
Geophys. J. Int. (2019) 219, 1118–1130 doi: 10.1093/gji/ggz352

GJI Seismology

3-D mechanical analysis of complex reservoirs: a novel mesh-free
approach

Jan-Diederik van Wees,1,2 Maarten Pluymaekers,1 Sander Osinga,1 Peter Fokker,1,2

Karin Van Thienen-Visser,1 Bogdan Orlic,1 Brecht Wassing,1 Dries Hegen1 and
Thibault Candela1

1TNO, Energy division, Utrecht, The Netherlands. E-mail: jan diederik.vanwees@tno.nl
2Department of Geosciences, Utrecht University, Utrecht, The Netherlands

Accepted 2019 Aug 26. Received 2019 June 18; in original form 2018 September 3

S U M M A R Y
Building geomechanical models for induced seismicity in complex reservoirs poses a major
challenge, in particular if many faults need to be included. We developed a novel way of
calculating induced stress changes and associated seismic moment response for structurally
complex reservoirs with tens to hundreds of faults. Our specific target was to improve the
predictive capability of stress evolution along multiple faults, and to use the calculations to
enhance physics-based understanding of the reservoir seismicity. Our methodology deploys a
mesh-free numerical and analytical approach for both the stress calculation and the seismic mo-
ment calculation. We introduce a high-performance computational method for high-resolution
induced Coulomb stress changes along faults, based on a Green’s function for the stress re-
sponse to a nucleus of strain. One key ingredient is the deployment of an octree representation
and calculation scheme for the nuclei of strain, based on the topology and spatial variability
of the mesh of the reservoir flow model. Once the induced stress changes are evaluated along
multiple faults, we calculate potential seismic moment release in a fault system supposing an
initial stress field. The capability of the approach, dubbed as MACRIS (Mechanical Analysis
of Complex Reservoirs for Induced Seismicity) is proven through comparisons with finite
element models. Computational performance and suitability for probabilistic assessment of
seismic hazards are demonstrated though the use of the complex, heavily faulted Gullfaks
field.
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1 I N T RO D U C T I O N

The phenomenon of induced seismicity by fluid extraction and in-
jection has been known for about half a century and has been de-
scribed in various publications (Healy et al. 1968; Phillips et al.
2002; Baisch & Harjes 2003; Van Eijs et al. 2006; McClure &
Horne 2011; Brodsky & Lajoie 2013; Ellsworth 2013; Keranen et
al. 2014, McGarr 2014; Weingarten et al. 2015; Dempsey & Suckale
2017; Goebel et al. 2017; Buijze et al. 2018). The potential damage
that induced events can cause requires an assessment of seismic
hazards. Up to now, two distinct classes of modelling approaches
have emerged: (1) a more physics-based approach, honoring most
of the complex physical mechanisms at work during induced seis-
micity, but with slow run-time and thus precluding probabilistic
assessment of seismic hazards and (2) a more statistics-based ap-
proach, attaching more importance to the probabilistic character of

seismicity, at the cost of drastic simplifications on the mechanical
modelling.

The assumption behind the statistics-based approach (e.g.
Shapiro et al. 2010, 2011; McGarr 2014; Langenbruch & Zoback
2016) is that operational parameters, such as the volume that is
injected or produced, dominates the dynamic of induced seismic-
ity and that the subsurface can be simplified as a uniform tank. In
doing so, the model complexity is considerably reduced, and one
can focus on the statistics, easily running multiple scenarios. Re-
cent studies (van der Elst et al. 2016; Galis et al. 2017; Candela et
al. 2018) starts to criticize this assumption and argue that induced
seismicity, as natural seismicity, might be primarily controlled by
the presence of pre-existing faults and their ambient stress level. In
this case, a more physics-based approach is warranted, but it still
remains to overcome the computational speed challenge in order to
honor (i) uncertainties in model parameters and (ii) the probabilistic
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character of seismicity. This is what our approach is tailored for;
covering the need for explicitly modelling the physics of induced
seismicity and the specific role of stress development in such a way
that it can be used in probabilistic seismic hazard assessment. Re-
cent modelling attempts have already tried to meet this challenge
(e.g. Dieterich et al. 2015; Bourne & Oates 2017; Dempsey &
Suckale 2017). However, in these attempts, either the complex 3-D
geometry of the reservoir was not taken into account and the model
was reduced to 2-D (Bourne & Oates 2017; Dempsey & Suckale
2017), or the pressure field was oversimplified and only one single
fault was considered (Dieterich et al. 2015).

One of the goals of our approach is specifically to preserve in
our seismicity assessment: (i) the complex 3-D development of
the pressure field and (ii) the 3-D geometrical complexities of the
reservoir. To this end, our approach directly takes the industry stan-
dard 3-D reservoir characterization and 3-D flow simulation meshes
as input. For geomechanical analysis of reservoirs, finite element
models (FEM), taking the 3-D distribution of pore pressure from the
flow simulation as input, are commonly being used. However, for
complex reservoirs, it is a major challenge to build geomechanical
models, in particular if many faults need to be included (Koutsabe-
loulis & Zhang 2009; Lele et al. 2016). This challenge emerges from
the fact that the required topology of geomechanical FEM differs
considerably from the topology of reservoir flow models (Cappa &
Rutqvist 2011; Orlic & Wassing 2013; Sanz et al. 2015; Lele et
al. 2016). Thus, one needs to create dedicated meshes for the ge-
omechanical FEM, which require a very dense resolution at faults
of approximately 5 m to be able to capture sharp stress variations
caused by reservoir compaction or dilation (e.g. Orlic & Wassing
2013). Furthermore, the geomechanical FEM are computationally
intensive and therefore difficult to adopt in a probabilistic seismic
hazard assessment.

In order to bridge the gap between physics-based and statistical
approaches, we have developed a new way of calculating induced
stress changes and associated seismic moment response on faults for
structurally complex reservoirs. To this end, our methodology, de-
scribed in Section 2, deploys a mesh-free semi-analytical approach
for the Coulomb stress calculation. More specifically, the three main
ingredients are: (1) the use of Green’s function formulation for the
stress response to nuclei of strain; (2) the deployment of an oc-
tree representation and calculation scheme for the nuclei of strain
and (3) the use of the recently developed semi-analytical approach
of van Wees et al. (2018) to derive the seismic moment from the
excess of Coulomb stress. After detailing the methods, we demon-
strate in Section 3 the performance of our calculation workflow,
dubbed as MACRIS (Mechanical Analysis of Complex Reservoir
for Induced Seismicity) through comparison with the FEM solution.
Furthermore, in Section 4, we show its suitability for performing
sensitivity analysis and probabilistic assessment over the severely
faulted Gullfaks field.

2 M E T H O D S

Our treatment starts from a reservoir with a given pressure distribu-
tion. We assume this distribution has been determined using regular
geological and reservoir engineering models. Two-way coupling is
thus not explicitly performed: we incorporate the effect of pore
pressure changes on the mechanical response. Furthermore, we as-
sume homogeneous elastic properties of the subsurface except for
the slip characteristics of the faults; and stress interactions between
separated faults caused by slip events are not considered.

2.1 The point source solution

For calculating stress effects resulting from pore pressure changes,
we adopt the point source solution representing a small finite volume
in an elastic half-space (Okada 1992) as Green’s function. The
point source solution is based on Mindlin’s formula to calculate
the internal displacement field due to a point force located in the
interior of a homogenous half-space (Mindlin 1936). We base our
formulation on the point source solution of inflation for seismic
sources as defined in Okada (1992), where the following shows his
equation in Table 2:

ui (x1, x2, x3) = M0

2πG
[−ui,A(x1, x2, −x3) + ui,A(x1, x2, x3)

+ui,B(x1, x2, x3) + x3ui,C (x1, x2, x3)] (1)

Where ui are displacement vector components (u1, u2, u3), x1

and x2 are the x,y-coordinates of the observation point relative to
the point source located at (0,0,-c). x3 and -c are z-coordinates of
the observation point and point source, respectively, relative to the
surface. The term M0

2πG represents the strength of the source, with
moment M0 and shear modulus G. The first term on the right-hand
side represents the displacement field due to an inflation force in an
infinite medium. For positions far from the surface and close to the
source, this term dominates. The second term originates from a sim-
ilar image source above the surface; the third and fourth terms also
originate from the image position but have a different form. The ex-
act form of these terms can be readily found in Okada’s seminal pa-
per (Okada 1992). Nuclei other than the centre of inflation, like slip
sources and tensile fracture openings, can also be derived from the
expression for a single force by combination and derivation (Mindlin
& Cheng 1950; Okada 1992). The inflation point source solution
has been used for decades to evaluate stress, vertical motions and
subsidence for compaction in depleting reservoirs (Geertsma 1973;
Fokker & Orlic 2006) and for volcanic eruptions (Mogi 1958). The
solution by these authors corresponds to Okada’s point source for-
mulation (our eq. 1) substituting M0 = αBiot · �P dV , where αBiot

is Biot’s constant, �P is the reservoir pressure change (with a
negative value denoting depletion) in volume dV, represented by
the point source. Since we are calculating stresses outside the zone
where the pressure is changing and the properties are homogeneous,
the poro-elastic effect of the pressure disturbance can be treated as
an external forcing. The usage of M0, however, should not physically
be interpreted as the equivalent of the expected seismic moment in
the reservoir, since the volumetric changes of a depleting field do
not bear such a direct relationship with faulting in the reservoir (e.g.
Bourne et al. 2014). Using the analytical expressions for displace-
ments and their derivatives in x,y,z directions, the internal strain and
stress field can easily be evaluated from the definition of strain and
the elastic relationship between stress and strain.

It is assumed that the subsurface is homogeneous and that the
effect of volume changes on pressure for compacting (dP<0) or
inflating reservoirs (dP>0) is negligible (Fokker & Osinga 2018).
The reservoir is represented by either a regular distribution of point
sources, a set of brick-shaped elements, or a disk shaped geometry
for which closed-form analytical expressions have been derived
(Geertsma 1973; Fokker & Orlic 2006; Paullo Muñoz & Roehl
2017). We used point sources for our approach because because
any geometry can be approximated by a point source alignment.

The strength of the point sources is a function of the product of
pressure change and the volume represented by the source. If the
distance of the stress evaluation point and the reservoir is sufficiently
large, the reservoir can be discretized by few nuclei of strain for a
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Figure 1. Single-faulted reservoir model showing the topology of hexahedral cells, indicated by blueish colours, and the fault pillars (purple lines). The
depicted model is zoomed in on a central portion (3 × 3 km) of the full reservoir grid with a side length of 60 × 60 km.

correct and smooth stress response. Conversely, if stresses need to
be evaluated at faults close to (or inside) a reservoir, many point
sources are required. This is due to the fact that the stress solution
deteriorates when evaluated too close to the point source. Thus, one
needs to assess the smallest distance from the point source where
the stress solution is still correct. This exercise has been performed
on a horizontal reservoir bounded on the side by a subvertical fault,
presenting the reservoir with regularly spaced point sources placed
at the centres of every cubic grid involved (Fig. 1). For different
grid cell sizes, we found that the numerical accuracy deteriorates at
a distance d < 1.5 l ps , where d is the smallest distance of the stress
evaluation point from any of the point sources of the reservoir, and
l ps is the spacing of the point sources distribution. This means the
stress evaluation points need to be placed at a minimum distance
of lmin = l ps from the fault, which is located ≥ 0.5 l ps from the
point sources. This appears to conflict with the aim of the stress
evaluation at faults, which can partially cut through the reservoir. In
order to address this issue, we evaluate the stress in two parts (Fig. 2).
First, we translate the stress evaluation points along the vector t s =
As lmin n, where n is the normal vector to the fault pointing in the
footwall direction, As is a scaling factor > 1. Here we evaluate
the stress response caused by the compaction (or dilation) of the
point sources of the hanging wall. Secondly, we translate the stress
evaluation points along the vector −2t s towards the footwall and
evaluate the stress response caused by the compaction (or dilation)
of the remaining point sources. Thirdly, the change in total stress
on the fault is calculated as the sum of two stress evaluation points,
the one in the hanging wall and the one in the footwall (see Fig. 2).

Clearly, Aslmin needs to be sufficiently small in order to accurately
capture the stress response. We use As= 1.5, to account for irregular
fault surface geometries, and adopt lmin ≈ 1 m, that is typically one
order of magnitude lower than the thickness of the reservoir and
is less than or equal to the average thickness of the reservoir cells.
We demonstrate below in Section 3 that with this setting, our novel
approach can reproduce the stress solution obtained with the FEM
well.

2.2 Octree

Our approach can use as input any reservoir mesh with (degen-
erated) hexahedral cells as input. These meshes have a structured
cell topology, marked by indices i ∈ I = {0, nx − 1} , j ∈ J =
{0, ny − 1} , k ∈ K = {0, nz − 1} , where i, j are indices in map
view direction, k is the index corresponding to the subvertical di-
rection, and nx, ny, nz correspond to the number of cells in these
directions. They are used in industry-standard reservoir characteri-
zation and simulation codes such as Petrel and Eclipse (commercial
software of Schlumberger) (Fig. 1). In such models, the cell’s four
top and bottom coordinates are determined by a relative positioning
on subvertical line segments in the k direction of the grid (so-called
pillars): pi, j , pi+1, j , pi+1, j+1, pi, j+1, where pi, j = xi, j yi, j is the
line segment connecting the base point xi, j and top point yi, j . The
stress evaluation points are chosen on a subset of the pillars of the
reservoir mesh corresponding to the faults (Fig. 1). On these fault
pillars we choose stress evaluation points at a regular spacing of
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Figure 2. Cartoon of placement of stress evaluation points along the fault
pillar. The evaluation points are placed with a 2–5 m spacing in the section
of the depleting reservoir blocks in the footwall (dark blue) and hanging
wall (flesh) and extended below and above it. For the calculation of Green’s
function the evaluation points on the fault are shifted along the vector t s for
the point source contributions of the hanging wall, and subsequently along
the vector −2t s for the point source contribution of the footwall. The change
in total stress on the fault is calculated as the sum of two stress evaluation
points.

5 m and extend them along the fault dip at a distance of up to a few
hundred meters above and below the reservoir.

An effective way to subdivide a structured model grid into a
progressively densified set of point sources close to the faults is
by deploying an octree, which recursively subdivides space into
eight octants. Elements in the tree are called nodes, one higher level
parent, and lower level children. So, each parent has 8 children,
and each child has one parent. At the highest level, the octree
node consists of the full range of cells. Starting from the highest
level, octree nodes are progressively subdivided in subranges of
their index range. If the index range is 1, further subdivision is
based on regular intervals in the linear isoparametric coordinate
representation of the hexahedra (Zienkiewicz et al. 2005). If in
either i, j, or k index the spacing is lower than lmin, no more
subdivision is carried out.

With respect to distance to the fault pillars, the subdivision of a
node is performed if f (d) < 0:

f (d) = d − 3 hh, (2)

where d is the minimum distance of the node’s centre to any of the
fault pillars, and hh is the node’s estimated halfwidth in map view.
Note here that the distance function f (d) ensures that subdivision
progresses for the nodes close to the pillars. As the horizontal-to-
vertical ratio of cells is typically larger than 1 in reservoir grids
d > 3 hh > 3hv , where hv is the vertical halfwidth of the node.
Fig. 3 shows an example of an octree for the reservoir grid presented
in Fig. 1.

Once the tree has been subdivided,. the nodes of the tree are
represented by point sources. The strengths of these point sources
are given by the sum of volume changes of the contributing reservoir
cells or a portion of a reservoir cell, and their positions are given by

the average locations weighted by the volume changes of those cells.
Volumes and strains of the nodes are determined from the reservoir
grid cells through a volume property and as function of cell pressure
(e.g. Geertsma 1973; Fokker & Orlic 2006), respectively. When the
octree subdivides a reservoir cell, the relative fractions of the sub-
volumes of the children are based on simple interpolation using
the Jacobian of the isoparametric representation at the centre of the
children and are forced to sum to the original reservoir cell volume.
The octree point sources, therefore, preserve the volumetric strain
of the original reservoir cells.

2.3 Barnes-Hut algorithm

Barnes & Hut (1986) introduced an octree calculation algorithm,
which uses the octree topology to adaptively modify the necessary
subdivision in the octree for each evaluation point in the Green’s
function evaluation. It effectively clusters the contribution of nodes
whose ratio of distance to the evaluation points in the pillars over
hh is much larger than 1. The strengths and location of clustering
of point sources is determined once prior to the processing of the
evaluation points. To this end, starting from the bottom of the tree, a
point source is recursively defined for the parent node, with strength
and location corresponding to the sum of strengths and average
location weighted by strength of the children.

Subsequently, for each evaluation point, the total stress response
is initialized to 0 and the octree is traversed, with the following
steps:

1. If the active node has no children or if f (dp) < 0, where dp

is 0.4 of the distance between the evaluation point and the node’s
centre, calculate stress from the point source of the node, and add
this to the total stress response.

2. Otherwise, apply step 1 to the children of the active node.

Barnes & Hut (1986) showed that for N-body gravity interactions
in astrophysics, with their algorithm O(N logN ) operations are re-
quired instead of O(N 2). In addition, the algorithm can considerably
benefit from parallelization (Bédorf et al. 2012).

2.4 Effective stresses and Coulomb stress

The stress evaluation from the point sources contributions provides
the changes in the total stress tensor �σ , as a consequence of reser-
voir depletion (or inflation). Thus, it remains to account for the
direct effect of the fluid pressure inside the fault to the total stress.
This direct fluid pressure effect contributes δi jαBiot �P to the total
stress, where δi j is the Kronecker delta. Alternatively, the effective
normal stress σ ′

n on the fault plane can also be calculated from the
normal stress value σn derived from the total stress tensor, sub-
tracting the change in fluid pressure �P . Finally, the onset of fault
reactivation can be determined by the Coulomb Failure Function
(CFF > 0) (e.g. (Zoback 2007):

C F F = σs − μσ ′
n (3)

where σs is the shear stress on the fault and μ the friction coefficient
of the fault, and compressive normal stress is positive.

2.5 From excess of Coulomb stress to seismic moment

FEMs provide techniques to evaluate the plastic slip based on a
minimum work approach but are computationally intensive, as they
require many iterations, especially for 3-D models (e.g. Orlic &
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1122 J.-D. van Wees et al.

Figure 3. Visualization of the Octree (indicated by blueish colours) for the single-faulted reservoir model shown in Figure 1. The original cells of the reservoir
have been clustered and subdivided, respectively far and close from the fault.

Wassing 2013; Sanz et al. 2015). Here we calculate slip from the
elastic stress solution as proposed by van Wees et al. (2018), build-
ing on the crack theory relating seismic moment, crack size and
stress drop (Madariaga 1979). The main ingredients of this ap-
proach are presented below but the reader is redirected to Section
4.1 of van Wees et al. (2018) for more details. In an elastic solution,
the positive Coulomb Failure Function, CFF > 0, can be translated
in terms of average excess Coulomb stress �σ (Van Wees et al.
2018), relative to the Mohr–Coulomb failure criterion over the rup-
ture length l, which is measured in the slip direction, corresponding
to dip-slip for normal faulting. The seismic moment density M0m

(unit Newton) of the fault per unit length in strike becomes (van
Wees et al. 2018):

M0m = �σ
l2

√
π

. (4)

The dip slip rupture length l and strike dimensions of the slipping
faults change over time: l grows with increasing stress change, and
the strike dimension of faults is bound to grow with progressively,
if more fault orientations are slipping (that is when CFF > 0),
depending on the initial in-situ stress conditions.

Eq. (4) assumes that all the moment is released seismically and
is not affected by energy losses or changes in frictional properties
during slip. From laboratory experiments, it is well known that the
friction angle of the slipping portion of the fault is reduced upon
slip initiation, which results in more slip until a new balance is
found for the stabilized stresses (e.g. Niemeijer & Spiers 2007).
Numerical inclusion of slip weakening effects and/or rate and state

friction effects during rupture events can produce synthetic seismic
catalogues with characteristics similar to actual catalogues (Baisch
et al. 2010; Rutqvist et al. 2013; Wassing et al. 2014; Dieterich et
al. 2015).

The derivation of seismic moment (eq. 4) is given for the normal
fault regime. However, it is important to bear in mind that this
approach can easily be extended for other tectonic in-situ stress
settings including strike-slip and thrust faulting, marked by different
slip orientation. To this end, a correction factor needs to be adopted
in eq. (4) (Madariaga 1979). Furthermore, the method could also
easily incorporate the effect of slip weakening through adopting a
drop in friction angle during failure (Zielke & Arrowsmith 2008;
Van Wees et al. 2017).

3 C O M PA R I S O N O F T H E S T R E S S
S O LU T I O N W I T H F E M

In the two next sections (Sections 3 and 4), examples of reservoir
depletion are presented. It is important to stress here that our ap-
proach can be applied to injection (i.e. reservoir inflation) scenario
without any changes to the algorithms and methods used.

Our novel semi-analytical stress analysis method has been com-
pared to the FEM solution. We used DIANA, a commercial code
widely used in engineering and subsurface applications (DIANA
10.1 User Manual 2016), with the plane-strain elastic FEM of a de-
pleting faulted gas reservoir, exhaustively described in van Wees et
al. (2018). The geometry of the mesh and boundary conditions are
shown in Fig. 4. The plane-strain mesh models a 2-D section of 6 km
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Figure 4. Plane-strain finite element model geometry (modified from Van Wees et al. 2018). The reservoir is outlined by the blue lines.

width and 6 km depth. The mesh is finest around the fault with a res-
olution of 1 m at reservoir depth and gets gradually coarser as you
go away from the fault and the reservoir. The FEM resolution has
been chosen to be sufficiently high to capture high bending stresses
close to the fault and at the interface of reservoir and adjacent rock.
The FEM is laterally constrained (zero displacement in horizontal
direction) on the sides and vertically constrained (zero displacement
in vertical direction) at the bottom. This effectively leads to a stress
response on the sides of the model which corresponds to an infinite
lateral extension of the reservoir.

For MACRIS (our semi-analytical stress analysis), we used a 3-
D representation of the faulted reservoir with a square geometry in
map view and with a dimension of 60 km. The central portion of
the reservoir with side length of 3 km is shown in Figs 1 and 3.
The reservoir model cell size was about 100 × 100 m in x, y and
about 15 m in depth. The very large dimension of the 3-D faulted
reservoir is required to mimic the plane strain boundary condition
of the 2-D FEM model.

Both the 2-D FEM reservoir model and the 3-D MACRIS reser-
voir model consist of two reservoir compartments separated by a
fault. Four scenarios have been investigated in terms of fault throw
(denoted by a, and defined as vertical offset of the reservoir along
the fault): (1) a throw of 0.0 times the reservoir thickness D, which
is no fault throw, and referred to later as scenario 0-D; (2) a throw
of 0.5 times the reservoir thickness, referred to as scenario 0.5-
D; (3) a throw of 1.0 times the reservoir thickness, referred to as
scenario 1-D; (4) and a throw of 2.0 times the reservoir thickness,
referred to as scenario 2-D. This model setup, with variable fault

throw, has been used by various studies to demonstrate the strong
influence of the effect of fault throw on the induced stress changes
along the fault during reservoir depletion (e.g. Mulders 2003; Orlic
& Wassing 2013). Model parameters used for both the 2-D FEM
reservoir model and the 3-D MACRIS reservoir model are listed in
Table 1. The depletion of both reservoirs (the 2-D one of the FEM
and the 3-D one of MACRIS) was implemented simultaneously, at
the same rate, in both reservoir compartments, and with no spatial
variation in pressure. The final depletion in the both reservoirs was
settled to be 25 MPa. The fault zone was assumed to be subject
to the reservoir fluid pressure wherever reservoir rock was directly
adjacent to the fault. Initial stress was marked by a ratio of effective
horizontal stress and vertical stress (k0eff ) of 0.45. The horizontal
component of the normal to the fault plane was in the direction of the
minimum horizontal stress. The ratio of minimum and maximum
horizontal stress was 0.9. For the 3-D MACRIS reservoir model,
the stress response during reservoir depletion has been evaluated
on the 30 pillars in the central portion of the grid (see Fig. 3), and
with each of them comprising 200 evaluation points. In terms of
computation speed and on a standard PC, for the 3-D MACRIS
simulation it required no more than 30 s run time on a standard
PC for one step of depletion. For the 2-D Diana simulation, the run
time was 2 min and 10 s for initialization and one step of depletion.
However apart from calculation (run) time, significant time-saving
concerns the preparation time. This can be extremely long for FEM;
indeed even for a 2-D model, it can take multiple hours to build the
mesh with the required fine resolution close to the fault. Instead
for the 3-D MACRIS simulation, one can use directly the reservoir
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1124 J.-D. van Wees et al.

Figure 5. Comparison between the elastic stress solution along the fault dip direction from the 2-D FEM and 3-D MACRIS at the onset of reservoir depletion
(initial) and at the end of the 25 MPa of depletion (final). The 3-D MACRIS stress solution corresponds to the one of the central pillar in Fig. 3. Solid lines
represent the FEM solution, dashed lines represent the MACRIS solution. Grey areas denote the reservoir depth range on opposite of the fault plane. Three
fault geometries are shown: (a) 0-D: the fault has no offset, (b) 0.5-D: the fault has an offset of half the reservoir thickness, (c) 1-D: the fault has an offset equal
to the reservoir thickness and (d) 2-D: the fault has an offset equal to two times the reservoir thickness.

mesh, thus the calculation (run) time of 30 seconds includes both
the preparation (that is the octree deployment) and the calculation.

The stress responses for the plane strain FEM and for the central
pillar of the 3-D MACRIS reservoir model are shown in Fig. 5.
For each of the fault throw-reservoir thickness ratio scenarios, the
MACRIS results closely match the high-resolution FEM signature.
Deviations between both solutions are <5 per cent, except for the
transition of the reservoir to the over- and underburden (at z = 2900,
z = 2900 + D + a). At these transitions, there exists a singularity
in the stress response. These elastic stress peaks are due to the very
sharp mathematical boundary between the depleted reservoir and
the surrounding. In reality, this boundary is probably more gradual
and the stress peaks would largely disappear. We also varied the
minimum distance between point sources and stress evaluations
point lmin to lower and higher values in a bandwidth of 0.5–4 m;
only minor changes in the stress response were observed. The results
of this exercise clearly demonstrate the capability of MACRIS to
reproduce the high-resolution signature of stress response with high
accuracy.

For a laterally extensive reservoir with the 0-D scenario (no fault
throw, Fig. 5a), the stress response is uniform in the depleting reser-
voir, in close agreement with fully analytical solutions for laterally
infinite reservoirs, being solely dependent on the Poisson’s ratio ν

(e.g. Mulders 2003; Van Wees et al. 2014). As a result of differen-
tial compaction, for the 0.5-D, 1-D, 2-D fault throw scenarios, the

positive Coulomb stress changes are considerably more pronounced
than for the 0-D scenario. More specifically and as an example, for
the 0.5-D fault throw scenarios, the normal stress response is high-
est in the depth range of the reservoir where the reservoir does not
overlap on both sides of the faults, whereas the shear stresses reach
maximum values in the overlapping depth.

4 A P P L I C AT I O N OV E R A C O M P L E X
R E S E RV O I R W I T H M U LT I P L E FAU LT S

In order to demonstrate the capabilities of our approach, we per-
formed a probabilistic seismic moment assessment for a synthetic
gas depletion model of a complex reservoir intersected by multiple
faults. Our model is based on a publicly available reservoir model
of the Gullfaks oil field in the North Sea, which to our knowledge
is one of the best examples of a structurally complex field (Fos-
sen & Hesthammer 1998). The reservoir grid, with Mid Jurassic
Ness and Tarbert reservoir formations, covers an area of approxi-
mately 8 × 8 km. The fault structure of the field has been very well
mapped from 3-D seismic surveys and data from over 170 wells
and is characterized by low-angle normal faults at 25–30◦ dip. Over
geological time, the low-angle normal faults evolved from steeply
dipping normal faults by rotation related to crustal extension (Fos-
sen & Hesthammer 1998). Due to their unfavorable orientation in an
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Figure 6. (a) Gullfaks reservoir model cells and fault pillars (purple) as input to MACRIS. All cells are marked by 18 MPa depletion in 18 load steps. (b)
Visualization of the corresponding octree. (c) Cross-sections parallel to the X-axis. Axis units in metres. Pillars A,B,C,D,E where stress and pore pressure will
be displayed in Fig. 8 are highlighted in purple.

extensional stress field, such low-angle faults are very difficult to re-
activate from reservoir compaction. In order to modify the structural
model to be more representative of seismically reactivated, steeply
dipping fault structures during gas depletion, such as observed in
the Groningen gas field (Willacy et al. 2018), the model was verti-
cally scaled by a factor 3. Afterwards the z-coordinate was shifted
upwards by 3 km in order to have the reservoir depth at approxi-
mately 3 km. It is important to stress here that our novel approach is
capable of calculating the stress response for the unmodified model,
but due to the low angle of the normal faults, the reactivation level
won’t be reached. Therefore, the scaling operation performed has
only been motivated by the fact that for the steepened faults, the

stress response leads to fault reactivation. In addition, the structural
complexity of the field is fully preserved after the scaling operation.

The rescaled reservoir model is depicted in Fig. 6. It contains 22
faults, including a total of 1108 fault pillars and a total of 197,002
stress evaluation points. The depleting reservoir grid cells contains
approximately 1 million cells, and the depletion is 18 MPa applied
in 18 yearly load-steps. As for the previous single-faulted model,
the fault zones were assumed to be subject to the reservoir fluid
pressure wherever reservoir rock was directly adjacent to the fault.

The mechanical parameters are the same as for the single-faulted
model presented in the previous Section 3 (see Table 1), except for
k0eff which has been chosen according to a uniform distribution
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Figure 7. Stress response along the faults of the Gullfaks reservoir after 18 MPa of depletion for the modal value k0eff = 0.4. (a) Effective normal stress
change. (b) Shear stress change. (c) Coulomb stress change. Purple lines are pillars with output displayed in Fig. 8. Axis units in m.

between 0.35 and 0.55. The variation of k0eff has a strong effect on
the slope of the failure criterion value. Low values of k0eff lower the
gradient with depth and cause �CFF to exceed the failure criterion
early in the depletion history when compared to high values k0eff,
causing more stable in situ stress conditions. Stress and seismic
moment evolution have been evaluated for 1000 model runs with
Monte Carlo samples on the variable k0eff, in order to show the
strong sensitivity of predicted reservoir seismic moment to varia-
tions in k0eff .

The final effective normal, shear and Coulomb stress changes
after the depletion of 18 MPa and along all the faults of the reservoir
are shown in Fig. 7 for the modal value of k0eff . Fig. 8 shows the
initial and final fluid pressure and the effective normal, shear and
Coulomb stress along selected pillars. Finally, Fig. 9 shows the
evolution of the full reservoir seismic moment for the ensemble of
1000 runs.

The results clearly show that our approach is capable of pro-
ducing a high-resolution stress response for a structurally com-
plex reservoir such as the Gullfaks field. The stress patterns are
marked by positive Coulomb stress changes at the reservoir level.
The underlying patterns can be well understood from the generic
patterns of effective normal and shear stress changes as a func-
tion of fault throw, as discussed previously in Section 2.4 (e.g.
comparing Figs 5a and b with Figs 8a, c and d, respectively). The
shear stresses show the largest change in the depth range where the
reservoir overlaps on both sides of the faults, whereas the largest
amplification of effective normal stresses occurs in the depth range
of the reservoir, where it does not overlap on both sides. The 3-
D variations of the stress changes along the faults (Fig. 7) clearly
mimic stress responses as expected from the variation of the fault
throws presented in Fig. 6. At locations where the fault throw is
larger than the thickness of the reservoir, a large increase of the
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Figure 8. Fluid pressure (orange), effective normal stress (red), shear stress (blue), Coulomb stress change �CFF (green) along the fault dip direction for
selected pillars (locations indicated in Fig. 7; panels a–e in ascending order of position in Fig. 7 from left to right) for the modal value of k0eff = 0.45, for both
at the onset of reservoir depletion (dashed lines) and at the end of the 18 MPa of depletion. The failure criterion representing the �CFF at which CFF > 0 is
indicated by the dark line.

shear stresses is associated with a moderate increase of the normal
stress, which results in a significant increase of the Coulomb stress.
Specific examples are shown in Figs 8(b) and (e). It should be noted
that the reservoir thickness varies considerably, and is marked by
pinch outs, which can also occur laterally along the faults (Fig. 6),
adding to the complexity of the field and its stress response. The

reservoir seismic moment response displayed in Fig. 9, highlights
the strong sensitivity to the in-situ stress conditions characterized by
the effective stress ratio k0eff. The total reservoir seismic moment,
at the end of the 18 MPa of depletion, shows an expected range
(in the 95 per cent confidence interval) that varies by two orders of
magnitude. This last result points out the importance of assessing
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Figure 9. Evolution of the reservoir seismic moment for the ensemble of 1000 Monte Carlo runs, in response to variability in k0eff uniformly distributed
between 0.35 and 0.55.

Table 1. Model parameters used for MACRIS and the single-faulted FEM.

Parameter Symbol Value Unit

Young’s modulus E 18 GPa
Poisson’s ratio v 0.2 --
Top reservoir -- 2900 m
Thickness reservoir D 150 m
Fluid density ρf 1150 kg m−3

Rock density ρr 2260 kg m−3

Friction angle ϕ 30 degrees
Fault dip -- 70 degrees
Depletion -- 25 MPa
Horizontal to vertical effective
stress ratio

k0eff 0.45 –

Initial minimum to maximum
horizontal stress ratio

Sh/SH 0.9 --

the in situ initial stress conditions. Clearly other factors, such as the
potential variability in the orientation of the horizontal stresses, the
ratio between the maximum and minimum horizontal stresses, the
static friction angle, the friction angle drop, and the fault geometry
will affect the seismic moment response. A strong benefit of our
semi-analytical approach is that it allows the efficient quantification
of the range of possible seismic moment response as a function of
variations in these parameters. However, at this stage we refrained
from any further analysis, as the prime objective of this work is to
present the methods and different components of our approach.

For this complex reservoir, our approach, with a standard PC,
takes approximately 200 minutes to evaluate the stress response
on the evaluation points and less than 30 additional minutes to
perform the subsequent ensemble run for calculating the seismic
moment response. This demonstrates the practical capability of the
developed workflow to handle structurally complex reservoir with
multiple faults and to perform sensitivity analysis, probabilistic
assessment of seismic hazards, and even data assimilation.

5 D I S C U S S I O N A N D C O N C LU S I O N S

Our mesh-free nuclei of strain approach assumes uniform elastic
properties of the subsurface. Evidently, in many reservoirs, strati-
graphic layering and sedimentary facies variations with the forma-
tions correspond to strong vertical and lateral variations in elastic
properties. The effect of contrasts in elastic properties regarding
the effects of stress changes due to (differential) compaction has
been addressed by others (e.g. Mulders 2003; Atefi Monfared &
Rothenburg 2015; Fokker & Osinga 2018; van Wees et al. 2018).
When accounting for the contrasts in elastic properties, the magni-
tudes of stress changes and incurred slip can be affected, and even
the patterns of stress changes can be different. Reservoir creep and
over- and underburden creep can also affect stress changes (Orlic &
Wassing 2013; Chang et al. 2014; Marketos et al. 2015; van Wees
et al. 2018).

Our solution for the seismic moment does not take into account
stress interactions between separated faults caused by slip events.
We rely here on the assumption that major stress effects due to
slip events are restricted spatially to the vicinity of a single fault,
in the order of half the value of the fault rupture length (Okada
1992). However, clearly event–event stress interactions along one
single fault should be considered as a future implementation of our
modelling approach.

Our seismic moment prediction is based on the excess Coulomb
stress. One alternative could be to directly link the Coulomb stress
changes to seismicity rates using the Dieterich’s theory (Dieterich
1994; Segall & Lu 2015). One other alternative could be to simulate
each individual rupture event (e.g. J. H. Dieterich & Richards-
Dinger 2010; Dieterich et al. 2015; Dempsey & Suckale 2017; Galis
et al. 2017; Van Wees et al. 2017) to build earthquake catalogues
from the predicted stress changes.

In conclusion, our semi-analytical stress solution is in close ac-
cordance with FEM. Our approach can handle tens to hundreds
of faults with ease, and as an example, we have demonstrated
that it can be easily used for structurally complex, heavily faulted
reservoirs such as Gullfaks. The key modelling ingredient for the
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computational performance is the deployment of an octree repre-
sentation and a calculation scheme for the nuclei of strain, in close
agreement with the topology and spatial variability of the mesh
used for the reservoir flow model. Thanks to the explicit compu-
tation scheme and the use of analytical solutions for the seismic
moment evaluation, our approach is very well suited for paralleliza-
tion. Overall, we have demonstrated that our novel physics-based
approach is adapted to honour uncertainties in model parameters
and thus to perform probabilistic seismic hazard assessments.
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