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Abstract
A system’s continuous adaptability is a vital determinant of its safety. It is thus very important for a system to reach grace-
ful extensibility, the ability to adapt in unexpected situations (Woods in Reliab Eng Syst Saf, https​://doi.org/10.1016/j.
ress.2015.03.018, 2015). Current methods to study patterns of adaptation have mostly focused on relatively static network 
relationships of short time scales. We argue that both adaptive and maladaptive patterns of adaptation are rooted in patterned 
behaviours that should be studied in light of their previous history of transactions. Those patterns may develop over longer 
time scales yet exert their effects during unexpected situations on shorter time scales. In this study, we focused on commu-
nication patterns that played out during the Air France 447 incident. Butts (2008) relational event model was employed to 
examine the communication dynamics amongst the pilots in the cockpit of flight AF447, and illustrate how communication 
patterns may be studied by considering sequences of relational events, thus adopting a dynamic, de-contextualised approach 
to system analysis, at a ‘transaction level’. The analysis of the communication transcript revealed patterned changes in some 
communication dynamics in the cockpit after the flight entered an unexpected situation, which led to the biased strengthening 
or weakening of certain links in the network. These changes—even though preliminary due to the limited number of agents 
analysed—suggest that capturing the structural composition of a system at the transaction level assists in explaining how 
transactions fail, and can be used for the development of better system structures or training procedures for system interaction.

Keywords  Complex sociotechnical systems · Adaptability · Resilience · Transactions · Relational event model · Air France 
447 · Team communication

1  Introduction

The scientific community concerned with complex socio-
technical systems strives for maintenance of sustained adapt-
ability, since the continuous ability of a system to adapt 
determines its safety (Woods 2015). However, sustaining 
adaptability in various dynamically changing environments 
poses great challenges. All systems have boundaries (Far-
joun and Starbuck 2007; Hoffman and Woods 2011) that, if 
exceeded, render them unable to adjust to any new demands 
accordingly, and thus cannot preserve their adaptability. 
There have been many resilient–robust systems, where 

extensive modelling of various possible events allows for 
the identification of boundary locations and prepare systems 
to adjust depending on the event they face (Woods 2015). 
Still, systems continue to face the paradox of being ‘almost 
totally safe’ (Amalberti 2001; Reason 2000), since unex-
pected situations that are not modelled can always arise, 
precluding systems from adapting.

The direct relation between system safety and grace-
ful extensibility, that is, the ability to adapt in unexpected 
situations (Woods 2015), makes it important to study and 
develop systems in such a way that there will no longer be a 
gap between the real world and the simulated one in which 
systems are developed and tested (‘Doyle’s Catch’; Woods 
2016). For example, studying a system’s underlying architec-
ture may lead to improvement of the system’s ability for sus-
tained adaptability independent of the event it might face, by 
improving its foundations’ capacity for adjustment, instead 
of focusing on identifying superficial, content-dependent 
boundaries (Doyle and Csete 2011; Schraagen 2017). The 
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present article aims to examine a novel approach to the 
analysis of systems’ architectures that moves beyond con-
textualised boundaries. In the following sections, we explore 
this approach and how it deviates from, or adds value to 
already existing architectures, followed by an exploration of 
the statistical analysis that could couple the approach under 
consideration.

The ideas and concepts of this article are founded on 
systems theory, which takes a hierarchical view to system 
structure where different architectures can exist at different 
levels in the hierarchy (Newell 1982). Following the sys-
tems theory approach, multiple architectures for adaptability 
exist; primarily at the cognitive, lower system level (e.g., 
ACT-R; Anderson 2007) that focuses on the individual, 
and the higher, knowledge level (e.g., SOAR; Newell 1990) 
also known as the ‘rational band’, which addresses shared 
knowledge across individuals. However, these architectures 
do not easily scale up to complex sociotechnical systems. 
Partially as a response, the concept of ‘macrocognition’ 
was developed (Klein et al. 2003; Schraagen et al. 2008), 
incorporating the study of cognitive adaptations to complex-
ity (Schraagen et al. 2008). It distinguishes sense-making, 
planning, adaptation, problem detection, and coordination 
as important macrocognitive functions, which are not only 
performed by individuals or teams, but also organizations, 
or joint cognitive systems that coordinate people with 
technology. Other approaches take a still broader view on 
complex sociotechnical systems, incorporating system con-
straints [Cognitive Work Analysis (CWA); Vicente 1999], 
control structures [Systems Theoretic Accident Model and 
Processes (STAMP); Leveson 2004], task, social, and infor-
mation networks [Event Analysis of Systemic Teamwork 
(EAST); Stanton et al. 2005, 2008, 2013), or performance 
variability and resonance [Functional Resonance Analysis 
Method (FRAM); Hollnagel 2012]. These approaches have 
been used for risk assessment (e.g., Stanton and Harvey 
2017), analysing accidents (Allison et al. 2017; Griffin et al. 
2010), or system design (Stanton et al. 2016).

Macrocognition is distinguished from microcognition 
primarily by its time scale of analysis. Whereas the latter 
focuses on cognitive processes in the time band of 100 ms up 
to 10 s, the former focuses on cognitive processes from min-
utes to hours. The preferred means by which these processes 
are studied then also varies, with microcognition frequently 
opting for constrained tasks in confined environments with 
high experimental control, while macrocognition opting for 
real-life tasks under actual working conditions with less 
experimental control (Cacciabue and Hollnagel 1995; see; 
Hoffman and McNeese 2009 for a historical overview).

Interestingly, although in principle macrocognition 
extends to the organizational level, in practice there are 
very few studies employed by organizational scientists that 
implement such methods. Also, the time scales adopted in 

macrocognitive studies are not weeks, months or years, but 
rather a few hours at most, focusing on a specific time and 
place where systems failed to adapt. Methodologically, then, 
an important shortcoming in current macrocognitive studies 
is the lack of de-contextualised longitudinal data collection, 
which prohibits the discovery of emergent behaviours at dif-
ferent or longer time scales.

1.1 � The transaction level

We propose that there exists yet another system level, which 
we call the ‘transaction level’, developed to enable the analy-
sis of systems under diverging, prolonged time scales. The 
transaction level comprises a ‘true system level’, as this is 
defined by Newell (1982). In Newell’s sense, a system level 
is a reflection of the nature of the physical world, not simply 
a level of abstraction. Each level within the hierarchy of 
systems levels comprises an aggregation of characteristics 
present at lower levels, along with an addition of meaning. 
In turn, this meaning leads to some emergent system proper-
ties, which come to define the system at hand, concealing the 
now invisible lower-level properties. Therefore, although the 
levels are ontologically irreducible, each level may still be 
implemented at the next lower level.

In contrast to the knowledge level, the concept of ‘goal’ 
does not play a role at the transaction level. Instead of focus-
ing on the context of knowledge exchanged between agents 
in a system and the static form in which this is presented, 
the focus turns to the strength and reciprocity of the trans-
actions made between agents, and how these dynamically 
change over time. To better understand the added value of 
the transaction level and its difference to other system levels, 
a quick overview of its components, its laws of composition, 
its medium, and its behaviour laws, is in order.

The system at the transaction level, the entity to be 
described, is the network. The system’s primitive elements, 
the components that form the basic network structure, are 
nodes and links. Nodes refer to a set of agents, either human 
or technical, and links refer to the possible connections 
between those agents. Those components are assembled 
into systems by laws of composition that yield nodes and 
links with varying strength and reciprocity. The medium 
at the transaction level is the transaction (as might be sus-
pected), and transactions are generated through the links 
that are formed between nodes. The transactional content 
may differ widely, from affect and influence to goods and 
services, and information. Finally, the law of behaviour, i.e., 
how the system depends upon its components and composi-
tion, is the principle of ‘relationality’: links are selected to 
attain transactions. As links are characterized by strength 
and reciprocity, the generation of transactions is dependent 
on these notions; all of which can change from one situation 
to another. For example, different situations might lead to 
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the formation of different ‘hubs’ in the network, referring to 
‘highly connected nodes’ that reflect different transaction 
patterns (Berlingerio et al. 2011, p. 1).

Examining the possible patterns of change in transactions 
when a system enters an unexpected situation can be vital for 
understanding how its architecture changes, and how trans-
action patterns that were successful during a known situation 
may weaken or change during a surprise one, contributing 
to failure.

It is particularly important to understand that the trans-
action level depends on the principle of ‘relationality’, thus 
considering the structural strength and diversity of con-
nections between nodes and how those unfold, instead of 
focusing on the ‘rational’, contextualised knowledge those 
nodes exchange. This enables the development of analyses 
that not only offer de-contextualised insights, but can also 
allow scientists to understand and define a system through 
the collection and consideration of longitudinal data.

It should, however, be mentioned that the transaction 
level is a radical approximation, and thus may be poor in 
predicting some ranges of behaviour, as for example, when 
team members do not know each other well and have not 
built up structural links with each other. Hence, consider-
ing that all system levels play a role simultaneously at all 
times, invoking the knowledge level could provide insights 
that the transaction level is unable to offer. In this example, 
invocation of the knowledge level would be the only way 
to explain absent, inappropriate, incomplete or misunder-
stood transactions. Consulting the knowledge level is also 
related to the possible restrictions on communication band-
width. Even if individual team members possess all relevant 
knowledge, they may be unable to share all that knowledge, 
particularly in stressful situations, due to the fact that they 
can only speak, see and hear so much, thus narrowing down 
their communication bandwidth. A team of experts is not 
by definition an expert team, if team members do not know 
when to communicate what information to whom, or are 
afraid to speak up. While the transaction level could deter-
mine the restrictions to the system’s bandwidth, invoking 
the knowledge level could give more insights to the nature 
of the communication patterns.

The emergent properties of the transaction level add value 
to existing literature around sociotechnical system analy-
ses, as this will be further elaborated upon in the following 
section, through considering how our approach relates to 
alternative approaches.

1.2 � The transaction level versus alternative 
approaches

The emphasis on the exchange of transactions between actors 
in a network is very similar to what Stanton et al. (2006) 
described in their theory of distributed situation awareness 

(see also Stanton et al. 2009; Sorensen and Stanton 2015). 
These authors took a systems’ level approach and noted that 
what mattered was that the right information was passed to 
the right agent at the right time, instead of all information 
being available to a single human agent. Neville et al. (2016) 
also used the concept of ‘transaction’ in a similar, though 
more restricted, way than we do. They referred to transac-
tions as an exchange of situation awareness between agents 
rather than a mere communication between them. According 
to Neville et al. (2016), transactions are enriched by spe-
cific and individual interpretations of each agent and so may 
provide a clue to other agents as to what one individual is 
working on. Since transactions hold the key to safe and effi-
cient performance, accident investigators need to understand 
not only what information was lost, but also what transac-
tions were inadequate or were required but not forthcoming 
(Salmon et al. 2016; Stanton and Harvey 2017).

Although quite similar in spirit, Stanton et al.’s approach 
differs from our description of the transaction level in several 
ways. First, while Stanton et al. describe situation aware-
ness as a system level phenomenon rather than an individual 
level phenomenon, their concept of a ‘system level’ differs 
from Newell’s proposed concept. Juxtaposing individual 
levels and system levels amounts to an aggregation of units, 
moving from the individual to the team or organisation, or 
‘system’ (cf. Karsh et al. 2014; Hackman 2003). This makes 
‘levels’ similar to ‘perspectives’ or ‘levels of abstraction’, 
whereas in Newell’s view system levels are, as mentioned 
earlier, a reflection of the nature of the physical world, 
describing phenomena that emerge from their components 
(Hackman 2003).

Second, Salmon et al. (2016), in the application of their 
Distributed Situation Awareness (DSA) theory to the Air 
France 447 accident, focused on the sharp end of the com-
munication patterns of the pilots involved. Again, this is 
a knowledge level analysis rather than a transaction level 
analysis. What needs to be determined, if we are looking for 
architectures for sustained adaptability, is whether underly-
ing, structural relational patterns that were present in the 
cockpit led to any specific exchange of information at any 
particular moment in time.

In agreement with Salmon, Walker and Stanton (2016), 
the transaction level supports the notion that failed trans-
actions lie at the root of accidents occurring in complex 
sociotechnical systems. However, this statement alone does 
not explain how transactions fail. This can only be under-
stood by considering an analysis at the transaction level: 
first, by determining structural differences in links’ strength 
and reciprocity; second, by identifying restrictions on com-
munication bandwidth. As to the first aspect, one needs to 
ask whether team members have been able to develop links 
to each other, and what the power relations between those 
links are. This is related to the second aspect, since structural 
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relations can help in determining the restrictions in the net-
work’s communication bandwidth. Through these steps, one 
recognizes the network structure upon which transactions 
occur, and can thus identify the nature of transaction failures 
(see also Stanton and Harvey 2017).

Recently, Roth (2018) applied what he called a ‘trans-
actional approach’ to an analysis of the crash of TransAsia 
Flight GE235. Roth (2018; see also Roth and Jornet 2013) 
distinguishes three approaches to modelling cognition: self-
action, interaction, and transaction. The self-action perspec-
tive explains human behaviour in terms of goals, plans and 
other internal representations. Interactional approaches 
are closely aligned with joint cognitive systems and DSA 
perspectives, focusing on the information shared between 
any two agents. Although interactions cannot be reduced to 
individual agents, agents are still modelled independently 
and are said to exchange situation awareness. Transactional 
approaches emphasize the unity/ identity of organism and 
environment, constituting a single, irreducible system. 
Although superficially similar, a ‘transactional approach’ 
as described by Roth (2018) should not be equated with the 
transaction level. As noted above, approaches to describ-
ing organism and environment are not the same as system 
levels that describe phenomena that emerge from their com-
ponents. Hence, we do not deny the importance of the cog-
nitive and knowledge levels, nor of any of the other lower 
and, possibly, higher, levels. Cognitive constructs such as 
mental representations, as well as knowledge level con-
structs such as goals and knowledge are valuable in their 
own right in explaining particular phenomena, usually 
associated with particular time scales at which these phe-
nomena occur (Newell 1990). What we do claim, by intro-
ducing the transaction level, is the importance of concepts 
such as nodes, links and transactions in explaining certain 
behaviours. These concepts are not by any means new, and 
indeed have been used extensively in the network sciences 
(e.g., Alba 1982; Wasserman and Faust 1994), as well as in 
methods such as EAST (Stanton et al. 2005, 2008, 2013). 
What we hypothesize by introducing the transaction level, 
is the existence of patterned behaviours that can only be 
studied by taking the previous history of transactions into 
account. Therefore, we need to go beyond static descriptions 
of social networks and take sequences of relational evens 
into account.

1.3 � The relational event framework

Recent conceptualizations (e.g., Cooke et al. 2013) view 
team cognition as a context-dependent team interaction, 
rather than a monolithic entity that a team can either have or 
not have. In other words, rather than viewing team cognition 
as something that is shared among team members and then 
aggregated, it is viewed as an interdependent network that 

should be studied at the team level. Within such networks, 
the relations between actors, and the maintenance of these 
relations throughout time, are necessary for successful team 
operation (Johansson and Hollnagel 2007). Similarly, Leend-
ers et al. (2016, p. 97) argue that “we need to imbue our the-
ories and analyses of team process with more temporal con-
structs”. They propose the relational event as an appropriate 
unit of analysis, which refers to a sender initiating an action 
towards a target. By performing an analysis in a ‘sequence 
of relational events’, the model enables the investigation 
of transactions between nodes while also considering their 
past transactions. We propose that Butts’ (2008) relational 
event framework, a statistical way of analysing sequences 
of relational events, is appropriate for system analysis at 
the transaction level. It can capture transaction patterns 
across different nodes and extended time scales consider-
ing past and current transactions. Furthermore, relational 
event sequences can be investigated quantitatively, as can 
the tendency of the system to encourage or discourage some 
of them, without the need for specific content information.

The framework focuses on certain communication 
dynamics (discussed in more detail below) that can be 
investigated via the relational event model (REM), namely 
individual level heterogeneity, preferential attachment, cog-
nitive effects, triadic effects, and communication norms. 
These dynamics may lead to patterned biases in transac-
tions, and thus to the formation of certain hubs between 
some nodes. As these dynamics change, so do the hubs’ 
patterns and strength within the network. Their patterns 
can reflect the underlying ‘rules’ driving the system to suc-
cessfully adjust depending on the demands of the situation. 
However, changes in these dynamics could lead to the biased 
formation or strengthening of certain hubs that deprive the 
system of its capacity for successful adjustment. Information 
on each dynamic and its parameters is provided below, as 
described by Butts (2008).

1.3.1 � Individual level heterogeneity

Individual level heterogeneity refers to unobserved heteroge-
neous endogenous or exogenous attributes of nodes, such as 
differences in context, training or institutional role that make 
an event between two nodes more likely to occur. In the 
REM, this is captured with ‘fixed effects’ for participation.

1.3.2 � Preferential attachment

Preferential attachment (PA) is when a node that was con-
tacted more in the past is more likely to be contacted by 
other nodes in the future, while new nodes prefer to attach to 
well-connected nodes over those less well-connected. In the 
REM, PA is considered present in the data when its associ-
ated parameter is positive.
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1.3.3 � Cognitive effects

The cognitive processes of memory and perception might 
affect hub formation and lead to some events occurring 
more or less frequently than others. Such processes can 
lead to the appearance of Recency (R) effects, making 
nodes that have been contacted more recently by a sender 
more cognitively available to that sender, and thus more 
likely to be a future target (Snijders et al. 2006). They can 
also lead to Persistence (P) effects, also known as ‘inertia’ 
(Leenders et al. 2016), where one node is more likely to 
direct communication towards a target whom it had con-
tacted more in the past, since those more frequently con-
tacted are more available in memory (Romney and Faust 
1982; Freeman et al. 1987). The presence of R and P is 
captured by a positive parameter, while a negative one 
suggests other mechanisms are at play.

1.3.4 � Conversational Norms

Gipson (2003), presented a framework to study local rules 
in communication through participation shifts (hereafter 
referred to as ‘P-shifts’), namely the moment-by-moment 
shift patterns of individuals between the role of sender and 
target. An example of a P-shift is reciprocity between two 
nodes (AB–BA). These P-shifts reflect the underlying rules 
in any communication phenomenon that allow the system 
to generate meaningful structured experiences rather than 
chaotic episodes, as well as the different opportunities of 
nodes to be senders or receivers of transactions according 
to differences in attributes or situational demands (Gibson 
2003). Their positive or negative parameters indicate the 
reliance on, or independence of nodes from them.

1.3.5 � Triadic effects

Triadic effects refer to two-path effects, deriving from the 
notions of transitivity and cyclicity. More specifically, in a 
two-path communication one node contacts another node, 
which will in turn direct contact to someone else. This might 
affect the likelihood of the initial sender contacting the end 
target (‘outbound two-path’; T-OTP), or of the end target 
contacting the initial sender (‘inbound two-path’; T-ITP). 
Triadic effects also include shared partner effects. For exam-
ple, two nodes that have contacted the same target in the 
past, are more likely to communicate with each other in 
the future (“outbound shared partner”; T-OSP), as do two 
nodes that have been contacted by the same node in the past 
(“inbound shared partner”; T-OSP). Their positive and nega-
tive parameters show whether the effects were encouraged 
or discouraged.

1.4 � Aim of the study

We will use the Relational Event Model to assess the exist-
ence of each of the five communication dynamics within the 
system in the cockpit of flight 447. This case is a prominent 
example of a complex system failure in aviation under an 
unexpected emergency situation. On 31 May 2009, the Air 
France flight 447 crashed into the Atlantic Ocean, and after 
extensive investigations it was concluded that the airplane 
had stalled and crashed as a result of poor flight inputs that 
followed the freezing of the Pitot tubes of the airplane. The 
freezing of the Pitot tubes caused the autopilot system to 
disconnect, placing the flight into an unforeseen situation, 
in which the system failed to adjust accordingly. Our analy-
sis aims to show how the pilots’ underlying communica-
tion architecture, as captured by communication dynamics 
within the cockpit, contributes to the explanation of transac-
tion failures. Hence, one will be able to understand how this 
systems’ level is ideal for analysis of prolonged time periods, 
since it captures the system’s architecture considering pro-
longed periods of relational event sequences, in a content-
independent manner. It is worth noting that our analysis is 
based on a 2-h availability of the Cockpit Voice Recorder 
(CVR) transcript, but the REM captured communication pat-
terns that could extend to even more prolonged normal flight 
or emergency flight periods.

The aforementioned five communication dynamics 
amongst the crew members in the cockpit of AF447 were 
assessed using the transcript of pilots’ communication (BEA 
2012), in an attempt to determine if the REM can capture 
changes in these dynamics when the system enters an unex-
pected situation, and whether this potential change could 
contribute to the explanation of how transactions fail.

2 � Method

2.1 � Dataset

The data used for the analysis was extracted from the offi-
cial communication transcript of the AF447 flight, which 
was part of the investigation report provided by the French 
authority Bureau d’Enquêtes et d’Analyses pour la sécurité 
de l’aviation civile (BEA 2012). The transcript includes 
events such as conversation between the pilots, radiotel-
ephonic messages and other sounds that occurred in the 
cockpit throughout the course of the flight. Our analysis 
considered only transactions between the human agents 
in the cockpit; the Captain (Marc Dubois), the Pilot in the 
right seat (Pierre-Cédric Bonin), and the Pilot in the left 
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seat (David Robert). The Captain and co-pilots are hereafter 
respectively referred to as CPN, PF,1 and PNF.2

2.2 � Coding scheme

A coding scheme was developed for the analysis of the tran-
script, coding each communication event as this unfolded 
over time. The coding was carried out by three human 
factors students, with a mean age of 24.7 (SDage 2.51; 2 
females, 1 male), who were pursuing their Master of Science 
degree in Human Factors and Engineering Psychology at the 
University of Twente in the Netherlands.

Using an excel document, four columns were generated; 
‘Time’, ‘FromId’, ‘ToId’, and ‘Phase’. The ‘Time’ column 
consisted of the exact time in which each relational event 
occurred, as indicated in the transcript (hh:mm:ss.ms). The 
‘FromId’ column included the agent who was the sender 
at each particular event in time, while the ‘ToId’ included 
the target. Both columns consisted of coded numbers that 
represented different members of the crew. The CPN was 
coded as 1, the PF as 2, and the PNF as 3. All relational 
events were considered in dyads, meaning that whenever 
one agent directed an action towards more than one target, 
data were coded as separate dyadic events with one written 
just below the other. To ensure the events were considered 
separately in the analysis but still not as two significantly 
different events, the second one was given a tiny offset (of 
1 ms). For example, when the CPN directed an action to 
both pilots, the action was coded as two individual events, 
both with Captain as sender, but each with a different target; 
PF and PNF. Any communication indicated by ‘(…)’ in the 
transcript (BEA 2012) was excluded, since it consisted of 
personal information irrelevant to the flight.

The ‘Phase’ column divided the data into two sets:

1.	 Normal phase. From the beginning of the flight, until the 
autopilot disconnection (00:31:00.0–02:08:12.0).

2.	 Emergency phase. From the autopilot disconnection to 
the end of the flight (02:08:19.0–02:14:26.9).

Table 1 presents an example of the first five rows of the 
coded transcript.

It should be noted that in the normal phase, only 10% 
of the events occurred when three agents were in the cock-
pit, with 90% occurring when only two were present. In the 
emergency phase, these percentages changed to 61 and 38%, 
respectively.

To ensure inter-rater reliability, and since the coding pro-
cess was rather simple, every analyst was given a set of rows 
to code that included half of the rows of the previous analyst. 
No mistakes were noted in the coded data.

2.3 � Analysis

The coded file was inserted in the R environment for sta-
tistical computing (R Core Team 2013) and used for the 
estimation of the following five communication dynamics: 
Fixed effects, preferential attachment, triadic effects, per-
sistence, recency, and participation shifts (p-shifts). The 
p-shifts modelled, as denoted by Gibson’s (2003) initials, 
were reciprocation (AB–BA), “handing off” of communi-
cation (AB–BY), persistence of source or target (AB–AY, 
AB–XB), and source “attraction” (AB–XA). The remaining 
p-shifts were not considered since the data involved only 
three agents. All models were estimated using the dedicated 
library from the relevent package (Butts 2008).

The data were treated in two separate sets, distinguish-
ing the normal from the emergency phase, and the five 
communication dynamics were estimated twice, once for 
each. Beginning with the normal phase, the rem.dyad() 
function was used to create a null model, in which all 
effects were considered as equally probable to explain 
the data, and thus served as a baseline reference for com-
parison of other models. Afterwards, the same function 
was used to fit multiple relational event models to the 
data. The codes for the construction of each model were 
extracted from the relevent library (Butts 2008), and can 
be found in Appendix A. Each model yielded a Bayes-
ian information criterion (BIC) score, which indicates the 
predictive value of models in a dataset and is frequently 
used in statistics for model selection amongst a finite set 
of models. Therefore, the BIC statistic from each fitted 
relational event model was used for an initial model prun-
ing, by examining each model’s goodness-of-fit. In other 
words, models were compared to the baseline to assess 
whether they were capable of predicting the data. Redun-
dant models were disregarded. Then, parameter estimates 
along with their approximate 95% confidence intervals, 
obtained using maximum likelihood under the interval 
time model, were considered and plotted on a scatterplot 

Table 1   Example rows of the coded transcript

Time FromId ToId Phase

00:31:00.0 1 2 Normal
00:31:00.1 2 1 Normal
00:31:04.0 2 1 Normal
00:31:15.0 1 2 Normal
00:31:15.1 2 1 Normal

1  Pilot flying; Pierre-Cédric Bonin. The pilot who took the controls 
once the Captain left the cockpit.
2  Pilot not flying; David Robert. Co-pilot.
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via the geom_point() function of the package ggplot2 
(Wickham 2009). Estimates were valuable for the inter-
pretation of the data, since the positive or negative direc-
tion of each estimate reveals the respective encouragement 
or discouragement of the effects at each particular phase. 
The same analysis was followed for the emergency phase.

3 � Results

Below follows a comparison of BIC scores for each fitted 
relational event model, as well as plotting and interpreta-
tion of parameter estimates of the effects. This section aims 
to explain the results from the analysis and offers an initial 
explanation of the findings, whose insights and added value 
in understanding sociotechnical systems will be further 
explained and expanded upon in the “Discussion” section. 
To facilitate analyses intended to further investigate the pre-
sent results, or extend the scope of the present article, a 
detailed table with the exact parameter estimates, standard 
error, z values and p values, is provided in Appendix B.

Before exploring the results of the analysis, it is important 
to consider that many of the communication dynamics ana-
lysed, such as triadic effects or p-shifts, require the presence 
of a minimum of three nodes in the system. This was the 
case for only 10% of the data in the normal phase and 61% 
in the emergency. However, analysis was still possible due to 
the nature of the relational event model (REM) and its ability 
to consider preceding communication patterns. Therefore, 
the present results provide some fundamental insights in 
how communication dynamics change in unexpected situ-
ations, but readers should proceed with caution in drawing 
definite conclusions, as estimates may not be as precise.

3.1 � Model pruning

Data size and the BIC scores for each model were gathered 
and presented in Table 2, which consists of three blocks. 
The first block (rows N and M) includes the descriptive sta-
tistics for the size of the data at each phase. N refers to the 
number of agents, and M refers to the total number of events 
captured. The second block consists of the BIC scores for 
the fitted relational event models. The null model is fitted 
and presented at the null row, and its BIC score is used as 
baseline for comparison of the fitted models of the respective 
dataset. Each following model matches its corresponding 
effect, coded using the effect’s initials: p-shifts (PS), recency 
(R), persistence (P), preferential attachment (PA), fixed 
effects (FE) and triadic effects (T). Since only one effect is 
presented at each row, values can be considered as evidence 
for marginal effects, indicating the likelihood of this model 
to fit the data if all other models are kept constant. The third 
block contains the possible combinations of effects, allow-
ing the investigation of better model-fit while considering 
different hub formations.

Before examining the table, it is necessary to know that 
a BIC score lower than the baseline implies that its cor-
responding model is preferred over the null model; i.e., a 
model whose BIC value is lower than the baseline, fits the 
data better and is thus more predictive of the communication 
dynamics governing the cockpit at a particular phase.

Inspecting the normal phase, four models seem to fit the 
data better than the null model: p-shifts (PS), recency (R), 
persistence (P), and preferential attachment (PA). Of these, 
the scores of PS and R do not deviate a lot from each other, 
indicating that both can offer a similarly good explanation 
to the data. While models for P and PA are closer to the 
null and are thus not as predictive of the data, they should 
not be disregarded; their addition to the model combina-
tion PS + R + P + PA offers a BIC score smaller than PS + R 
alone, depicting the added value of the two models in pre-
dicting the dynamics in the dataset. The model for triadic 
effects (T) does not enter the BIC optimal model, and is thus 
redundant to the analysis of this dataset. The effect of fixed 
effects is not considered here, since it has a non-significant 
z value.

For the emergency phase, a quite similar pattern arises, 
indicating that the same models are predictive of the com-
munication dynamics. However, it is worth mentioning that 
there is an increase in the predictive power of recency (R) 
and persistence (P), since the former now has the strongest 
marginal effects, while the latter fits the data better than it 
did in the normal phase. Also, the model for triadic effects 
(T), even though rather close to the baseline, enters the BIC 
optimal model, and could thus be useful in the interpreta-
tion of the dynamics. The changes in the predictive values 
of models across the two phases may be attributed to the 

Table 2   Data size and BIC statistics for the fitted relational event 
model

BIC

Normal phase Emergency phase

N 3 3
M 268 177
Null 3153.566 2220.569
PS 2658.967 1481.695
R 2706.800 1347.411
P 2884.386 1756.606
PA 3073.555 2125.571
FE 2863.169 2162.281
T 3168.540 2044.386
PS + R 2663.609 1191.209
PS + R + P 2647.294 1188.209
PS + R + P + PA 2652.586 1226.974
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increased portion of relational events occurring when more 
agents were present in the cockpit. In the emergency phase, 
three agents were present for a larger number of events than 
in the normal phase, therefore allowing more triadic or other 
complex effects to occur.

3.2 � Parameter estimates

While BIC values offer a first suggestion as to which mod-
els can predict communication dynamics at each phase, 
more precise conclusions are needed to recognize the exact 
changes in these dynamics throughout the course of the 
flight. Inspection of the effects’ parameter estimates can 
reveal the direction of the effects in each phase, i.e., their 
respective encouragement or discouragement. Those, along 
with their approximate 95% confidence intervals, are plotted 
for both phases in Fig. 1, in the following order: P-shifts (PS-
ABBA, PS-ABBY, PS-ABXA, PS-ABXB, and PS-ABAY), 
triadic effects (T-ISP, T-OSP, T-ITP, T-OTP) recency (R), 
persistence (P), and preferential attachment (PA). The effect 
of fixed effects was calculated but is excluded from the plot, 
since it is not a single-parameter effect and thus cannot be 
plotted as one.

From Fig. 1, and consistent with the inspection of the 
BIC values, it is clear that p-shifts, recency, persistence, and 
preferential attachment have strong marginal effects, while 
triadic effects are weak. The reversal in the value of p-shifts’ 
estimates from negative in the normal phase to positive in 
the emergency phase, suggests that local rules were dis-
couraged in the former but encouraged in the latter. This 
highlights the increased dependency on local rules when 
the system was faced with an emergency situation, implying 

that pilots, contrary to what they did under normal flight, 
now disregarded prior communication patterns that were 
based on institutionalized procedures or prior communica-
tion arrangements, and focused on non-standardized, local 
patterns of communication.

In addition, one can acquire further details on the changes 
in the prevalence of local rules across the two phases by 
examining specific p-shift patterns and how these change. 
For example, from Fig. 1 we see that persistence of source 
(PS-ABAY) may be the root of more malfunctioning than 
handing-off communication (PS-ABBY), since the estimates 
of the former are more positive than the latter. However, 
standard error (as indicated by the error bars in Fig. 1) is 
rather strong for p-shifts in the present analysis. High uncer-
tainty could be attributed to the presence of only two or three 
agents in the cockpit, hence more nodes are needed for more 
certain results. It is also interesting to note that reciprocity 
(PS-ABBA) is positive in both phases, while other p-shifts 
were only present in the emergency phase. This implies that 
communication dynamics depended on reciprocity through-
out the entire flight, whilst other p-shifts were encouraged 
only during the unexpected situation. The positive value of 
reciprocity in both phases may, however, be due the majority 
of events in the normal phase occurring in the presence of 
only two agents, thus leaving little room for non-reciprocal 
events.

Inspecting the recency (R) and persistence (P) parame-
ters, one can see that those remained positive in both phases, 
but became stronger during the emergency, placing greater 
dependency on cognitive factors such as short-term memory. 
This reflects more social inertia when faced with an emer-
gency situation, since relational events were more reliant on 

Fig. 1   Parameter estimates and 
approximate 95% confidence 
intervals for the normal and 
emergency phases, MLE models
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the fraction of prior occurrences of the same relational event 
than in the normal phase. In other words, pilots were more 
likely to direct communication to those more cognitively 
readily available during the emergency.

The increased promotion of local rules and cognitive 
effects highlight the decreased dependency on institution-
ally based trained patterns of communication, which is also 
evident in the dramatic change in the preferential attachment 
(PA) of the pilots’ communication pattern. While preferen-
tial targeting of nodes with higher prior communication was 
present in the normal situation, this changed in the emer-
gency phase, where there was no trace of the preferential 
attachment effect explaining the data. This implies that dur-
ing the emergency, the already existing links between nodes, 
based on status of institutional role or trained procedures, 
were suppressed, and new connections were formed between 
nodes that were not previously linked. Simply stated, pilots 
seem to have established their communication following 
endogenous mechanisms, trying to reach pilots whom they 
did not necessarily have had more interactions with in the 
past.

Triadic effects (T) were disregarded as important com-
munication dynamics, since their parameter estimates were 
weak, and only a small proportion generated significant z 
values; an effect that could be attributed to the limited num-
ber of nodes analysed.

4 � Discussion

This paper aimed to demonstrate how an analysis at the 
transaction level can be performed using the relational event 
model (REM), thus generating a systems level approach that 
could be applied to natural environments of diverging con-
text and prolonged time scales. We examined whether the 
communication dynamics in the cockpit of AF447, and their 
pattern of change after the system entered an unexpected 
emergency situation, assisted in explaining the transaction 
failures in the system’s network. The findings showed that 
there were indeed changes in the communication dynamics 
that governed each flight phase, especially in the conversa-
tional norms and the cognitive effects ruling the cockpit. 
Both became significantly more prominent once the flight 
entered the emergency phase, the same phase in which 
previous research has suggested that transaction failures 
in the cockpit escalate (Salmon et al. 2016). The correla-
tion between the structural differences that occurred in the 
cockpit, and the increased inappropriate, incomplete, or 
missing transactions discussed by Salmon et al. (2016), is a 
first indication that the nature of these transaction failures 
is rooted within the system’s architecture. The structural 
changes in links’ strength and reciprocity across phases 
underlie the ultimately restricted communication bandwidth 

in the network. In other words, these changes refer to the 
increased reliance of the pilots on immediately preceding 
communication patterns during the emergency, rather than 
on pre-meditated, conscious decisions for distribution of 
communication; a transition that might underlie the impaired 
communication between the pilots when encountered with 
an unexpected situation. Our finding that pilots increasingly 
responded to immediately preceding local communication 
events also resonates with the BEA’s finding that “[t]he loss 
of coordination and the willing but chaotic cooperation in 
managing the surprise generated by the autopilot discon-
nection led quickly to the loss of cognitive control of the 
situation, and subsequently to the loss of physical control of 
the aeroplane.” (BEA 2012, p. 184).

The patterned changes in the underlying dynamics can 
contribute to the explanation of some transaction failures 
by altering the power relationships between the pilots, there-
fore forming a dysfunctional network architecture [which 
the BEA report refers to as the ‘inversion of the normal 
hierarchical structure in the cockpit’ (BEA 2012, p. 185)]. 
Since some changes in dynamics between the pilots were 
prominent, it is logical to assume that dynamics between 
other nodes in the system underwent changes as well, thus 
underlying transaction failures in the whole network. How-
ever, it should be noted that since the analysis of the present 
article focuses on only three agents, whose presence was 
proportionally different between phases, conclusions should 
be drawn with caution. Therefore, after an initial exploration 
of the current findings and possible implications, the discus-
sion will focus on comparing our approach to others, and 
exploring the feasibility and implications of using the REM 
for analysing systems at a transaction level.

The analysis of communication patterns revealed a criti-
cal change in communication, which implied that the rules 
governing the system when its environment had ‘high valid-
ity’—referring to the relative stability between the cues 
provided by the environment and the outcomes of possible 
actions—changed when its validity became low, due to an 
ill-structured, uncertain, and fast-changing environment 
(Kahneman and Klein 2009). Even though a change from 
standardized communication patterns to chaotic informa-
tion exchange may be expected under unforeseen situations, 
our findings move beyond this mere depiction of change. 
Indeed, an initial observation of the results suggests that 
pilots abandoned standardized procedures of communication 
when faced with the emergency, and engaged in more locally 
based conversation norms. Investigating differences more 
thoroughly, an increase in auto-correlations between local 
communication events was noted, meaning that the commu-
nication between the pilots was determined by immediately 
preceding events; an auto-correlation is generally thought 
to indicate imminent critical transitions and decreased resil-
ience (Scheffer 2009). The pilots also relied on their memory 
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and immediate perception, which made some agents more 
cognitively available than others. All these changes led to 
increased biased strengthening or weakening of certain hubs 
that were vital to the exchange of transactions.

This fundamental information already reveals important 
insights that could be used for the development of more 
effective and efficient training systems, by placing focus on 
communication and crew management under emergencies. 
For example, the strong contribution of cognitive influences 
such as memory on communication, suggests the targeting 
of such factors in the training process. This is echoed by 
BEA’s recommendation FRAN-2012-042 “(…) to develop 
and maintain a capacity to manage crew resources when 
faced with the surprise generated by unexpected situations” 
(BEA 2012, p. 209).

Despite these initial pieces of information, of particular 
interest are also the exact alterations within each of the five 
communication dynamics, as for example, the changes of 
each participation shift. Specifically, examining changes in 
particular p-shifts could be valuable for future pilot emer-
gency training, since they provide a clear understanding of 
the local rule patterns that dominate an emergency phase. 
For example, looking at the results of this analysis, we see 
that the unconscious tendency of “handing-off communi-
cation” from agent A to agent B and from B to Y (PSAB-
BY) is much more prominent in unexpected situations. 
This information could suggest the benefit of introducing a 
trained mediator (either human or non-human) to assist in 
restoration of prior successive patterns by re-directing com-
munication; thus blocking imminent critical transitions that 
lead to decline in resilience. Great attention should be given 
to the fact that handing-off communication, as other p-shifts, 
reflects uninformed auto-correlation patterns, meaning that 
pilots were not consciously directing communication to oth-
ers in a pre-meditated manner, leading to ‘de-structuring of 
crew cooperation’ and a ‘total loss of cognitive control of 
the situation’ (BEA 2012, p. 199). We thus do not claim that 
handing-off communication leads to malfunctioning under 
well-informed conditions, but rather that it is troubling in its 
unconscious nature. Again, this is reflected in BEA’s con-
clusion that “the two co-pilots failed to communicate, in a 
clear and precise manner, the intentions and objectives that 
motivated the tasks they performed” (BEA 2012, p. 184).

Note that all transactions mentioned here, are not con-
sidered to be generating a Distributed Situation Awareness 
(DSA) network. On a transaction level of analysis, one 
should focus only on the architectural patterns of the network 
and not consider macrocognitive functions, as these belong 
to an analysis at the knowledge level (Newell 1982). The 
use of Butts’ relational event model (REM) made it possible 
to investigate differences that unfold in the dynamic archi-
tecture patterns between a normal and unexpected situation 
without the need to consider specific content details. This 

is an important difference, as it also makes it easier for the 
current analysis to expand to longer time periods, and also 
enables the comparison of this system’s network patterns to 
that of others. However, feeding back to a content-specific 
manner of the knowledge level can always provide further 
insight into the architectural patterns of the system, and thus 
the mapping of macrocognitive functions onto such patterns 
can prove useful. For example, in addition to the quantita-
tive approach adopted here, and as suggested in research 
of macrocognitive functions, the development of aviation 
support and training systems can be further informed by 
the investigation of the macrocognitive sense-making and 
re-framing processes of the actors in the cockpit (Malakis 
and Kontogiannis 2014; Rankin et al. 2016).

This article has provided a prominent example of how a 
transaction level analysis can be carried out regardless of 
the units of analysis involved. However, the research did not 
involve an investigation of the entire system’s network, as 
it focused on just the human actors at play, with none of the 
other non-human nodes present. Moreover, communication 
dynamics were tested between three agents for a limited time 
span, while for a considerable amount of the time analysed 
only two agents were present, which may have affected the 
power of the communication dynamics effects that required 
more than two nodes. This might also be the reason why the 
parameters for triadic effects were minor and non-significant 
in the present analysis. Future research should investigate 
the entire network in the cockpit to conclude whether tri-
adic effects play a role in the communication dynamics and 
whether they change according to the situation.

The results obtained may also have been limited by 
the tendency of the BIC statistic to favour smaller models 
(Wasserman and Garry 2005). Hence, it is likely that fixed 
effects were less favoured for including a large set of param-
eters, contrary to the other single-parameter effects. Future 
research could consider placing more attention to the Akaike 
information criterion (AIC) for the parameters of individual 
level heterogeneity, to ensure less biased model selection. 
In any case, the advantages of model pruning as was com-
pleted here, lie with selecting only the models that have a 
strong predictive value. Thus, we encourage future analyses 
using REM that will include more nodes, to consider even 
more models for other communication dynamics, and use the 
BIC or AIC selection criterion to easily select and interpret 
only those with important information. For example, given 
that more nodes are considered in an analysis, such mod-
els could include investigation of other participation shifts 
like turn usurping (PS-ABXY) or turn claiming (PS-A0XY; 
Gibson 2003). We also suggest the use of the informR pack-
age (Marcum and Butts 2015) for cases of rather complex 
sociotechnical systems. This package allows the creation of 
models with more complex relational event sequences that, 
however, move beyond the scope of the current article.
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Despite its limitations, the current research has impli-
cations on future investigations, as it shows an innovative 
way of carrying out research for complex sociotechnical 
systems, by offering a ‘global’ approach to their inves-
tigation; an approach that does not require extensive 
background knowledge of a system, as required by other 
approaches, while it facilitates quantitative comparison to 
other sociotechnical systems. For instance, using REM, 
patterned changes in different systems could be compared 
quantitatively with respect to similarities and differences 
in communication patterns across different settings, and at 
different points in time. Also, the analysis in the present 
article focuses on a flight duration of 2 h, and divided 
phases into only normal or emergency. However, one 
could use REM to study emergencies under prolonged 
time scales or even break down an event to more sub-
phases in time, in that way allowing more thorough com-
parison to other systems. This could be valuable for the 
development of effective training procedures, tailored to 
the similar structural needs of aviation networks, or other 
sociotechnical systems.

An example of a comparison amongst different systems 
is briefly presented here, using the analysis of the com-
munication networks in the World Trade Centre during 
the emergency situation on 9/11 (Butts 2008); an analysis 
also performed using REM. Even though Butts’ analy-
sis included investigation of only the emergency phase, 
similar patterns may be observed in the communication 
dynamics during the World Trade Centre emergency and 
the emergency of AF447, namely in p-shifts, reciprocity, 
and persistence; all of which were encouraged during the 
unexpected situation of both accidents. This correlation 
is a first indication on how an analysis at the transaction 
level can also be used to investigate similarities in system 
failures across different settings, and at different points 
in time.

The current analysis uses the transaction level approach 
to investigate patterned changes in communication dynam-
ics under unexpected situations. This approach surpasses 
the limits to generalization that accompany other system 
levels, since it is independent of the context in which the 
system functions, and offers the opportunity to consider 
longitudinal data in the system’s analysis. It can also 
be tailored to any specific case, by feeding back to the 
knowledge level. A very interesting opportunity for future 
investigations could be examining whether the patterns of 
change in the communication dynamics in a system are 
similar across different accidents in aviation, as initiated 
in this discussion, or even in other settings where complex 
systems have lacked graceful extensibility.
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Appendix A

Statistics used to assess effects, and their respective codes 
(Butts 2008):

Fixed effects: FESnd, FERec
Preferential attachment: NTDegRec
Triadic effects: OTPSnd, ITPSnd, OSPSnd, ISPSnd
Recency: RSndSnd
Persistence: FrPSndSnd
Participation shifts: PSAB-BA, PSAB-AY, PSAB-BY, 

PSAB-XB, PSAB-XA
For more details, see package relevent (Butts 2008).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Appendix B

Table with parameter estimates for relational event models, 
by phase

Normal phase Emergency phase

Estimate Std error z value Pr(> |z|) Estimate Std error z value Pr(> |z|)
PSAB-BA 2.275 0.129 17.635 < 2.2e−16*** PSAB-BA 4.223 0.155 27.313 < 2.2e−16***
PSAB-AY − 2.872 − 0.581 4.946 7.569e−07*** PSAB-AY 3.203 0.191 16.754 < 2.2e−16***
PSAB-BY − 3.281 0.710 − 4.623 3.784e−06*** PSAB-BY 1.098 0.454 2.420 0.01554*
PSAB-XB − 3.977 1.002 − 3.971 7.154e−05*** PSAB-XB 2.395 0.255 9.382 < 2.2e−16***
PSAB-XA − 2.353 0.451 − 5.213 1.859e−07*** PSAB-XA 2.182 0.279 7.830 4.885e−15***
T-OTP 0.429 0.325 1.319 0.18703 OTPSnd − 0.145 0.112 − 1.289 0.1974895
T-ITP 0.537 0.221 2.428 0.01517* ITPSnd − 0.186 0.125 − 1.489 0.1365508
T-OSP 0.033 0.0843 0.392 0.69511 OSPSnd − 0.003 0.013 − 0.207 0.8358699
T-ISP − 0.859 0.343 − 2.505 0.01224* ISPSnd 0.605 0.172 3.527 0.0004204***
R 3.911 0.324 12.090 < 2.2e−16*** R 5.230 0.199 26.325 < 2.2e−16***
P 3.199 0.251 12.749 < 2.2e−16*** P 8.477 0.246 26.698 < 2.2e−16***
PA 3.197 0.424 7.533 4.974e−14*** PA − 5.388 0.411 − 13.123 < 2.2e−16***
FESnd.1 0.635 51.450 0.012 0.9902 FESnd.2 0.495 51.532 0.010 0.9923
FESnd.2 − 0.784 51.478 − 0.015 0.9878 FESnd.3 0.387 51.669 0.008 0.9940
FERec.1 0.827 51.450 0.016 0.9872 FERec.2 0.525 51.532 0.010 0.9919
FERec.2 − 0.272 51.477 − 0.005 0.9958 FERec.3 0.323 51.668 0.006 0.9950
FEInt.1 1.686 51.451 0.033 0.9739 FEInt.2 1.353 51.532 0.026 0.9791
FEInt.2 − 1.090 51.477 − 0.021 0.9831 FEInt.3 0.708 51.668 0.014 0.9891

*p < 0.05, **p < 0.01, ***p < 0.001
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