containing lipoproteins in 
exchange for triglyceride(TG), generated an animal model with a lipoprotein metabolism 
representative for the human situation with a delayed clearance of apoB-containing 
particles and CETP expression (8). These mice have been widely used for the evaluation of 
lipid-lowering interventions and consistently demonstrated their translatable value (9–11). 
	 Proprotein convertase subtilisin kexin 9 (PCSK9) was discovered in 2003 (12) as the 
major down-regulator of the LDL-receptor and to date, PCSK9 inhibition is among the 
most powerful strategies to target LDL-C. Two monoclonal antibodies against PCSK9, 
evolocumab and alirocumab, are currently available in the clinic, and several innovative 
strategies to modulate PCSK9 levels are under development (12). One approach is 
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activation of the immune system to eliminate endogenous circulating PCSK9 using 
PCSK9-peptide-based vaccines. In Chapter 2 we evaluated such a vaccine and found that 
immunization induces a strong and long-lasting immune response resulting in reduced 
plasma levels of PCSK9, total cholesterol (TC) and non-high-density lipoprotein-cholesterol 
(non-HDL-C), as well as markers of systemic inflammation. Furthermore, atherosclerotic 
lesion progression and vascular inflammation was reduced. Preliminary data in healthy 
subjects showed that immunization was safe and well-tolerated. More than 90% of the 
subjects developed a PCSK9 specific antibody response with a mean LDL-C reduction of 
13.3% at week 70 (13).  This novel vaccine may have a future role in lowering LDL-C beginning 
in early adulthood to reduce lifetime risk of CV events, since Mendelian randomization 
studies have suggested that prolonged exposure to lower LDL-C beginning early in life is 
associated with a substantially greater reduction in the risk of CVD than the current 
practice of lipid-lowering beginning later in life (14). The advantage of vaccination over 
chronic treatment with antibodies to achieve long-term LDL-C reductions is the less 
frequent application which may enhance tolerability, drug adherence and cost-effective-
ness (15). Another advantage is the potential to combine the anti-PCSK9 epitope with 
epitopes of different potential targets for LDL-C lowering, for instance ANGPTL3, apoC3 or 
lipoprotein(a). Preventive immunization against viruses/bacteria have been successfully 
used for decades and is widely accepted, and numerous therapeutic cancer vaccine 
strategies have been developed or are currently under development (16). Also, two 
vaccines for hypertension and hyperglycemia are under development (17). These advances 
demonstrate the possibilities of immunization, which might become an important 
approach in future preventive medicine. Importantly, regarding the more permanent 
approach of active immunization, it is crucial to exclude side-effects to ensure a safe 
application of the vaccine in the future. 
	 Most preclinical studies evaluated novel lipid-lowering interventions in a progression 
setting, including our study with the PCSK9 vaccine. However, most patients start their 
treatment when atherosclerosis has already developed and therefore, strategies focusing 
on regression of pre-existing lesions are warranted. In Chapter 3 we evaluated whether 
gradual and aggressive reduction of cholesterol in both LDL and remnant lipoproteins by 
antibodies against PCSK9 (alirocumab) and/or angiopoietin like 3 protein (ANGPTL3) 
(evinacumab) on top of atorvastatin could regress experimental atherosclerosis. In this 
study, alirocumab and evinacumab similarly reduced non-HDL-C levels and fully blocked 
atherosclerosis progression when administered on top of atorvastatin. In addition, plaque 
stability was improved, as evidenced by a decrease in macrophages and an increase in 
collagen content. When administered in triple combination (alirocumab + evinacumab + 
atorvastatin) non-HDL-C levels were reduced to 1 mmol/L and atherosclerotic lesions 
regressed beyond the baseline level. This is the first intervention study in a well-estab-
lished, translational mouse model for hyperlipidaemia and atherosclerosis showing that 
high-intensive cholesterol-lowering triple treatment with atorvastatin, alirocumab and 
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evinacumab regresses lesion size, diminishes macrophage accumulation through reduction 
of proliferation and improves plaque stability. 
	 Recently, Mendelian randomization studies have demonstrated that the CV risk 
reduction of TG-lowering LPL variants (e.g. ANGPTL3) is similar to the CV risk reduction of 
LDL-C lowering LDLR variants (e.g. PCSK9) per unit apoB change (18). These findings 
correspond with our observation that alirocumab and evinacumab equally block lesion 
progression. Clinical trials, including the IMPROVE-IT (ezetimibe) (19), ODYSSEY OUTCOMES 
(alirocumab) (20,21), and FOURIER (evolocumab) (22) trials, demonstrate that the combination  
of statin therapy with other non-statin agents has a significantly improved clinical benefit 
over statin treatment alone. Also, these studies demonstrated that long-term (3 years), 
high-intensive cholesterol lowering with anti-PCSK9 antibodies on top of atorvastatin did 
not adversely affect new-onset of diabetes, diabetes worsening, hepatic disorders and 
neurocognitive disorders (23). The present data in APOE*3-Leiden.CETP mice provide 
evidence that combined lowering of LDL and remnant lipoproteins on top of a statin 
further reduce CV risk. The efficacy and safety of this combination strategy should be 
confirmed in clinical trials. Alirocumab is approved by the FDA and EMA for heterozygous 
Familial Hypercholesterolemia (FH) patients or those with clinical atherosclerotic CVD  
who require additional lowering of LDL-C as an adjunct to diet and maximally tolerated 
statin therapy (24). Evinacumab is currently being evaluated in phase II trials for patients 
with severe hypertriglyceridemia (NCT03452228) and persistent hypercholesterolemia 
(NCT03175367) and in phase III trials for patients with homozygous FH (NCT03399786 and 
NCT03409744). 
	 Unexpected cardiovascular toxicities in patients receiving approved anti-cancer 
treatments are common and have been observed during active treatment as well as in 
cancer survivors (25). In Chapter 4, we explored the etiology of the toxic cardiovascular 
side-effects of BCR-ABL1 tyrosine kinase inhibitors (TKIs), used for the treatment of chronic 
myeloid leukemia (CML) patients. While the first line TKI imatinib has proven to be effective 
and safe, the second and third line nilotinib and ponatinib, respectively, increase the 
prevalence of myocardial infarction, peripheral arterial occlusive disease and ischemic 
cerebrovascular events pointing to pro-atherosclerotic, pro-thrombotic or combined 
effects (26–28). Using APOE*3-Leiden.CETP mice, we found that nilotinib and ponatinib 
enhance mRNA expression of coagulation factors of both the contact activation (intrinsic) 
and tissue factor (extrinsic) pathways and increase plasma levels of FVII (ponatinib) and 
activity of FVIIa (nilotinib), important players in the pathogenesis of atherothrombotic 
events. Also, we observed a reduction in plasma lipids and atherosclerosis development 
with imatinib and ponatinib. In Chapter 5 we investigated the mechanism behind the 
observed lipid alterations and found that imatinib decreased plasma TC and TG levels by 
reduction of the very-low-density-lipoprotein (VLDL)-apoB-particle production and 
cholesterol ester content of the VLDL particles, while ponatinib reduced plasma TC levels 
by lowering intestinal lipid absorption. Our findings correspond with the lipid-modulating 
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effects (29–32) and improved cardiovascular outcome (33) of imatinib. In addition, our 
data provide evidence that nilotinib and ponatinib do not enhance atherosclerosis, but 
increase coagulability. Patients that suffered from cardiovascular side-effects upon 
nilotinib and ponatinib treatment commonly presented cardiovascular risk factors (27). 
Therefore, we propose that the pro-thrombotic effects of nilotinib and ponatinib as found 
in our study may aggravate a pre-existing atherothrombotic condition. In addition to our 
findings on coagulation, several reports using in vivo or ex vivo approaches found 
pro-thrombotic properties of nilotinib (34,35) and ponatinib (36) via other mechanisms 
(e.g. platelet aggregation, increased expression of von Willebrandt factor, thrombus 
growth). Moreover, hematological malignancies increase plasma tissue factor levels (37,38), 
which further potentiates the pro-thrombotic state. These observations underline the 
importance to select and monitor CML-patients that have the potential to develop athero-
thrombotic cardiovascular disease before application of the drugs, to improve therapy 
decision and patient care. 
	 In addition to unexpected post-market safety events of registered drugs, environmental 
pollutants like perfluorooctanoic acid (PFOA) may increase CV risk. Before being phased- 
out, PFOA was widely used as an emulsifier in the manufacture of fluoropolymers, and as 
it is extremely stable, it persists in the environment (39). Epidemiological studies have 
reported positive associations between serum PFOA and total and non-HDL-C (40–46). 
However, the modest association observed in studies of general populations is inconsistent 
with the weaker associations reported in more highly exposed workers (47–54). In addition, 
there is no increased risk for coronary artery disease in these populations when compared 
to internal reference cohorts (55–57). Therefore, in Chapter 6 we evaluated the effects of 
three different doses PFOA, representing environmental, occupational and toxicological 
exposure, on plasma lipid levels and lipoprotein metabolism using APOE*3-Leiden.CETP 
mice. We found that PFOA did not alter plasma lipid levels or lipoprotein metabolism at 
environmentally or occupationally relevant exposure levels. However, when mice were 
exposed to a toxicological PFOA dose, plasma TC, non-HDL-C and TG levels were decreased 
and HDL-C levels were increased. In the latter mice, PFOA decreased VLDL production and 
increased VLDL clearance by the liver, leading to a reduction of plasma non-HDL-C levels. 
Moreover, HDL-C levels increased through reduction of CETP activity and changes in gene 
expression of proteins involved in HDL metabolism. The majority of these changes were 
mediated by activation of peroxisome proliferator-activated receptor (PPAR)α. Our data 
correspond with the reduced plasma TC levels observed in a phase I trial in patients that 
received high doses of PFOA as an antitumor agent (58). In contrast, our findings do not 
support the increase in cholesterol as found in some observational epidemiological 
studies, thereby indicating that the reported associations between plasma cholesterol 
and PFOA exposure are associative rather than causal. 
	  The number of patients with type 2 diabetes is rising and among these patients, 
cardiovascular complications are the leading cause of morbidity and mortality. Cardiovascular 
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safety and efficacy of anti-diabetic drugs received increased attention since the FDA and 
EMA mandated all new diabetes drugs to demonstrate cardiovascular safety (59,60). 
Preclinical models are used for the development and evaluation of novel drugs, and 
translational models combining diabetes and cardiovascular disease are required. In 
Chapter 7 we described the characteristics of the APOE*3-Leiden.Glucokinase+/- (E3L.
GK+/-) mouse model, which was generated by cross-breeding the hyperlipidemic 
APOE*3-Leiden mouse with the hyperglycemic glucokinase knockout (GK+/-) mouse.  E3L.
GK+/- mice had plasma lipid levels comparable to E3L mice and plasma glucose levels 
comparable to GK+/- mice, leading to enhanced atherosclerosis progression in E3L.GK+/- 
mice relative to E3L mice, which was predicted by glucose exposure. Since the E3L mouse 
model responds similarly as humans do to lipid-lowering agents (61–70) and GK+/- mice to 
anti-diabetic drugs at doses corresponding to therapeutic drug levels in man (71,72), we 
propose that the E3L.GK+/- mouse is a promising novel diet-inducible disease model for 
investigation of the etiology and evaluation of drug treatment on diabetic atherosclerosis. 
Examples of these applications are the evaluation of novel anti-diabetic and anti-athero-
sclerotic agents and combinations, investigation of the pathophysiological mechanisms 
behind the cardiovascular adverse (73–75) and beneficial (76,77) effects of some 
anti-diabetic agents, and the etiology of statin-induced risk for diabetes (78). 
	 The role of cytokines in the initiation and progression of atherosclerosis is increasingly 
recognized and consequently, novel therapies targeting cytokines (79), including IL-1β 
with the anti-IL-1β antibody canakinumab (80), are being developed. In Chapter 8, we 
evaluated the role of the cytokine OSM in the initiation of atherosclerosis and found that 
OSM induced endothelial activation in vitro using human endothelial cells from different 
vascular beds, and in vivo using APOE*3-Leiden.CETP mice. Since endothelial activation is 
an initial step in atherosclerosis development, we proposed that OSM may play a role in 
the initiation of atherosclerotic lesion formation. However, remarkably, long-term exposure 
of APOE*3-Leiden.CETP mice to OSM reduced atherosclerotic lesion size and severity, 
despite enhanced plasma E-selectin levels and monocyte adhesion to the activated 
endothelium of the aortic root (Chapter 9). These findings correspond to our observation 
that higher serum OSM levels in humans are associated with post-incident coronary heart 
disease and overall survival probability in the AGES Reykjavik Study, suggesting a protective 
cardiovascular effect. Interestingly, knockout of the OSMβ receptor in APOE-/- mice also 
attenuated atherosclerotic lesion size (81). Similar contradictions have been reported 
regarding the pro- and anti-inflammatory effects of OSM. OSM is associated with 
inflammatory diseases including lung inflammation, rheumatoid arthritis and multiple 
sclerosis. Moreover, intradermal injection of, and intranasal exposure to OSM induces 
accumulation of inflammatory cells. On the other hand, OSM suppresses inflammation in 
mouse models of inflammatory bowel disease, arthritis, autoimmune encephalomyelitis 
and multiple sclerosis (82), and it has been suggested that administration of OSM has 
favorable effects on the metabolic syndrome (82,83). Given the confusing effects of OSM 
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and its involvement in many biological processes, including tumorigenesis, hematopoiesis, 
bone and fat turnover, central nervous system development, liver regeneration and 
inflammatory responses in several tissues (84), further research is required to ensure safe 
application of potential OSM-related therapies. 
	 Today, we understand better how to treat CVD, but despite these advances, many 
patients remain at increased cardiovascular risk. In this thesis, we discussed several strategies 
that may contribute to further risk reduction in the future. The novel lipid-lowering 
strategies (e.g. vaccination, combination therapy) that have been evaluated in our studies 
provide evidence that further LDL-C/non-HDL-C lowering and subsequent cardiovascular 
risk reduction is achievable, which has to be confirmed in clinical trials. Furthermore, 
we unraveled (part of) the etiology of the cardiovascular safety issues of the TKIs nilotinib 
and ponatinib and the mechanistic insights provided by our data may contribute to safer 
application of the drugs to CML-patients. Serum PFOA in environmental and occupational 
exposed adults had been found to be associated with increased plasma cholesterol, but 
our data demonstrate that this association is associative rather than causal . Looking 
forward, we described a novel mouse model, the E3L.GK+/- mouse, that can be used for 
the study of diabetic macrovascular complications and the evaluation of anti-diabetic 
drugs. Shifting towards the role of inflammation in atherosclerosis, we evaluated the 
potential of the cytokine OSM as new target for CVD. In contrast to our hypothesis and 
evidence provided by the literature, administration of OSM decreased atherosclerotic 
lesion size, and this confusing observation has to be elucidated before further development 
of OSM-related treatment strategies. 
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SUMMARY

Summary

Cardiovascular disease (CVD) is currently globally the major cause of mortality and 
morbidity, and 85% of all CVD deaths are related to the formation of atheromatous plaques 
in the vessels. Chronic exposure to cardiovascular risk factors, such as dyslipidemia, 
hypertension and diabetes, increases the rate and severity of atherosclerosis. Despite 
advances in treatment strategies, many patients remain at increased cardiovascular risk. 
This thesis described a variety of studies that aimed to reduce CVD risk by (I) evaluation  
of novel lipid-lowering interventions, (II) identification of cardiovascular side-effects of 
registered drugs and an environmental pollutant, (III) development of a novel animal 
model combining dyslipidemia and diabetes, and (IV) evaluation of the cytokine 
oncostatin M (OSM) as potential target for CVD. In all studies, the APOE*3-Leiden(.CETP) 
mouse model was used as translational model for human lipoprotein metabolism and 
atherosclerosis development. 
	 In Chapter 2 we evaluated the effects of a vaccine against proprotein convertase 
subtilisin/kexin type 9 (PCSK9), which induced an effective immune response against 
PCSK9 thereby decreasing plasma cholesterol levels, markers of systemic inflammation 
and atherosclerosis progression. However, as most patients at CVD risk are treated after 
development of atherosclerosis, therapies that regress pre-existent lesions are required. 
Therefore, Chapter 3 evaluated whether pre-existent atherosclerotic lesions could regress 
by aggressive lipid lowering using a combination of antibodies against PCSK9 (alirocumab) 
and angiopoietin-like 3 protein (ANGPTL3) (evinacumab) on top of atorvastatin. This strategy 
decreased plasma non-HDL-C levels to 1 mmol/L and subsequently regressed atherosclerotic 
lesion size, improved lesion stability and diminished macrophage accumulation. 
	 In Chapter 4 we explored the etiology of reported toxic cardiovascular off-target 
effects of three generations tyrosine kinase inhibitors (TKIs), imatinib, nilotinib and ponatinib, 
respectively, that are used for the treatment of patients with chronic myeloid leukaemia 
(CML). The first generation TKI imatinib reduced atherosclerosis development, whereas 
the second and third generation TKIs, nilotinib and ponatinib, respectively, increased 
cardiovascular risk through induction of a prothrombotic state. In addition, imatinib and 
ponatinib decreased plasma cholesterol levels, by a mechanism that was investigated in 
Chapter 5. Imatinib was found to decrease plasma TC and TG levels by reduction of the 
very-low-density-lipoprotein (VLDL) particle production and cholesterol ester content of 
the VLDL particles, while ponatinib reduced plasma total cholesterol levels by lowering 
intestinal lipid absorption.
	 The dose effects of perfluorooctanoic acid (PFOA) on lipoprotein metabolism are 
presented in Chapter 6. Before being phased-out, PFOA has been widely used as an 
emulsifier in the manufacture of fluoropolymers, is extremely stable and therefore persists 
in the environment. Positive associations between serum PFOA levels and plasma 
cholesterol have been reported in environmentally and occupationally exposed adults, 
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though the observations are inconsistent. Using APOE*3-Leiden.CETP mice, we demonstrated 
that PFOA did not alter plasma lipid levels or lipoprotein metabolism at environmentally or 
occupationally relevant exposure levels. However, when mice were exposed to toxicologically 
relevant PFOA doses, non-HDL-C levels were decreased and HDL-C levels were increased. 
In the latter mice, PFOA decreased VLDL particle production and increased VLDL clearance. 
Moreover, HDL-C levels were increased through reduction of CETP activity and changes  
in gene expression of proteins involved in HDL metabolism. These data indicate that the 
reported associations observed in epidemiological studies are associative rather than 
causal.
	 Diabetes is an important risk factor for CVD and currently, novel anti-diabetic drugs 
have to demonstrate their cardiovascular safety before approval. Consequently, translational 
models are warranted for the evaluation of these drugs. In Chapter 7 we described the 
characteristics of the APOE*3-Leiden.Glucokinase+/- (E3L.GK+/-) mouse model, which was 
generated by cross-breeding the hyperlipidemic APOE*3-Leiden mouse with the 
hyperglycemic glucokinase knockout (GK+/-) mouse. E3L.GK+/- mice had elevated plasma 
lipid levels as in E3L mice, and elevated plasma glucose levels as in GK+/- mice, leading to 
enhanced atherosclerosis progression which was predicted by glucose exposure. We 
propose that the E3L.GK+/- mouse is a promising novel diet-inducible disease model for 
investigation of the etiology and evaluation of drug treatment on diabetic atherosclerosis. 
	 The role of cytokines in the initiation and progression of atherosclerosis is increasingly 
recognized and consequently, novel therapies targeting cytokines are being developed. 
In Chapter 8 we evaluated the role of the cytokine OSM in the initiation of atherosclerosis 
and found that OSM induced endothelial activation in vitro using human endothelial cells 
from different vascular beds, and in vivo using APOE*3-Leiden.CETP mice. In Chapter 9  
we exposed APOE*3-Leiden.CETP mice for 16 weeks to OSM which increased plasma 
E-selectin levels and endothelial activation in the aortic root. However remarkably, we 
found a reduction in atherosclerotic lesion size, corresponding to our observation that 
higher serum OSM levels in humans are associated with post coronary heart disease and 
overall survival probability in the AGES Reykjavik Study, suggesting a protective 
cardiovascular effect. However, the confusing effects of the increased endothelial 
activation on the one hand, and reduced atherosclerosis on the other hand, need to be 
further elucidated. 
	 In conclusion, we discussed several strategies that may contribute to further CVD risk 
reduction in the future. We described two novel lipid-lowering strategies, we unraveled 
(part of) the etiology of the cardiovascular safety issues of TKIs that are used for the 
treatment of CML, and we investigated the dose effects of PFOA on lipoprotein 
metabolism. Looking forward, we developed a novel mouse model that can be used for 
the study of diabetic macrovascular complications, and we evaluated the potential of 
OSM as novel target in CVD. 
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Samenvatting

Hart- en vaatziekten zijn wereldwijd doodsoorzaak nummer één. 85% van deze gevallen 
zijn toe te schrijven aan de ontwikkeling van aderverkalking in de slagaders (ook wel 
‘arteriosclerose of atherosclerose’ genoemd). Aderverkalking ontstaat als er witte bloed- 
cellen en cholesterol in de vaatwand ophopen waarbij een verdikking van de vaatwand 
optreedt, ook wel plaques genoemd. Wanneer een (instabiele) plaque openscheurt, komt 
de inhoud van de plaque in contact met het bloed waarbij stolsels kunnen ontstaan die 
bloedvaten in het hart (hartinfarct) of hersenen (herseninfarct) afsluiten. Langdurige 
blootstelling aan risicofactoren voor hart- en vaatziekten, zoals roken, een verhoogd 
cholesterol in het bloed en diabetes, vergroot het aantal gevallen en de ernst van ader- 
verkalking. Ondanks verbeterde therapieën is het risico op hart- en vaatziekten nauwelijks 
afgenomen. In dit proefschrift zijn verschillende onderzoeken beschreven waarvan de 
opgedane kennis kan bijdragen aan de vermindering van het risico op hart- en vaatziekten. 
In alle studies zijn genetisch gemodificeerde muizen, APOE*3-Leiden(.CETP) transgene 
muizen, gebruikt als proefdiermodel voor vetstofwisseling en aderverkalking bij mensen. 
De APOE*3-Leiden(.CETP) muizen bevatten 3 genen van de mens die een belangrijke rol 
spelen in de cholesterol- en vetstofwisseling. 
	 In Hoofdstuk 2 is de werking van een nieuw vaccin tegen het lichaamseigen eiwit, 
proprotein convertase subtilisin/kexin type 9 (PCSK9), in het muismodel onderzocht. 
Mensen en muizen met meer van dit eiwit in hun bloed hebben een hoger cholesterol en 
krijgen eerder aderverkalking. Na toediening van dit vaccin maakte de muis antilichamen 
aan tegen PCSK9, met als resultaat een verlaging van het plasma cholesterol en ontste-
kingswaardes, verminderde ontsteking van de vaatwand en minder aderverkalking. 
Echter, omdat de meeste mensen met hart- en vaatziekten pas worden behandeld als de 
aderverkalking zich al ontwikkeld heeft, is het noodzakelijk dat er behandelingen komen 
die de al aanwezige aderverkalking kunnen verminderen. Daarom is in Hoofdstuk 3 
onderzocht of er een mogelijkheid bestaat tot verminderen van de al aanwezige 
aderverkalking. Met een combinatietherapie van antilichamen tegen PCSK9 (alirocumab) 
en angiopoietin-like 3 protein (ANGPTL3) (evinacumab) bovenop de standaardtherapie 
met een statine, in dit geval atorvastatine, lukte het om de plasma non-HDL cholesterol-
waardes (ook wel ‘slechte’ cholesterol genoemd) sterk te verlagen. Dit had als gevolg dat 
de al gevormde plaques kleiner werden. Daarnaast werden de overgebleven plaques 
stabieler en verdwenen de ontstekingscellen uit de plaques.
	 In Hoofdstuk 4 is onderzocht hoe geneesmiddelen voor patiënten met bloedkanker, 
hetgeen leidt tot een overmatige productie van witte bloedcellen (chronische myeloïde 
leukemie (CML)), de kans/het risico op hart- en vaatziekten verkleinen of juist vergroten. 
Het eerste keuze geneesmiddel imatinib verkleint het risico op hart- en vaatziekten en wij 
hebben ontdekt dat dit komt doordat imatinib het plasma cholesterol verlaagt en de plaque 
ontwikkeling vermindert. De tweede en derde keuze geneesmiddelen, respectievelijk 
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nilotinib en ponatinib, die gegeven worden als imatinib niet meer werkt, verhogen juist 
het risico op hart- en vaatziekten doordat ze een stollingsverhogende werking hebben 
die de kans op vorming van bloedstolsels verhoogt als een instabiele plaque openscheurt. 
Daarnaast vonden wij dat zowel imatinib als ponatinib het plasma cholesterol verlaagden. 
In Hoofdstuk 5 hebben we de plasma cholesterolverlagende werking van deze genees- 
middelen verder onderzocht. Imatinib verlaagde de plasma cholesterol- en vetwaardes 
door het verminderen van de productie van vetdeeltjes door de lever, waarbij zowel het 
aantal deeltjes als de cholesterolinhoud van de deeltjes afnam. Ponatinib verlaagde het 
plasma cholesterol door de opname van cholesterol in de darm te verlagen. 
	 In Hoofdstuk 6 werden de effecten onderzocht van verschillende doseringen 
perfluorooctanoic acid (PFOA) op de cholesterol- en vetstofwisseling. PFOA is een door 
de mens geproduceerde chemische stof die werd gebruikt voor de productie van fluoro-
polymeren. Fluoropolymeren werden bijvoorbeeld toegepast bij het produceren van de 
antiaanbaklaag in pannen, of als brandvertrager in tapijt of om kleding en schoenen 
water- en vetafstotend te maken. PFOA is niet afbreekbaar en blijft daarom achter in het 
milieu. Populatiestudies hebben een verband gevonden tussen serum PFOA-waardes en 
een verhoogd plasma cholesterol in mensen die via hun leefomgeving of door hun werk 
blootgesteld werden aan PFOA. Echter, de gevonden effecten op plasma cholesterol zijn 
tegenstrijdig en daarom hebben wij in muizen onderzocht wat de wezenlijke effecten van 
PFOA op de cholesterol- en vetstofwisseling zijn. In deze studie had PFOA geen effect op 
de cholesterol- en vetstofwisseling wanneer muizen werden blootgesteld aan doseringen 
die vergelijkbaar zijn met die voor blootstelling vanuit de omgeving of door werk. Echter, 
een hogere dosering PFOA verlaagde plasma cholesterol als gevolg van een afgenomen 
productie van vet- deeltjes in de lever en toegenomen opname van vetdeeltjes door de 
verschillende organen. Daarnaast was het HDL-cholesterol (ook wel ‘goede’ cholesterol 
genoemd) verhoogd. Onze bevindingen suggereren dat het verband tussen PFOA 
blootstelling en plasma cholesterol zoals gevonden in populatiestudies geen oorzakelijk 
(causaal) verband is. 
	 Diabetes (ook wel ‘suikerziekte’ genoemd) is een belangrijke risicofactor voor hart- en 
vaatziekten. In het verleden lieten sommige diabetesmedicijnen de kans op hart- en 
vaatziekten toenemen. Daarom moeten op dit moment alle nieuwe diabetesmedicijnen 
laten zien dat ze veilig zijn voordat ze worden toegelaten op de Amerikaanse en Europese 
markt. Om deze medicijnen te ontwikkelen en te testen is het belangrijk dat er een 
muismodel is dat, net zoals mensen, diabetes en hart- en vaatziekten heeft en dat goed 
reageert op cholesterolverlagende en diabetesmedicijnen. In Hoofdstuk 7 werden de 
kenmerken van de APOE*3-Leiden.Glucokinase+/- (E3L.GK+/-) muis beschreven. Deze muis 
was ontwikkeld door twee verschillende genetisch gemodificeerde muizen, de APOE*3-Leiden 
muis, die goed reageert op cholesterolverlagende medicijnen, en de ‘diabetische’ GK+/- 
muis, waarin het bloedsuiker (glucose) verlaagd wordt door medicijnen net zoals bij de 
mens, met elkaar te kruisen. Dit nieuwe model had verhoogde cholesterol- en vetwaardes 
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zoals de APOE*3-Leiden muis, en verhoogde glucosewaardes zoals de GK+/- muis, met als 
gevolg méér aderverkalking. Nadat is onderzocht hoe dit nieuwe muismodel reageert op 
al bestaande medicijnen voor de behandeling van een verhoogd cholesterol of diabetes, 
kan het model ingezet worden voor de ontwikkeling van nieuwe medicijnen voor deze 
ziektes. 
	 De invloed van cytokines (ook wel ‘ontstekingsmediatoren’) op het ontstaan en 
verergeren van aderverkalking wordt steeds meer erkend en op dit moment worden 
verschillende nieuwe therapieën voor hart- en vaatziekten ontwikkeld die zich richten op 
cytokines. Een nog niet zo’n bekend cytokine is OSM. In Hoofdstuk 8 werd bekeken wat 
de rol van OSM was in het ontstaan van aderverkalking. Met behulp van een proef met 
menselijke vaatwandcellen vonden we dat OSM een ontsteking veroorzaakte in de cellen 
die de binnenbekleding van de bloedvaten vormen. Dezelfde tekenen van vaatwandont-
steking zagen we ook nadat we muizen kortstondig (3 weken) hadden blootgesteld aan 
OSM. Omdat toegenomen vaatwandontsteking de vorming van aderverkalking kan 
verergeren, hebben we in Hoofdstuk 9 onderzocht of langdurige (16 weken) blootstelling 
van muizen aan OSM inderdaad meer aderverkalking veroorzaakte. Ook in deze studie 
zagen we tekenen van toegenomen ontsteking in zowel het plasma als in de vaatwand, 
maar vonden we een opmerkelijke vermindering van de hoeveelheid aderverkalking. 
Deze laatste bevinding kwam overeen met de resultaten uit de AGES Reykjavik Studie, 
waarbij mensen met een verhoogd OSM in het bloed een verbeterde overlevingskans 
hadden na een hartinfarct of hartkramp (ook wel ‘coronair lijden’). De tegenstrijdige 
resultaten, met aan de ene kant de verhoogde vaatwandontsteking en aan de andere 
kant minder aderverkalking, moeten verder onderzocht worden voordat OSM als target 
voor hart- en vaatziekten kan worden gebruikt. 
	 Samenvattend, in dit proefschrift zijn verschillende strategieën besproken die kunnen 
bijdragen aan het verminderen van het risico op hart- en vaatziekten. Er zijn twee ver- 
nieuwende cholesterolverlagende behandelstrategieën geëvalueerd, het achterliggende 
mechanisme van de afgenomen of juist toegenomen kans op hart- en vaatziekten bij 
patiënten die behandeld worden voor CML is bestudeerd, en de effecten van verschillende 
doseringen PFOA op de cholesterol- en vetstofwisseling zijn onderzocht. Daarnaast zijn 
de karakteristieken van een nieuw muismodel besproken dat in de toekomst gebruikt  
kan worden voor het onderzoek naar hart- en vaatziekten in diabetespatiënten, en is 
onderzocht of het cytokine OSM een interessant target is voor de behandeling van hart- 
en vaatziekten. 
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