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H I G H L I G H T S

• Artificial neural networks are used to model a sorption heat storage reactor.• Hydration and dehydration tests are performed to evaluate the model accuracy.• The model replicates satisfactorily the sorption reactor dynamic behavior.• This type of models can be integrated into broader energy system models.
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A B S T R A C T

Sorption technology has the potential to provide high energy density thermal storage units with negligible losses.
However, major experimental and computational advancements are necessary to unlock the full potential of such
storage technology, and to efficiently model its performance at system scale. This work addresses for the first
time, the development, use and capabilities of neural networks models to predict the performance of a sorption
thermal energy storage system. This type of models has the potential to have a lower computational cost
compared to traditional physics-based models and an easier integrability into broader energy system models.
Two neural network architectures are proposed to predict dynamically the state of charge, outlet temperature
and therefore thermal power output of a sorption storage reactor. Every neural network architecture has been
investigated in 32 different configurations for the two operating modes (hydration and dehydration), and a
systematic training procedure identified the best configuration for each architecture and each operating mode. A
campaign of test cases was thoroughly investigated to assess the performance of the proposed neural network
architectures. The results show that the proposed model is capable to accurately replicate and predict the dy-
namic behavior of the storage system, with mean squared error estimators below 2 · 10−3 and 50 °C2 for the state
of charge and the outlet temperature outputs, respectively. Our findings, therefore, highlight the potential of an
artificial neural networks based modelling technique for sorption heat storage, which is accurate, computa-
tionally efficient, and with the potential to be driven by real time data.

1. Introduction

Energy networks are evolving into more dynamic entities that allow
different stakeholders (energy producers, consumers, etc.) to interact
among each other, also thanks to the massive increase of accessible
data. Among the main drivers for this evolution, reduction of CO2

emissions for climate change mitigation, is of paramount importance. A
higher degree of grid flexibility is needed in order to integrate a larger
share of intermittent and distributed renewable energy sources, aiming
for at least 80% CO2 emissions reduction in 2050 compared to 1990
[1]. Within these premises, energy storage will play a fundamental role
in the future energy grids to further bridge the gap between supply and
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demand mismatches [2].
Data collection and analysis from energy storages and other system

components is of extreme importance to enhance the prediction of their
performance, operation, and control. The applications of big data in
future smart grids will involve the whole system, from power produc-
tion to consumption [3]. Some applications are production and load
forecasting, system security, network connectivity verification, data
driven demand response, and events detection and classification [4].

Data availability, the drastically increasing computational cap-
abilities and the decreasing of cost of the hardware, allowed the de-
velopment of data-based models mostly based on machine learning
techniques such as artificial neural networks (ANNs). This type of
models can provide an acceptable compromise between model speed
and accuracy in simulating the outputs of a system component, given its
inputs, without an a priori knowledge on the underlying physical laws
regulating the component itself. However, a priori knowledge about the
data can already direct towards a specific and suitable model structure.

The aim of this work is to investigate the capabilities of artificial
neural networks to model the dynamic behavior of a sorption reactor,
which is dictated by complex physical phenomena.

The objective is to determine whether this approach is suitable to
develop light and efficient data-based models that require lower com-
putational complexity compared to traditional physics-based models.
This type of models can be integrated in broader energy system models
where interaction with the other system components takes place. This
would result in a computational advantage in co-simulating different
energy system components. Moreover, with similar data-driven ap-
proaches, integrated control strategies operating in real-time could be
developed.

This work is divided into four main sections. In Section 1, the
general background and the aim of this work are presented. Section 2
describes the methodology of the work, used to train and select the
neural networks, together with an example of the dehydration and
hydration behavior of a sorption reactor calculated with the physics-
based model used to produce the training datasets. Section 3 shows the
results of the neural networks model and the comparison with the
physics-based model for both hydration and dehydration dynamic tests.

Finally, Section 4 presents the conclusions and recommendations of
this work, and in the Appendix the fundamental equations and main
parameters of the physics-based model are shown.

1.1. Sorption heat storage

Thermal energy storage is gaining importance due to its potential to
reduce the primary energy consumption in the future energy grids [5]
by decoupling the energy production and demand and increasing the
overall energy efficiency. By considering that space heating and do-
mestic hot water production accounted for almost 80% of the domestic
end-use energy consumption in EU in 2012 [6], the potential of storing
energy in the form of heat can be attractive for commercial and re-
sidential buildings. Moreover, also industries with large fluxes of waste
or process heat can benefit from thermal energy storage.

Thermal energy storage can be divided into three main categories:
sensible heat storage such as water tanks or underground storage [7–9],
latent heat storage [10–12], and sorption heat storage [13–16]. The
main concept of sorption heat storage (Fig. 1.1, left) is to store thermal
energy using a reversible reaction using the chemical and physical
bonds between two (or more) components of a sorption material: the
sorbent (e.g. a salt hydrates, zeolites, MOFs) and the sorbate (e.g. water
vapor, NH3). Eq. (1.1) shows the reversible reaction for a general salt
hydrate/H2O system, with s the H2O stoichiometric coefficient.

+ +Salt H O Heat Salt H O· s s g2 ( ) ( ) 2 ( ) (1.1)

During the desorption phase (endothermic reaction from left to
right) thermal energy is used to separate the sorbent and the sorbate
and, vice versa, during the sorption phase (exothermic reaction from
right to left), thermal energy can be extracted from the system.

In this work, a salt hydrate/H2O open solid sorption system with an
integrated reactor is considered. An open system implies that both
energy and mass are exchanged with the environment. The main ad-
vantages of an open system layout over a closed one are a lower system
complexity, operation at atmospheric pressure, and enhanced heat
transfer inside the reactor by forced circulation. However, auxiliary
energy is required in order drive a fan to overcome the pressure drop

Nomenclature

Symbol

cp specific heat capacity [J/(kg·K)]
kLDF linear driving force coefficient [1/s]
m mass flow [kg/s]
peq equilibrium pressure [Pa]
pv water vapor pressure [Pa]

Hreac reaction enthalpy [kJ/molH2O]
E relative energy balance error [%]
SOC state of charge [–]
t time [s]
T temperature [°C]
X local material conversion degree [–]
z network target [–]
L axial length [m]
M molar mass [kg/mol]
a network output [–]
b network bias [–]
c sorbate concentration [mol/m3]
d diameter [m]
f activation function [–]
p network input [–]
u air velocity [m/s]
w network weight [–]

effectiveness [–]
efficiency [–]
thermal conductivity [W/(m·K)]
stoichiometric coefficient [–]
density [kg/m3]

Abbreviations

ANN artificial neural network
FFNN feedforward neural network
MSE mean squared error
NARX nonlinear autoregressive network with exogenous inputs

Subscripts and superscripts

amb ambient
d desorption phase
g gas phase
h hydration phase
in inlet
out outlet
s solid phase
sr sorbent
w wall
a air
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over the reactor bed, and the sorption material must be safe and non-
toxic because it is in direct contact with the environment. More details
on sorption system layouts can be found in Scapino et al. [17]. The
main component of the considered sorption system is the reactor, which
is as a reactive packed bed in which a porous material (the sorbate) is
stored. The sorbent (H2O vapor) is contained in the humid air, which
flushes the reactor. During the desorption phase (Fig. 1.1, top) hot air is
flushed into the reactor and water vapor is extracted from the porous
material. Colder and more humid air comes out of the reactor. During
the sorption phase (Fig. 1.1, bottom), cold and humid air enters the
reactor, and warmer and drier air exits from the reactor.

1.2. Neural networks

Neural networks are machine learning models used mainly to clas-
sify or predict data. The model architecture, instead of being based on
physical laws (i.e. transport phenomena equations), is created starting
from data and learning rules [18]. That is, a neural network archi-
tecture is trained with data through a training algorithm to predict a
subsequent set of data

The basic fundamental concept in neural networks is the single
neuron model [19] (Fig. 1.2, right). The input vector p consisting of J
elements from the previous layer or, if it is the first layer, from the input
data layer, are weighted with the weights w and, together with a
neuron bias b, they are summed and fed as an argument to an activation
function f . The output of the activation function is the neuron output a.
In mathematical notation, in vectorized format, it can be written ac-
cording to Eq. (1.2).

= +
=

Wpn b
a f n( ) (1.2)

The activation function f is usually selected based on the knowledge
about the problem and the data. It is important to notice that, in this

work, multiple neurons in a network layer have the same activation
function i.e. all the neurons in a network layer have the same activation
function but different layers can have different activation functions
within a network architecture.

When multiple layers of neurons are employed in a network archi-
tecture (Fig. 1.2 left), the layer whose outputs are the output of the
network is the output layer, while the layers between the input and
output layers are the hidden layers. In a multi-layer architecture, the
number of inputs in the first layer (input layer) J and the number of
outputs in the last layer (output layer) are dictated by the problem
specifications. In a classification problem with a predetermined number
of output categories, the number of neurons in the output layer is equal
to the number of output categories. In a regression problem, in which
the value of a variable quantity should be predicted, only one output
neuron is present.

In general, increasing the number of neurons per layer improves the
capability of the network to approximate more complex phenomena,
and adding hidden layers improves the capability of the network to take
better into account nonlinear relations among the inputs. The optimal
choice for the number of hidden layers and number of neurons in each
layer is problem-dependent and a systematic approach is still a matter
of research (e.g. [20,21]). A common approach is to train multiple
neural networks and decide which architecture suits best the problem
based on a performance indicator. Concerning the number of hidden
layers, it is unusual to exceed two or three hidden layers. Concerning
the number of neurons per layer, a systematic trial and test procedure is
often used. Multiple network architectures exist [22] in which, for ex-
ample, the input layer is connected also partially to some or all of the
hidden layers (cascade-forward networks), or the outputs of the net-
work are used as inputs for the next outputs estimation (autoregressive
neural networks).

1.3. Neural networks applied to energy storage

Sorption heat storage involves physical phenomena such as heat
transfer in porous media and research fields like energy in the built
environment. In past studies, neural networks were used successfully to
tackle research problems involving energy storage, energy efficiency
related applications, and heat transfer [23] also with porous media
involved [24]. The accuracy of these models, when an experimental
dataset was used for training, was comparable or even higher compared
to physics-based models. In particular, a higher accuracy was found in
works related to energy efficiency improvement in buildings from
Buratti et al. [25]. The authors used a neural network with one hidden
layer consisting of 79 neurons, which was able to predict the indoor
temperature given the outdoor climate conditions and the character-
istics of the building envelope. The model based on the neural network
outperformed a physics-based model based in terms of mean squared
error. Among heat transfer studies, Ermis et al. [26] used a feed forward
neural network to analyze the heat transfer process of a finned tube in
which Ethyl-alcohol was flowing at low temperature at the inner side

Fig. 1.2. Left: Conceptual scheme of deep neural network with three inputs in the input layer, two hidden layers, and one output in the output layer. Right:
conceptual scheme of a multi-input neuron consisting of J inputs.

Fig. 1.1. Sorption reactor concept. Top: Desorption phase, in which the sorbent
and the sorbate are separated through an endothermic reaction and thermal
energy has to be provided to the system. Bottom: Sorption phase, in which the
sorbent and the sorbate are reacting in an exothermic reaction and thermal
energy can be extracted from the packed bed.
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and water was solidifying on the outer surface of the tube. The neural
network inputs were heat transfer area, the Reynolds number, the inlet
temperature of the inner fluid, and the time. The output was the
amount of stored thermal energy in the water. They found a better
agreement with experimental data compared to a numerical model in
terms of absolute mean error, standard deviations in the relative error,
and absolute fraction of variance. Lecoueche et al. [27], who used 50
identical neural networks connected in series to simulate a single tube
heat exchanger with constant tube outer surface temperature, found a
difference between a physical model solving the energy balance of the
inner fluid and the heat diffusion equation along the tube wall, and the
neural network model lower than 1% in terms of fluid outlet tem-
perature. The authors trained the neural network model with a training
dataset produced with the physical model and tested its accuracy with a
validation dataset.

Data-based models were also used to predict intrinsic energy storage
characteristics such as performance degradation over the storage life-
time. Richardson et al. [28] employed gaussian process regression (GP)
to forecast Lithium-ion batteries state of health instead of conventional
modelling approaches with more computationally expensive electro-
chemical or equivalent circuit models. The authors predicted the ca-
pacity values of batteries until the battery end of life (EoL), and also the
EoL itself. The dataset consisted of strongly correlated data of batteries
cycled at equivalent thermal conditions and current profiles statistically
equivalent. The root mean squared error on the capacity prediction of
the best performing model was in the order of 0.025, and EoL predic-
tion RMSE was 4.57 days.

Other storage characteristics requiring a previous state of the
system, such as the temperature evolution within a sensible heat sto-
rage, were also successfully modeled. Géczy-Víg et al. [29] developed a
neural network model to estimate the temperature at different locations
of a water storage tank in a solar thermal system with a five minutes
resolution. Among the main neural network inputs at the current
timestep (e.g. mass flow rates of load and solar collector, solar irra-
diation, etc.) the temperature at the same locations in the previous
timestep was used. The model had an average deviation of 0.24 °C over
the entire validation dataset. The same approach was used for a latent
heat storage system by Ghani et al. [30], who used a neural network to
predict the outlet fluid temperature of the storage given, among other
parameters, the outlet temperature at the previous state. By using a test
dataset (i.e. a dataset not used for training the neural network) the
authors found an error based on the energy balance of 5.1% and 7.1%
for charge and discharge phases, respectively. Within the field of
sorption cooling, a recent study from Jani et al. [31] addressed the use
of neural networks for predicting the performance of solid desiccant
cooling systems. Concerning sorption chillers, Frey et al. [32] devel-
oped different neural network models to predict the performance of
different sorption chillers. In particular, the models predicted the chiller
fluids outlet temperatures given the inlet temperatures and flow rates. A
RMSE of less than 1 K has been achieved between the predicted data
and the measured data.

Concerning sorption heat storage, various physics-based reactor
models have been developed in the past regarding this technology (e.g.
[33–37]). However, most of the research is still focused on challenges at
material- and reactor-scale. For system-scale investigations, data-based
models can be useful to decrease the modeling computational cost,
while still providing an acceptable accuracy. However, there seems to
be a lack of investigations about data-based models regarding this
technology. Therefore, this work aims to tackle for the first time the
topic of sorption heat storage from a data-based perspective.

2. Methodology

2.1. Sorption system description

We considered the sorption heat storage system illustrated in

Fig. 2.1. It consists of the reactor itself, a fan (F1) to drive the sorbate
flow, a heat recovery unit to recuperate the heat still present in the
exhaust airflow after the thermal load, and a heat exchanger (HX2) to
provide the heat to the demand side. From a system modeling per-
spective, the sorption reactor parameters necessary for the interaction
with the other system components, are the air mass flow, the input
temperature and sorbate concentration, the outlet temperature, and the
reactor state of charge. With this information, it is possible to quantify
the amount of energy that the reactor stores/delivers in a dynamic
system simulation.

In this work, different dynamic tests (Fig. 2.2) have been performed
with the aim to evaluate the neural networks model under events that
the sorption reactor could experience. For hydration, three tests are
carried out. In tests H1 and H2, the inlet temperature or concentration
is varied in a single step during the hydration process. In test H3, a
continuous variation of both inlet temperature and concentration is
applied. The reason is that, in a real system, the two inputs might vary
according to the ambient conditions if, for example, humid air is di-
rectly fed from the environment into the reactor.

During dehydration, the sorption heat storage can interact with
different sources (i.e. waste heat, solar thermal collectors, a district
heating network connection, etc.) that have the main requirement to
deliver the heat at a temperature above the equilibrium temperature of
the reversible reaction. The same single step variations are performed
as for hydration (tests D1 and D2). A dynamic variation of both vari-
ables is not performed because in a real application, a continuous
variation of temperature and concentration is unlikely to happen. The
reason is that, since a high temperature is required, the heat source is
often at a relatively constant temperature and the influence of the
concentration is relatively small (i.e. the relative humidity of the flow is
small). On the other hand, a scenario with real operating conditions
(test H4) for a hydration is tested assuming a system as depicted in
Fig. 2.1, and the input data are taken from a typical meteorological year
for the area of Uccle (BE). In this test, it is assumed that air at ambient

Fig. 2.1. Open system design concept [38]. During desorption, valve V1 directs
the flow through the heat exchanger HX1 to be heated from a high-T source,
and valve V2 bypasses HX2. During sorption, valve V1 bypasses HX1 and valve
V2 directs the heated flow after sorption into the heat exchanger HX2 to
transfer heat to the appliances and then to the heat recovery unit HR.
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conditions flows into the heat recovery unit and then into the sorption
reactor.

2.2. Physics-based model

The relevant inputs that are being considered for tracking the
sorption reactor system behavior are the inlet temperature (Tin) and
water vapor concentration (cin). The outputs that are modeled by the
data-based model are the outlet reactor temperature (Tout) and the re-
actor state of charge (SOC). A physics-based quasi 2D-model (see
Appendix and Fig. 2.3) developed in COMSOL Multiphysics [39] is used
to produce datasets (Section 2.5) of realistic hydration/dehydration
experiments to be used in the training procedure of the data-based
model. Beside the abovementioned inputs and outputs, the model
solves the physical variables at every discretized node of the spatial
domain and for every timestep of the iterative solver.

The local material conversion degree X , ranging from 0 to 1 and
defined as the amount of material present in hydrated form over the
total amount of material present in a domain element, is estimated
based on a linear driving force kinetic model.

Within this model, the state of charge at time t is defined based on
the material conversion degree calculated in each discretized spatial
domain element (equation (2.1)).

=
=

SOC
N

X1 1
t

n

N

t n
1

,
(2.1)

where N is the overall amount of mesh elements in the spatial domain
and Xt n, is the material conversion degree of mesh element n at time t .
The spatial and temporal evolution of the material conversion degree is
based on the kinetic model in Eq. (A.4). With the abovementioned
definition (Eq. (2.1)), a state of charge equal to 0 means that all the
material is in hydrated form (reactor completely discharged) and a state
of charge equal to 1 means that the material is fully in dehydrated form
(reactor completely charged).

The main parameter values used in the physics-based model
(Appendix) for this work are displayed in Table 2-1. The reactor is as-
sumed to be a stainless steel cylinder with multiple insulation layers, as
in Gaeini et al. [33], with an axial length L and an inner diameter d, and
it is filled with potassium carbonate in packed bed, through which a
flow of moist air is flowing in axial direction. The material physical
properties have been selected assuming that potassium carbonate
(K CO2 3) is used as sorption material and that the sorption reaction
happening in the reactor is +K CO H O K CO H O1.5 ·1.52 3 2 2 3 2 . More-
over, in this analysis, the material properties have been assumed con-
stant and equal to the properties of the material in hydrated state. The
wall and air properties are denoted with the subscripts w and a, re-
spectively. The kinetic constant term kLDF is selected within a range
identified by Gaeini [40].

The results of a hydration and dehydration simulation are shown in
Fig. 2.4, and the input values and initial material conversion degree
used in both operating modes are shown in Table 2-2. For both simu-
lations, an ambient temperature Tamb of 10 °C has been assumed. In
Fig. 2.4 left, the sorption reactor is operating in hydration mode i.e. the
dehydrated material is being hydrated with an incoming flow of sorbent
vapor at a fixed temperature and water vapor concentration of 10 °C
and 0.30mol/m3, respectively. The exothermic reaction produces heat
that is transferred to the air flow, which is then transported out of the
reactor.

During hydration, the SOC, defined as in Eq. (2.1), decreases from 1
to 0. Once that the SOC approaches 0, the reaction rate decreases and
finally becomes zero, implying the outlet temperature to decrease until
it reaches the inlet temperature. In Fig. 2.4 right, the reactor operates in

Tests

Hydration

Test H1: Inlet 
concentration step

Test H2: Inlet temperature 
step

Test H3: Variable inlet 
concentration and 

temperature

Test H4: Real operating 

Dehydration

Test D1: Inlet 
concentration step

Test D2: Inlet temperature 
step

conditions

Fig. 2.2. Tests performed in this work. For every test, the outputs of the phy-
sics-based model and the neural networks model are compared.

Fig. 2.3. Physics-based quasi 2D-model of the sorption reactor: conceptual scheme.

Table 2-1
Main physics-based model parameters for the stainless-steel wall, the airflow,
packed bed geometry, and the sorption material.

Parameter Value Units Parameter Value Units

L 0.5 m cp a, 1004.5 J/(kg·K)
d 0.35 m w 8000 kg/m3

u 0.26 m/s cp w, 500 J/(kg·K)
1.5 – w 16.3 W/(m·K)

Msr 0.165 kg/mol Hreac 63.6 kJ/molH2O
a 1.2 kg/m3 kLDF 5 · 10−4 1/s
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dehydration mode. An airflow at a constant temperature of 100 °C
containing 0.30mol/m3 of water vapor enters the sorption reactor and
removes the sorbate molecules from the sorbent. The outlet tempera-
ture increases up to the equilibrium temperature and remains relatively
constant during the duration of the dehydration reaction. In this phase,
the reaction front is moving from the inlet to the outlet and the thermal
energy above the equilibrium temperature is used in the endothermic
reaction. Then, at the end of the dehydration, when the SOC approaches
1, the reaction front is approaching the outlet and all the mass of the
reactor is heated up to a temperature close to the inlet temperature.

2.3. Neural networks architecture selection

For the determination of the sorption reactor state of charge, the
neural network architecture was selected considering that the state of
charge at the previous timestep (SOCt 1), together with the inputs the
previous timestep (c T,in t in t, 1 , 1), define the state of charge at the cur-
rent timestep (SOCt), according to equation (2.2).

= +SOC SOC SOC c T( , )t t t t in t in t1 1 , 1 , 1 (2.2)

Therefore, the selected neural network architecture should have
autoregressive capabilities to include the previous output value as an
input for the current output estimation, together with additional inputs
representing the inlet temperature and water vapor concentration. The
abovementioned desired features are present in a NARX (nonlinear
autoregressive network with exogenous inputs) architecture (Fig. 2.5,
left), which has been selected to estimate the SOC of the sorption re-
actor. The activation function in the hidden layers is chosen to be the
saturating linear transfer function, which performed best compared to

other investigated activation functions such as the more commonly
used hyperbolic tangent sigmoid transfer function. For the output layer,
a linear transfer function is used.

For the architecture selection of the neural network estimating the
sorption reactor outlet temperature, it has been assumed that the
thermal response of the system is faster compared to the simulation
timesteps (900 s). Therefore, no information about the output in the
previous timesteps is considered, and autoregressive capabilities are not
required for this neural network. The inputs in the previous timestep
(c T,in t in t, 1 , 1, SOCt 1) are used to estimate the reactor outlet tempera-
ture for the current timestep (Tout t, ). With the abovementioned con-
siderations, a FFNN (feedforward neural network) has been selected as
architecture (Fig. 2.5, right). The selected activation function in the
hidden layers is the hyperbolic tangent sigmoid transfer function, which
is one of the possible functions that can be used in the hidden layers
satisfying the requirements of being nonlinear, bounded, and mono-
tonic. More details on the different activation functions together with
their advantages and drawbacks can be found in Hagan et al. [19].
Finally, for the FFNN output layer, a linear transfer function is used,
which is the common choice for a regression problem (Section 1.2).

The sorption reactor model based on the two neural networks is
conceptually shown in Fig. 2.6, and this architecture is used for both
hydration and dehydration modes. The output of the NARX is used as
input for the FFNN for the reactor outlet temperature estimation. From
the implementation perspective, the two networks do not have to be
interconnected if the inputs (cin,Tin) are already known and prescribed a
priori over the time domain. On the other hand, in case of a control
problem in which real time decisions must be made, the two networks
must be interconnected so that at every new timestep the current state
of charge can serve as input for the FFNN. For each operating mode
(hydration and dehydration) the most suitable NARX and FFNN in
terms of hidden layers and neurons number are chosen.

2.4. Performance indicators

The performance indicator is the quantity that, during the training
procedure, should be minimized by adjusting the network parameters.
It is based on the difference between the neural network outputs and
the physics-based model outputs (targets). In this work, the mean

Fig. 2.4. Sorption reactor operating in hydration (left) and dehydration (right) modes. Blue: Inlet temperature. Red: Outlet temperature. Black: State of charge (SOC).
Dashed black: Inlet sorbate concentration.

Table 2-2
Input conditions (cin and Tin) and initial material conversion degree (X0) used
for the hydration and dehydration examples.

HYDRATION DEHYDRATION

cin h, 0.30 [mol/m3] cin d, 0.30 [mol/m3]

Tin h, 10 [°C] Tin d, 100 [°C]
X h0, 0 X d0, 1

Fig. 2.5. Conceptual scheme of the two neural networks architectures investigated in this work. Left: NARX architecture layout the state of charge estimation. Right:
FFNN architecture layout for the outlet temperature estimation.
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square error (MSE) is used as performance indicator, and it is defined,
for a single output as in Eq. (2.3).

=
=

MSE
Q

z a1 ( )
q

Q

q q
1

2

(2.3)

where Q is the overall number of input-target training data, zq the
target of the q-th training data and aq the output of the neural network
of the q-th training data.

An additional indicator is shown in Section 3: the relative energy
balance error, defined in Eq. (2.4), assuming constant mass flow and air
properties.

=

=

=

=

=

=

E
m c T T t
m c T T t

T T
T T

( ( ) )
( ( ) )

1

( )
( )

1

i
N

air p air out FFNN i in i

i
N

air p air out target i in i

i
N

out FFNN i in i

i
N

out target i in i

1 , , , ,

1 , , , ,

1 , , ,

1 , , , (2.4)

where Tout FFNN, is the outlet temperature output from the neural net-
work andTout target, from the physics-based model. t is the fixed timestep
at which the targets are recorded, which is also the timestep of the
outputs of the neural network model. N is the overall number of the
simulation timesteps. A low error in the energy balance can still result
in a meaningless profile of the outlet temperature. Therefore, it should
not be used to estimate the goodness of the profile, but as purely as an
informative indicator.

2.5. Neural network training procedure and datasets

The training algorithm used in this work is the Levenberg-
Marquardt algorithm [41,42], a modified version of the back-
propagation algorithm [43]. Moreover, Bayesian regularization has
been used to improve the generalization capabilities of the neural
networks and avoid overfitting [19,44,45]. The model development has
been carried out in MATLAB using the Neural Network Toolbox [46].

Several neural networks were created and trained in a systematic
procedure. The number of neurons was varied according to the values
in the set {2,3,5,7,10,15,20,25}. The number of hidden layers was
varied from 1 to 4. The abovementioned neurons and hidden layers
ranges were used for each neural network type (NARX and FFNN) and
for each operating mode (hydration and dehydration), resulting in 128
different neural networks.

The initial weights assigned to each neural network are based on the
random number generator of the software, and they can influence the
final performance of the trained neural network. To minimize the in-
fluence of the initially random weights, the same neural network is

trained ten times with different random number generator seeds, and
the one with the best performance indicator (MSE) is selected.

The abovementioned systematic training procedure took approxi-
mately 2 weeks of computational time on a single cluster node with 16
Intel® Xeon® CPU E5-2670. However, the training procedure can be
parallelized and, with multiple cluster nodes, the training time can be
decreased.

The input data for the neural networks training and validation have
been produced with the physics-based model described in the
Appendix. Several hydration and dehydration simulations have been
performed in order to obtain a dataset of inputs and outputs within a
range of expected operating conditions for hydration and dehydration
modes (Table 2-3). The minimum and maximum values have been se-
lected within a range of realistic boundary conditions for both hydra-
tion and dehydration modes. In particular, for dehydration, tempera-
tures of 70–150 °C are selected to simulate either a low/medium
temperature waste heat source or a highly efficient solar thermal col-
lector system. For hydration, an inflow temperature range within
10–45° C is selected, assuming that a heat recovery unit can be present
to preheat the inlet air.

The boundaries for the water vapor concentration have also been
selected within realistic operating conditions. For hydration, slightly
higher values have been selected assuming the possibility to have a
humidification unit before the reactor inlet.

Two data sets have been produced for each operating mode. The
training dataset was used during the training procedure of the neural
networks while the validation dataset was used as an additional set of
data. The validation dataset consists of intermediate operating condi-
tions within the operating condition boundaries set by the extremes of
the training dataset. For the neural network selection, the MSE is cal-
culated from the validation dataset, which is a completely new set of
data that has not been used for the neural network training. This pro-
cedure avoids the overfitting problem, i.e. having a neural network that

Fig. 2.6. Conceptual layout of the sorption reactor neural networks model investigated in this work. The model uses a NARX structure for the state of charge
estimation and a FFNN for the outlet temperature estimation. The FFNN uses as additional input the output from the NARX network.

Table 2-3
Datasets of hydration (H) and dehydration (D) modes and number of simula-
tions for each dataset. cin is expressed in [mol/m3] and Tin in °C.

Min Step Max N. Simulations

H Training dataset Tin 10 5 45 64
cin 0.300 0.05 0.650

Validation dataset Tin 12.5 5 42.5 49
cin 0.325 0.05 0.625

D Training dataset Tin 70 10 150 72
cin 0.200 0.05 0.550

Validation dataset Tin 75 10 145 56
cin 0.225 0.05 0.525
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performs well with the training data, but it poorly represents data not
used for training.

2.6. Neural networks selection

The neural networks were trained with the training datasets. The
training algorithm makes use internally of the MSE calculated with the
training dataset. However, as already mentioned in 2.5, the selection is
made based on the validation dataset. In Fig. 2.7, the results in terms of
MSE for the neural network selection are displayed for both SOC and
Tout in both hydration and dehydration mode. According to Fig. 2.7 left,
the best performing neural network for the SOC estimation consists of a
network with 1 hidden layer with 10 neurons in each layer for the
hydration mode, and with 1 hidden layer with 20 neurons in each layer
for the dehydration mode, respectively. For the outlet temperature es-
timation, a neural network consisting of 3 hidden layers and 25 neurons
for hydration mode and 4 hidden layers and 7 neurons for dehydration
mode performed best.

3. Results

3.1. Hydration

3.1.1. Test H1 - Step-wise concentration increment
In order to test the dynamic response of the neural network model to

variable inputs, several tests are done (summarized in Fig. 3.11). In this
first test, the response to a step function in the inlet water vapor con-
centration is calculated. During a hydration simulation (Fig. 3.1), the
input water vapor concentration was kept equal to 0.32mol/m3 during
the first 8 h and then is increased in a single step to 0.47 up to the end of
the experiment. The temperature has been kept constant to 10 °C.

Consequently, the reaction rate increases due to a higher water
vapor pressure entering in the reactor (Eq. (A.4)), resulting in a higher
driving force for the hydration. The expected behavior of the sorption
reactor is that it is discharged at a higher rate due to the reaction rate
increase. Therefore, when the concentration increases, the slope of the
state of charge becomes steeper (Fig. 3.1 right). For the same reason,
the outlet temperature increases (Fig. 3.1 left). The comparison among
the physics-based and the neural networks models are in good agree-
ment. The MSE for the SOC is 8.3 · 10−5, while the MSE for the outlet
temperature is 1.6 °C2. The relative energy balance error E between
the physics-based model and the neural networks model is 2.9%. It is
important to remember that the MSE for SOC and Tout are the main
performance indicators, while E is only an informative indicator.

The error in the outlet temperature estimation from the FFNN is
partially a result of the error propagation of the SOC estimation from
the NARX. Therefore, an additional outlet temperature estimation is
made by using the SOC targets (i.e. the SOC from the physics-based
model) as inputs together with cin andTin with the aim to understand the
SOC error contribution to the Tout error.

In Fig. 3.1 left, towards the end of the experiment (Time 15 h), the
outlet temperature from the neural network using the NARX-computed
SOC has a minor discrepancy, which disappears if the SOC targets are
fed in as inputs to the FFNN.

Finally, it has to be remembered that the neural networks have been
selected based on their performance using the hydrations in the vali-
dation dataset, and not based on this specific test condition. Therefore,
there might be a more suitable neural network that reproduces better
this test. In this case, it has been found that a neural network with 3
hidden layers and 3 neurons (3H3N) leads to a slightly better estimation
of the outlet temperature of the reactor, especially towards the end of
the test (Fig. 3.2). However, it is impractical to select the most

Fig. 2.7. Top left: MSE values of the
different NARX networks for the state
of charge estimation in hydration
mode. Top right: MSE values of the
different feed forward neural networks
(FFNN) for outlet temperature estima-
tion in hydration mode. Bottom left:
MSE values of the different NARX
networks for the state of charge esti-
mation in dehydration mode. Bottom
right: MSE values of the different feed
forward neural networks (FFNN) for
outlet temperature estimation in de-
hydration mode.
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representative network architecture for a specific experiment. The se-
lected neural networks for the model should indeed cover a wide range
of operating conditions with sufficient accuracy. By considering that the
error, assuming a full hydration experiment, is affecting only few
timesteps in which SOC values are smaller than 0.05, from a practical
perspective this discrepancy is considered acceptable. The same con-
siderations apply also for the other tests.

3.1.2. Test H2 - Step-wise temperature increment
Similarly to the previous test concerning a concentration step,

during a hydration experiment the inlet temperature has been in-
creased. The concentration has been kept constant to 0.40mol/m3

throughout the whole experiment. The temperature has been increased
in a single step from 15 °C to 23 °C after the first 7 h of the test.

The results are shown in Fig. 3.3. In Fig. 3.3 left, the outlet tem-
perature has a first increase from the ambient temperature Tamb to ap-
proximately 33 °C. Then, the outlet temperature increases due to the
inlet temperature increase. An increase in the inlet temperature leads to
an increase in equilibrium water vapor pressure, which in turn leads to
lower reaction source terms in Eqs. (A.1) and (A.2). This can be easily
verified by looking at the behavior of the term dX

dt
and the role of the

ratio p T
p c T

( )
( , )

eq

v
in Eq. (A.4). Therefore, a decrease in the discharging rate

with an increasing inlet temperature is expected. For the above-
mentioned reasons, the outlet temperature increases but the tempera-
ture lift within the reactor is lower. The comparison among the physics-
based model and the neural networks model resulted in an MSE for SOC
of 5.1 · 10−5, and an MSE for the outlet temperature of 1.9 °C2. The
relative energy balance error between the physics-based model and the
neural networks model is 3.9%.

A relatively large discrepancy between the target temperature and
the temperature estimated from the neural networks model can be
noticed at the moment in which the inlet temperature is changed. The
reason of this discrepancy resides on the intrinsic limitation of the feed
forward neural network architecture used for the outlet temperature
estimation (Fig. 2.5). The FFNN architecture is not considering the past
values of the output (i.e. the past state of the reactor); therefore, the
thermal inertia of the packed bed is not considered (i.e. a change in the
input values immediately results in a change of the output values).
Moreover, also the SOC profile shows a discrepancy due to the similar
reason that the neural network architecture used considers the previous
neural network SOC output as feedback input, but it is not considering
the past values of the inlet temperature and concentration inputs.

Fig. 3.1. Test H1 with water vapor concentration change during hydration experiment. MSESOC=8.3 · 10−5. MSETout= 1.6 °C2. E =2.9%. ESOC,targets = 1.1%.

Fig. 3.2. Detail from test H1 in which the neural network 3H3N would perform
better than the one selected in Section 2.6 (3H25N).

Fig. 3.3. Test H2 with temperature change during hydration experiment. MSESOC=5.1 · 10−5. MSETout= 1.9 °C2. E =3.9%. ESOC,targets = 2.5%.
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The importance of this feature depends on the magnitude of the
timesteps, the magnitude of the inlet temperature variation rate, and
the acceptable errors. Also, for hydration experiments, the outputs
discrepancy depends on which point of the hydration the input tem-
perature changes. The later the input temperature varies during the
experiment (i.e. smaller SOC values and reaction front further from the
reactor inlet) the larger will be the outputs discrepancy (i.e. effect of
reactor thermal inertia). In Fig. 3.4 left, test H2 is repeated three times
by varying when the step-wise inlet temperature change is applied. In
Fig. 3.4 right, it is possible to notice that the outputs discrepancy is
larger for step-wise changes applied later in the hydration process.

Furthermore, also in this experiment the SOC error propagation into
the outlet temperature estimation can be noticed in Fig. 3.3 left by
looking at the difference the outlet temperature from the neural net-
work using the NARX-computed SOC and the outlet temperature from
the neural network using the SOC targets as inputs to the FFNN.

3.1.3. Test H3 - fully variable temperature and concentration
The inlet concentration and temperatures have been varied con-

tinuously and randomly, within the boundary conditions of the training
set (Table 2-3), see also Fig. 3.5.

The state of charge profile is in a good agreement with the target
value, with an MSE of 1.7 · 10−4. The outlet temperature profile shows
discrepancies in presence of large variations of inlet temperature,
especially in the second half of the hydration process. The reason is
identical to the previous experiment: abrupt inlet temperature varia-
tions especially when the reaction front is far from the reactor inlet (i.e.
larger absolute heat capacity of the already reacted portion of the
packed bed) are a source of error because the thermal inertia of the
reactor is not considered in the FFNN.

The MSE for the outlet temperature profile is 3.3 °C2. The SOC error
propagation is also presented in Fig. 3.5 left. Finally, a relative energy
balance error of 4.2% has been estimated.

3.1.4. Test H4 - Real operating conditions
A reference scenario for a hydration experiment is assumed, in

which the sorption heat storage system is connected to a thermal load.
Thus, realistic dynamic input values (Tin and cin) can be estimated. The
sorption reactor is assumed to be connected (Fig. 3.6) to an air/water
heat exchanger and a heat recovery unit, as in [47]. It is assumed that
the thermal load has a constant water inlet temperature and mass flow.
In the hydration mode, the hot air at the outlet of the reactor (T a3, )

Fig. 3.4. Example of outputs discrepancy due to the thermal inertia effect. Test H2 repeated with step-wise inlet temperature changes after 4, 7, and 10 h from the
beginning of the hydration.

Fig. 3.5. Test H3 with temperature and concentration changes during hydration experiment. MSESOC= 1.7 · 10−4. MSETout= 3.3 °C2. E =4.2%. E
SOC,targets = 4.7%.
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exchanges heat with the water in the air/water heat exchanger by in-
creasing the temperature of the inlet water from T H O1, 2 to T H O2, 2 . Then,
the air at the outlet of the heat exchanger (T a4, ) is used to preheat the
incoming ambient air (T a1, ) in a heat recovery unit having a heat re-
covery efficiency of 0.9 [48]. Finally, the preheated air enters in the
sorption reactor at a temperature T a2, . No additional humidification
system is assumed. Therefore, the reactor inlet water vapor con-
centration is equal to the ambient concentration ( =c ca a2, 1, ).

The ambient air temperature and water vapor concentrationT a1, and
c a1, are taken from a period in June of a typical meteorological year
(TMY3) weather file for Uccle (BE) [49]. It is assumed that the thermal
load consists of a water flow entering in the air/water heat exchanger at
a constant temperature. The relevant model parameters are shown in
Table 3-1.

With the abovementioned data, the aim is to estimate realistic va-
lues of the inlet reactor temperature and concentration after the heat
recovery unit (i.e.T a2, and c a2, ). In order to do so, preliminary values for
T a3, are required, which are then used to estimate the values of T a2, . T a3,
values are estimated by assuming that the outlet reactor temperature
cannot exceed the equilibrium temperature of the reaction, and that all
the reaction energy is transferred to the air mass flow (Eq. (3.1)).

=T T
c H

c
min ,reac max eq

a reac

a p a
,

1,

, (3.1)

With Hreac the reaction enthalpy of the selected sorption material.
The ideal temperature at the outlet of the reactor can then be calculated
as in Eq. (3.2). In this equation, the inlet reactor temperature of the
previous time step is used.

= +T TTa reac max3, 2,a , (3.2)

The air and water temperatures at the outlet of the air-water heat
exchanger (T a4, and T H O2, 2 ) are calculated with heat exchanger effec-
tiveness. The resulting reactor inlet temperature and water vapor

concentration (Tin =T a2, andcin = c a2, ) are shown in Fig. 3.7. The fluc-
tuations in the water vapor concentration and temperature are the re-
sult of the natural variation of temperature and relative humidity pre-
sent in the weather file over the 20 h considered in this scenario.

The current reactor inlet temperature and water vapor concentra-
tion are then used to calculate the real sorption reactor outputs with the
physics-based model, and the outputs from the neural networks model.
The results from the two models are compared in Fig. 3.8.

From Fig. 3.8, it can be noticed how the temperature profile pre-
dicted by the neural networks model matches much better with the
target temperature profile compared to the previous dynamic tests. The
main reason is that the variations of both the magnitude and frequency
of the inlet temperature input is reduced. This results in a relatively low
MSE for the outlet temperature (2.1 · 10−1 °C2). In this test, the water
vapor concentration depends directly on the outer conditions. On the
other hand, the inlet temperature variation depends also on the heat
recovery unit efficiency and on the air temperature after the thermal
load (T a4, ). In real systems, the heat recovery efficiency can vary sub-
stantially during the system operation and be far from the nominal one
[48].

3.2. Dehydration

3.2.1. Test D1 - Step-wise concentration decrement
During a dehydration experiment (see Fig. 3.9), the concentration

has been decreased in a single step from 0.55 to 0.25mol/m3 after
3.5 h, approximately halfway the dehydration process. The temperature
has been kept constant at 110 °C. Assuming that for a dehydration
process ambient air is used, a variation in water vapor concentration in
the air due to the daily atmospheric variations is a realistic assumption.
The air is then heated by a heat source up to a prescribed and controlled
temperature.

The results show that, as for the same tests in hydration mode, there
is a good agreement in terms of outlet temperature and state of charge
profiles compared to the physics-based model. A discrepancy is visible
almost at the beginning of the dehydration process, in which a large
temperature gradient is present, and it is attributable to the SOC error
propagation from the NARX network to the feed forwards network
calculating Tout. A relatively small discrepancy in the outlet tempera-
ture is visible at the moment in which the concentration is changed.
This is due to the slight decrease in the equilibrium temperature of the
dehydration process, due to a lower inlet concentration, which propa-
gates from the reaction front location at the moment of the con-
centration change, towards the outlet of the reactor. The reason of the
discrepancy, as already mentioned, is caused by the fact that the model
is not considering the thermal inertia of the system. An MSE of

Fig. 3.6. Sorption heat storage system configuration assumed during the hy-
dration phase. HR=Heat recovery unit.

Table 3-1
Model parameters for test H4.

Parameter Value Units Description

m m/a H O2 3 – Air to water mass flows ratio
T H O1, 2 10 °C Water inlet temperature

HX a H O, / 2 0.8 – Air/water heat exchanger effectiveness

HR 0.9 – Air/air heat recovery efficiency

Fig. 3.7. Reactor inlet temperature (Tin =T a2, ) and water vapor concentration
(cin = c a2, ) used for test H4.
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3.4 · 10−5 and 14.4 °C2 for respectively the state of charge and the
outlet temperature have been estimated during the test. The relative
energy balance error is 2.6%.

3.2.2. Test D2 - Step-wise temperature increment
The test consisted of increasing the inlet temperature from 90 °C to

130 °C after 4.5 h and keeping the water vapor concentration constant
at 0.35mol/m3 (see Fig. 3.10).

As for the hydration test, the change in inlet temperature during the

dehydration process causes a discrepancy due to the absence of thermal
inertia in the neural network model, which causes an instantaneous
response in the outlet temperature and state of charge. The magnitude
of the discrepancy depends on the stage of the dehydration process at
which the inlet temperature change is applied, together with the inlet
temperature change magnitude. An MSE of 1.2 · 10−3 and 49.6 °C2 have
been measured for the SOC and outlet temperature outputs, respec-
tively, together with a relative energy balance error of −3%.

Fig. 3.8. Test H4 with temperature and concentration changes during hydration experiment. MSESOC=3.6 · 10−6. MSETout= 2.1 · 10−1 °C2. E =0.3%.
ESOC,targets = 0.9%.

Fig. 3.9. Test D1 with concentration change during dehydration experiment. MSESOC= 3.4 · 10−5. MSETout= 14.4 °C2. E =2.6%. ESOC,targets = 0.2%.

Fig. 3.10. Test D2 with temperature change during dehydration experiment. MSESOC= 1.2 · 10−3. MSETout= 49.6 °C2. E = -3%. ESOC,targets= 0.07%.
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3.3. Tests summary and computational cost

The MSE values for all the six tests (Fig. 2.2) are summarized in
Fig. 3.11.

The largest MSE values in each operating mode are present in tests
H3 and D2 for both the SOC and outlet temperature outputs. On the
other hand, the smallest MSE is present in test H4, simulating realistic
hydration conditions. For the outlet temperature estimation, it appears
that the influence of the input temperature variation on the MSE is a
major contribution to the MSE (i.e. tests H2, H3, and D2). Test H3 has a
larger temperature variation compared to H4, and larger MSE values for
both model outputs are present.

From the computational cost perspective, the neural networks
model is compared with the physics-based model developed in
COMSOL Multiphysics [39]. However, this should be interpreted only
as a rough and qualitative comparison because, while in the neural
networks model only the solving time to produce the neural networks
outputs is calculated, for the physics-based model also the supple-
mentary time required for the commercial software for secondary tasks,
beside the solving process, is inherently measured. In Fig. 3.12, it is
possible to notice the advantage, from a computational cost perspec-
tive, of using a data driven model such as the one developed in this
work. The physics-based model tests took between 19 s and 663 s to be
solved. The same tests performed with the data driven model, took
between 0.12 s and 0.15 s. However, as already mentioned, for this kind
of models the training process (see Section 2.5) has to be carried out
with either experimentally obtained data or data from high-fidelity
numerical models.

4. Conclusions

In this work, the capability of artificial neural networks to model the

dynamic behavior of a sorption heat storage reactor is investigated for
the first time. The advantage of this type of data-based models is their
faster solving time and acceptable accuracy for dynamic system simu-
lations compared to more detailed physics-based models. A model
based on two neural networks architectures, a nonlinear autoregressive
neural network with exogenous inputs and a feedforward neural net-
work, has been designed to predict the state of charge (SOC) and re-
actor outlet temperature (Tout) evolution given the inlet reactor tem-
perature (Tin) and water vapor concentration (cin).

The model demonstrated good capabilities in predicting the dy-
namic evolution of the outputs for several hydration and dehydration
tests, with MSE values for the state of charge and outlet temperature
below 2 · 10−3 and 50 °C2, respectively. Moreover, a hydration scenario
with real operating conditions is also considered by assuming a full
system layout and realistic model inputs, and the model effectively
predicted the outputs evolution with MSE values of 3.6 · 10−6 and
2.1 · 10−1 °C2 for the state of charge and outlet temperature, respec-
tively.

It has been found that the behavior of the developed model, and the
source of errors in terms of discrepancies from the physical model,
derive from the underlying physical parameters of the sorption heat
storage such as the thermal inertia. The latter is not effectively tracked
with the selected neural network architecture for the outlet tempera-
ture estimation. Future research will be focused towards improving the
neural networks model by investigating different network architectures.
Ultimately, the type of sorption system, its size, and the outputs time
resolution will determine the relevance of this feature and whether it is
necessary to integrate it within this type of model. Finally, in case of an
existing system, it could be possible to develop a relatively light and
efficient model based solely on the experimental measurements of its
relevant inputs and outputs, without the need to simulate a possible
complex geometry and physical interaction among various parts of the

Fig. 3.11. MSE values of the SOC and Tout outputs for the six tests performed in this work. Test H1: hydration, cin step. Test H2: hydration, Tin step. Test H3:
hydration, dynamic variation of cin and Tin. Test H4: hydration, real case scenario. Test D1: dehydration, cin step. Test D2: dehydration, Tin step.

Fig. 3.12. Computational cost comparison between the physics-based model and the neural network model. Test H1: hydration, cin step. Test H2: hydration, T step.
Test H3: hydration, dynamic variation of cin and Tin. Test H4: dehydration, cin step. Test D1: dehydration, Tin step. Test D2: hydration, real case scenario.
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sorption system. Being a data driven model, the quality and amount of
experimental data used for the training and validation process will play
a crucial role. The purpose of the model will dictate the amount and
resolution of the system inputs and outputs in order to have the desired
accuracy. Thus, efficient numerical tools for the prediction and control
of a sorption heat storage system, also using real-time data, can be
developed using the approach presented in this work.
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Appendix. Physics-based model

The quasi 2D-model consists of a set or partial differential equations describing the sorbent mass balance (Eq. (A.1)), the packed bed energy
balance (Eq. (A.2)) assuming the solid a gas phases to be in thermal equilibrium, and the wall energy balance (Eq. (A.3)), which has been developed
and described in detail by Gaeini et al. [33] for an existing prototype reactor. In order to describe the reaction advancement and the reaction rate, a
kinetic model (Eq. (A.4)) based on a linear driving force, already used for modeling gas/solid sorption reactions at reactor scale has been im-
plemented [34]. The equilibrium pressure is found following the Clausius - Clapeyron equation while the vapor pressure is calculated assuming the
fluid flow to be a perfect gas.
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The thermal resistance values Ri and Ro are determined by the geometrical parameters of the reactor. In this analysis, the material properties are
assumed constant and equal to those of the material in hydrates state. The effective axial thermal conductivity ( eff ) is calculated with the Zehner and
Schlunder model [50], the bed mean heat capacity ( c̄p ) is calculated with Eq. (A.5), and the axial mass dispersion coefficient (Dx) is calculated from
the Péclet number and the Gunn’s correlation [51].

= +c c c¯ (1 )p a p a b sr p sr b, , (A.5)

The initial and boundary conditions are described in Table A-1. The initial sorbate concentration c0 is assumed to be the concentration at the
equilibrium sorbate vapor pressure at T0.
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