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A dysbiotic state is believed to be a key factor in the onset of oral disease. Although oral diseases
have been studied for decades, our understanding of oral health, the boundaries of a healthy oral
ecosystem and ecological shift toward dysbiosis is still limited. Here, we present the ecobiological
heterogeneity of the salivary ecosystem and relations between the salivary microbiome, salivary
metabolome and host-related biochemical salivary parameters in 268 healthy adults after overnight
fasting. Gender-specific differences in the microbiome and metabolome were observed and were
associated with salivary pH and dietary protein intake. Our analysis grouped the individuals into five
microbiome and four metabolome-based clusters that significantly related to biochemical parameters
of saliva. Low salivary pH and high lysozyme activity were associated with high proportions of
streptococcal phylotypes and increased membrane-lipid degradation products. Samples with high
salivary pH displayed increased chitinase activity, higher abundance of Veillonella and Prevotella
species and higher levels of amino acid fermentation products, suggesting proteolytic adaptation. An
over-specialization toward either a proteolytic or a saccharolytic ecotype may indicate a shift toward a
dysbiotic state. Their prognostic value and the degree to which these ecotypes are related to
increased disease risk remains to be determined.
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Introduction

The human oral cavity is a complex ecosystem,
where hundreds of bacterial taxa and other micro-
organisms interact with each other (Dewhirst et al.,
2010; Wade, 2013) and with their environment,
which is provided by the host. The oral environment
is a dynamic system, influenced by intrinsic

biological host parameters, behavior and external
factors such as the circadian rhythm that affects
salivary flow and composition (Dawes, 1972). The
most studied behavioral factors include diet, espe-
cially high consumption of carbohydrates, which has
a profound effect on the oral ecosystem and dental
decay (Jensen, 1999; Paes Leme et al., 2006), and
smoking, which has been shown to disturb host-
microbe interplay and result in increased pro-
inflammatory responses of the host (Joshi et al.,
2014). In addition, systemic conditions (Preshaw
et al., 2012) and use of medications (Yuan and Woo,
2015) are all linked to changes in the oral
environment.
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Despite the open structure of the oral ecosystem,
the oral microbiota composition is relatively stable
over time (Zhou et al., 2013). Nevertheless, its
activity undergoes large variations during the day
with ‘feast’ and ‘famine’ periods (Lingstrom et al.,
1993; Zaura and ten Cate, 2004). Carbohydrate
intake by the host (the ‘feast’) results in temporary
metabolic overflow, during which bacterial fermen-
tation results in acid formation (Gerardu et al.,
2007). During the resting (‘famine’) period, salivary
flow clears the acids and contributes to pH
recovery (Humphrey and Williamson, 2001). The
resting period at night functions as a natural
recovery and growth phase for the oral microbial
communities, when saliva is their main nutrient
source (Marsh et al., 2016). The difference between
compositional stability and functional variability at
a daily scale suggests that the oral ecosystem has
powerful mechanisms to maintain its stability.
Saliva with its pH buffering capacity and antimi-
crobial properties may have a key role in the
maintenance of the ecological balance (Humphrey
and Williamson, 2001).

It is believed that a prolonged state of imbalance
may eventually lead to irreversible changes in
the oral ecosystem, contributing to the transition
of a healthy oral ecosystem toward dysbiosis
and disease (Marsh et al., 2011). Although this
notion is well accepted, we have little under-
standing on the processes that underlie this transi-
tion and to date we are unable to predict individual
predisposition toward a dysbiotic or disease-
prone state.

Here, we aimed at describing the boundaries
of and the heterogeneity within the healthy oral
ecosystem and at deciphering the relations between
salivary bacterial composition (microbiome),
salivary metabolites (metabolome) and the host-
related biochemical salivary parameters and
diet. We controlled for circadian variability and
influences from the host environment by assessing
these variables after overnight fasting in non-
smoking, systemically and orally healthy young
adults.

Materials and methods

This cross-sectional observational study was car-
ried out on 268 individuals (18–32 years) who
fasted overnight and refrained from all oral hygiene
procedures for 24 h. Detailed materials and
methods are available as Supplementary Methods.
The study protocol was reviewed and approved
by the Medical Ethics Committee and registered
at the Dutch Trial Register (NTR3649). The inclu-
sion and exclusion criteria of this study have
been described previously (Oliveira et al., 2015;
Prodan et al., 2015). Systemic health status was
confirmed by routine clinical chemical analysis of
peripheral blood.

Saliva collection and processing
Unstimulated saliva was collected as described
previously (Prodan et al., 2015) in two sessions of
5 min with a 5 min interval between the two
samples. Sample collection occurred between
0900 and 1000 hours, before any food or drink
intake that day, by drooling into a sterile ice-cooled
vial. The first sample was immediately aliquoted
into two vials and stored at −80 °C for microbiolo-
gical and metabolome analyses, respectively,
whereas the second sample was processed for
biochemical analyses (Prodan et al., 2015). Assess-
ments included salivary flow rate measurements,
pH and buffered pH measurements, determination
of the protein content, salivary mucins (MUC5B
and MUC7), albumin, lactoferrin, secretory-IgA,
cystatin S and enzymatic activities of amylase,
chitinase, lysozyme and protease (Supplementary
Methods).

Dietary assessment
A Food Frequency Questionnaire (FFQ) was devel-
oped to assess habitual dietary intake in the previous
month (Feunekes et al., 1993; Siebelink et al., 2011).
The FFQ was based on consumption data of 20–40
year old participants of the Dutch National Food
Consumption Survey of 2007–2010 (van Rossum
et al., 2011) and the Dutch food composition
database (RIVM, 2010). The FFQ included questions
on the frequency and amount of intake of 130 food
items. Selection of food items and calculation of the
weighted average nutrient composition of the food
items were performed using the validated Dutch
FFQ-tool (Molag, 2010).

16S rRNA gene amplicon sequencing and data
processing
Microbial DNA was extracted and processed for
amplicon sequencing of the V4 hypervariable region
of the 16S rRNA gene on the Illumina MiSeq
platform (Supplementary Methods). The sequences
were processed with mothur v.1.31.2 (Schloss et al.,
2009). The data are available at NCBI BioProject
database under accession number PRJNA348169.
The data analyses are described in Supplementary
Methods.

Metabolome assessment
The saliva samples were extracted, prepared
and processed at Metabolon (Durham, NC, USA)
as described previously (Evans et al., 2009,
Supplementary Methods). The normalized metabo-
lome data set provided by Metabolon was range-
scaled between 0 and 10. Metabolites with a single
value were omitted from statistical analysis, result-
ing in a data set with 493 metabolites.
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Statistical analyses
Spectral clustering (SC) was performed using
the Neighborhood Co-regularized SC algorithm
(Tsivtsivadze et al., 2013; Imangaliyev et al.,
2015; http://www.learning-machines.com), based
on the SC method (Luxburg, 2007, Supplementary
Methods).

Principal component analysis (PCA), permuta-
tional analysis of variance (PERMANOVA), Shannon
diversity index and Chao-1 estimate of species
richness were calculated using PAST software
v. 3.04 (Hammer et al., 2001).

Inter-cluster differences in host parameters and in
microbiome alpha diversity were assessed using the
Kruskal–Wallis and Mann–Whitney test and the
differences in gender by the Pearson χ2 test in SPSS
version 21. Benjamini and Hochberg False Discovery
Rate correction (Benjamini and Hochberg, 1995) of
the P-values for multiple comparisons was
performed in R.

The LDA effective size (LEfSe) biomarker discov-
ery tool (Segata et al., 2011) was used with the 'one
against all' strategy for multiclass analysis and
logarithmic LDA score threshold of 2, Po0.05.

Assessment of significant patterns of microbial
co-occurrence or mutual exclusion was performed
using CoNet (Faust et al., 2012) and visualized in
Cytoscape v. 3.3.0.

High-dimensional feature selection by significance
analysis of microarrays analysis (Tusher et al., 2001),
using the TIGR MultiExperiment Viewer (111.
tm4.org/mev.html), was used to compare scaled-
metabolite data among metabolome sample clusters
and to assess the differences in host-related clusters
and microbiome clusters by metabolites.

Elastic Net regression (Zou and Hastie, 2005) with
stability selection (Meinshausen and Bühlmann,
2010) was used to select features (OTUs or metabo-
lites) that were related to the host-related biochem-
ical salivary parameters.

The relation between the microbiome (OTUs) and
the metabolome data set (all 493 metabolites)
was assessed using Spearman Correlation with
Bonferroni-corrected P-values. The concordance
between the two data sets was assessed using
Procrustes Analysis (Gower, 1975) and the Mantel
test (Mantel, 1967) implemented in QIIME (Caporaso
et al., 2010) v.1.8.0, both with 10 000 random
permutations.

Results

In this study, we quantified the heterogeneity of and
the mutual interrelationships between the bacterial
composition of unstimulated saliva (microbiome),
salivary metabolites (metabolome), and host-related
parameters in a systemically and orally healthy
young adult population. The biochemical salivary
parameters (Prodan et al., 2015) and clinical para-
meters (Oliveira et al., 2015) have been reported

previously. Here, we first assessed the interindivi-
dual variance in the salivary microbiome and
metabolome profiles and then related these data sets
to each other and to different host parameters.

In total, 268 individuals (150 males, 118 females,
mean age 22.6 years, s.d. 2.6, range 18–32), at good
systemic health and no apparent dental caries or
periodontal disease were included in the study
(Supplementary Table S1). The FFQ was completed
by 255 individuals, of whom 16 (6.3%) reported a
vegetarian lifestyle.

Heterogeneity in salivary microbiome and metabolome
profiles
We first assessed the heterogeneity within the
salivary microbiome and metabolome data sets. For
this we applied Neighborhood Co-regularized Spec-
tral Clustering (NCSC)—a robust and in microbial
ecological studies validated unsupervised machine-
learning approach (Biesbroek et al., 2014; Borgdorff
et al., 2014; Imangaliyev et al., 2015). NCSC is a
partitioning technique that constructs a weighted
graph from the input data set where each node
represents a pattern and each weighted edge takes
into account the similarity between patterns. Unlike
classical partitioning clustering algorithms, spectral
clustering is able to produce nonlinear separating
hypersurfaces among data, since it constructs an
adjacency structure from the input data set
(Filippone et al., 2008).

Within the salivary microbiome data set
(Supplementary Table S2), three main microbiome
sample co-occurrence clusters (MIC1: N=191; MIC2:
N=59, MIC3: N=17) (Figure 1a, left panel) were
identified. The MIC1 cluster was further subdivided
into three sub-clusters (MIC1.1: N=48; MIC1.2:
N=63; MIC1.3: N=80). The samples that clustered
into MIC1.2 showed the lowest alpha diversity: the
species richness (number of OTUs/sample), the
Shannon Diversity and the Chao-1 index
(Figure 1a) were significantly lower in MIC1.2
samples compared with the samples from any other
cluster (Po0.001). The Shannon Diversity of the
MIC1.2 samples was 3.530 (s.d. = 0.27), whereas
for MIC1.1 it was 3.693 (s.d. 0.27), MIC1.3—3.776
(s.d. 0.24), MIC2—3.775 (s.d. 0.31) and MIC3—3.859
(s.d. 0.23).

Application of the spectral co-occurrence analysis
to the metabolome data (Supplementary Table S3)
resulted in four metabolome clusters, where
the majority of samples (74%) showed high co-
occurrence of metabolites (MET1, N=198), followed
by three smaller clusters with 44 (MET2), 19 (MET3)
and 5 samples (MET4), respectively (Figure 1a, right
panel). Samples in cluster MET4 had the highest
average number of metabolites (417 metabolites/
sample, s.d. 6.8), followed by MET3 (409, s.d. 11)
and MET2 (386, s.d. 14), whereas samples in the
cluster MET1 had the lowest number of metabolites
per sample (315, s.d. 41) compared with the other
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clusters (Po0.0001). The PCA and PERMANOVA
confirmed the spectral clustering results of both data
sets (Figure 1b).

Next, we determined which microbial OTUs
and genera contributed to the observed diff-
erences among the microbiome sample clusters
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Figure 1 Heterogeneity of salivary microbiome (left panels) and metabolome (right panels) samples in healthy young adults: (a) spectral
clustering co-occurrence plots of the microbiome or metabolome samples ordered along the axes according to the co-occurrence matrix:
the more similar the sample profiles, the closer they are together on the axis. Co-occurrence values range from 0 (samples never cluster) to
1 (samples always cluster together) after multiple k-means clustering assignments. The clustering labels are shown below the graphs,
according to salivary microbiome (MIC) and metabolome (MET) data sets. Chao-1—estimated species richness per individual microbiome
sample. There were significantly more males (gender: blue) than females (gender: orange) in MET_2 and MET_3 clusters and MET_4
contained only males. (b) PCA plots based either on microbiome or metabolome samples. (c) Significantly positively and significantly
negatively associated microbial genera and metabolites between samples belonging to different clusters. Only five most abundant genera
are shown. Of the 217 negatively associated metabolites only the 6 with the highest negative fold change are shown.

Salivary microbiome, metabolome and host environment
E Zaura et al

1221

The ISME Journal



(Supplementary Table S4, Figure 1c). The most
divergent cluster, MIC3 (N = 17), had the highest
proportion of Veillonella atypica/Veillonella dis-
par (OTU1) and Prevotella (OTU35, OTU94) among
the five sample clusters. Cluster MIC2 was dis-
criminated by the highest proportion of Strepto-
coccus mitis group (OTU4), Streptococcus
gordonii/Streptococcus sp. HOT056 (OTU86) and
Rothia mucilaginosa (OTU8); cluster MIC1.3—by
the highest proportion of Neisseria flavescens/
Neisseria subflava (OTU23) and Haemophilus
parainfluenzae (OTU2); cluster MIC1.2—by Strep-
tococcus salivarius/Streptococcus vestibularis
(OTU14), Streptococcus australis/Streptococcus
parasanguinis (OTU15) and Granulicatella adia-
cens (OTU41) and cluster MIC1.1—by Prevotella
sp. HOT313 (OTU31) and Paraprevotella/Allopre-
votella sp. HOT308 (OTU234).

In the metabolome data set, we identified 222
metabolites that significantly discriminated the large
sample cluster (MET1) from the three other clusters.
Only 6 out of the 222 metabolites—unidentified
metabolites X19870 and X13230, phosphoethanola-
mine, glycerol, citrate and urea—were significantly
higher in MET1, whereas the remaining metabolites
showed a lower abundance as compared with the
other clusters (Supplementary Table S5,Figure 1c).

Thereafter we assessed the structure of the mutual
correlations among the most prevalent taxa within
each microbiome cluster (Figure 2). The bacterial co-
occurrence network of cluster MIC3 had the highest
complexity due to the highest number of co-
occurring taxa (66) and the highest average number
of neighbors (2.88), followed by MIC2 (50 taxa and
2.84 neighbors), MIC1.3 (43 taxa and 2.65 neighbors),
MIC1.2 (36 taxa and 1.83 neighbors) and MIC1.1 (31
taxa and 1.87 neighbors). The most frequent co-
occurrences were found between the taxa belonging
to the same genus. The highest number of neighbors
belonging to different genera was found in MIC1.3,
where Prevotella salivae co-occurred with S. salivar-
ius/S. vestibularis, Leptotrichia, Selenomonas,
Megasphaera micronuciformis, V. atypica/V. dispar
and Atopobium parvulum. Depending on the cluster,
different prevotellae species, M. micronuciformis,
Fusobacteria or V. atypica/V. dispar displayed the
most co-occurrences with the other taxa. Strepto-
cocci, although highly abundant in most of the
sample clusters, did not form complex networks
with other genera.

Mutual interrelationships between the microbiome,
metabolome and host-related parameters

Relation between salivary microbiome and metabo-
lome. Microbiome and metabolome data sets had
similar structure when their heterogeneity was
visualized by spectral clustering (Figure 1a). How-
ever, the samples within the respective clusters of
one data set did not show any relation with the

clusters of the other data set (MIC- and MET-code
colored bars in Figure 1a).

We first tested the correlation of the two data sets
using the Mantel test on Bray–Curtis distance
matrices of the metabolome and the microbiome
data. The matrices correlated significantly
(P=0.0001), though with a low correlation coeffi-
cient (r=0.199). In addition, the PCA plots of both
data sets were superimposed using Procrustes
analysis, where the majority of the metabolome
samples clustered at the center of the plot
(Supplementary Figure S1). Although Procrustes
output was significant (Po0.0001), the sum of the
squared deviations was very high (M2 = 0.905),
indicating low similarity between the principal
components of the two data sets.

Although there was a low similarity between the
metabolome and microbiome profile from each indi-
vidual, we did find significant relationships between
individual OTUs and metabolites. Of the top 400
OTUs, 167 correlated significantly with one or
more (maximum 232) metabolites and of the
493 metabolites, 282 correlated with at least one
(maximum 96) OTU (Bonferroni-corrected Po0.05;
ro−0.2 or r40.2). A clear dichotomy in the relation of
these OTUs with metabolites was observed: the taxa
had either strong positive or strong negative associa-
tions with metabolites (Supplementary Figure S2). The
most significant correlations (ro−0.5 or r40.5)
centered around two OTUs: one of the largest OTUs
(13% of all reads)—OTU4 (S. mitis group)—and a
relatively small OTU (0.8% of all reads)—OTU66
(M. micronuciformis) (Figure 3). OTU4 associated
negatively with 228 metabolites (35 with ro− 0.5)
and positively with only four metabolites (urea: r=0.45,
phosphoethanolamine: r=0.39, glycerol: r=0.33 and
glycerol-3-phosphate: r=0.32). In contrast, OTU66
correlated negatively only with three metabolites (urea:
r=−0.34, phosphoethanolamine: r=−0.33 and choline
phosphate: r=−0.32) and positively with 224 metabo-
lites (13 with r40.5). Among the metabolites the
strongest network was observed for 3-phenylpropionate
(hydrocinnamate), which had four negative and 29
positive correlations with OTUs. Of these, seven
strongly correlated (r40.5) with OTUs classified as
Prevotella (2 OTUs), Alloprevotella, Fusobacterium
periodonticum, Leptotrichia, Peptostreptococcus stoma-
tis and Eubacterium sulci (Figure 3).

Returning to the observed heterogeneity in the
metabolome data set, we could relate the metabo-
lome clusters with specific OTUs: Of the 912 OTUs,
207 were significantly discriminatory among the
MET clusters (Supplementary Table S6). Of these, 30
OTUs discriminated one of the metabolome clusters
from the others at an LDA score 3 or above. The
largest cluster (MET1, N=198 samples) had a
significantly higher abundance of OTU4 (S. mitis
group), OTU2 (H. parainfluenzae) and OTU27
(Porphyromonas sp. HOT278, HOT279), whereas
other clusters were dominated by OTUs classified
as veillonellae and prevotellae.
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Figure 2 Salivary microbiome co-occurrence analysis results per individual microbiome cluster. The size of the nodes is related to the relative
abundance of the taxa; the color of the node indicates the connectivity to the other nodes (red—low number of neighbors, green—high number
of neighbors). Analysis was performed using CoNet v.1.0b6 in Cytoscape. Taxonomic names at species level were obtained using the
representative sequences of the OTUs and the HOMD database. Taxonomic names marked with * have been truncated for legibility.
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Similarly, the observed heterogeneity in the micro-
biome data set related with specific metabolites: Of the
493 metabolites, 64 were significantly discriminatory
(significance analysis of microarrays analysis; median
FDR 0%, delta 0.0033) among the microbiome clusters
(Supplementary Figure S3), the majority of which
were most abundant in the smallest microbiome
cluster (MIC3, N=17) compared with the other
samples. The largest difference between MIC3 and
the other samples was observed in higher abundance
of the dipeptides: histidylhistidine, leucylserine,
leucyltyrosine and phenylacetate, and two unidenti-
fied metabolites—X18037 and X18165.

Host-related parameters and saliva. Neither the age
nor the clinical variables (gingival inflammation,
amount of plaque, caries experience) related to the
observed heterogeneity—the clusters—of salivary
microbiome and metabolome data sets (results not
shown).

Besides the microbiome and the metabolome,
fourteen host-related biochemical parameters rele-
vant to oral health were analyzed from the same
saliva sample set (Prodan et al., 2015). These
included salivary flow rate, pH and various salivary
enzymes. First we assessed if these parameters
associated with the clusters in both, microbiome
and metabolome data sets. Then we applied Elastic
Net regression analysis, which is a sample cluster-
independent approach that allows prediction of

variables based on most stable features (OTUs or
metabolites in our case) in multivariate data sets.

Heterogeneity of the microbiome and metabolome
data sets related to some of the biochemical
parameters of saliva: the samples in microbiome
cluster MIC3 had higher salivary chitinase and
albumin and lower lysozyme activity than samples
in the other MIC clusters, whereas clusters MIC1.2
and MIC2 had the lowest salivary pH of all clusters
(Figure 4a). Regarding the metabolome data set, the
biochemical salivary parameters changed gradually
through the MET clusters: pH, buffered pH, chitinase
activity, albumin and MUC5B increased, whereas
lysozyme activity decreased from MET1 through
MET4 (Figure 4b).

Elastic Net regression analysis revealed that
salivary pH, buffered pH (Figure 5a) and lysozyme
activity (Figure 5b) could be predicted with good
accuracy based on microbiome composition. Among
the 10 most stable OTUs that predicted salivary
buffered pH, eight OTUs (classified as Streptococcus,
Actinomyces, Granulicatella adiacens, Rothia
dentocariosa and Prevotella oris) increased in abun-
dance with decreasing pH (most abundant OTUs
shown in Figure 5c), whereas only two OTUs
(classified as Capnocytophaga granulosa and Neis-
seria) were more abundant at higher pH. Salivary
lysozyme activity was positively associated with
mainly Gram-positive taxa such as streptococci and
actinomyces, and negatively associated with Gram-
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Figure 4 Five of the 14 measured host-related biochemical salivary parameters where significant differences were observed among the
samples belonging to the different (a) microbiome and (b) metabolome clusters. The lines connect significantly different clusters (Po0.05,
FDR corrected for multiple comparisons).
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negatives such as selenomonae and neisseriae
(Figure 5d).

Based on the metabolites in saliva, 8 of the 14
host parameters—salivary albumin concentration
(r2 = 0.25, NRMSE=9.5), total protein (r2 = 0.296,
NRMSE=12), secretory-IgA (r2 = 0.45, NRMSE=7.4),
pH (r2 = 0.28, NRMSE=12.8), buffered pH (r2 = 0.37,
NRMSE=13.9) and activity of lysozyme (r2 = 0.35,
NRMSE=20), amylase (r2 = 0.28, NRMSE=13.9) and
proteases (r2 = 0.23, NRMSE=10.58)—could be pre-
dicted using Elastic Net regression. For instance,
albumin concentration was positively associated
with pro-inflammatory metabolites (arachidonate,
dihomo-linoleate and 1-stearoylglycerophosphoi-
nositol) and negatively with anti-inflammatory
palmitoyl ethanolamide, whereas low pH, low
buffered pH and high lysozyme activity were
associated with the typical membrane lipid degra-
dation products phosphoethanolamine, ethanola-
mine and glycerol.

Gender and saliva. We have shown that biochem-
ical parameters of saliva exhibited gender-related

differences: salivary pH, buffering capacity, protein
content, MUC5B, secretory-IgA, and chitinase activ-
ity were all lower in females compared with males,
whereas MUC7 and lysozyme activity were higher
(Prodan et al., 2015). Here, we assessed if salivary
microbiome and metabolome can be stratified by
gender.

LEfSe identified 65 OTUs that differentiated
between males and females (Supplementary Table
S7), of which 44 OTUs (including 19 streptococcal
OTUs) were significantly more abundant in females,
whereas male salivary microbiomes had a higher
abundance of Veillonella, Prevotella and Mega-
sphaera. There was no difference in Shannon
Diversity between males (mean 3.695, s.d. 0.27)
and females (3.699, s.d. 0.30). The salivary micro-
biome clusters did not show any relation with gender
(results not shown).

However, the heterogeneity observed within the
metabolome data did relate to gender of the subjects
(P=0.009): there were significantly more males than
females in the smaller metabolome sample clusters:
MET1 contained 66.9% of all males and 83.8% of all
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females, MET2—20.3% and 12%, MET3—9.5% and
4.3% of all males and females, respectively, whereas
MET4 contained only males (Figure 1a, right panel,
gender). In addition, 205 metabolites were differen-
tially abundant by gender (Supplementary Table S3).
Of these, only three metabolites, namely glycerol,
caffeine and 3-hydroxyindolin-2-one, were overre-
presented in females. The top five most abundant
metabolites in males compared with females were
glycerate, tryptophylserine, unidentified metabolite
X19863, proline and alanylphenylalanine.

Males had significantly more metabolites in their
saliva (mean number of metabolites 349, s.d. 48) than
females (321, s.d. 52) (P=0.000013).

Diet and saliva. Based on the information obtained
from the FFQ, males had a significantly higher
average daily dietary intake of energy and nutrients
than females (Supplementary Table S1). No signifi-
cant relation between self-reported dietary lifestyle
habits (vegetarians versus the omnivores) or indivi-
dual food components and microbiome profiles or
microbiome clusters was found (results not shown).
Similarly, none of the metabolites discriminated
between the dietary lifestyle habits of the individuals
(significance analysis of microarrays analysis,
results not shown). However, high total dietary
protein correlated positively with isovalerylcarnitine
(r=0.221, Po0.0001) and negatively with glycerol
(r=−0.221, Po0.0001). Interestingly, dietary protein
also correlated with buffered pH of saliva (r=0.266,
P=0.00003).

Discussion

Our results provide a quantitative presentation of the
heterogeneity of the microbiome and metabolome
within a healthy oral ecosystem as inferred by an
analysis of salivary samples from a homogeneous
study population—orally and systemically healthy
young adults. In addition, host-related salivary
parameters have been included to draw a complete
picture of the dynamic interactions between micro-
organisms, their intermediate and end metabolites
and the oral environment. We emphasize that the
analysis is limited to the salivary microenvironment
and does not explicitly include other oral niches.
Our microbiome data-driven analysis stratified the
salivary microbiome of healthy volunteers into five
distinct clusters. The samples assigned to these
clusters differed not only in microbial community
composition and diversity, but also in salivary pH,
buffered pH, albumin levels and activity of lysozyme
and chitinase, indicating the important role of the
host. Despite significant differences in the micro-
biome, no direct relation with the metabolome
profiles was observed. Indeed, the majority of the
individuals had highly similar salivary metabolic
profiles. Two other relevant observations were made:
(1) microbiome and metabolome of saliva was

gender-related and (2) dietary protein intake was
associated with salivary pH.

Several host-related biochemical salivary para-
meters have already been reported to relate with
gender (Prodan et al., 2015). Males, generally more
susceptible to periodontal disease (Haytac et al.,
2013), presented with significantly higher salivary
pH than females, who are more prone to dental
decay (Lukacs, 2011). Low salivary pH in females
has been attributed to physiological factors, such as
the influence of sex hormones on salivary gland gene
expression and a smaller salivary gland size (Prodan
et al., 2015). The higher abundance of streptococci
found in female saliva could be an indirect result of
an ecological pressure due to this physiologically
lower pH (Takahashi and Nyvad, 2011). A previous
metabolome study using NMR spectroscopy to
compare 20 males with 20 females also found that
nearly all metabolites that were significantly differ-
ent by gender were higher in concentration in males
(Takeda et al., 2009). Since the total salivary protein
concentration was higher in males (Prodan et al.,
2015), this could reflect in higher amino acid and
peptide abundance in male metabolomes, selecting
for the more proteolytic microbiome observed here.

With respect to diet, we found a positive relation
between total dietary protein intake and salivary pH
and a higher protein intake in males compared with
females. This indicates a potential role for diet in
modifying salivary pH, one of the strongest environ-
mental factors in the oral cavity. However, dietary
lifestyle habits did not influence the salivary micro-
biome or the metabolome after overnight fasting.
A recent study specifically designed to address the
influence of dietary lifestyle concluded that salivary
metabolome, but not the microbiome, was affected
(De Filippis et al., 2014). Since details on controlling
for timing of food consumption were not reported,
saliva might have been collected considerably
shorter after the last food intake compared with the
current study with overnight fasting, confirmed by
low peripheral blood glucose values during sample
collection. Another potential explanation for the lack
of relation with metabolome and dietary lifestyle
habits could be a limited number of non-omnivores
participating in our study.

Our findings on the heterogeneity of salivary
microbiome confirm previous reports on large
groups of healthy subjects, where three (De Filippis
et al., 2014) or four (Ding and Schloss, 2014) salivary
community types were distinguished. Three com-
munity types in the study on 161 Italians were
driven by the most abundant and most prevalent
genera into Neisseria-Fusobacterium, Prevotella or
Streptococcus-Gemella dominated communities
(De Filippis et al., 2014). The HMP salivary data set
resulted into four communities based on complex
configurations of numerous taxa (Ding and Schloss,
2014), although detailed composition of each of the
communities was not reported. Interestingly, only
two community types were detected in the largest
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study on salivary microbiome to date (Takeshita
et al., 2016), where one of the two types was
significantly associated with oral diseases. This
implies that differences between healthy and dys-
biotic microbial communities, such as during dental
decay or periodontal disease (Marsh, 2003), are more
pronounced than the natural heterogeneity observed
at health.

Unlike the heterogeneity in salivary microbiome,
the majority of the metabolome samples had a highly
similar profile. This suggests that salivary metabo-
lism after overnight fasting in different individuals
carrying different microbiota is driven by similar
processes and fits well to previously described
functional redundancy of human microbial commu-
nities (The Human Microbiome Consortium, 2012).
However, about one fourth of the individuals had
clearly different (for example, more proteolytic
activity-driven) and more diverse metabolome pro-
files. These profiles related with several biochemical
parameters of saliva, such as a higher pH and a
higher albumin concentration, and with microbial
communities dominated by anaerobes and Gram-
negatives, the taxa associated with mature oral
microbial communities and gingival inflammation
(Rosier et al., 2014). Pro-inflammatory metabolites in
saliva correlated with salivary albumin concentra-
tion, suggesting presence of early inflammatory state
(Henskens et al., 1993).

The clear dichotomy in the correlations between
salivary microbiota and metabolites was highly
unexpected. It was observed in positive correlations
between species of Prevotella, Megasphaera, Fuso-
bacterium, Eubacterium, Veillonella and metabolites

of protein and amino acid fermentation. On the other
side, the saccharolytic taxa such as streptococci
showed positive correlations with glycerol-3-phos-
phate, choline phosphate and phosphor-ethanola-
mine, all related to phospholipid metabolism. The
phospholipids are membrane components of both
eukaryotic and prokaryotic cells. Lipids may have an
important role in the oral ecosystem. Parotid gland
saliva contains neutral lipids, glycolipids and phos-
pholipids (Larsson et al., 1996) and their concentra-
tion correlates with the caries experience of the
individuals (Tomita et al., 2008). Although lipids
could serve as possible nutrient source under fasting
conditions, free fatty acids released after lingual
lipase activity may also have antimicrobial proper-
ties (Hamosh and Burns, 1977), providing an addi-
tional host mechanism for shaping the oral
microbiota. Therefore the association between sac-
charolytic taxa and metabolites of phospholipid
degradation found in this study is intriguing and
prompts further research.

The most noteworthy finding of this study was that
the dichotomy in microbiota-metabolite associations
was also reflected in the composition of microbiome
clusters and their association with host-related
biochemical parameters such as salivary pH, activity
of lysozyme and chitinase, and salivary albumin
concentration. Based on these findings we propose
that the five salivary microbiota clusters identified in
these healthy individuals may represent different
ecological states or ‘ecotypes’ of the oral ecosystem,
with different ecological properties and different
levels of specialization. The samples grouped into
clusters that were functionally adapted to proteolysis

Figure 6 Proposed ecological states or ecotypes of the oral ecosystem and the positioning of the microbiome clusters according to these
states. The dichotomy in bacteria-metabolite associations and the relation with salivary parameters is depicted in saccharolytic (left side)
or proteolytic (right side) adaptations of the ecosystem. Based on the observed associations, the microbiome-based sample clusters MIC1.2
and MIC3 are positioned toward the specialized state of the system, whereas clusters MIC2, MIC1.1 and MIC1.3 are positioned within the
adaptive state of the system. The more specialized the ecosystem becomes, the more it may shift toward dysbiosis.
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and amino acid fermentation (MIC1.1, MIC1.3,
MIC3), as well as clusters functionally adapted for
saccharolysis (MIC1.2, MIC2) (Figure 6).

Amino acid fermentation is known to result in
elevated pH due to bacterial deaminase and dec-
arboxylase activity (Takahashi, 2015). Samples in
cluster MIC3 had not only a higher pH, but also
displayed signs of advanced ecological specializa-
tion toward protein and amino acid metabolism with
the highest abundance of dipeptides among all
clusters, with the most extensive microbiota com-
munity network linkage, low lysozyme and high
chitinase activity, and high levels of salivary albu-
min. Elevated levels of salivary dipeptides have been
associated with periodontal disease (Barnes et al.,
2011), whereas high salivary albumin concentration
—with gingival inflammation (Henskens et al.,
1993). Collectively, even though our study popula-
tion did not have clinical signs of oral disease, our
findings indicate that individuals in cluster MIC3
may have entered an early inflammatory state with
potential dysbiotic shift toward disease.

On the other side of the spectrum, we found
ecological states that were more adapted to sacchar-
olytic functions, represented by the S. mitis domi-
nated cluster MIC2 and S. salivarius/S. vestibularis
dominated cluster MIC1.2. Even in a resting state
and during prolonged absence of external carbohy-
drate sources after an overnight fasting, the salivary
pH in these individuals was lower compared with
the clusters adapted to proteolysis. The saccharolytic
cluster MIC1.2 showed a marked reduction in
species diversity with the lowest number of ecologi-
cal network connections, suggesting that strepto-
cocci might rather exploit the available nutrients
than contribute to the community. Low pH pressure
inhibits acid sensitive and selects aciduric oral
species (Pham et al., 2009) that leads to decreased
microbial diversity, as found during clinical stages of
dental caries (Gomar-Vercher et al., 2014). Therefore
we propose that cluster MIC1.2 represents an early
phase of acidogenic adaptation, specialized in fast
sugar metabolism and prone to a more cariogenic
state (Takahashi, 2015). It is clear that longitudinal
studies are required to establish the stability of these
five ecosystem states, as well as their relation with
the maintenance of oral health.

In conclusion, unstimulated saliva after overnight
fasting in a healthy oral ecosystem is microbially
heterogeneous. This heterogeneity is not related to
salivary metabolites, but to biochemical host para-
meters of saliva. Host-related parameters, including
gender, appear to affect the oral ecosystem in
multiple ways. The clear dichotomy in the bacteria-
metabolite associations and a relation with specific
biochemical parameters suggests the presence of
both, adaptive and highly specialized ecotypes of a
healthy oral ecosystem. An over-specialization either
toward proteolytic or saccharolytic ecotype may
indicate a potential risk toward a dysbiotic state
and consequently, disease. The degree with which

the microbiome clusters of healthy individuals are
related to a risk for the development of oral diseases
remains to be assessed in clinical intervention
studies.
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