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Abstract. Data assimilation algorithms rely on a basic as-
sumption of an unbiased observation error. However, the
presence of inconsistent measurements with nontrivial biases
or inseparable baselines is unavoidable in practice. Assimila-
tion analysis might diverge from reality since the data assim-
ilation itself cannot distinguish whether the differences be-
tween model simulations and observations are due to the bi-
ased observations or model deficiencies. Unfortunately, mod-
eling of observation biases or baselines which show strong
spatiotemporal variability is a challenging task. In this study,
we report how data-driven machine learning can be used
to perform observation bias correction for data assimilation
through a real application, which is the dust emission inver-
sion using PM10 observations.

PM10 observations are considered unbiased; however, a
bias correction is necessary if they are used as a proxy for
dust during dust storms since they actually represent a sum
of dust particles and non-dust aerosols. Two observation bias
correction methods have been designed in order to use PM10
measurements as proxy for the dust storm loads under severe
dust conditions. The first one is the conventional chemistry
transport model (CTM) that simulates life cycles of non-dust
aerosols. The other one is the machine-learning model that
describes the relations between the regular PM10 and other
air quality measurements. The latter is trained by learning
using 2 years of historical samples. The machine-learning-
based non-dust model is shown to be in better agreement with
observations compared to the CTM. The dust emission inver-
sion tests have been performed, through assimilating either
the raw measurements or the bias-corrected dust observations
using either the CTM or machine-learning model. The emis-
sion field, surface dust concentration, and forecast skill are

evaluated. The worst case is when we directly assimilate the
original observations. The forecasts driven by the a poste-
riori emission in this case even result in larger errors than
the reference prediction. This shows the necessities of bias
correction in data assimilation. The best results are obtained
when using the machine-learning model for bias correction,
with the existing measurements used more precisely and the
resulting forecasts close to reality.

1 Introduction

For centuries, East Asia experienced regular dust storms in
the springtime. Those dust events mainly originated from
the dust source regions of the Gobi and Taklamakan deserts.
Annually, thousands of metric tons of “yellow sands” are
blown eastward over the densely populated areas in China,
the Korean peninsula, and Japan by the prevailing winds.
Dust storms can also carry irritating spores, bacteria, viruses,
and persistent organic pollutants (WMO, 2017). In addition
to affecting human health, the resulting low visibility can
cause a severe disruption of transportation systems. For ex-
ample, more than 1100 flights have been delayed/canceled in
Beijing after the city was struck by a choking dust storm in
early May 2017.

A large number of dust simulation models have been de-
veloped over the past decades (Wang et al., 2000; Gong et al.,
2003; Liu et al., 2003). These chemistry transport models
help to understand the life cycles of the dust storms, and
are also used for dust forecasts and to aid early-warning
systems. Apart from advances in simulation of dust storms,
progress has also been made in the monitoring of dust
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or general aerosol loads. Field station networks are con-
structed to observe the in situ particulate matter (PM) levels
over densely populated regions (Li et al., 2017a). Ground-
based sun photometers, e.g., the global Aerosol Robotic
Network (AERONET) (Cesnulyte et al., 2014), are widely
used to monitor column-integrated aerosol profiles. Satel-
lite onboard instruments such as the Moderate Resolution
Imaging Spectroradiometer (MODIS) (Remer et al., 2005),
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Obser-
vations (CALIPSO) (Sekiyama et al., 2010), and Advanced
Himawari Imager/Himawari-8 (Yoshida et al., 2018) provide
measurements of airborne particles with further wide cov-
erages. These measurements could be used to calibrate the
parametrization in dust simulation models and to evaluate
their ability to forecast dust concentrations. Moreover, the
observations could be combined with a dust modeling sys-
tem through data assimilation to improve the forecast skills.

A wide variety of data assimilation techniques have been
used with dust simulation models, including variational
methods (Yumimoto et al., 2008; Niu et al., 2008; Gong and
Zhang, 2008; Jin et al., 2018) and ensemble-based sequential
methods (Lin et al., 2008; Sekiyama et al., 2010; Khade et al.,
2013; Di Tomaso et al., 2017). In these systems, the avail-
able observations are used to either estimate the model states
(dust concentrations) or reduce uncertainties in the emissions
and/or other model parameters. Challenges for dust assimi-
lations include development of more and more accurate dust
simulations and use of new types of observations including
vertical profiles from lidars and the latest satellite observa-
tions. A further challenge for any assimilation system is the
proper definition of the observation and representation errors,
as well as characterization of biases.

In general, the commonly used data assimilation schemes
all rely on the basic assumption of an unbiased observa-
tion. In real applications, however, measurement biases are
often unavoidable. In the presence of biases, it is impossi-
ble to determine whether a difference between a priori sim-
ulation and an observation is due to biased observations or
model deficiencies. The biases might lead to assimilations
that diverge from reality (Lorente-Plazas and Hacker, 2017).
A well-known example of observation biases is in radiance
observation assimilation systems in the presence of clouds
(Eyre, 2016; Berry and Harlim, 2017). To avoid problems
with these biases, up to 99 % of cloudy observed measure-
ments are discarded, although they may also contain valu-
able information. If dust storms are coincident with clouds,
it is also possible that in satellite retrieval algorithms clouds
are mistaken for dust, leading to strong biases in the data to
be assimilated (Jin et al., 2019).

Another example of where observation biases are impor-
tant is when ground-based PM10 measurements are assim-
ilated in dust simulation models. Due to the high temporal
resolution and the rather dense observation network, ground-
based air quality observing networks have become a power-
ful source of measurements on dust aerosols. The records,

mainly the PM10 feature, were widely used to calibrate, as-
sess, or estimate the dust model (Lin et al., 2008; Wang et al.,
2008; Huneeus et al., 2011; Yumimoto et al., 2016; Benedetti
et al., 2018). However, the observed PM10 concentrations
do not only consist of dust, but are actually the sum of the
dust and other regular particles. The latter are emitted not
only from anthropogenic activities such as industries, vehi-
cles, and households, but also from natural sources such as
wildfires and sea spray. In this paper we will simply refer to
these particles as the non-dust fraction of the total PM10. The
concentrations of non-dust aerosols in urbanized areas could
be substantial, reaching values up to 500 µg m−3 (Shao et al.,
2018).

Although PM10 observations include a nontrivial bias, the
widespread availability still makes them useful in a dust
storm assimilation system. During dust storm events, ex-
treme high peaks of more than 1000–2000 µg m−3 PM10 are
recorded, which can be attributed mainly to dust. If these
were assimilated directly in a dust simulation model, ignor-
ing the fact that at least some part represents non-dust, the
assimilation system would diverge to states that overestimate
the dust load. In the case of less severe dust events, the dust
analysis divergence would then become extremely critical.

However, modeling of observation biases is very challeng-
ing when they have strong spatial and temporal variabili-
ties. Little progress has been made in bias correction of fully
aerosol measurements for their use in dust storm data as-
similation. Lin et al. (2008) selected only PM10 observa-
tions for assimilation when at least one occurrence of dust
clouds was reported by the local stations. In Jin et al. (2018),
it was found that on sites with both PM10 and PM2.5 ob-
servations, only the PM10 concentration increased during a
dust episode, while the PM2.5 concentrations were not af-
fected and remained at a constant level. In addition, Xu et al.
(2017) and Jin et al. (2018) suggested a strong correlation
between PM2.5 and non-dust PM10. Therefore, a very sim-
ple non-dust PM10 baseline removal (called observation bias
correction) was proposed, in which the available PM2.5 was
used to approximate the non-dust PM10 (or baseline) during
a dust event by

PMnon-dust
10 = b+ r ×PM2.5, (1)

where b and r > 1 are linear regression parameters based
on a 24 h history of measurements before arrival of the dust
storm.

The aforementioned methods either exclude a selection of
the measurements, which may still contain useful informa-
tion, or work under ideal circumstances only when a sim-
ple correlation R between PM10 and PM2.5 is valid. For in-
stance, in the dust event studied in Jin et al. (2018) the ap-
plication of Eq. (1) at many sites failed since R is weak. To
have a quality-assured bias correction, Eq. (1) is performed
only when the Pearson correlation coefficientR> 0.8. Con-
sequently, measurements at around 45 % sites are rejected in
that case. To fully exploit the dust information present in total
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PM observations, a more advanced method is needed. In this
paper we proposed two methods, using either a conventional
chemistry transport model or a machine-learning model.

A chemistry transport model (CTM) implements all avail-
able knowledge on emission, transport, deposition, and other
physical processes in order to simulate concentrations of
trace gases and, important here, aerosols. Daily air quality
forecasts are often provided using such CTMs. A simulation
model for dust storm events is usually just a CTM with all
tracers removed except dust; by using the full CTM, an esti-
mate of the non-dust part of the aerosol load could be made.
In this study, the LOTOS-EUROS CTM is used to simulate
the dust as well as the non-dust aerosol concentrations. If the
non-dust model were perfect, the difference between simula-
tion and observed PM10 would be unbiased, and assimilation
could be applied to the combined dust and non-dust concen-
trations. In the case of a dust storm event, it remains neces-
sary to distinguish between the dust and non-dust part of the
simulations since the two parts will have very different er-
ror characteristics. The dust part is quickly varying and has a
large uncertainty, while the non-dust part is more smooth but
very persistent in time and has a relatively small uncertainty.
An assimilation system on the combined simulations should
be able to handle these differences. However, the error attri-
bution to their proper sources (dust and non-dust error) then
becomes extremely critical as explained in Sect. 2.4. Since
this paper focuses on dust during a severe event only, we will
not explore the error characteristics of the non-dust part of
the model. Therefore we will not apply an assimilation to
the combined aerosol (dust and non-dust) model. Instead, the
non-dust simulations will solely be used to remove the non-
dust baseline from PM10 observations.

Similar to the air quality forecast, the accuracy of a CTM
for non-dust aerosols is hampered by lack of accurate input
data. For example, the timely update of anthropogenic emis-
sion inventories is always a key issue for air quality forecasts.
With ever-increasing complexity and resolution, CTMs are
now becoming highly nonlinear and time-consuming. How-
ever, they may still not be able to identify explicit representa-
tions of the non-dust aerosol dynamics, especially regarding
fine-scale processes.

In addition to conventional CTMs, we propose a new
method for removing the non-dust part of the PM10 obser-
vations, which is based on machine learning (ML). Data-
driven methods have already been proven to be a powerful
tool to provide air quality forecasts for horizons of a few days
(e.g., Li et al., 2016, 2017b; Fan et al., 2017; Chen et al.,
2018). Different from chemistry transport models, which
simulate aerosol physical processes, machine-learning mod-
els describe mathematical relations of input–output and are
trained by learning a large number of samples from histori-
cal records. Our machine-learning system used a neural net-
work, namely long short-term memory (LSTM). The input is
formed by air quality indices for a number of relevant trac-
ers (PM2.5, SO2, NO2, CO, and O3), as well as meteorology

data. The output of the system is an estimate of the non-dust
PM10 concentration. The input features are to a large extent
independent of the dust storms, even the PM2.5 concentra-
tions as shown in Jin et al. (2018); observations of PM10 are
excluded since excessive dust loads are visible mainly in this
component. Recent development and the availability of open-
source machine-learning tools provide a good opportunity to
estimate the air quality indices using a data-driven machine-
learning model.

Whereas these are previous studies on dust storm data as-
similation using various kinds of combined aerosol measure-
ments, we are the first to investigate the necessities of bias
correction for these fully aerosol observations in order to use
them as “real” dust measurements in a dust storm assimi-
lation system. The adding values of observation bias cor-
rection in dust emission inversion are explored through the
ground-based PM10 measurement assimilation. It can easily
be used for other general applications, e.g., remote-sensing
data assimilation. Our contributions are threefold. Firstly, we
present and examine the conventional CTM for removing the
non-dust part from PM10 observations. Secondly, we design
and examine a novel machine-learning-based bias correction
which is data-driven and free of time-consuming numerical
CTMs. Thirdly, we evaluate the two non-dust aerosol model
simulations by comparing to the PM10 measurements dur-
ing regular periods (rare dust events involved); we evaluate
dust emission fields, surface dust concentration simulation
and forecast skills which are obtained by assimilating either
the raw PM10 data or bias-corrected measurements using ei-
ther a CTM or machine-learning model.

The paper is organized as follows. A brief description of
our dust simulation model (LOTOS-EUROS/dust) and the
four-dimensional variational data assimilation method for
emission inversion are presented in Sect. 2. The biased ob-
servation representing error and its influence on the assim-
ilation system are also explained. The two bias correction
methods, the non-dust aerosol regional chemistry transport
model and a machine-learning model, are discussed and the
bias simulation is evaluated in Sect. 3. Section 4 reports the
assimilation results using the two bias correction methods,
and evaluates the forecast skills using independent measure-
ments. Section 5 discusses the necessities of observation bias
correction in assimilation work and highlights our key con-
tributions.

2 Dust storm data assimilation system

2.1 Dust model

The dust storm event studied in this paper took place in
East Asia in April 2015, and has already been used as a test
case for assimilation experiments in Jin et al. (2018). The
LOTOS-EUROS/dust simulation model is used with config-
urations similar to those in our previous studies, which were
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Figure 1. The China MEP air quality monitoring network and the
potential dust storm source region. LSTM-based non-dust PM10
forecasts are performed only at stations with a blue dot (N = 1351),
while ones with black circles are skipped.

configured on a domain from 15 to 50◦ N and 70 to 140◦ E,
but with a higher model resolution of 0.25◦. The model
is driven by European Centre for Medium-Range Weather
Forecasts (ECMWF) operational forecasts for horizons of 3–
12 h. The dust load is described by five aerosol bins within a
diameter range of 0.01 µm<Dp < 10 µm. Physical processes
included are emission, advection, diffusion, dry and wet de-
position, and sedimentation. The dust emission scheme im-
plemented in LOTOS-EUROS is mainly based on the formu-
lation of horizontal saltation flux (Marticorena and Berga-
metti, 1995) and sandblasting efficiency (Shao et al., 1996).
A terrain preference parameter Fps was used in the dust emis-
sion in Jin et al. (2018). This geographic-dependent param-
eter was first introduced by Ginoux et al. (2001), and used
to approximate the probability of having accumulated sedi-
ments that can be resuspended. In this work, Fps is disabled
since the preference factor was found to limit the emission
rate in some regions where the fine-scale topographic feature
is actually unknown. Snapshots of a reference simulation of
the dust episode have been taken and are shown in Fig. 8a.

2.2 Observation network

The China Ministry of Environmental Protection (MEP) has
commenced to release the hourly-average measurements of
atmospheric constituents including PM2.5, PM10, CO, O3,
NO2, and SO2 since 2013. A huge number of ground stations
measuring these air quality indices have been established in
densely populated areas. At the present, the monitoring net-
work has grown to 1500 field stations covering all of China
as shown in Fig. 1.

2.3 Reduced tangent linearization 4D-Var

The assimilation system, which will be used to combine bias-
corrected PM10 observations with simulations, is based on
a reduced-tangent-linearization four-dimensional variational

(4D-Var) data assimilation. The goal of a 4D-Var technique
is to find the maximum likelihood estimation of a state vec-
tor, which is here the dust emission field f , given the avail-
able observations over a time window. A common approach
is to use an incremental formulation, which aims to find the
optimal emission deviation δf as the minimum of the cost
function:

J (δf )=
1
2
δfB−1δf +

1
2

k∑
i=1

(HiMiδf + d i)
T

R−1
i (HiMiδf + d i) , (2)

where k is the number of time steps within the assimilation
window. The vector δf denotes a perturbation of the emis-
sions with respect to the background one. For an observation
time i, the innovation vector (lengthmi) is defined as the dif-
ference between the simulations and observations:

d i =Hi(Mi(f ))− yi, (3)

where Mi denotes the LOTOS-EUROS/dust transport
model, Hi is the operator that converts state variables into
observation space, and yi is the vector with dust observa-
tions at this time step i. The operators Hi and Mi denote
linearizations of Hi and Mi around the reference emission
vector f b. Following Jin et al. (2018), the errors in dust
emission field were assumed to be only caused by the uncer-
tainty in the friction velocity threshold in the dust windblown
parametrization, and similar assumptions on the uncertainty
are used to build an emission error covariance B. The fric-
tion velocity threshold is perturbed with a spatially varying
multiplicative factor β. β is configured with a mean of 1 and
a standard deviation of 0.1. In addition, an exponential pro-
file of distance-based spatial correlation is posed on β values
(Jin et al., 2018). The observation error term is weighted by
an observation error covariance R, for which the individual
elements will be described in Sect. 4.1.

To reduce the computational cost in calculating the tangent
linear model Mi , a reduced-tangent-linearized 4D-Var (Jin
et al., 2018, 2019) is used. The simplified method is based on
proper orthogonal decomposition (POD) of the background
covariance B, which efficiently carries out model reduction
by identifying the few most energetic modes:

B= UUT ≈ ŨŨT

δf ≈ Ũδw , (4)

where U ∈ RP×P is the background emission covariance
square root, with P the size of the emission field of O(104)

elements, while Ũ ∈ RP×p is the truncation of U based on
POD, with p the reduced rank size of O(102). The vector
δw ∈ Rp stores the transformed control variables.
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The cost function of the reduced-tangent-linearization 4D-
Var is formulated as

J (δw)=
1
2
δwT δw+

1
2

k∑
i=1

(
HiM̃iŨδw+ d i

)T
R−1
i

(
HiM̃iŨδw+ d i

)
, (5)

where M̃i denotes the reduced tangent linear model with
a rank p, which is approximated using the perturba-
tion method. More details about the reduced-tangent-
linearization 4D-Var algorithm can be found in Jin et al.
(2018).

2.4 Biased observation representing error

In real applications, the observations inevitably have biases
which cannot be attributed to the model simulation, as fol-
lows:

yi =Hi(Mi(f ))+ bi + σ i, (6)

where σ i is the vector of Gaussian-distributed observation
errors which have zero means and a known covariance ma-
trix Ri , and bi denotes the vector of observation bias. In our
application, the vector yi contains the observed PM10 con-
centrations, while the aerosols released in the local anthro-
pogenic activities and other non-dust-related processes are
referred to as bi . Note that the PM10 measurements them-
selves might also contain “native” biases due to incorrect
sensor reading or systematic errors. However, this part of the
bias in the PM10 observations is unknown and not considered
in this study.

In the course of data assimilation, it is impossible to de-
termine whether the departures (d i) of the prior simulations
from the observations are due to the biased observations bi or
emission errors δf . Thus, the assimilation result will diverge
from the true state when a bias is present. In complex dy-
namic models such as the atmospheric transport model, the
biases (non-dust aerosols) could have high spatial and tem-
poral variabilities and are therefore difficult to quantify.

In this work, we proposed two methods to quantify the bias
levels for the observation bias correction. The first one is the
non-dust parts of the LOTOS-EUROS chemistry transport
model (CTM) which simulates the aerosol life cycles includ-
ing emission, transport, and deposition. The second method
is to describe the non-dust aerosol levels using a data-driven
machine-learning model. Details of these two methods are
illustrated in Sect. 3.

In fact, both LOTOS-EUROS CTM and the machine-
learning model are imperfect, and some biases might still ex-
ist after the correction. The former is known to be limited by
errors in the emission inventories, meteorological forecasts,
and all kinds of input sources. The latter is then hampered by
the deficiency of the type model (e.g., insufficient to repre-
sent the complexity of the phenomenon) and an inadequate

Figure 2. Timeline of observation availability, assimilation cycles,
and forecasts.

amount of training data. However, by combining the bias-
corrected observation with the dust model, the assimilation
will adapt to a posteriori values which are more close to re-
ality.

There were a few studies that addressed both the model de-
ficiency and uncertainty in observation bias simultaneously
using either variational data assimilation (Dee and Uppala,
2009) or sequential filters (Dee, 2005; Lorente-Plazas and
Hacker, 2017). Those assimilation schemes not only require
a formulation of a model for the bias, but also need a quality-
assured reference to describe the uncertainty of the bias
model. The need to attribute errors to their proper sources
is obviously a key part in any assimilation system but be-
comes especially critical when it involves bias correction.
This is because a wrong error attribution will force the as-
similation to be consistent with a biased source. If the source
of a known bias is uncertain, assimilation without consider-
ing the uncertainty of the bias model is the safest option (Dee,
2005). Therefore, these two non-dust models are solely set as
references for the bias, and the uncertainties are not explored
here.

2.5 Assimilation window

Figure 2 shows a timeline for the assimilation experiment
around the April 2015 dust event, which is very similar to
what was used in Jin et al. (2018). The dust event has a short
duration, and therefore only a single assimilation window
with a length of 36 h is used. The dust emissions take place at
the start of the window, while the observations become avail-
able at the end of the window since they are located down-
wind from the source region (see Fig. 1). A long assimilation
window is therefore necessary in order to estimate the correct
emission parameters given the observations.

When we perform the assimilation analysis on 15 April,
19:00 China standard time (for all times throughout the pa-
per), only the dust observations from 15 April, 08:00 to
19:00, will be assimilated and they are calculated by sub-
tracting the non-dust part (CTM based or ML based) from the
PM10 observations. After the analysis, the simulation model
is used to perform a dust forecast for the next 12 h using the
newly estimated emission parameters. A fully aerosol PM10
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forecast will then be calculated by adding the dust forecast
and non-dust aerosol forecast, where the latter again origi-
nates from either the CTM or the machine-learning model.

3 Observation bias correction methods

Two systems are introduced to correct the non-dust bias when
using PM10 observations in a dust assimilation. The first
one is the CTM LOTOS-EUROS/non-dust that simulates the
physical processes of the non-dust aerosols. The second is the
machine-learning model that estimates the non-dust aerosol
based on historical records. The following sections describe
the two methods in more detail.

3.1 Chemistry transport model
(LOTOS-EUROS/non-dust)

The regional CTM LOTOS-EUROS/non-dust is configured
similar to LOTOS-EUROS/dust used in the assimilation,
but now includes all trace gases and non-dust aerosols.
The configuration is similar to what is used for daily air
quality simulations over China as described in Timmer-
mans et al. (2017). Anthropogenic emissions are taken from
the Multi-resolution Emission Inventory for China (MEIC)
(http://www.meicmodel.org, last access: 1 July 2019). Nat-
ural emissions included are the sea salts that are calculated
online, biogenic emissions that are calculated online using
MEGAN (Guenther et al., 2006), and wildfires which were
taken from the operational GRAS product (Kaiser et al.,
2012). The LOTOS-EUROS full aerosol operational forecast
over this modeling domain is released via the MarcoPolo–
Panda projects (http://www.marcopolo-panda.eu/, last ac-
cess: 1 July 2019).

The operational CTM LOTOS-EUROS over China is in
its early phase of development as well as the other six CTMs
used in the MarcoPolo–Panda projects. The purpose of these
projects is to diagnose statistical differences between the en-
semble model simulations and observations. An important
objective is to determine ways by which the models can be
improved. These differences are mostly attributed to inaccu-
racy in the weather forecast and errors in the adopted surface
emissions (Brasseur et al., 2019; Petersen et al., 2019). In-
deed, there is room for minimizing the forecast–observation
differences using nudging methods like data assimilation,
which requires considerable efforts and is not yet exploited
in that study.

3.2 Machine learning for non-dust PM10 simulation

Given a set of training data, a machine-learning algorithm at-
tempts to find the relation between input and output. When
a proper model is used, the machine-learning algorithm can
learn to reproduce the complex behaviors of a dynamic sys-
tem. The description is purely based on the data; physical
knowledge is not included. Machine-learning algorithms are

popular tools to forecast air quality indices using histori-
cal records (Li et al., 2016; Fan et al., 2017; Chen et al.,
2018; Lin et al., 2019). In this study, the machine-learning
algorithm used is the long short-term memory (LSTM) neu-
ral network, which has demonstrated its ability in predicting
time series problems (Li et al., 2017b).

The LSTM operator L, which is configured with parame-
ters θ , for predicting non-dust PM10 can be described as

bt0+t = Lθ (xt0 ,xt0−1, . . .,xt0−m+1), (7)

where bt0+t represents the predictor, which is in this study
the non-dust PM10 concentration forecast t hours in ad-
vance. The temporal correlation between the input and
output features declines when t increases. In our system,
the maximum forecast period t is 12 h. The input vectors
xt0 ,xt0−1, . . .,xt0−m+1 are the observed data of the past m
hours, which is set as 18 h empirically. The input vectors con-
sist of

– hourly observations of PM2.5, SO2, NO2, O3, and CO
from the ground-based air quality network described in
Sect. 2.2;

– observations of PM2.5 at the nearby sites;

– local meteorological data (temperature and dew point
at 2 m, wind speed at 10 m), which are taken from the
LOTOS-EUROS model input and originate from the
European Centre for Medium-Range Weather Forecasts
(ECMWF).

The LSTM neural network parameters θ are determined
by minimizing the objective function Jθ that represents the
mean-squared error of predictors b with respect to the mea-
sured values yb:

Jθ =
1
m

m∑
i=1

(bi − y
b
i )

2. (8)

The training dataset covers the period from January 2013 to
March 2015. In other words, the LSTM model L is trained to
best fit the samples from this period. The two months April
and May 2015 in which the studied dust event occurred are
set as the testing period.

Dust storms themselves occur with very low frequency.
To our knowledge, the studied dust event is the most severe
one since 2002, and there are no such large-scale dust events
recorded in our training period. Note that cities that are close
to the Gobi and Mongolia deserts might have experienced
several small-scale dust events with a limited increase in dust
concentrations. However, the machine learning tries to find
the global best fits for the whole training dataset. The de-
fault learning rate, which determines the weights are updated
during training, on a simple sample is 10−4 in our machine-
learning algorithm. Therefore, the PM10 records yb are very
close to the non-dust PM10 concentrations, and the rare dust
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event records are not excluded from the training dataset for
convenience and for the expected little impact on the training
result. The regression modelL is thus assumed to reflect only
the relation between input features and the non-dust PM10.

Note that including PM10 observations in the series of in-
put vectors will certainly improve the skill of the machine-
learning forecasts. However, the LSTM model would then
lack the ability to discriminate between the dust and non-dust
fractions in PM10 during a dust event. Earlier studies showed
that the input variables, including PM2.5, are independent of
the dust storm as illustrated in Jin et al. (2018).

For the non-dust PM10 machine-learning forecasts in a
given site, observations from its nearby sites are also vital
and are used in two ways. First, missing data records are
unavoidable in an air quality monitoring network, while the
LSTM model training requires an uninterrupted time series
of features. In this study, data interpolations of air quality
measurements (PM10, PM2.5, SO2, NO2, O3, and CO) are
performed using both a linear interpolation and a k-nearest-
neighbor algorithm (Zhang, 2012) if a site has no more than
30 % of missing data. Otherwise, all the measurements at
the given sites are abandoned. Generally, more information
available from the nearby sites will result in a more accu-
rate interpolation. Second, learning in the presence of data er-
rors is pervasive in machine learning, and the measurements
from nearby stations are used to limit their influence. Data er-
rors occur due to incorrect sensor readings, software bugs in
the data processing pipeline, or even inaccurate data interpo-
lation. Statistical analysis tests have been conducted which
did not only indicate a strong correlation between the non-
dust PM10 and air quality measurements at the given sites,
but also show that the predictor (non-dust PM10) is corre-
lated with the observation indices (especially the PM2.5) at
its nearby sites. In order to eliminate errors caused by in-
correct inputs at the modeling site, the measurements at the
nearby stations are considered to be the essential indices. In
this study, a data instance will only be selected for training
the LSTM model if there is at least one nearby site within
an empirical radius 0.8◦ (approx. 80 km), and a maximum of
three nearby sites will be randomly selected where observa-
tion stations are densely distributed. To save the computation
costs on machine-learning model training, only PM2.5 from
nearby sites is included as input in this study.

The machine-learning model for non-dust PM10 forecast
is trained site by site, with the hyper-parameters shown in
Table 1. With the following hyper-parameters, the machine-
learning model training takes several minutes for each site.
The training at each site is independent; hence, the whole
workload is highly parallelizable.

Figure 1 presents the original field observation network
(N ≈ 1500) established by the China Ministry of Environ-
mental Protection (MEP) up to 2018, as well as the sites
(N = 1351) where LSTM-based non-dust forecasts are per-
formed. It is clear that the LSTM forecast cannot be per-
formed at each monitoring site. A few of the sites are skipped

due to the lack of nearby sites; the rest are skipped because
of a high data missing rate in the training period.

3.3 Evaluation of non-dust PM10 bias corrections

Our two bias models, LOTOS-EUROS/non-dust and LSTM,
could both be used for air quality forecast operationally when
there is no dust storm. Once a dust storm is observed, the
dust emission inversion system will be enabled, and the two
non-dust PM10 models will then be used in dust observation
bias correction. The forecasts are expected to have a good
performance when dust is not present and to underestimate
the PM10 levels in the case of dust storms.

Both CTM LOTOS-EUROS and LSTM are tested to fore-
cast non-dust PM10 over April–May 2015. This period in-
cludes the 2–3-day dust event that is used as a test case
for the assimilation. Figure 3a–c show density plots compar-
ing PM10 observations with either LOTOS-EUROS/non-dust
forecasts or LSTM forecast 0 and 12 h in advance.

The CTM LOTOS-EUROS/non-dust in general underesti-
mates the non-dust PM10. The forecast results in a relatively
large root-mean-square error (RMSE) of 89.4 µg m−3. This
could be explained by the fact that not all types of particulate
matters, such as secondary organic aerosols, are included in
the model, and some aerosol emissions are very difficult to
estimate (e.g., wood burning by households). The two LSTM
forecasts show on average a good agreement with the obser-
vations. The RMSEs of the forecasts by the two machine-
learning models in the 2 years of the training period are re-
duced to 55.9 and 60.7 µg m−3, and in the 2-month test period
(excluding the dust event from 14 to 16 April) they also stay
at comparable low levels of 58.6 and 60.2 µg m−3. As ex-
pected, a smaller forecast period t = 0 h gives a better result
than the forecast over 12 h.

The scatters in the dust period (14–16 April) are denoted
using different markers in Fig. 3. The underestimation of
PM10 during the dust period (14–16 April) is visible in the
bottom right corners of these plots.

When we perform the assimilation analysis on 15 April,
19:00, the short period of t = 0 h forecast will be treated as
the non-dust levels in the bias correction of the original PM10
measurements. Note that here t = 0 forecasts denote the fore-
casts are valid at each specific snapshot of the observations,
while the 12 h forecasts are valid 12 h in advance; e.g., the
non-dust PM10 forecast (12 h) on 16 April at 07:00 is valid
on 15 April at 19:00. Subsequently, the bias-corrected data
are used to estimate the dust emissions over the past 36 h
window. Obviously, one important aim of the assimilation is
to make a better forecast, in this study, the forecast skills will
be evaluated in the following 12 h from 15 April, 19:00. In
addition, the forecast is assessed by comparing the combined
PM10 forecasts to PM10 observations. The LSTM forecast
with t = 12 h in advance will be added to the dust storm fore-
cast to build the combined aerosol forecast.
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Table 1. LSTM hyper-parameters.

LSTM layers Neurons per layer Epochs Batch size Forecast length (hours)

2 30 50 64 0 or 12

Figure 3. Non-dust PM10 simulation evaluations. (a) LOTOS-EUROS/non-dust forecast vs. PM10 measurements; (b) LSTM forecast 0 h
in advance vs. PM10 measurements; (c) LSTM forecast 12 h in advance vs. PM10 measurements (note that the solid circles show the 5 %
random samples over the non-dust period from April to May 2015 while the hollow ones denote the 5 % random ones from the dust period
(14–16 April)).

3.3.1 Spatial patterns at observation sites

To assess our two non-dust PM10 models, Fig. 4 shows the
snapshots of the PM10 measurements, LOTOS-EUROS/non-
dust simulations, LSTM forecasts, and the correspond-
ing bias-corrected dust observations at three time stamps:
15 April 08:00, 19:00, and 22:00. These first two moments
are the start and end of the observation interval in the as-
similation window (only observations from the last 12 h of
the assimilation window are assimilated as shown in Fig. 2),
and observations at 22:00 are treated as independent data for
cross-validation. At 08:00, only few stations close to the dust
source area have already observed the dust storm. Some of
the sites in central China observed high PM10 concentra-
tions, which are believed to be caused by the presence of

non-dust aerosols. Nearly all the stations in north China re-
ported this dust storm at 19:00 and 22:00, as a band cov-
ering central and northeast China; see Fig. 4a.2–a.3. Fig-
ure 4b.1–b.3 show that the LOTOS-EUROS/non-dust model
forecasts quite stable and constant non-dust PM10 levels;
most of the simulated values are less than 100 µg m−3. Subse-
quently, the corresponding bias-corrected dust measurements
(see Fig. 4c.1–c.3) are very similar to the original PM10 ob-
servations. This could be problematic when trying to mea-
sure the dust storm from the PM10 observations; for instance
at 08:00 in Fig. 4c.1, according to the bias-corrected obser-
vations the dust storm seems to have already reached central
China, which was probably not the case. In comparison, the
LSTM-based bias-corrected dust observations (see Fig. 4e.1–
e.3), which are calculated by subtracting the LSTM non-dust
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Figure 4. Original PM10 measurements (a.1–a.3), LOTOS-EUROS/non-dust simulated PM10 (b.1–b.3), the corresponding bias-corrected
dust observations (c.1–c.3), LSTM-predicted non-dust PM10 (d.1–d.3), and the derived dust observations (e.1–e.3) at three time snapshots:
15 April, 08:00 (a.1–e.1), 19:00 (a.2–e.2), and 22:00 (a.3–e.3).
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Figure 5. Time series of PM10 measurements and LOTOS-EUROS/non-dust- and LSTM-predicted PM10 levels at six cities: Hohhot,
Changchun, Beijing, Baoding, Xingtai, and Yulin. LE: LOTOS-EUROS; LSTM: long short-term memory.

part (see Fig. 4d.1–d.3) from the raw PM10 measurements,
are close to our expectations. Only for sites that are very
close to the source regions’ high dust concentrations are de-
rived at 08:00, while for the other sites hardly any dust is de-
rived. At 19:00, 11 h later, at half of the stations in the north
of the domain high dust concentrations are derived. In the
southeast of the domain, the derived dust concentrations re-
main almost zero since the dust plume did not arrive there
yet. At 22:00, the plume is moved further south, and the dust
load closer to the source region started to decrease.

3.3.2 Time series

To further evaluate the two bias correction methods, Fig. 5
shows the time series at the following selected cities: Ho-
hhot, Changchun, Beijing, Baoding, Xingtai, and Yulin. The
location of these cities/sites can be found in Fig. 1. These
cities were selected because they all experienced severe pol-
lution and illustrated the general performance of the LOTOS-
EUROS/non-dust and LSTM methods. In addition, each of

these cities has at least four monitoring sites, which assured
a high accuracy.

The LOTOS-EUROS grid cells with the selected sites all
include other observation sites as well, and to illustrate the
spread in the observations the maximum and minimum ob-
served values in the grid cell are added to the time series too.
Similarly, the LSTM non-dust PM10 simulation is given to-
gether with the spread within the grid cell.

Before the dust storm arrives at these cites, the LSTM
model reproduces the variations in PM10 rather well. Some
errors are present, for example as can be seen on 14 April
from 12:00 to 23:00 in Yulin. After the arrival of the dust
storm, the PM10 observations strongly increase, while the
LSTM non-dust fraction remains at a low level since it is
independent of the dust storm. The real dust measurement is
then calculated by subtracting the non-dust part from the raw
PM10 observations.

The LOTOS-EUROS/non-dust simulations underestimate
the non-dust PM10 at all six locations. Thus, the derived bias-
corrected dust observations overestimate the actual dust load,
and this will affect the dust assimilation results.

Atmos. Chem. Phys., 19, 10009–10026, 2019 www.atmos-chem-phys.net/19/10009/2019/
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4 Data assimilation experiments

Three different sets of observations are now available for as-
similation in the dust model: the original PM10 observations,
the PM10 observations with LOTOS-EUROS bias correction,
and the PM10 observations with machine-learning bias cor-
rection. The results have been compared in terms of the a
posteriori dust emission fields and surface dust concentra-
tions.

A practical use of assimilated concentrations is to use them
as a start point for a forecast. This could be used to provide
early information about the arrival of the dust plume and the
expected dust level. The dust forecast after the end of the
assimilation window at 15 April 19:00 uses the newly es-
timated emissions. Apart from the dust concentrations, the
forecast will also be evaluated in terms of skill scores for the
total PM10 concentrations in Sect. 4.3.

4.1 Observation error configuration

A key element of the data assimilation system is the obser-
vation error covariance matrix R. This covariance quanti-
fies the possible difference between simulations and obser-
vations. The observations with a smaller error have a higher
weight in the assimilation process.

In related works, the dust observation errors were usu-
ally empirically quantified. Lin et al. (2008) assumed that the
observation error is proportional to the measurement with a
constant factor of 10 %. Jin et al. (2018) used a similar error
setting but also assigned a larger error to low-value measure-
ments since the model might easily result in relatively large
errors when simulating minor dust loads.

Theoretically, the observation uncertainties are due to the
representation errors as well as the measurement errors,
while the former is widely considered the largest source.
Limited by the computation resources, our dust model uses
a spatial resolution of 25 km, while the in situ measurements
cover much less of the atmosphere surrounding them (Schut-
gens et al., 2016). This of course limits our capability of re-
solving the fine-scale fields that are reflected in observation
spaces. Therefore, the spatial representation error is assumed
to be the dominant error source and taken into the account in
approximating the observation uncertainties. In addition, the
error due to the different bias correction terms is indeed an-
other source. It is not yet considered in this study but will be
exploited for a more accurate assimilation operation in our
future work.

The spatial representation error quantification itself is a
complex task. It could be calculated through comparing the
model simulations at different scales of resolutions. In this
study, the availability of multiple measurement sites in a
single model grid cell provides an alternative way to quan-
tify the representation error. When multiple observations are
present, the statistical error in the observed values reflects
the spatial representation uncertainty. An example is the grid

Figure 6. Average vs. standard deviation of the hourly PM10 obser-
vations ranges from 14 April at 08:00 to 17 April at 07:00 in the
grid cell of Beijing. See Fig. 5c for the time series.

cell covering the city of Beijing, where observations from 12
different field stations are available. Note that it is the grid
cell which has the most monitoring stations. The spread of
the hourly measurements is shown in Fig. 5c. For each hour,
the standard deviation of the measured PM10 values is plot-
ted against the mean in Fig. 6, where the red markers repre-
sent “regular” polluted conditions, and the blue markers the
dust event. The result shows that the spread in the observa-
tions closely agrees with the average pollution level during
the dust event. Based on this result, a simple linear regres-
sion is used to obtain a parametrization for the observation
representation error:

σ =max(a · y+ b,σmin) [µgm−3
], (9)

where a = 0.12 and b = 55.7 are the linear regression param-
eters based on the dust event data (blue markers). It should
be noted that the observation sites in Beijing truncate obser-
vations at a maximum of 1000 µg m−3, and therefore obser-
vations close to this number are not used since the true values
might have been much higher. A minimum observation rep-
resentation uncertainty of σmin = 100 µg m−3 is used for the
dust observations (PM10 with bias correction) to avoid a too
strong impact of low-value observations (hardly dust) on the
estimation of dust emissions. In case the simulation model
estimates dust concentrations at the surface while in reality
the plume is elevated, the low-value observations might lead
to an unrealistically strong decrease in the dust emissions.

The representation uncertainty has already been validated
to fluctuate in space (Schutgens et al., 2016). However, for
most other grid cells the number of observation sites is sim-
ply one, which makes it difficult to parametrize a representa-
tion error in a similar way. Therefore, the representation error
parametrized for Beijing is used for all other locations too.

Note that the raw PM10 and the bias-corrected dust mea-
surements might have different uncertainties in representing
the real dust storm level. This is not yet taken into account
in our study, and the three types of the assimilated measure-
ments, raw PM10 and bias-corrected dust observation using
either a CTM or machine learning, are all configured with the
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Figure 7. Accumulated dust emission map F between 14 April at 08:00 and 15 April at 19:00 of the a priori model (a) or (b) a posteri-
ori estimates using the original PM10 observations, (c) LOTOS-EUROS, or (d) LSTM-based bias-corrected dust measurements. BC: bias
correction.

same observation error in Eq. (9). In addition, all the mea-
surements are assumed to be independent; hence, the obser-
vation error covariance R is diagonal.

4.2 Dust emission estimation

To evaluate the a posteriori dust emission field that is ob-
tained by assimilation of the bias-corrected dust observa-
tions, an emission index Fi (g m−2) is defined as in Jin et al.
(2018). The index represents the accumulated dust emission
in a cell i between 14 April 08:00 and 15 April 19:00. Fig-
ure 7 shows the emission index map of the a priori model
and a posteriori emissions obtained from assimilation of ei-
ther the original PM10 observations, or the LOTOS-EUROS-
or LSTM-based bias-corrected dust measurements.

As shown in Fig. 7a, the a priori emission was in gen-
eral rather weak, which resulted in an underestimated surface
dust concentration simulation as can be seen for example in
Fig. 8a.1–a.2. The a posteriori emissions are almost every-
where higher than the a priori. An exception is the region
marked in black, where the a priori emissions are higher. The
emissions from this black-dashed region contributed to a too-
early arrival of the dust peak in the model cells over Hohhot
and Xingtai as shown in Fig. 9a and c.

Figure 7b shows the emission indexF that results from di-
rectly assimilating the original PM10 measurements. As ex-
pected the estimated emissions are higher than those obtained
by assimilating the bias-corrected observations since all air-
borne aerosols observed are considered to be dust. In com-

parison, the assimilation with the LSTM baseline removed
data results at a modest emission level as shown in Fig. 7d.
The emissions estimated with LOTOS-EUROS-based bias-
corrected observations are in between since the resulting dust
observations also overestimate the actual dust loads com-
pared to the LSTM-based bias-corrected dust measurements.

4.3 Dust simulation and forecast skill

Figure 8a–d show the dust simulations at the surface layer
at the end of the assimilation window (15 April, 19:00, left
column) and the forecast 3 h later (22:00, right column) us-
ing the newly estimated emission field. Note that the aver-
age dust concentration over the affected downwind regions
reached a peak around 22:00. Compared to background sim-
ulations in Jin et al. (2018), the a priori model simulations
have been improved by disabling the topography-based pref-
erence factor as mentioned in Sect. 2.1; however, a large dif-
ference from the bias-corrected PM10 observations in Fig. 4e
is still present.

The a posteriori concentrations in Fig. 8b.1–b.2 are the re-
sult of assimilating the original PM10 observations shown in
Fig. 4a.1–a.2. As expected, these lead to the highest simu-
lated dust concentrations since all the aerosols observed are
assumed to represent dust. Especially in the center of the
plume, the dust concentration can be as large as 2000 µg m−3.
Figure 8c.1–c.2 show the results when using the LOTOS-
EUROS/non-dust bias-corrected PM10 observations as dust,
and although concentrations are lower, they are still likely to
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Figure 8. Surface dust concentration of a priori (a.1–a.2), a posteriori using no bias-corrected (no BC) data (b.1– b.2), a posteriori using
LOTOS-EUROS/non-dust bias-corrected (LE BC) data (c.1–c.2), and a posteriori using no bias-corrected (LSTM BC) data (d.1–d.2) on
15 April at 19:00 (a.1–d.1) and 22:00 (a.2–d.2).
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Figure 9. Time series of a posteriori dust concentration and PM10 observations in three cities: Hohhot, Beijing, Xingtai (observations in the
gray shaded part are assimilated).

overestimate the real dust levels. The a posteriori results us-
ing the LSTM bias-corrected measurements provide the low-
est dust concentrations as shown in Fig. 8d. Only in the grid
cells that are close to the source region, do the surface dust
concentration reach values as large as 2000 µg m−3, while in
the downwind areas the maximum dust concentrations are
usually below 1200 µg m−3.

To illustrate the improvements of assimilating bias-
corrected measurements, Fig. 9 shows the observed and sim-
ulated PM10 concentrations in the aforementioned grid cells
covering Hohhot, Beijing, and Xingtai. These locations are
neither the best nor the worst examples, but illustrate typ-

ical results and challenges to be solved in future. For a fair
comparison with the PM10 observations, the non-dust aerosol
concentrations obtained from either LOTOS-EUROS/non-
dust or LSTM were added to the dust simulations from the
inversion system.

The site Hohhot is close to the main dust source region.
The a priori model simulated the arrival of the dust plume
8 h before it was actually visible in the PM10 observations.
The assimilation of the observations is able to produce simu-
lations in which the dust plume arrives at the correct time.
The assimilation with LSTM bias-corrected data has the
best performance, with the peak of the simulated concen-
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Figure 10. Time series of root-mean-square error compared to the ground PM10. The assimilation window is set from 14 April at 08:00 to
15 April at 19:00, and PM10 observations in the gray shaded area are assimilated.

trations (dust plus bias) most close to the observed PM10.
During the forecast period (t > 15 April, 19:00), all three
assimilation-based forecasts show a decline in concentra-
tions, which slightly overestimate the observations. This can
be explained from the fact that the dust storm is a strong flow-
dependent phenomenon in which concentrations at a certain
location are strongly correlated to earlier concentrations at
upwind locations. For Hohhot, only a limited number of ob-
servation sites are located upwind, and therefore hardly any
data are available to constrain the concentrations at this loca-
tion. To improve the forecast at Hohhot it will be necessary to
have additional observation data, for example from sites ac-
tually within the source region, or from satellites observing
the aerosol load over the source region (Jin et al., 2019).

For the grid cell Beijing, which is located further down-
wind from the dust source region, the arrival of the dust peak
is correctly simulated. However, the amplitude of the con-
centration peak is underestimated compared to the average
PM10 observations. As can be seen in Fig. 8, the dust plume
forms a rather small band over central and northeast China.
In each of the three assimilations, the dust concentrations in
the band are rather low around Beijing. This suggests that the
simulation model simply is not able to increase the dust con-
centrations here, for example because of uncertainties in the
meteorological data, a removal of dust that is too efficient,
or because some local sources of dust are absent (equally,
non-dust PM10 levels are underestimated).

The grid cell Xingtai is located more to the south, and the
model is able to simulate high dust concentrations here. The a
priori model simulates the arrival of a first dust peak already
at 13:00, which is however not visible in the PM10 data. The
assimilation postpones the arrival of the main dust, which ac-
cording to the measurements takes place around 22:00 and is
already in the forecast period. The forecast simulations all
overestimate the amplitude of the peak, especially when us-
ing the original PM10 data as proxy for dust. The assimila-
tion with the LSTM-based baseline removal shows the best
agreement with the observations.

4.4 Evaluation of forecast skill

To evaluate the forecast skill of the assimilation(s), the root-
mean-square error (RMSE) of the reference and three a pos-
teriori fully aerosol simulations (dust forecasts plus non-
dust predictions) with respect to the observed PM10 over the
whole observation sites has been computed for each hour.
A time series of this RMSE is shown in Fig. 10; after the
assimilation window (marked period), the results are based
on the forecast simulations. The a priori RMSE values at
the end of the assimilation window and during the forecast
are about 200–250 µg m−3. Direct assimilation of the original
PM10 measurement actually increases these values to above
300 µg m−3 during the forecast since dust concentrations be-
come strongly overestimated. Assimilation of the LOTOS-
EUROS/non-dust baseline-removed observations nonethe-
less reduces the RMSE, in particular within the assimila-
tion window. The strongest decrease in RMSE is obtained
using the LSTM-based baseline removal, with values of 120–
200 µg m−3 during the forecast.

5 Summary and conclusion

In this study, a dust storm data assimilation experiment has
been performed for an event over East Asia in the spring of
2015. PM10 observation data from the China Ministry of En-
vironmental Protection observing network were assimilated
into a dust simulation model to estimate the dust emissions.
The PM10 measurements themselves are considered unbi-
ased. They clearly show the arrival of a dust plume through-
out the region due to the high spatiotemporal resolution.
However, the data cannot be compared directly to dust simu-
lations since they actually represent a sum of the dust parti-
cles and other non-dust aerosols. Direct assimilation of these
measurements would introduce a bias in the assimilation sys-
tem since it cannot distinguish between model and observa-
tion errors.
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10024 J. Jin et al.: Machine learning for observation bias correction

Two methods have been implemented to remove the non-
dust part of the PM10 observations during the dust event in
order to use them as a dust proxy in a dust assimilation sys-
tem. The first method uses a conventional regional chem-
istry transport model, LOTOS-EUROS/non-dust, which sim-
ulates the emission, transport, chemistry, and deposition of
aerosols mainly related to anthropogenic activities. The sec-
ond method uses a machine-learning model that statistically
describes the relations between regular PM10 concentrations
(outside dust events) and available air quality and meteoro-
logical data.

The two methods to estimate the non-dust part of the PM10
load have been validated. The simulations by the LOTOS-
EUROS/non-dust model in general underestimate the PM10
concentrations. The root-mean-square error stays at a rela-
tively high level of 89.4 µg m−3. It is mainly caused by miss-
ing emissions and aerosol components such as secondary
organic matter. In comparison, the data-driven machine-
learning model agrees more closely with the real measure-
ments; the RMSE declines to 58.6 µg m−3.

A variational data assimilation system has been used to
estimate the dust emissions that led to a severe dust storm in
April 2015. The system assimilated either the original PM10
observations or the bias-corrected dust observations based
on either LOTOS-EUROS/non-dust or the LSTM model.
The a posteriori simulations using the original observations
resulted in a strong overestimation of the dust concentra-
tions since all PM10 is simply attributed to dust. Using
the LOTOS-EUROS/non-dust bias-corrected observations, a
clear improvement on the dust simulation has been obtained,
but overestimation of dust concentrations is still present. The
best results are obtained when using a LSTM model to re-
move the non-dust part of the PM10 observations, with a
posteriori concentrations in good agreement with the mea-
surements.

The dust emissions estimated using the assimilation can be
used to drive a dust forecast. When the original PM10 obser-
vations were used in the assimilation, the forecast skill of the
system actually decreased due to the strong overestimation of
dust concentrations, and the RMSE rose from on average 230
(prior forecast) to 300 µg m−3. Better forecasts are obtained
when using the model-based and especially the machine-
learning-based bias-corrected observations. The RMSE of
the former was reduced to 200 µg m−3 while the RMSE of
the latter further declined to 150 µg m−3.

Future work

Both our CTM and machine-learning-based bias correction
methods have room for improvements. It might be useful to
improve the CTM simulations by assimilating PM10 obser-
vations during the hours where no dust storms are present
and use these improved simulations to remove the non-dust
part of the observations during an event. These additional as-
similations would then involve repeated forward ensemble

bias–model runs which could be computationally expensive.
The machine-learning model in our non-dust PM10 simula-
tion can also be further optimized, such as using a different
configuration or deeper neural network, including extra in-
put features like non-dust PM10 simulation from CTMs (Lin
et al., 2019) and other related records.

We will exploit the variabilities of the representation errors
comparing the model simulations at different spatial resolu-
tions. The error from the bias correction term will also be
taken into account while calculating the observation error.

Data availability. The real-time PM10 data are from the network
established by the China Ministry of Environmental Protection and
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