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 Hybrid Artificial Intelligence combines the best of two worlds: the power of 

recent advances in deep learning with the possibility to explicitly model 

human knowledge in connected systems. Together, this new generation of AI 

becomes more controllable, explainable and fair, in line with European norms 

and values. 
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 1. Motivation 

Current approaches in Artificial Intelligence (AI), particularly machine learning, have 

recently reached an unprecedented impact in science and society. There are, 

however, concerns about interpretability and accountability of such AI, which limit its 

usefulness and trustworthiness. Current learning AI systems operate almost 

exclusively in a statistical (model-free) mode, which limits their potential and 

performance [1]. Many works point out that there is a fundamental need for 

knowledge representation, reasoning and sharing that is integrated with machine 

learning systems in order to provide sound and explainable models to alleviate 

these problems [2, 3, 5, 6, 7, 8]. 

Hybrid AI (HAI) systems are considered to be the next wave of AI, integrating the 

fundamental cognitive abilities of intelligent agents: being able to learn from their 

environment, reason about what has been learned [2, 3, 4] and to share the 

acquired knowledge. In such integrated systems, machine learning approaches 

provide robust learning, whereas semantic models and knowledge representation 

allow for reasoning capabilities [2]. Consequently, they bring a deeper level of 

understanding to intelligent systems and overcome some of the limitations of 

current AI systems. 

Current AI approaches are highly specialised, in the sense that they are very good 

at performing well-defined tasks. Transfer of learned abilities and applying them to 

other contexts (e.g. transferring the driving skills of an autonomous car to a golf 

cart) is currently very limited [5, 8]. Understanding context is necessary for an 

agent’s ability to cope with unknown situations, for providing feedback to users and 

being aware of its own functioning [8]. Current AI systems can fail ostentatiously 

when cases appear in their context that do not fit the training model [8]. Incidents 

with autonomous vehicles abound. Furthermore, current AI systems depend on 

huge training data sets: in order to reach acceptable levels of accuracy, algorithms 

require large quantities of example data [5, 8], which is in stark contrast with how 

humans are able to integrate new information through, e.g., one-shot learning. 

Artificial Intelligence is not a new discipline, but one that has been at the forefront of 

targeting the most ambitious, complex and multi-disciplinary philosophical and 

technical challenges for 70 years [9]. Recent successes in AI seem to demonstrate 

its amazing short-term potential. While this is certainly true for a small subset of AI 

technologies (such as deep convolutional neural networks) and applications, it is a 

mistake to generalise this potential and to be either over-excited by exaggerated 

expectations or scared by dramatised potential threats. Either view is founded in 

unrealistic optimism about AI’s potential - certainly within the authors’ lifetimes. 

Instead, we aim for practical solutions to support humankind in coping with their 

imminent global challenges [10]. 

Artificial Intelligence is an umbrella term used for a large collection of diverse 

techniques (cf. fig. 1). The recently popular subfield of Deep Learning (DL) achieves 

great success in winning at games like chess and Go. However, Deep Learning is 

shallow. DL does statistical pattern matching in huge amounts of data (Big Data) 

without knowing what the data is actually about. Even complex games are still easy 

to win with the current supercomputers, because they provide complete information 

with absolute certainty. The real world is nothing like this: it’s full of uncertainties, 
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 inconsistencies and lack of information. AI based on DL alone cannot make sense 

of the world. Therefore, Hybrid AI attempts to enrich learning from data with 

reasoning using knowledge and social interaction. The goal of Hybrid AI is to bridge 

the semantic gap between data and symbolic knowledge (concepts, relationships 

and rules) in order to solve problems that are currently out of the reach of even the 

most advanced AI systems. 

 

Figure 1: Artificial Intelligence and some of its subfields [11]. 

Due to their integrated nature, Hybrid AI systems will feature improvements on both 

accounts: they will be able to understand the context they operate in from their 

reasoning and abstraction abilities and adapt accordingly [8]. Hybrid AI should thus 

be able to overcome the limitations of current AI when observing new phenomena 

in open world situations by being able to combine data and contextual, descriptive 

models as input to the learning process [2, 5]. For example, providing pictures of a 

thus far unseen bird combined with a model that describes its features (two legs, 

beak, wings, etc.) will allow for a more efficient learning process [2, 8]. These 

systems will also be far better at explaining how they arrived at a certain conclusion: 

instead of just detailing input features, such a system will not only be able to 

recognise the bird, but also explain why it came to this conclusion based on 

symbolic descriptive models [2, 6, 7]. Such symbolic explanations are required for 

sharing knowledge and for coordinating tasks with other agents and humans. 

Rarely, a single system engineering approach can solve all possible problems. For 

example, human brains operate using two different concurrent systems [12]. 

Accordingly, it only makes sense that AI systems would benefit from a similar 

integration of different mechanisms. It appears advantageous to reuse knowledge 

when learning, as well as to adapt knowledge by experience. Scientists have 

always strived to learn from experimentation in order to discover new laws that, 

themselves, enabled new experiments. This approach of continuous improvement 

has led to scientific progress, which can be used for AI systems to become 

increasingly smart and transparent. Furthermore, a lot of time and energy can be 

saved by avoiding to learn what is already known (‘reinventing the wheel’). 
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 2. Definition 

The heart and raison d’être of Hybrid AI is the goal of bridging the semantic 

gap. 

A Hybrid AI system of autonomous intelligent agents would ideally be adaptive and 

flexible to learn new concepts, interpret and relate concepts in the context of 

common and acquired knowledge, reason about hypotheses and consequences, 

take actions and communicate with other agents to collaboratively solve complex 

problems (distribute tasks among specialists). We focus on Hybrid AI systems that 

aim to assist humans in daily life by providing smart support tools (collaborative 

decision support) and by operating autonomously on their behalf (autonomous 

decision making), while considering given goals and norms. Crucial for such AI 

tools is the ability to interpret the (social) context in which they operate. 

In general, a hybrid system is one that incorporates and integrates more than one 

(computing) paradigm. There are many ways to characterise the opposing features 

of a hybrid system of AI components, as shown in table 1. 

Probabilistic Deterministic 

Statistical Logical 

Sub-symbolic Symbolic 

Neuro- Symbolic 

Intuitive Conceptual 

Empirical Rational 

Implicit Explicit 

Data(-driven) Knowledge(-driven) 

Solipsistic Collaborative 

Detached Contextual 

Reactive Intentional 

System 1 (Fast Thinking) System 2 (Slow Thinking) 

Table 1: Contrasting characteristics of AI approaches. 

In comparison with a current AI system a Hybrid AI system would be (cf. fig. 2): 

● suitable for general purpose tasks, instead of being limited to special 

purposes; 

● able to operate in dynamic and unpredictable situations; 

● collaborate with humans and other systems (agents); and 

● suitable for situations where privacy, safety, security and ethical constraints 

are critical. 
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Figure 2: Characteristics of future AI systems. 

None of the existing technologies is sufficient to build such systems. By bringing 

diverse relevant technologies together, Hybrid AI appears particularly promising to 

enable and to reap the potential impact. Therefore, intensive research should be 

conducted for making significant progress in this technology and its applications in 

many domains. 

2.1 Semantic Gap 

Hybrid AI unites the traditionally disparate camps of rational reasoners and 

empirical learners. Throughout the history of AI these camps followed their separate 

research agendas. However, more recently it appears that a combined approach 

would be more successful in pushing the limits of AI. Important issues, such as 

building meaningful, transparent and trustworthy AI systems, force the camps to 

unite. Machine learning (ML) is a generic approach that relies on detecting patterns 

in data to build statistical models of experience. Symbolic reasoning approaches 

allow for precision and transparency in defining knowledge in descriptive structural 

models. As collaborative systems of autonomous intelligent agents (robots, 

software agents, drones, smart assistants and home devices, cloud services or 

mobile apps, as well as human beings) the competing approaches can bridge the 

semantic gap and will enhance each other’s strengths to create a new kind of 

adaptive, learning, collaborative and semantically rich AI. 

 

 
Figure 3: The Semantic Gap in the Semantic Triangle (Hybrid Agent). 
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 In reference to Peirce’s semiotic triangle1 (cf. fig. 3), the semantic gap is the 

difference between a symbol and a concept. The gap between an object and a 

concept can be defined as symbol grounding. Machine learning provides an 

object’s data with a symbol (or label; usually, a classification or prediction), but 

lacks the connection to the concept that the symbol refers to. The concepts are part 

of semantic models (knowledge representation, ontologies), using which the symbol 

can be connected to a corresponding concept and, hence, bridge the semantic 

gap. This bridge is further spun by agents interacting with their context (including 

other agents, humans and the physical environment), thereby sharing and updating 

their individual knowledge, intentions and points of view. 

Hybrid AI addresses knowledge management in all phases of use: from knowledge 

acquisition and exploitation to sharing. Knowledge acquisition requires establishing 

links between learned structures and human-understandable concepts (as 

formulated using knowledge graphs, for example). As the knowledge of the world 

constantly changes, it is necessary to add, replace, update and remove (instances 

of) concepts and links, based on a temporal model of knowledge. Knowledge 

models include concepts, properties, relationships and rules. They can provide 

causal relationships between actions and effects [13]. 

 

 
Figure 4: Hybrid AI vs. Hybrid Intelligence. 

In figure 4, Hybrid AI is defined as the combination of reasoning on symbolic 

knowledge with machine learning from data (objects) embodied in an intelligent 

agent. Hybrid AI is part of systems of Hybrid Intelligence (HI), where intelligent 

agents learn and reason and interact with humans and other agents in relation to 

the environment that they are situated in. Intelligent agents need to acquire 

awareness about themselves, their context and users (both human and other 

agents). 

2.2 Machine Learning 

There are a multitude of techniques and methods for machine learning that have 

been amply described elsewhere [9, 14, 15]. Deep convolutional neural networks 

                                                      
1 For example, object: a cat - symbol: “Tom” - concept: cats. 
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 are very successful at many tasks, such as playing games, image classification, 

speech recognition and translation. Typically, big data is considered as the solution 

to overcome the bottleneck of formal knowledge. Big data proved successful in 

various applications, indeed. However, in many cases, vast amounts of data are not 

available for many reasons, such as restrictions of privacy, confidentiality, 

(computational) cost, time-consumption or because data does not exist, is unethical 

or too dangerous to collect. Humans are able to learn and generalise from little data 

and are able to achieve Deep Understanding, because we can conceptualise 

examples in ways that Deep Learning cannot. 

A possible work-around for gathering data is to produce synthetic data from gaming 

and simulation models, which is known as Digital Twins. However, the question 

may be raised why the modelling knowledge required to develop those gaming and 

simulation environments could not be used explicitly in the learning component and 

to avoid the use of generated fake data. 

Another possible work-around is to use transfer learning. In this type of learning, a 

model is trained on a general or common domain with a lot of data and re-trained 

on the specific domain, which requires less data. Although this is a viable method, it 

often does not use symbolic methods, yet. 

In the context of Hybrid AI, combining learning with knowledge graphs and of 

learning concepts from data are of interest, for example. 

2.3 Symbolic Reasoning 

Reasoning can be defined as the capacity for consciously making sense of things, 

establishing and verifying facts, applying logic, and adapting or justifying beliefs, i.e. 

the ability to make inferences based on new or existing information. It is a general 

process of thinking rationally in order to find ‘valid’ conclusions when trying to 

understand sensory observations from the environment, to think about cause and 

effect, etc. 

A reasoning process can be based on pure logic (propositional, first-order, higher-

order, etc.), where the information used for the reasoning process (predicates) is 

represented with certainty. There are, however, many situations where we have 

imperfect or unknown information about the real world, e.g. due to ignorance, 

errors, unreliable sources or lack of observations. In those cases, we need to be 

able to reason with a measure of uncertainty, typically represented by probabilities, 

which leads to methods of probabilistic inference. 

A knowledge representation in symbols serves to transfer learning from one 

situation to another. That is, a symbol offers a level of abstraction above the 

concrete and granular details of a sensory experience or observation, an 

abstraction that allows humans to transfer what we learned in one place to a 

problem that we may encounter somewhere else. Combinations of symbols that 

express their interrelations could be called reasoning, and when humans string a 

number of signs together to express thought, it can be called symbolic 

manipulation. A plausible definition of "reasoning" [16] that covers both inference 

based on logic and probabilistic inference, could then be: "algebraically 

manipulating previously acquired knowledge (symbols) in order to answer a new 

question". 
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 Reasoning may be subdivided into forms of reasoning based on forms of logic 

associated with the strict sense, such as deductive reasoning or inductive reasoning 

and more informal reasoning activities, such as intuitive reasoning or common 

sense reasoning. The latter employs reasoning based on experiences or common-

sense knowledge, akin to the human ability to make presumptions about everyday 

events. 
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 3. Benefits 

The potential benefits of Hybrid AI systems lie in their increased trustworthiness, 

transparency, explainability, controllability and responsibility. They may facilitate the 

implementation of legal and ethical norms in future distributed collaborative systems 

in order to contribute to more human-aware systems. We elaborate on the benefits 

with respect to controllability, explainability and responsibility of Hybrid AI systems 

after explaining some common issues. 

3.1 Common Issues 

3.1.1 Open World 

In an open world, situations and objects may emerge that have not been foreseen 

when the system was initially designed. To enable safe and meaningful operation in 

an open world, an AI agent must be able to [17]: 

1. Detect that the world has changed with respect to the current world model. 

2. Identify how and why the world has changed. 

3. Adapt the response according to the new world model. 

4. Update the model of the world. 

Table 2 shows an initial concept for an open world hierarchy that was introduced by 

DARPA [17]. This hierarchy may not be accurate in multiple aspects, such as the 

order of levels, missing or redundant levels, the lack of inclusion of additional 

relevant dimensions (e.g., whether the novelty is local or global, the frequency with 

which novel situations occur, etc.), or others. 

Open World Novelty Hierarchy 

Entities and 
Attributes 

0 Instances: previously unseen objects or entities. 

1 Classes: previously unseen classes or objects or entities. 

2 Attributes: change in a feature of an object or entity not 
previously relevant to classification or action. 

3 Representations: change in how entities and features are 
specified, corresponding to transformation of dimensions or 
coordinate system, not necessarily spatial or temporal. 

Interactive 

4 Relations (static): change in allowed relationships between 
entities, such as in object-class hierarchies or adjacency (if 
in physical space). 

5 Interactions (dynamic): change in allowed relationships 
between entities, i.e., “rules of the game”, resulting in state 
changes. 
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6 Capabilities: change in allowable actions of entities with 

respect to pre-conditions, post-conditions, or side-effects. 

External 

7 Environment: change in the world affecting all entities 
similarly, depending on factors independent of the entity. 

8 Goals: change in objectives of actions, especially in a multi-
entity or adversarial environment. 

9 Context: change in meaning of actions that provides a 
different interpretation or narrative frame on a series of 
interactions. 

Table 2: Open World Novelty Hierarchy. 

3.1.2 User Interaction 

Communication of humans with Hybrid AI systems is preferably bidirectional and 

takes the form of a dialogue. Felicity conditions for fruitful, dialogue-based 

communication include rich, semantic representations of subject matter. This 

becomes especially important when humans are facilitated to insert domain or world 

knowledge in an AI system. On the other hand, extracting semantic information 

from the eventual sub-symbolic contents (e.g. hidden layers) of an AI component is 

crucial for successful human-AI interfacing. 

3.2 Controllability 

Future AI agents will have to conduct a variety of tasks in dynamic complex 

environments with uncertainties and unforeseen situations. At the same time, the AI 

agent must adhere to safety standards and satisfy legal and ethical constraints. The 

implications of an unpredictable environment are that an AI agent must be able to 

adapt to the actual situation and learn from experience to optimise its utility for the 

current task. While adaptivity and learning can lead to an effective use of the 

capabilities and resources of an AI agent in well-known situations, it could also lead 

to unsafe or unethical behaviour in unforeseen situations. Controllable AI agents 

should therefore include appropriate safeguards to enable human intervention and 

control when necessary. This chapter will describe some topics in which hybrid AI 

methods can contribute to controllable AI agents. First, the key requirements for 

controllable AI agents will be defined. 

3.2.1 Key Requirements 

Some of the key requirements for a controllable AI agent that can be derived from 

the problem description are: 

● Operations in an Open World 

A controllable AI agent must be able to operate in an open world that differs 

from the world for which it was initially designed. 

● User Control 

A controllable AI agent must be able to accept and learn from the user. 

● Self-Assessment 

A controllable AI agent must be able to assess its own performance so that 

the user, or the AI agent itself, can determine if it can meet the task 

objectives. 
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 ● Self-Management 

A controllable AI agent must be able to adapt its own configuration to the 

actual situation and learn from previous experiences to optimise its 

performance. 

● Explainability 

A controllable AI agent must be able to explain to the user what it is going 

to do and why it is doing this. This topic is addressed below. 

3.2.2 Interaction with User for Never-ending Learning 

In a changing world, an AI agent will encounter new and unknown situations. TNO’s 

clients operate in complex and changing environments. For instance, the army and 

police both aim for a safe society, while opponents challenge them with changing 

threats. Research at TNO is focused on helping them to use state-of-the-art AI tools 

which are capable of operating in changing conditions. A practical example is 

aggression in nightlife situations, where we develop video AI which detects 

aggression in an early stage. Every few weeks a new form of aggression is 

encountered that has previously not been seen. The video AI may not detect it at 

first; it needs human supervision to improve its model. Moreover, the normal 

behavioural patterns vary as well, which also lead to new, unseen situations. For 

instance, a garbage truck passing by during midnight, where personnel is throwing 

the garbage in the back of the truck, which looks similar to aggression. Interaction 

with the user is needed for never-ending learning. The user feedback can be 

considered as top-down symbolic knowledge about the world that gives meaning to 

bottom-up, sub-symbolic sensor data. 

3.2.3 Exploiting Domain Knowledge 

It is essential to exploit the available knowledge about the environment that the AI 

agent is operating in. In the above example of aggression detection: the aggression 

almost always happens in nightly hours and in one of the main nightlife areas. 

These facts are available in police databases. Often, a lot of contextual facts about 

the purpose of the AI agent are known beforehand. Using such facts to deploy the 

AI agent in the right circumstances increases its performance (in the case of 

aggression detection it leads to less false positives), and to limit its computational 

resources (running it during two nights on 3 cameras rather than 24/7 on all 70 

cameras). The coupling of such contextual world knowledge on the one hand, and 

sensory interpretation on the other hand, is an important research topic for Hybrid 

AI systems. 

3.2.4 Context Awareness 

In many real-life applications, an AI model is applied within different environments. 

For instance, a surveillance system that detects truck cargo theft is deployed in 

various truck parking lots, each with its own layout and infrastructure. Ideally, it is 

the same AI model but deployed using a different configuration. In case of the cargo 

monitoring, the AI agent should know about the local layout, i.e., where the parking 

zone, shop and walking routes are. Similarly, contextual information about how the 

data is acquired is helpful, e.g., knowing the calibration of a camera enables the AI 

agent to make hypotheses about the size and speed of objects. Awareness about 

context (top-down symbolic knowledge) is essential for interpretation. 
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 3.2.5 Context Adaptivity 

Moving AI agents may enter new, unseen environments. For instance, a drone that 

explores a large area may enter a rural environment, while its model was optimised 

for an urban environment. The AI agent should signal that the environment has 

changed, so it can take proper actions, such as loading a model with nature classes 

instead of urban classes, loading another model that is known to work less 

accurately but more robustly in different conditions, or asking the operator for 

guidance. 

3.2.6 Learning with Few Examples 

Machine learning requires a large amount of training samples. However, in many 

real-life applications, few training samples are available (or even none). The two 

main reasons are: (a) there are few or no samples of the phenomenon (e.g., a 

military threat such as the placement of an improvised explosive device (IED)), or 

(b) it is hard or expensive to acquire many labelled training samples (e.g., observed 

human stress levels under a wide range of real-life stressors). There are 

approaches to solve these challenges, which involve the use of domain knowledge 

to break down the problem into smaller sub-problems, which are easier to model 

and to acquire labelled samples for. For instance, the IED placement is a long-term 

scenario which almost never is caught on camera. Another difficulty is that it can 

happen in many different ways, so training samples will never be completely 

representative. Yet, it involves short-term activities such as digging and placing the 

IED, for which abundant video footage is available. Classifiers for such activities 

can be learned, on top of which interpretation can be carried out by a sequential 

model such as a finite-state-machine in which the rule set is shaped by world 

knowledge about the phenomenon. High-level rules model the phenomenon for 

which few or no samples are available. Similar to such a high-level representation, 

this approach can also be taken for mid-level representations, such as so-called 

semantic features that capture parts of the phenomenon. For the example of stress 

assessment: the mid-level representation may be designed to consist of observable 

stress indicators for which sufficient labelled samples can be acquired. Again, top-

down knowledge is combined with bottom-up sensory observations. 

3.3 Explainability 

Recent developments in AI (e.g., the recent Capsule Networks [18]) attempt to bring 

the sub-symbolic world closer to the symbolic world, by forcing neural networks to 

focus on semantic, interpretable structures in their data. While not being hybrid in 

itself, this approach delivers crucial ingredients for any form of Hybrid AI: a 

semantic interlingua that contributes to human-AI dialogue and increases the 

potential for explainability. 

Hybrid AI can also address more procedural information exchange between 

humans and machine learning models. An example is the use of neural attention 

[19], where a neural network emits probabilities linked to its input layer. These 

probabilities explain one aspect of its computation: the parts of the data that attract 

most of the network’s attention. Allowing humans to interact directly with this 

attention (e.g., calibrating the neural attention with human attention by steering it 

into another direction) is a low-level form of Hybrid AI, that bypasses the semantic 

gap and allows for a more procedural implementation of human-AI dialogue. 
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 Human feedback loops, supported with dialogues, are important for detecting and 

handling bias. Bias is a pesky problem in AI, with manifestations such as selection 

bias (unfair data selection) and inductive bias (the formal assumptions made by an 

AI algorithm for predicting outcomes, like ‘maximising margins between classes by 

Support Vector Machines is a good idea’). Exploitation of bias by adversaries 

occurs in adversarial machine learning and AI-generated data, such as fake news. 

Explaining which data underlies an AI-produced outcome, and - vice versa - 

assessing whether human-provided data is biased, is helpful for bias resolution. 

This demands a variety of information exchange types, some of which can be on 

quite a low level. For example, the attention mechanism described above may 

serve to highlight inductive bias by an AI algorithm. Analogy-based explanations 

(displaying training data similar to test data or its model abstractions of that data) 

have strong communicative and explanatory value. But it is clear that, for fine-

grained, human-understandable bias assessment, semantic abstraction of this type 

of anecdotal data is helpful. 

Human-robot communication can be characterised as shown in figure 5. 

 

Figure 5: Human-robot communication. 

We can identify the following steps in this process: 

1. A robot forms an intention regarding which information to convey to a 

human (represented by the cloud). 

2. The robot translates the information (which is represented sub-symbolically) 

to a symbolic representation which can be conveyed in a message 

(represented by the grey arrow “translate”). 

3. The robot pronounces the message (represented by the talk box). 

4. The message travels to the receiver and arrives at the human (represented 

by the ellipse at the human). 

5. The human translates the symbolic representation to her own 

representation (which is represented using her psychological mental 

model). 

6. The human stores the message in her own head. 
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 In this process, step 2 requires Hybrid AI technology: the message is translated 

from a sub-symbolic to a symbolic level. What this process teaches is that the 

symbolic representation should be such that the human can translate it back to her 

own model. Because many symbolic representations are possible, we must choose 

the one that fits the user’s mental model best (personalised explainability). 

3.3.1 Semantic Anchors 

We will call the symbolic representations which are used for communication 

between agents and humans the Human-Agent-Teaming Communication Language 

(HATCL) [20]. In the communication between the autonomous system and the 

human-agent teaming software, there is a need for grounding the knowledge from 

the ontologies. If the teaming software discusses an element from the ontology with 

the system, or vice versa, this element needs to be translated to variables that are 

meaningful to either side. This process of grounding a semantic concept into 

variables known to the autonomous system is done through so-called “semantic 

anchors” that are implemented inside the autonomous system (cf. fig. 6). 

A fruitful combination of semantic anchors with data-driven models demands a type 

of data-auditable AI: AI that can be explained from a data usage perspective, 

answering questions such as: which data is being used in the latent space of a 

deep learning network just prior to outputting a decision? Once these data 

circumscriptions are clear, external knowledge can find its way into a model. 

 

 

Figure 6: Semantic anchors in an autonomous system. 

In general, the teaming software works at a higher abstraction level than the 

system. This means that semantic anchors, whose information flows from the 

teaming software towards the system, perform a translation into a lower abstraction 

level. Whereas the translation into a higher abstraction level occurs when the 

information flow is reversed. 

An example of a simple gateway semantic anchor could be when the autonomous 

system contains an instance of ‘car’ that adheres to the definition of a car present in 

the ontology. As such, the level of abstraction of that instance is already appropriate 

to be used in the teaming software. The semantic anchor would then simply be a 

gateway of that exact instance, without performing any translation. 

An example of a more complex semantic anchor could be when the definition of car 

is not known as such by the system. Perhaps the system only has a camera-feed 

with pixels that represent that car but not its position or velocity. The semantic 

anchor may then contain an operation that extracts the position of that car as well 
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 as its velocity vector to obtain a complete description of a car according to the 

ontology. 

3.3.2 Increasing Explainability by Structured ML Approaches 

In the chapter about Controllable AI, machine learning (ML) approaches were 

introduced that incorporate high-level knowledge about phenomena and mid-level 

features of which the phenomena are composed. An advantage of such rules and 

features is that they can be easily explained to a user. For instance, consider a 

robot which is collaborating with a human. The robot has a camera and its video AI 

interprets that the human is waving, because the AI observes that the human’s arm 

is moving sideways in the air. It can communicate ‘Did you ask for help? I noticed 

that you waved your arm’. Such communication is much more human-like than 

using terms of changing pixels or movement in the image itself. 

3.3.3 Storyboards: Visual Explanations 

For the verification of a hypothesis of an AI agent, a user may want to check on 

which information the hypothesis was based. Of course this can be done using the 

lower-level data, but this is hard to interpret. AI agents that operate on images 

(camera, spectrograms, etc.) are able to communicate their hypotheses in the form 

of images, possibly with metadata such as overlays (boxes, texts, regions). For 

instance, a hypothesis about an observed scenario, such as IED placement (see 

above), may be shown to the user by one snapshot for each of the consecutive 

activities that were observed and linked (e.g., standing next to a road, digging, 

placing something in the ground, walking away). 

3.4 Responsibility 

Broadly speaking, responsible AI concerns the use of AI in domains with societal 

and personal impact. Examples are the use of recommender systems for loan 

applications, the use of assistive systems for the decision whether a convict should 

benefit from parole, or the use of an autonomous recruiting system to pre-filter 

applicants to job openings [21, 22]. 

Arguably, the three main research themes in responsible AI are fairness, 

confidentiality and transparency. Fairness addresses the problem that the AI 

models may be biased and lead to discriminating decisions. Confidentiality 

addresses the problem of hiding sensitive information in shared datasets. Finally, 

transparency addresses the problem regarding the whole process of training and 

applying AI systems. 

Confidentiality in data processing is not primarily achieved by AI, in general. Rather, 

confidential responsible AI is centred on providing computational techniques and 

cryptographic infrastructures (e.g. multi-party computation, federated learning, 

homomorphic encryption), such that machine learning can operate on privacy-

secured data [23, 24]. These techniques are out of the scope of this paper. 

3.4.1 Fair Responsible AI 

The goal of fairness is to avoid discriminating sensitive categories during decision 

making in a sensitive societal application domain [22]. For instance, a fair AI system 

should not suggest lower wages to women or should not favour specific ethnic 

groups in suggesting loans and insurance policy schemes. 
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 The notion of open world, within the context of fair AI, is slightly different than the 

one used in for example controllable AI. We could imagine that the training task, 

during which an AI model is built from historical data, is seen as the closed world, 

whilst the deployment of an AI to reason and decide about newly unseen data is 

seen as the open world. 

The main issue faced in fair AI is that if the historical data contains biases and the 

AI is trained on such data, then the AI and its decisions will be biased as well. Once 

deployed in the open world, the AI’s biased decisions and classifications will affect 

society. 

Moreover, the new unseen data, which will be processed in a biased manner, would 

subsequently become historical data at the next training phase, and thus further 

increase the historical bias. For instance, if a biased AI suggests that non-white 

people are more likely to deal drugs, then more non-white people will be inspected 

and possibly arrested. Consequently, their data would enrich the existing historical 

dataset. In this sense, the interaction between the AI and the user is mono-

directional, with the user simply receiving the outcome of a classification/decision. 

3.4.2 Symbolic Fairness 

The vast majority of AI used in the societal domain is based on pattern recognition 

via machine learning techniques [25, 26, 27, 28]. These techniques are extremely 

capable of finding correlations between data features; this is why biases and 

discrimination are propagated from historical data to the AI. 

There has been a large body of work addressing fairness in AI, both in “hard” 

technical and “soft” jurisdictional terms [29, 30]. With respect to technical fairness, 

the mitigation of bias and discrimination is commonly done by either obfuscating 

sensitive features in the data (process fairness, [24, 26, 31]), by introducing 

additional costs/performance metrics during training (outcome fairness, [26, 27, 

28]), or by appending further decisional thresholds to a biased model (post-

processing fairness, [24]). All these intervention methods necessarily rely on a 

quantitative definition of fairness, e.g. disparate impact [27] or statistical parity [26]. 

For instance, disparate treatment is a measure of fairness adopted during outcome 

fairness which aims at generating, for different sensitive groups, the same volume 

of false positive and false negative classification errors. 

Technical fairness is far from being the silver bullet for fair responsible AI. Not only 

because two fairness measures could be orthogonal to each other – improving a 

specific fairness measure might diminish another one [24, 27] – but also because 

technical fairness reasons on the same level of the AI under investigation: data, its 

processing, its correlation finding, and its classification. Technical fairness assumes 

a generic connotation that goes across domains of applications. This context-

independence of technical fairness somehow misses context-specific aspects [26]. 

If we consider two fair classifiers, one to decide which drug to be administered to 

patients and one to decide which loan scheme to be given to customers of a bank, 

we can state that both classifiers could be made technically fair by means of the 

same technical fairness approach and metrics. However, if two individuals are 

present in both context datasets, they could appear “equal” in different ways. It is 

the very notion of “equality” that goes beyond the technicalities of machine learning 

and its training process and goes towards concepts which become hard to encode 

in equations. In other words, the lack of representation of context-dependent, yet 
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 generic, notions of equality constitutes the semantic gap of responsible fair AI [24, 

25, 26]. 

“Soft” fairness – arising from jurisdictional social sciences research – addresses 

fairness on a higher level than the one within which technical fairness is situated. 

This is intuitive, as fairness of treatment is a concept that goes beyond AI. Laws, 

norms and behaviours evolve, influence each other and somehow frame societies. 

Whilst some aspects of soft fairness are universal, e.g. constitutional articles 

specifying that a country refutes any form of discrimination, others are much more 

context-specific, e.g. labour or financial laws. 

Encoded laws and norms can be used both as technical fairness or as a constraint 

that the whole training/usage of AI processes should satisfy (cf. fig. 7). 

 

Figure 7: Encoded laws and norms. 

3.4.3 Transparency 

Another contribution that Hybrid AI can provide to responsible AI - more specifically 

causal reasoning [24, 32] - is its use around the training and usage process 

described in figure 7. 

In a nutshell, causal graphs are graphical representations of the dependencies 

between random variables (e.g. input data features) and target variables (e.g. the 

output feature to predict in a dataset). Causal graphs could potentially be used to 

highlight the dependencies between sensitive attributes and output features - i.e. 

bringing transparency in process fairness - and, subsequently, intervene on 

removing unwanted dependencies efficiently. Similarly, causal graphs could be 

used to explain the processing of a machine learning model, in a sort of digital twin 

type of relationship. Such an approach could be used for instance by auditing 

bodies - e.g. what TNO could become in the responsible fairness domain - who 

would provide “non-discriminating” certifications to assistive decision making tools. 

Along these lines, the information represented in a causal graph could be used to 

effectively provide post-processing fairness measures. 

Hybrid AI would then occur by learning causal graphs from the dataset or model at 

hand. An interesting consequence of learning causal graphs is that it would be 

possible to track the evolution of an unfair classifier and biased historical dataset: it 
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 would, therefore, be possible to quantitatively study the impact the negative 

feedback has on the dataset and model. 
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 4. Engineering 

4.1 Knowledge Engineering 

Knowledge management and engineering are essential in all phases of use of a 

Hybrid AI system: from knowledge acquisition to exploitation and sharing. 

Knowledge acquisition requires establishing links between learned structures and 

activations in a neural network (which are the outcomes of machine learning 

algorithms) and human-understandable concepts (as formulated using knowledge 

graphs, for example). These links should be bidirectional and continuously updated. 

As the knowledge of the world constantly changes, it is necessary to add, replace, 

update and remove (instances of) concepts, based on a temporal model of 

knowledge. Knowledge models include concepts, properties, relationships and 

rules, as well as provide causal relationships between actions and effects. 

4.2 Design Patterns 

Hybrid AI systems can be implemented in various ways. To be able to discuss the 

different forms of hybrid AI a common notation can be used. In this paper we adopt 

the architectural patterns of Frank van Harmelen and Annette ten Teije [33], who 

proposed several ways on how to combine symbolic AI with Machine Learning. Van 

Harmelen builds different architectural design patterns using two different elements: 

ovals for algorithms and boxes for their input and output. The oval algorithms can 

be SR for symbolic reasoning and ML for data-driven machine learning. The input 

and output in his scheme are symbolic relational structures (‘sym’) or data. These 

are presented in rectangles. Typical architectural patterns he defines are given in 

the figures below. 

The first architectural pattern he defines (cf. fig. 8) is classical symbolic reasoning, 

where symbolic relations are used in combination with reasoning to derive new 

symbolic structures. This design pattern relates to the first wave of AI. 

 

Figure 8: Classical symbolic reasoning system. 

The second architectural pattern (cf. fig. 9) is classical machine learning, where 

data is used to train a neural network to obtain data-based results. This design 

pattern relates to the second wave of AI. 

  

Figure 9: Classical machine learning system. 

A first hybrid AI pattern is learning with domain knowledge as prior (cf. fig. 10). An 

example of this pattern are Logical Tensor Networks (see above), where the prior 

symbolic knowledge can be used to train networks with fewer training data 

obtaining more robustness against noise. 
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Figure 10: Learning with domain knowledge as prior. 

A second hybrid pattern is ontology learning, where a symbolic structure is learned 

from data. This ontology is then used in the next step for reasoning (cf. fig. 11). This 

can for example be used for ontology learning from text. 

 

Figure 11: Ontology learning. 

Another way to combine both symbolic AI and machine learning is to use the 

symbolic knowledge as a prior for machine learning, such as with Logic Tensor 

Networks, or as a meta-reasoner over the machine learning system. 

Yet another way, as described in the paper, is to intertwine the machine learning 

and symbolic AI in one system. These ways can obviously also be combined, for 

example in creating explanations. 
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 5. Examples 

In the following sections, we highlight some applications that were and are being 

developed at TNO. Many more will be developed in the near future for various 

domains, such as healthcare, smart industry, agriculture, etc. 

● Drones can learn a world model (i.e., detect objects and their positions), 

then navigate with rule-based planning & control. Object properties are 

known from an ontology. In a hybrid approach locations of objects can be 

predicted from experience and the world model can be updated. This up-to-

date world model is then used for real-time waypoints determination. 

● Robotic systems consist of many components with limited resources, incl. 

time. Learning on the fly and adapting to a constantly changing 

environment is crucial. Robots can perform self-assessment to determine 

their level of performance, both logically and physically (wear & tear), by 

comparing learned properties with a reference model of themselves. 

● A robotic system should have self-assessment, i.e. it can assess whether it 

is able to perform its task adequately. One way to tackle this is to have 

knowledge about itself, the configurations and current setting and it can use 

that knowledge to know whether it can do a certain task or not, and to take 

actions based on its information. A similar set-up can be true for the outer 

world; if a system knows about its surroundings in terms of knowledge, it 

helps to improve situational awareness. 

● By analysing video streams, people and objects can be detected. When 

coupled to a knowledge model of relationships among people and objects, 

a situation can be understood and identified as dangerous or friendly, for 

example. 

● The analysis of heterogeneous news sources results in a huge amount of 

identified persons, objects, locations and events. By integrating them into a 

knowledge graph and using semantic reasoning, more useful information 

can be extracted and understood, such as relationships between countries 

and political groups. 

● Robotic systems consist of many components with limited resources, incl. 

time. Learning on the fly and adapting to a constantly changing 

environment is crucial. Robots can perform self-assessment to determine 

their level of performance, both logically and physically (wear & tear), by 

comparing learned properties with a reference model of themselves. 

● Decision support systems have the purpose to support humans in their 

decisions. For example in the health domain, it is important to have 

explainable systems in which we have a human-in-the-loop. In these 

systems the human-in-the-loop helps to either improve explanations (for 

example in using a memory to remember which explanations were effective 

and which not) or update a machine learning model with the expert 

knowledge. 
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 ● Creating ontologies is a tedious task. NLP / ML algorithms can extract 

relations between words from large bodies of texts. With these relations an 

ontology can be created using data-driven methods. A human expert is, 

however, needed in the loop to judge whether the relations are correct and 

relevant. In the Agri domain, we automatically created ontologies 

comparing several algorithms and qualitatively and quantitatively measured 

performance. A next step is to use it as a quick start in an ontology creation 

session. The algorithms can also be used in other domains. 
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 6. Conclusions 

So far, we have motivated the research regarding Hybrid Artificial Intelligence and 

explained what the concept entails, how it could be realised and which benefits to 

expect, along with some example applications. It appears that there is a need for 

Hybrid AI for building future AI systems that fulfil the requirements of truly intelligent 

autonomous systems that are as flexible, understanding and context- and human-

aware as we would want them to be. 

Although the idea of combining various approaches of Artificial Intelligence research 

is certainly not a new one, it has not materialised until now. Each camp was eager 

to pursue their own agenda, but the time is ripe to tackle the bigger problems as we 

realise the shortcomings of moving on in isolation. Recently, a growing number of 

publications and events can be witnessed that point in the direction of Hybrid AI. 

For instance, the books Rebooting AI [11] and The Book of Why [12] created a big 

impact on the AI community. Conferences are being organised, such as the 

Combining Machine Learning and Knowledge Engineering in Practice symposium 

(AAAI-MAKE), the Cognitive Computation Symposium: Thinking Beyond Deep 

Learning (CoCoSym), a Machine Learning track at the Extended Semantic Web 

Conference (ESWC) or a Workshop on Semantic Deep Learning at the International 

Semantic Web Conference (ISWC). In short, the concepts and implementations of 

Hybrid AI are getting significant attention fast. 

Naturally, the concept of Hybrid AI is too broad to allow for only one solution. There 

are many ways of combining knowledge representation with learning and reasoning 

in context. The design patterns, as outlined above, are a way of describing potential 

combinations. They are, however, just a first step towards building HAI systems 

easily and efficiently. Therefore, they will need to be developed further in a method 

for engineering Hybrid AI systems from scenarios and requirements to prototypes 

and products. Finally, a set of tools should be developed for supporting the 

implementation of Hybrid AI systems, based on these patterns and methodology. A 

good toolset would enable many developers to create Hybrid AI systems based on 

proven approaches. 
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