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Abstract

The robustness of a network is the extent to which the network is able to
continue performing well when it is subject to failures or attacks [18, p. 1].
In order to quantify a network’s robustness, all kinds of graph measures have
been invented, each of which captures a different perception of robustness.
This work revolves around two of them: the graph’s algebraic connectivity
and its effective graph resistance. The larger the graph’s algebraic connec-
tivity, the more robust the graph, while the larger the graph’s effective graph
resistance, the less robust the graph.

We asked ourselves two questions, both of which are easy to understand:
given a connected graph, the addition of which single edge will maximally
increase the graph’s algebraic connectivity? And, given a connected graph,
the addition of which single edge will maximally decrease its effective graph
resistance? Up to now, no one has detected any structure in either problem.
An exhaustive search takes time O(N?®), irrespective of whether robustness
is defined as the graph’s algebraic connectivity or minus its effective graph
resistance. Kim [30] has formulated a clever kind of search that will output
the answer to the first question in time O(N?), but otherwise no algorithms
have been proposed.

In this work, we first attempt to discover a structure in the second prob-
lem. It has been shown that the effective graph resistance of a graph relates
to the eigenvalues of the graph’s Laplacian, to the random walk on the graph,
and to the number of spanning trees. We make use of the last two to slightly
simplify the problem and as a result dispose of a fraction of its complexity
— a lot of complexity remains.

Afterwards we present the main contribution of this work: the applica-
tion of a quantum search algorithm by Diirr and Hgyer [16] to both problems.
We show that the algorithm can be used to answer both questions in time
O(N*), which means that it is the “fastest” known algorithm for solving
the problem of minimising the effective graph resistance of the augmented
graph. Finally, we also illustrate how heuristics can be used to speed up
Diirr and Hgyer’s algorithm, in particular, we explain how by taking advan-
tage of a very simple heuristic, the query complezity of the algorithm can
be halved.
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Chapter 1

Introduction

1.1 The Problem

A network is a set of vertices or nodes joined together by edges and usually
associated with a real-world phenomena. Probably the most well-known ex-
ample of a network is the Internet. The Internet is a network of computers:
vertices represent computers and edges the wires that connect them. Com-
puter networks such as the Internet are just one example of the variety of
phenomena that are naturally described by a network. Other widely studied
examples include social networks (see Fig. 1.1), which describe the relation-
ships between people or groups of people, and neural networks, which consist
of neurons and the synapses that interconnect them.

If we abstract away from what the vertices and edges in a network stand
for, networks become equivalent to graphs. Graph theory, the study of
graphs, constitutes a large part of discrete mathematics.

There is a lot to say about graphs. Accordingly, a large number of
properties of graphs and graph measures have been defined. This work is
centred around a particular graph measure called robustness. We will adopt
the loose definition of robustness by Ellens and Kooij [18, p. 1]:

Definition 1 (Robustness). The extent to which the network is able to
continue performing well when it is subject to failures or attacks.

Arguably, robustness is more of a network measure than it is a graph
measure, as it relates to the performance of a network, something which is
dependent on the phenomena the network describes. Consequently, there
is a multiplicity of formulas for computing a network’s robustness, each
formula expressing a different interpretation of performance. A survey by
Ellens and Kooij [18] provides for an overview of several graph measures
that intuitively quantify a graph’s robustness.

In their survey, Ellens and Kooij only consider topological measures, i.e.
measures that capture (part of) the network’s topology, the arrangement of
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Figure 1.1: The friendly relationships between Gahuku-Gama sub-tribes
in New Guinea around 1950, depicted as a network. Based on the graph in
Fig. 5 of [42, p. 41] which also includes the oppositions between the sub-
tribes.

vertices and edges, as opposed to measures that also relate to what happens
on the network. To illustrate the difference, if the network is the Internet,
a topological measure would be the average number of wires connected to a
computer, whereas a measure such as the average amount of time between
a computer sending a message and another receiving it will depend on the
network’s topology as well, but definitely also on how many other messages
are being sent, for example, or on how messages are being routed.

In this work, we will only consider two out of the many graph measures
that are believed to reflect a graph’s robustness: algebraic connectivity and
effective graph resistance (see Sects. 2.2 and 2.3, respectively, for their defini-
tions). Both measures are topological measures, which makes what happens
on the network irrelevant. For that reason, we will from now on use the
term graph more frequently, and the term network only whenever we talk
about robustness, or when an example is given.

We will now define the problem addressed by this work.

Definition 2 (Problem). Given a network, the addition of which single
edge will maximally increase the network’s robustness? We consider two in-
stances of the problem, respectively: one in which the network’s robustness
is defined as the graph’s algebraic connectivity, and one in which it’s de-
fined as minus the graph’s effective graph resistance. Indeed, the larger the



graph’s algebraic connectivity, the more robust the graph, while the larger
the graph’s effective graph resistance, the less robust the graph.

We will also briefly discuss why these measures are natural indicators of
robustness (see Sects. 2.2 and 2.3), but it should be emphasised that we do
not intend to provide for a comparison between them and other measures.
For a comparison, see for example [46].

1.2 Exhaustive Search

Our problem is to find an algorithm that takes as input the adjacency matriz
A(G) (see Sect. 2.1.1) of a graph G and outputs the edge €’ that, if added
to G, either maximally increases the graph’s algebraic connectivity or max-
imally decreases its effective graph resistance. A natural question to ask is,
what is the worst-case running time of an exhaustive search? An exhaustive
search involves computing, for all graphs G + e that can be obtained by
adding a candidate edge e to G, the graph’s algebraic connectivity or effec-
tive graph resistance and finding the maximum or minimum, respectively,
among them. Therefore, the worst-case running time of an exhaustive search
is dependent on

« the number of candidate or non-existing edges in G;

« the worst-case running time of computing the algebraic connectivity
or effective graph resistance of G + ¢; and on

« the worst-case running time of finding the maximum or minimum
among the outcomes.

In fact, we are not interested in the worst-case running time of the search,
but rather in the order of growth of the running time as a function of the
size of the graph G for which we would like to solve the problem. The size
of a graph G is naturally dependent on IV, the number of vertices in G, and
on M, the number of edges.

If either of the three parts of the computation (see above) cannot be
bounded above by some cg(N, M), where ¢ is a constant and g(N, M) a
polynomial, then neither can the running time of the computation as a
whole. Consequently, the exhaustive search would be an exponential time
algorithm. Otherwise, if each part can be bounded above by some cg(N, M),
then the running time of the computation as a whole can also be bounded
above by a polynomial and as a result, the algorithm is a polynomial time
algorithm.

As long as no polynomial time algorithm has been found to solve a prob-
lem, the problem is considered to have not been “well-solved” [23, p. 8]. The
underlying idea is that for a lot of problems, the polynomial time algorithm



that solves it takes advantage of the problem’s hidden structure, which usu-
ally is discovered only after a profound understanding of the problem has
been obtained. Most exponential time algorithms, on the other hand, are
simply exhaustive search in disguise and in general do not require much
more than a basic understanding of the problem.

Is exhaustive search, applied to our problem, an exponential or polyno-
mial time algorithm? Let’s consider each part of the search one after the
other.

Number of candidate edges in G. A complete graph, a graph in which
each pair of vertices is connected by an edge, has (1;/ )= N(N—-1)/2
edges. Therefore, the number of candidate edges in G is N(N —1)/2 —
M, which can be bounded above by cg(IN) where ¢ is a positive con-

stant and g(N) = N2.

Computing algebraic connectivity or effective graph resistance. One
way to compute a graph’s algebraic connectivity or effective graph re-
sistance, is by computing the eigenvalues of the symmetric N by N
Laplacian matrix of the graph G (see Sect. 2.2 for a definition), fol-
lowed by a few inexpensive operations that can be neglected. The
symmetric QR algorithm can be used to find the eigenvalues of the
Laplacian, and its running time can be bounded above by cg(N) where
c is again a positive constant and g(N) = N3 [25, p. 463].

Finding the maximum or minimum. In order to find the maximum or
minimum, we simply need to iterate over all the outcomes whilst keep-
ing track of the largest or smallest value, respectively, encountered up
till now. It is possible that there is more than one candidate edge
whose addition would result in a maximum increase in algebraic con-
nectivity or decrease in effective graph resistance, but we only need to
find one to solve our problem. The running time of this part of the
computation can therefore be bounded above by a positive constant ¢
times the maximum number of candidate edges N2.

Accordingly, the running time of an exhaustive search can be bounded above
by the polynomial ¢ (N? - N3 + N?) = ¢ (N° + N?) where c is once more a
positive constant, which is equivalent to saying that the running time of the
search is O(N®).1 Consequently, the exhaustive search, as outlined above,
is a polynomial time algorithm.

However, although this means that a polynomial time algorithm that
solves our problem exists, because the algorithm is a mere exhaustive search
that does not take advantage of the problem’s hidden structure — if it exists

LA function f(n) is O (g(n)) if there exist positive constants ¢ and no such that f(n) <
cg(n) for all n > nyg.



at all — the question as to whether it is possible to formulate a polynomial
time algorithm that does take advantage of the problem’s hidden structure
remains open.

1.3 Kim'’s Bisection Algorithm

There does exist a polynomial time algorithm by Kim [30] that solves one
of the two instances of our problem: the problem of finding the edge €’ that
would maximally increase the graph’s algebraic connectivity, if it were to
be added to G; but it does also not make use of a hidden structure and
can be regarded as a clever kind of exhaustive search. The time complexity
of the Kim’s bisection algorithm is O(N?3), which is better than the time
complexity O(N?®) of the exhaustive search given above.

Other than Kim’s algorithm, we are unaware of any algorithm that solves
the first instance of our problem. For the second instance of our problem,
in which the network’s robustness is defined as minus the graph’s effective
graph resistance, no algorithm seems to exist. Indeed, not even a clever kind
of exhaustive search. In their paper about effective graph resistance, Ellens
et al. [19, p. 2505] propose, as a direction for future research, the “design
of an algorithm for determining the edge that decreases the effective graph
resistance most, without having to try all possible edges” — which is what
our second problem instance is about.

1.4 Quantum Computation

There are many different algorithm paradigms that we could use as the start-
ing point of our search for an algorithm to solve our problem efficiently. Well-
known examples include the divide-and-conquer, dynamic programming, and
greedy paradigms. Our starting point, however, will be none of these estab-
lished paradigms. Instead, we will explore whether it is possible to use a
quantum algorithm to solve our problem. Quantum computation is not just
another algorithm paradigm, rather it is a different model of computation;
different from the Turing machine model of computation, which underlies
the algorithm paradigms mentioned before.

In the end, computation is a form of controlled physical evolution. Quan-
tum computers, i.e. computers able to run quantum algorithms, translate
their instructions, the algorithms they are asked to execute, into differ-
ent physics compared to the physics exploited by conventional computers.
The physics that quantum algorithms are translated into are accurately de-
scribed by quantum theory. Accordingly, quantum computation, as a model
for computation, adheres to what quantum theory dictates.

As a result, quantum algorithms have some remarkable features that
classical algorithms do not, in particular quantum parallelism and interfer-



ence (see Sect. 3.2). At the same time, quantum theory imposes some serious
limitations on quantum algorithms, limitations that classical algorithms do
not have. The task of the quantum algorithm designer is to work out how
to take advantage of the characteristic features of quantum theory, given
a particular computational problem. Needless to say, some problems lend
themselves better for the features of quantum computation than others.

This brings up the question, whether our problem is naturally solved by
a quantum algorithm. In Chap. 4 we present a quantum algorithm based on
an algorithm by Diirr and Hgyer [16] for solving both problem instances, the
main contribution of this work. The complexity of the algorithm is O(N*):
better than the exhaustive search of Sect. 1.2, worse than Kim’s bisection
algorithm — but Kim’s algorithm only solves the first problem instance.
Before we do so, however, we first introduce in Chaps. 2 and 3, respectively,
the concepts from graph theory and quantum computation necessary in or-
der to understand our application of Diirr and Hgyer’s algorithm in Chap. 4.
Along the way, we try to dispose of as much complexity as possible, making
an effort to simplify our problem and succeeding in part. Be that as it may,
the problem’s hidden structure will continue to be a mystery.



Chapter 2

Graph Theory

2.1 Graphs

For graphs, we adopt the definitions and notation of Godsil and Royle [24].

Definition 3 (Graph [24, p. 1]). A graph G consists of a vertez set V(G) or
V and an edge set E(G) or E. An edge (i, ) is an unordered pair of distinct
vertices ¢ and j of G. If (i, ) is an edge, we say that i and j are adjacent
or that i is a neighbour of j, and denote this by writing ¢ ~ j. A vertex is
incident with an edge if it is one of the two vertices of the edge. Also, unless
stated otherwise, N = |V| and M = |E]|.

Definition 4 (Complete Graph [24, p. 2]). A graph is called complete if
every pair of vertices is adjacent, and the complete graph on N vertices is
denoted K.

We want two graphs G and H to be equal if and only if their topologies
are equal, irrespective of how their vertices are labeled. In the following
definition, we define when two graphs G and H are isomorphic; we will
consider isomorphic graphs as if they were equal.

Definition 5 (Isomorphic Graphs [24, p. 2]). Two graphs G and H are
isomorphic if there is a bijection, ¢ say, from V(G) to V(H) such that i ~ j
in G if and only if ¢(i) ~ ¢(j) in H. We say that ¢ is an isomorphism from
G to H. If G and H are isomorphic, then we write G = H.

We will mostly deal with simple graphs: graphs as defined in Definition
3, i.e. edges are unweighted and undirected, and the graph does not contain
loops (i.e., edges that connect a vertex to itself) or a pair of vertices between
which multiple edges exist. In addition to simple graphs, we will concern
ourselves with directed graphs, as defined below.

Definition 6 (Directed Graph [24, p. 2]). A directed graph G consists of a
vertex set V and an arc set R(G) or R, where an arc or directed edge is an
ordered pair of distinct vertices.

10



Both simple graphs and directed graphs can be either connected or dis-
connected, but we will only consider connected graphs.

Definition 7 (Connected Graph [24, p. 4]). If there is a path between any
two vertices of a graph G, then G is connected. Otherwise, G is disconnected.

Finally, whenever we draw graphs, such as in Fig. 1.1, the labelling of
vertices is arbitrary, as is the position of the vertices and edges.

2.1.1 Representations of Graphs

The two standard graph representations are the adjacency-list representation
and the adjacency-matriz representation. The former, which comprises a
collection of lists, one for each vertex v € V, each list consisting of v’s
neighbours, is the most natural choice if the graph contains only a few
edges, relative to the number of vertices. The amount of memory required
by the adjacency-list representation is ©(N + M).!

The latter, the adjacency-matrix representation, is simply an N by N
matrix denoted A(G) or A in which A;; is 1 if i is adjacent to j and 0
otherwise. The adjacency-matrix representation, unlike the adjacency-list
representation, explicitly stores information about non-existing edges and
as a consequence usually requires more memory than the adjacency-list rep-
resentation, namely ©(N?). The adjacency-matrix of an undirected graph
is symmetric.

Although the adjacency-matrix representation has a worse space com-
plexity than the adjacency-list representation, the time complezity of find-
ing out whether a particular pair of vertices are adjacent is better: we only
need to extract the right entry from A, whilst if the graph is represented as
a collection of adjacency lists, we need to iterate over a whole adjacency list
to work out whether the pair of vertices are neighbours.

We will use the adjacency-matrix representation, because it is closely
related to the Laplacian matrix mentioned before, which again relates to
the graph’s algebraic connectivity and effective graph resistance, but also
because we will deal with other matrices associated with graphs, in particular
the transition matriz of the random walk on the graph and the Moore-
Penrose matrixz inverse of the Laplacian.

2.2 Algebraic Connectivity

In 1973, Miroslav Fiedler coined the term algebraic connectivity and defined
it as the second smallest eigenvalue \2(G) = a(G) of the Laplacian of G
[21, p. 298]. The corresponding eigenvector is called the Fiedler vector. The

YA function f(n) is ©(g(n)) if there exist positive constants c1, c2, and ng such that
c1g(n) < f(n) < cag(n) for all n > no.
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Laplacian Q(G) or @ of a graph G is the difference between the diagonal
matriz of valencies of G denoted A(G) or A and its adjacency matrix A.
That is,

Q=A—-A (2.1)

The Laplacian, in addition to a graph’s adjacency matrix and incidence
matriz, captures some interesting characteristics of the graph it is associated
with. In particular, if an arbitrary row and column ¢ are deleted from the
Laplacian of a graph G, the determinant of the resulting matrix equals the
number of spanning trees of G. A proof and more formal formulation of the
theorem can be found in [24, p. 282].

Algebraic connectivity, just as edge connectivity and vertex connectivity
(see Sect. 2.2.1), says something about how well-connected or robust a graph
is. For example, if and only if a graph’s algebraic connectivity is zero, the
graph is not connected [21, p. 298]. And the larger a graph’s algebraic con-
nectivity, the larger the minimum number of edges that need to be removed
from the graph to create a bipartition? [14, p. 3]. Lastly, although there
are many more examples of the relation between algebraic connectivity and
robustness, if a graph’s algebraic connectivity is large, the random walk on
the graph will rapidly escape any subset of states [14, p. 5].

The eigenvalues 0 = A < Ao < ... < Ay of the Laplacian are all real
and nonnegative [24, p. 280], and we will refer to them as the spectrum of
the Laplacian. The smallest eigenvalue A\ is zero for any graph because
@1 = 0 where 0 and 1 denote the N-dimensional column vector of which
each component is 0 and 1, respectively. Indeed, each component of Q1 is
the sum of the valency of a vertex 4, i.e. the number of neighbours of ¢ or its
degree, and minus the number of edges from 4 to every other vertex, which is
zero. Therefore, algebraic connectivity is sometimes also referred to as the
smallest non-trivial or non-zero eigenvalue of the Laplacian.

Example 1. Consider the random, undirected, unweighted graph G in Fig.
2.1. Its Laplacian @, diagonal matrix of valencies A, and adjacency matrix
A are shown in Eq. 2.2. The set of vertices V is ordered 0,1,...,5. That
is, the (i + 1)th row or column of each of these matrices corresponds to the
vertex with label i. Equation 2.3 gives the spectrum of the Laplacian.

The order of the rows and columns of the Laplacian is only relevant if
we want to draw the graph and relate the entries of the Laplacian to actual
vertices. The ordering does not affect the spectrum of the Laplacian, which
includes the graph’s algebraic connectivity.

In order to find the algebraic connectivity of G, we compute the eigen-
values of @ by solving the characteristic equation det(QQ — A\I) = 0 for A.
The smallest non-zero eigenvalue of ) is Ao = 2.

2A bipartition (Vi,Va) of a graph G is a tuple of sets Vi and V that partition V(G)
such that no two vertices from the same set are adjacent (3, p. 7].

12



Figure 2.1: A simple graph G on N = 6 vertices.

2 0 0 0 -1 -1
o 2 0 0 -1 -1
o o 2 0 -1 -1
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- - o ; (2.2)
200 000 000011
020000 000011
00 2000 000011
A= 000200 A= 000011
00 0O0O50 1111 01
0 0 0 0 0 5] 11 1 1 1 0
The spectrum of @ is
0, 2, 2, 2, 6, 6. (2.3)

2.2.1 Relation to Edge Connectivity and Vertex Connectivity

The edge connectivity of a connected graph G is the minimum number of
edges that need to be removed from G in order to disconnect G. The graph
in Fig. 2.1, for example, has edge connectivity 2 because removing edges
(0,4) and (0, 5) makes the graph a disconnected graph and it is not possible
to disconnect the graph by removing a single edge.

13



Similarly, the wvertex connectivity of a connected graph G is the mini-
mum number of vertices that need to be removed from G in order to lose
connectivity. If a vertex ¢ € V' is removed, all edges (7, j) € E that contain 4
are removed as well. Removing vertices 4 and 5 from the graph in Fig. 2.1
makes it disconnected, as doing so makes it impossible to travel from 0 to
1, for example. It is not possible to disconnect the graph by removing only
a single vertex, and therefore the vertex connectivity of the graph is 2.

How do edge connectivity and vertex connectivity relate to algebraic
connectivity? Fiedler [21, p. 303] showed that for a non-complete graph G
with algebraic connectivity a(G) and vertex connectivity v(G), we have

a(G) < v(G). (2.4)
It is also known that for any graph G of at least two vertices,

v(G) < e(G) (2.5)
where e(G) denotes the edge connectivity of G. A proof of Eq. 2.5 can be
found in [7, p. 73].

2.3 Effective Graph Resistance

A metric is a function g(x,y) that describes the distance between any two
members of a given set, the metric space. A metric satisfies the following
axioms:

g(x,y) >0

g(z,x) =0

g9(z,y) = g(y,x) (26)
9(x,2) + g9(2,y) > g(x,y)

In their 1993 paper [34], Klein and Randi¢ share their observation that there
exists no metric that depends both on

« how far removed from each other two vertices are, and is larger if two
vertices are further apart; and on

« how many different paths exist that start in one of the two vertices
and end in the other, and decreases as the number of paths increases.

Nevertheless, they foresee applications in chemistry, and propose a new met-
ric “with the characteristic of multiple route distance diminishment” and call
it effective resistance [34, p. 82].

The function Klein and Randi¢ defined describes the distance between
any two vertices (i,7) € V x V, i.e. the metric space is the set of vertices
V(G) of a connected graph G. The effective resistance R;; between two

14



vertices ¢ and j equals the electrical resistance between the two vertices, if
we imagine the graph as an electrical network where each edge is replaced
by a resistor of 12 and a voltage is applied across ¢ and j.

The effective graph resistance Rg or Kirchhoff index of a connected graph
G on N vertices is the sum of the effective resistances between all pairs of

vertices, i.e.
N-2 N-1

Rg=Y_ Z_: Rij. (2.7)

=0 j=i+1
One way to compute R;j, and with that Rg, is by simply computing the
electrical resistance between ¢ and j using the fact that

. the total resistance that n resistors in series give rise to, equals

Ry +Ro+ -+ Ry = Riptal (2.8)

. and that, the reciprocal of the total resistance that n resistors in par-
allel give rise to, equals

L RS N
R1 R2 Rn Rtotal.

(2.9)

Observe that these two relations, respectively, lead exactly to the two prop-
erties Klein and Randi¢ were looking for, given at the beginning of this
section: a consequence of Eq. 2.8 is that longer paths will lead to a larger
effective resistance compared with shorter paths, whilst because of Eq. 2.9,
the smaller the effective resistance, the more paths exist between the two
vertices.

Not just all paths between ¢ and j count in Eq. 2.9, only parallel paths
and parallel subpaths are included. We adopt Godsil and Royle’s definition
of a path, which runs as follows:

Definition 8 (Path [24, p. 2]). A path of length r from 7 to j is a sequence of
r+1 distinct vertices, starting with ¢ and ending with j such that consecutive
vertices are adjacent.

The definition above is in accordance with the line of reasoning behind
Eq. 2.9, because it invalidates paths that contain cycles. For example, con-
sider the graphs in Fig. 2.2. According to the definition, there exists only
one path between ¢ = 1 and j = 2 in Fig. 2.2b, namely @ — @ — @.3
The sequence @ — @ — @ — @ — @ — @, on the other hand, is
not a path according to the definition because it contains @ twice. Indeed,
cycles such as @ — @ — @ — @ in Fig. 2.2b should not be part of a
path between two distinct vertices ¢ and j, because

3We write @ — @ if and only if ¢ ~ j.

15



« they necessarily start and end at the same vertex k; and therefore

o in order for a cycle starting and ending at k£ to be part of a path
between ¢ and j, a sequence @ — = @ — = @ must exist;
which implies that

. the sequence @—> cee = @—> cee = @ is a path as well; and as a
consequence

« if k£ would be removed from the graph, both paths would no longer be
able to reach j, which makes them nonparallel in the sense of Eq. 2.9.
Observe that a cycle does not increase the effective resistance R;;
between ¢ and j, in spite of the fact that it does increase the length of
a sequence from i to j, because the potential difference across k and
k is 0, which means that no current flows through the cycle, and as a
result the cycle @ e = @ “adds” zero resistance to the sequence
that it is part of.

Definition 9 (Parallel Path). A path @ — = @ is parallel to a path
@—>---—>@ifandonlyif

« i=1"and j = j'; and

« there does not exist a vertex k such that k # i and k # j, and that is

part of both paths. That is, with their endpoints removed, the paths
need to be vertex-disjoint.

There are at least three other, not at all obvious ways to compute R¢g for a
given graph G, all of which will be presented in the following three sections.

2.3.1 Relation to the Eigenvalues of the Laplacian

Klein and Randi¢ have shown [34, p. 86], in the same paper that introduced
effective resistance, that

Rg=NTr(Q") (2.10)

where QT denotes the inverse of the Laplacian @ within the subspace or-
thogonal to the eigenvector x of @, such that Qx = 0. In [47, p. 206], Van
Mieghem proves that

Noq
Ro=N> — 2.11

where 0 = A1 < A2 < ... < Ay are the eigenvalues of Q) (see Sect. 2.2).
Equation 2.11 makes it possible to relate a graph’s algebraic connectivity
a(G) = X2(G) to its effective graph resistance Rg. It shows that, as Ao
increases, Rg decreases, which explains why we need to maximise the for-
mer and minimise the latter, to increase the robustness of the graph (see
Definition 2).
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(b) One path from 1 to 2, the

cycle @ — — @ — @

does not introduce additional

paths.

(a) One path from 0 to 1.
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2
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S

(c) Two parallel paths between
all pairs of distinct vertices.

(d) Two parallel subpaths from
4 to 3, if we consider Ry3, which
can be reduced to a single
subpath and makes the graph
equal to the graph in Fig. 2.2a.

Figure 2.2: Four small simple graphs to illustrate the notion of a parallel
path, in the sense of Eq. 2.9.
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2.3.2 Relation to the Random Walk on the Graph

What follows is a truly fascinating relationship between the effective resis-
tance I;; between two vertices ¢ and j, and the random walk on . Chandra
et al. [10, p. 317] found that

1

= 5nr

Cyi (2.12)
where Cj; denotes the commute time between ¢ and j, i.e. the sum of (i.) the
expected length E[T};] of a random walk starting in ¢ and ending in j; and
(ii.) the expected length E[T};] of a walk in opposite direction. That is,

Cij = E[Ty] + E[Tj:]. (2.13)

A random walk is a stochastic process. A walker starts in a vertex
Xi—o = i. Each time step (¢t := ¢t + 1), the walker moves to one of the
vertices adjacent to its current position. The probability p; of moving to a
particular neighbour j is the same for all neighbours, and therefore equals
pr = 1/dy, where dj denotes the degree of k, the walker’s current position.

Equation 2.12 is interesting not just because it relates random walks to
electrical networks. Connections between the two have been found before
[15, p. 2]. What makes Eq. 2.12 particularly interesting is that cycles, such
as @ — @ — @ — @ in Fig. 2.2b, affect the random walk on the graph
but not the effective resistance, as argued in the preceding section.

To illustrate, consider once more the graphs in Fig. 2.2. The effective
resistance R1s between 1 and 2 in the graph in Fig. 2.2b is the same as the
effective resistance Rg; between 0 and 1 in the graph in Fig. 2.2a: both are
2(). However, due to the cycle in Fig. 2.2b, the commute time C12 = 20 in
Fig. 2.2b, but Cy; = 8 in Fig. 2.2a. It is striking that a factor as simple as
1/(2M) in Eq. 2.12 is able to sort of “correct for” the range of additional
paths introduced by the cycle, each of which is a possible instance of the
random walk on the graph.

2.3.3 Relation to the Number of Spanning Trees

It is worthwhile to mention that not only does there exist a relation between
the effective resistance R;; between two vertices ¢ and j, electrical networks,
eigenvalues of the Laplacian, and random walks on the graph; R;; can also
be expressed in terms of the number of spanning trees* 7(G) of G, that is

"G ()

R

i (2.14)

where 7(G - (7, 7)) denotes the number of spanning trees of G after vertices i
and j have been merged, resulting in a vertex k € V(G-(i, j)) that is adjacent

1A spanning tree of a graph is a connected, spanning subgraph without cycles [24, p. 4].
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to both the neighbours of i and the neighbours of j (in the original graph
G). It is possible and absolutely fine that, as consequence of merging i and
j, G-(i,7) now contains pairs of vertices between which multiple edges exist,
or that loops are introduced. Different edges give rise to different spanning
trees, and both trees count, but loops are never part of a spanning tree as
follows directly from the definition of a tree (a connected graph without
cycles).

Equation 2.14 was found by Bapat, and a proof can be found in [4,
p. 496]. Bapat’s formulation is slightly different from Eq. 2.14, however:
Let Q{i,7} denote the Laplacian of a graph G with rows 4, j7 and columns
i, 7 removed. Equivalently, Q{i} denotes the submatrix resulting from the
removal of the ith row and column of the Laplacian. Then,

7(G) det Q{i}

The fact that 7(G) = det Q{i}, where i is an arbitrary vertex of G, is a well-
known result known as the matriz-tree theorem or Kirchhoff’s matrixz-tree
theorem. For a proof, see for example [24, p. 282]. A proof that 7(G-(i,7)) =
det Q{i,j} can be found in [48, p. 25].

Observe that det Q{7,j} does not change if we add (4,j) to the graph
G of which @ is the Laplacian. After all, what is the effect on Q) of adding
(i,§) to G? Four entries will change, assuming (i,j) € E(G) where E(G)
denotes the set of edges not in G (see Sect. 4.3.1):

Qii i =Qi+1 Qiy:=-1
Qji = —1 Qjj = Q5 +1
However, none of the entries in Eq. 2.16 survives the removal of rows 4, j and

columns i, j. Therefore, let Q¢ = Q(G + e), then Q{i,j} = QT {i, j}
and as a result

(2.16)

R;;(i,j) Cdet Q09 {4, 5} detQ{i}  det Q{i} (2.17)
Rij  detQt0N{i} detQ{i,j}  det QT({i} .
and (G) (G- (i,4))
+@g) _ _ T\&) o T T))
Ry = T(G+(0,7) 7 7(G+ (7)) 219

where also R;;e denotes the effective resistance R;; between i,j € V(G +e).

Equation 2.18 can also be derived directly from Eq. 2.15, because if
G := G + (i,j) we immediately find the denominator, and it is also not
hard to see that 7(G + (4,7) - (4,7)) = 7(G - (¢, 7)) because merging 7 and j
turns the edge (i, 7) into a loop, which as explained before is never part of
a spanning tree.

Equation 2.18 is interesting because it provides for an explanation of
the change of R;; as a consequence of adding (¢, j) to G. It shows that the
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relative increase in the number of spanning trees, caused by the addition
of (i,7), is inversely proportional to the relative increase of the effective
resistance between ¢ and j.

It sounds great, but this insight alone is not enough to solve our prob-
lem (the second instance, to be precise). Ultimately, we are not interested
in what changes R;;. Instead, we want to know what makes Rg change.
Expanding Rge, where e € E(G), gives

N-2 N-1
Raye= Y, >, R =R{‘+Riz+.... (2.19)
i=0 j=i+1

The terms of Rg. fall under three categories. Let e = (k,1) € E(G). Then
1. there is exactly one term R;rle, which as argued above equals
7(G-€)/7(G + e); and
2. there are terms R;’;e for which (7, j) € E(G); and finally

3. there are also terms R;-;e for which (i,j) € E(G) \ {e}.

What do we know about the terms in the last two categories? The following
very simple relationship will come in useful. Let e € E(G), then

7(G)=7(G —¢e)+7(G -e). (2.20)

Equation 2.20 can be used to compute, recursively, the number of span-
ning trees of G, because G — e and G - e both contain fewer edges than G.
This method for counting spanning trees is called the deletion-contraction
method; a clear and intuitive explanation of Eq. 2.20 can be found in [11,
p. 1]. A term in category two, expressed in terms of the number of spanning
trees of “mutants” of G, looks as follows (see Eq. 2.15):

7(G+e-(i,7))
(G +e)

Since (i,7) € E(G), we are allowed to apply Eq. 2.20. We find

(G+e)—7(G+e—(i,7)) _ 1_T(G+e— (i,7))
(G +e) (G +e)

+e _
RS = (2.21)

qe T . ..
R} = if (i,5) € E(G).

(2.22)

Before we can apply Eq. 2.20 to a term in category three, we need to

use a little trick. Equation 2.21 also holds if (i, ) € E(G)\ {e}, but we can

no longer directly apply Eq. 2.20. However, observe that 7(G +e- (i,j)) =

(G + e+ (i,5) - (i,7)) because evidently, adding (i,j) to G + e makes no

difference to the number of spanning trees because we merge i and j directly
after doing so, which effectively undoes the addition. We get

T(G+e)

R} = if (i,7) € BE(G)\ {e} (2.23)
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and are now able to apply Eq. 2.20 to the nominator of Eq. 2.23, to find
T(G+e+ (i,7) — (G +e)

Rte =
ij
(GTJ(FG i ‘E’) ) (2.24)
T e+ (1,7 . o _
= —1 f .
Gy i ) € BO)\ o)
Note that Egs. 2.22 and 2.24 are similar. Their sum Rg4. becomes
1st cat. 2nd cat.
7(G - e) T(G+e—(i,7))
Rogie=—+—~5+M+ —
+ 7(G+e) (m)%;(G) (G +e)
3rd cat.
M4l N N Z T(G+e+ (i,7))
2 N 7(G +e)
(4,3)EE(G)\{e} (225)

()

1
+T(G+e)<(G e)+ > 7(G+e+(i,4)) ZT(G+6_23))>

(i.))€E(G)\{e} (1,7)eE(G)

where N = |V(G)| and M = |E(G)|.

Equation 2.25 gives some insight into how Rg changes, if we add an edge
to G. It shows that, as the number of spanning trees of G + e increases,
the effective graph resistance decreases. Unfortunately, however, it appears
to be impossible to eliminate the two summations, and a lot of complexity
remains.

One might wonder whether the edge ¢/ € E(G) that maximally decreases
Rg, if added to G, also maximally increases the number of spanning trees
of G. The answer to this question is, no, not necessarily, although often
the two do indeed coincide. It is a pity that the two problems are not the
same, because if they were, a solution would be readily available: Tsen et
al. [22] have formulated an algorithm to find the most “vital” edge in E(G):
“the edge whose deletion results in a maximum decrease in the number of
spanning trees.” [22, p. 600]. Their algorithm can also be used to instead
find the edge in E(G) whose addition maximally increases the number of
spanning trees. The complexity of their algorithm is dependent on, and equal
to, the complexity of matrix multiplication, which was O(N?376) when they
published their paper in 1994, and since then has only slightly improved to
become O(N23728639) in 2014 (see [35)).
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2.3.4 Convergence of the Effective Resistance
It turns out that if G is a large random geometric graph, then

Ry ~ ;j + dlj (2.26)
where d; and d; denote the degree of the vertices ¢ and j, respectively. This
surprising result by Luxburg et al. [38] seems to undermine the idea that
R;; says something about how well-connected ¢ and j are. After all, d; and
d; reveal the graph’s local structure, whereas the connectivity of i and j
depends on the global structure of the graph (i.e., on the length and amount
of paths from i to 7). Another way to look at it, is to say that apparently, if
the graph is large, then the only relevant information about the paths from
i to j, with respect to R;j, is (i.) the number of directions to depart from;
and (ii.) the number of directions to arrive in. Evidently, all intermediary
directions to take have a negligible contribution to R;;.

The proof of Eq. 2.26 is quite involved, and can be found in the sup-
plement of [38]. The intuition behind the proof is as follows. Consider
the random geometric graph G, in Fig. 2.3. What would Ry 3¢ look like?
Since G4 is well-connected and relatively large (i.e., it consists of many more
vertices than just 9 and 30), a lot of parallel (sub)paths from 9 to 30 are
expected. And as the number of parallel paths increases, the resistance
encountered by electrons travelling from 9 to 30 decreases.

However, the degrees of 9 and 30 restrict the number of parallel paths
between the two vertices. Vertex 9, for example, has a degree of 7, which
means that at most 7 parallel paths from 9 to any other vertex can exist.
The number of parallel paths and subpaths between vertices adjacent to 9
and vertices adjacent to 30, on the other hand, can be — and probably is
— much larger.

Consequently, we can illustrate the connection between 9 and 30 by the
graph G’g in Fig. 2.4, in which G4 with vertices 9 and 30 removed has been
reduced to a single edge that connects vertices ¢ and j, each of which is also
connected to either 9 or 30. The vertices ¢ and j represent the aggregate of
the neighbours of 9 and 30, respectively.

The resistance between i and j is negligible as a result of the abundance
of parallel paths between the neighbours of 9 and 30. As a result, the
effective resistance Ry 3o is roughly equal to

1\ ! Nt 1 1
R9,i + Riyj + Rj730 = (dg— + ( d3o— =+ — = R9,30 . (2~27)
1 1 dg  d3o

The graph in Fig. 2.3 is not large enough for the effective resistance to
actually converge to Eq. 2.26. Experiments by Luxburg et al. show that, for
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Figure 2.3: A random geometric graph Gy on N = 32 vertices. To generate
Gy, each vertex has been placed uniformly at random in a unit square.
Vertices within a Euclidean distance of each other less than or equal to
r = 0.3 have been connected. Note that, for the sake of clarity, the drawing
does not correspond to the “original” unit square that was used to generate
the graph. Drawing the unit square, with the vertices in it, would have
resulted in a very cluttered picture.

random geometric graphs of the same kind as the graph in Fig. 2.3,° the
maximum relative error max {| R;; — 1/d; — 1/d;|/R;; } becomes about 1%
only if N has order of magnitude 1000 or larger. In addition to the number
of vertices IV, the maximum relative error depends on the dimension of
the space in which the vertices are placed (e.g., G, was generated from a
two-dimensional space), on the graph’s density (i.e., the relative number
of edges), and on its clusteredness. As one might expect, the higher the
dimension, the better the graph is connected, and the smaller the maximum
relative error. Similarly, a high density and a low clusteredness will result
in a small error.

It may not always be possible to actually reduce a graph, or even a part
of it, to a single edge and obtain a graph such as qu in Fig. 2.4. Indeed,
although the explanation above of Eq. 2.26 is entirely dependent on the
assumption that it s possible, Luxburg et al. do not need the assumption to

5The authors call these kind of random geometric graph e-graphs, where ¢ = 7 is
the maximum Euclidean distance between a pair vertices in order for them to become
neighbours.
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Figure 2.4: The reduced graph G’g to illustrate Eq. 2.26.

arrive at their result. It would be interesting, however, to find out whether it
is also possible to prove that Eq. 2.26 holds by proving that the assumption
is justified, or at least justified under certain conditions. In the next few
paragraphs we will briefly discuss what an inquiry into this problem would
lead to.

First, how can a graph be reduced? That is, what kind of reductions
are allowed? There are four possible reductions, all of which can be derived
from Egs. 2.8 and 2.9. Archdeacon et al. [2, p. 2] formulate them as follows:

Loop reduction. Remove a loop.
Degree-one reduction. Remove a degree-one vertex and its incident edge.

Series reduction. Remove a degree-two vertex k and its incident edges
(i,k) and (k,j), and add a new edge (i, j).

Parallel reduction. Remove one of a pair of parallel edges.

Observe that both loops and degree-one vertices are examples of cycles, as
explained in Sect. 2.3. According to Definition 8, a sequence of vertices
that consists of a loop --- — @ — @ — +-- or a degree-one vertex
-~-—>@—>@%@—>~-- cannot be a path.

In addition to the four reductions above, two useful transformations
exist: the AY -transformation and its converse the Y A-transformation (left
to right and right to left in Fig. 2.5, respectively). The latter actually
reduces the graph, as it removes a vertex, which implies that the former
does the opposite, namely add a vertex to the graph. Notice that neither
transformation changes the number of edges in the graph. If no reduction is
possible, one or more AY/Y A-transformations might transform the graph
into a graph that can be further reduced.

Definition 10 (Y AY-Reducible [2, p. 3]). A connected graph is YAY -
reducible if it can be reduced to a single vertex by a sequence of loop, degree-
one, series, or parallel reductions and AY/Y A-transformations.

Not all graphs are Y AY -reducible, a counterexample is Kg, the complete
graph on N = 6 vertices [2, p. 3]. However, YAY -reducibility is not really
the graph property that we are interested in. We do not want to reduce the
whole graph to a single vertex, we want to reduce only a part of it, to obtain
a graph similar to G
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Figure 2.5: The AY -transformation, where R, = (R,R.)/(Ra + Ry + Re);
R, = (RqRp)/(Ry + Ry + R.); and R, = (RyR.)/(Rq + Ry + R.)

At first sight, the notion of N -terminal reducibility is what we are looking
for. If a graph G can be reduced to a graph G’ on N vertices without
removing any of N designated vertices v, € V; C V(G) or terminals in the
process, it is N -terminal reducible. If a graph is 4-terminal reducible, does
that mean that it can be reduced to a graph such as the graph in Fig. 2.47
Unfortunately, the answer is no, because it is not possible to identify all
four terminal vertices k, i, j, and [ in advance.® In particular, the vertices i
and 7, each of which represents the aggregate of the neighbours of k£ and I,
respectively, probably do not even exist before a reduction has taken place.

To conclude this brief interlude, proving that Eq. 2.26 holds for some
specified class of graphs, because each graph that belongs to the class can
be reduced to a graph similar to the graph in Fig. 2.4, might be an inter-
esting exercise. Finally, it is worth mentioning that all planar graphs’ are
2-terminal reducible (i.e., they can be reduced to a single edge (i,j) con-
necting the two terminals ¢ and j) [17, p. 21]. It goes without saying that
the weight of (7, 7) in the reduced graph equals R;;.

Finally, observe that if Eq. 2.26 holds, the problem of finding the edge
that will maximally decrease the graph’s effective graph resistance becomes
fairly easy. After all, the effective graph resistance is the sum of the effective
resistances between all unordered pairs of vertices (see Eq. 2.7). And if R;; ~
1/d; + 1/d;, the terms of R no longer depend on each other. Therefore,
we need to simply compute, for each unordered pair of vertices (i, j)

S R
(d,’ + 1) (dj + 1) d; dj

(2.28)

and find the maximum. Connecting the two vertices that correspond to the
maximum will maximally decrease the graph’s effective graph resistance.
Figure 2.6 shows that, if Eq. 2.28 were to be used as a heuristic to find the
best edge to add, the best edges according to the heuristic will be those that

5In Fig. 2.4, k =9 and [ = 30.
TA graph is planar if it can be drawn (in a plane) without crossing edges [24, p. 12].
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Figure 2.6: The graph of f(d;, d;). If one of either d; or d; is small, f(d;, d;)
becomes large.

consist of two vertices ¢ and j such that d; = d; = 1, if such pair of vertices
exists, and otherwise a pair where either d; or d; is 1, and if such a pair does
not exist, a pair where d; = d; = 2, etc.
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Chapter 3

Quantum Computation

This section is about quantum computation and quantum information, not
about quantum theory. Quantum computation is based on quantum in-
formation, which according to Kaye et al. is “the result of reformulating
information theory in [the] quantum framework.” [28, p. 38]. The quantum
framework is quantum theory, and includes quantum electrodynamics and
quantum field theory.

3.1 Qubits

Normal computers use bits to store information. Quantum computers use
qubits. The state of a qubit can be described by a vector

ao|0) + aq [1) (3.1)

where |0) = (1 O)T and |1) = (0 I)T make up the computational basis of
the two-dimensional Hilbert space H in which the qubit lives. The complex
coefficients ap and «; are called the amplitudes of the basis states |0) and
|1), respectively. It turns out that the following needs to hold in order for
Eq. 3.1 to be a correct abstraction of two-level quantum systems,

|Oé()‘2 =+ ‘051’2 =1. (3.2)

A complex number re’? can be characterised by its phase factor or length
r and the phase or angle ¢ that it makes with the xz-axis. We are not inter-
ested in the actual phase of each amplitude, instead the difference between
the phases of aig and a1 or relative phase is what matters. Therefore, Eq. 3.1
can also be written as

|t)) = cos (g) |0) + €' sin (Z) 1) (3.3)
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1)

Figure 3.1: The Bloch sphere, visualising the state [).

where indeed the sum of the absolute squares of the amplitudes equals
. 2

€ sin (9/2)\ = |cos (0/2)* + |sin (0/2)?

= cos? (6/2) + sin? (6/2) (3-4)

=1.

[cos (6/2)]* +

A very useful and commonly used graphical representation of Eq. 3.3 is the
Bloch sphere, shown in Fig. 3.1. In fact, the reason why 6 in Eq. 3.3 has
been multiplied by a factor 1/2 is to make it consistent with the Bloch
sphere.

Although the Bloch sphere provides for a convenient visualisation of the
state of a single qubit and the effect of single-qubit gates on a qubit’s state,
it does not enable us to visualise the state of two or more entangled qubits
— which is usually far more interesting.

Just as classical computation is about manipulating bits, quantum com-
putation is about manipulating qubits. From quantum theory, we know that
the evolution of a quantum system that does not interact with the environ-
ment, such as a qubit, is described by a unitary operator (for a definition,
see for example [45, p. 441]). That is,

[Y2) = U |¢h1) (3.5)

where U is a unitary operator. Accordingly, quantum gates — the foundation
of any quantum algorithm — are all nothing but unitary operators. As a
consequence, any quantum gate is reversible by definition: applying the
same gate twice in succession will leave the quantum system unchanged.
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The combined state of two qubits [¢1) and [i2) is |¢1) ® |1)2), where
® denotes the tensor product of the two vectors. Sometimes, the symbol
® will be omitted, i.e. [1)1) ® [1)2) is equivalent to |1)1) [tb2) or even |¢)11)9).
Likewise, the combined state of n qubits is [1)1) @ -+ @ [1hy) = |11 ... Pp).

It is not always possible to decompose a combined state into a tensor
product. In fact, most of the time, decomposition is not possible. If decom-
position is not possible, the qubits are said to be entangled.

Finally, given a composite but not necessarily entangled state

) = aili), (3.6)
i=1

if we were to have at our disposal a measuring apparatus to measure [¢),
measuring |¢) would give

« i with probability |a;|? and if the measurement gives i,
« leave the system in |¢). That is, [¢) := |3).

For a more elaborate introduction to quantum computation, the reader is
kindly referred to the standard work on the subject by Nielsen and Chuang
[39]. Another excellent explanation of quantum computation is given in
Kaye et al’s An Introduction to Quantum Computing [28], which does a
surprisingly good job of reviving time and again the intuition that one loses
so easily while exploring the field of quantum computation.

3.2 Grover’'s Quantum Search Algorithm

In 1996, Lov Grover published a paper [26] in which he presents a quantum
algorithm that can search an unsorted database, to find some particular
record, and has a query complexity of O(\/N ) where N is the number of
records in the database. Compared to a classical search (i.e., simply iterating
the database until the record of interest has been found) which requires N
queries in the worst case, Grover’s algorithm achieves a quadratic speed-up.!

It is quite remarkable that Grover’s algorithm has a better time com-
plexity, because it seems that there is no way to improve a classical search.
After all, any search algorithm would have to check up on each and every
record in the database, which suggest that it is impossible to devise an algo-
rithm that has a query complexity better than O(N)? Although it is indeed
not possible to devise a classical algorithm with a better query complexity,
Grover’s algorithm shows that it is possible to formulate a quantum algo-
rithm that requires fewer queries in the worst case. In fact, just as iterating
the database is the best one can do classically, it has been proven that it is

1A classical search takes time N in the worst case because it is possible that the record
that we are looking for is the last record of N records that we inspect.
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not possible to come up with a quantum search algorithm that has a better
query complexity than Grover’s algorithm (for a proof, see for example [39,
p. 269)).

Superb explanations of Grover’s algorithm already exist, e.g. in both of
the two books mentioned in the preceding section, and for that reason we
will not explain the algorithm in great detail here. Instead, we will try to
illustrate the underlying idea.

If a classical search algorithm A queries the oracle f, it “asks” the oracle
whether a particular entry T'[i] in the database T is the solution, or not. It
sends an index ¢ to the oracle, and the oracle returns either 1 if T'[i] is a
solution and 0 otherwise. Index i is a bit string, a series of bits that encodes
an integer 0 < i < n — 1 where n is the number of entries in T'. Accordingly,
there are n possible queries, but because A can only send one bit string per
query, it can send no more than one index to the oracle, each time.

A quantum search algorithm B queries f in a similar fashion. There is
one crucial difference, however: B sends a “qubit string” |i) to the oracle,
instead of a series of classical bits. To see why this makes a difference,
consider the following.

First, we will assume that there exists a classical algorithm F' for com-
puting f, which takes as input a bit string and outputs a single bit. If A
wants to query the oracle, it really just runs F'. B, on the other hand, cannot
simply “send” |i) to F'. Therefore, B is provided with a unitary operator Uy
that implements f:

Uy = [@) [b) = [i) [b & f(2)) - (3.7)

Observe that Uy operates on two registers i.e., on two collections of qubits,
the first encoding the input or query i, the second encoding the XOR, of
some b and the response f(z).2

Let’s assume that n = 32 is the number of entries in T'. If B would want
to know whether the entry at index ¢ = 19 is a solution, it would first put
the first register in the state |[10011) and b for example in |0) to then apply
Uy and find

110011) |0) 5 |10011) |£(19)) . (3.8)

So far, it might appear as if there is no real difference between A and B,
except that f is implemented in different ways. However, what would happen
if B puts the first register in a superposition of indices? For example, what
happens if B prepares the two registers in the states |¢)) and |b), respectively,
and afterwards applies Uy, where

"1
= — |2 3.9
¥ =3 =l (3.9)

2In fact, the second register is not really a register, because a single qubit suffices.
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is a uniform superposition of all n indices? Since U acts linearly on the
state that it is applied to, we find that

Ug ) |b) = Uy (/00000) + [00001) + - -- + [11111)) |b)

1
NG
1

_ b b b

U= (00000) 1) + [00001) 1)+ -+ [11111) }) o
_ \/15 (U [00000) [b) + U [00001) [b) + --- + Uy |11111) |B))

_ b
~Vn

which is striking, because it shows that it is possible to evaluate f for all
indices i € Z : 0 < i < n — 1 at the cost of only a single query. Note,
however, that if, for example, b = 0 and we measure the second register
after having queried Uy, the outcome will be f (i) with probability 1/n. In
fact, it is impossible to extract more than one evaluation of f from the state
that we obtain after the query.

Does Eq. 3.10 reveal the difference between A and B? On the one hand,
yes, contrary to Uy, it is impossible for F' to evaluate f more than once in
the same amount of time required to evaluate f one single time. On the
other hand, no, because we can easily modify F' such that it will display
the same behaviour as Uy given that we always measure the second register
directly after querying: we simply let it discard its input, evaluate f for an
index i chosen uniformly at random, and return f(i). Hence, in order to
take advantage of the quantum parallelism exhibited by Uy, we shall not
measure the second register directly after querying, but instead only just
before the end of our computation; or rather, not before we know that with
high probability, the outcome of the measurement will be 1 and accordingly
the first register encodes ' such that f(i') = 1.

In a nutshell, that is the crux of Grover’s algorithm: exploit quantum
parallelism to evaluate concurrently f for different input, do not measure,
but instead use quantum interference to amplify the amplitude ay of the
index 7’ that we are looking for and by that assure that once we do measure,
we will find ¢ with high probability. Accordingly, Grover’s algorithm is not
much more than a repeated application of the Grover iterate, which itself
consists of the mere application of Uy and U, . Indeed, the latter operator
is responsible for the amplification of a;y. For more information about U1,
see for example [28, p. 156].

Finally, after how many applications of the Grover iterate should we
stop and measure? It can be shown (see for example [28, p. 161]) that the
amplitude ay of |i'), in terms of the number of applications k of the Grover
iterate, equals

(100000) [b & £(0)) + [00001) [b & £(1)) + - -- + |[11111) [b & f(32 — 1))

ay =sin ((2k+1)0) (3.11)
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where sin (§) = 1/4/n and n the number of entries in T'. Therefore, vy = 1
if k= m/(40) — 1/2 =~ 7w/4 \/n. k needs to be an integer, because we can
only apply the Grover iterate an integer number of times, and therefore
k = |w/4 v/n]. Tt can be shown that after |7/4 \/n| applications of the
Grover iterate, the probability that measuring will give i’ is very close to 1
(for a more precise analysis, the reader is referred once more to [28, p. 161]).

The question of when to stop computing and start measuring will play
an important role in Chap. 4, where we will show that a quantum algorithm
by Diirr and Hgyer [16], based on Grover’s, can be used to find with high
probability the index ¢’ corresponding to one of the edges ¢’ that maximally
increases the robustness of the augmented graph — in less time than required
by the (classical) exhaustive search of Sect. 1.2.
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Chapter 4

A Quantum Algorithm for
Robustness Maximisation

In Sect. 1.2 we explained that solving either problem by searching exhaus-
tively for the best edge to add will take time O(N?®) in the worst case, where
N is the number of vertices in the graph. That being so, both problems can
be solved in polynomial time. But we also explained that, in spite of this
fact, no clever algorithm that makes use of the problem’s hidden structure
exists — so far no one has stumbled upon such structure.

For that reason, it seems worthwhile to investigate whether it is possible
to simply use Grover’s quantum search algorithm to speed up the exhaustive
search outlined in Sect. 1.2. After all, if it turns out to be possible, a
quadratic speed-up might be obtained, which means a quantum search would
not only be faster than a classical search but it would also outperform Kim’s
bisection algorithm (see Sect. 1.3).

In this chapter, we report on the findings of our investigation: Grover’s
algorithm cannot be used directly to solve either problem, but a different
algorithm based on Grover’s by Diirr and Hgyer [16] can be used to solve
both problems and outperforms the exhaustive search of Sect. 1.2. The
complexity of the algorithm that we will present in Sect. 4.4 is O(N*), which
is not better than the complexity O(N?3) of Kim’s bisection algorithm, but it
does mean that there exists no algorithm (asymptotically) faster than ours
that maximises the effective graph resistance of the augmented graph.

4.1 Search Problems

A search algorithm, such as Grover’s, can be used to solve a search problem,
although as one might expect, in order for the search algorithm to be useful it
needs to be tailored to the specifics of the search problem first. In particular,
the search algorithm needs to be “told” what a solution looks like.
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What is a search problem? We adopt the following very general definition
of a search problem by Garey and Johnson:

Definition 11 (Search Problem by Garey and Johnson [23, p. 110]). A
search problem 11 consists of a set Dy of finite objects called instances and,
for each instance I € Dry, a set Sy[I] of finite objects called solutions for
I. An algorithm is said to solve a search problem II if, given as input any
instance I € Dy, it returns the answer “no” whenever Sy[I] is empty and
otherwise returns some solution s belonging to S[I].

Just as any decision problem can be reformulated as a search problem,
optimisation problems can be viewed as search problems as well, where the
set St[I] simply consists of those solutions to the problem that are minimal
or maximal in some respect. Both of our problems are optimisation problems
and for that reason it might be possible to reformulate them into a search
problem that can be solved by a search algorithm (i.e., an algorithm that
solves the search problem) such as Grover’s.

Let’s consider a particular instance I € Dy of a search problem II. If z
is a possible solution to I (i.e., x is in the search space corresponding to I),
the algorithm that solves the search problem must be able to tell whether
x € Syi[I] or not. Accordingly, we need to provide the search algorithm with
a function f or access to an oracle which, given a possible solution z, returns
either f(z) =1 if z € Sp[I] and f(x) = 0 otherwise. The search algorithm
only determines how the search space of I is gone through. That is, what
queries will be “send to” the oracle and in which order.

Kaye et al. define the search problem in a less general but more applicable
form:

Definition 12 (Search Problem by Kaye et al. [28, p. 153]). Given a black
box Uy for computing an unknown function f : {0,1}" — {0,1}, find an
input z € {0,1}" such that f(z) = 1.

It is possible and allowed for f to be known, but usually it is hard to
invert. That is, computing f(z) is easy whilst computing f~!(y) is very
difficult. If computing f~'(y) were easy, there would be no problem to
solve, but if it is not easy and the problem’s hidden structure is not known
or does not exist, then simply searching for a solution is the best we can do.

4.2 Solution ldentification

Grover’s algorithm solves the search problem as defined in Definition 12.
Hence, if we are able to put together the black box Uy that “identifies” edges
that would, if added to the graph, either maximally increase the graph’s
algebraic connectivity or maximally decrease its effective graph resistance,
a speed-up might be obtained. Although a quantum search requires fewer
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queries than a classical search in the worst case, non-query parts of the
algorithm might decelerate as a consequence of replacing the classical search
by a quantum search, which is why it does not necessarily result in a speed-
up.

Is it possible to distinguish “good” edges from “bad” edges? Considering
that a candidate edge e is good only if it is better than or as good as
other candidate edges (e.g., in order for e to be a good edge, the algebraic
connectivity a(G + e) of the graph G + e must be larger than or equal to the
algebraic connectivity of any other graph that can be obtained by adding a
single non-existing edge to (), it might not be possible to assess the worth
of a single edge without having looked at all other edges first. Consequently,
a naive oracle would, if queried whether a particular edge e is good or bad,
search exhaustively for all good edges, and report back whether e is among
them or not. Needless to say, such an oracle is useless because responding
to a single query takes as much time as solving the actual problem of finding
good edges. As explained before, Grover’s algorithm flourishes if solutions
to the problem are easy to identify, but hard to find.

To return to the question posed at the beginning of the preceding para-
graph, can we tell whether a possible solution « = e of an instance I = G
is a solution or not — without the possibility to analyse any other possible
solution? If the answer to this question is affirmative, it probably takes ei-
ther of the following two forms (without loss of generality, we only consider
the first instance of our problem):

« Yes, because if the vertices 4,j € V(G) incident with e’ share a par-
ticular property P, adding ¢’ to G will result in a maximal increase of
the graph’s algebraic connectivity a(G). It is not known whether such
P exists, and it is probably hard to find. Or,

« Yes, because given GG, we can compute the maximal possible increase
of the graph’s algebraic connectivity a(G + ¢') — a(G) where €' is a
solution, and therefore also a(G + €’) (because a(G) is known) which
can be used to easily identify whether e is a solution or not: we simply

need to evaluate whether a(G + e) L a(G +¢€).
In the following section, we try to find the maximal possible increase of
the graph’s algebraic connectivity and the maximal possible decrease of its
effective graph resistance, respectively. We show that, for the path graph

and the almost-complete graph, sharp bounds exist. In general, however,
that is for any graph G, no sharp bounds have been found.

4.3 Sharp Bounds

We want to find a sharp upper bound (supremum) for the algebraic connec-
tivity of a graph and a sharp lower bound (infimum) for its effective graph
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Figure 4.1: Two graphs G (left-hand side) and G’ (right-hand side). The
green edges (0,1) and (1,2) in F(G’) maximally increase a(G); the increase
is the same for both edges, namely 1. The spectrum of G is 0, 1, 3,4 and the
spectrum of G extended with either (0,1) or (1,2) is 0,2,4,4. Hence, G is
an example of a graph that cannot be extended with a non-existing edge e
such that A2(G + e) = A3(G).

resistance. A sharp, tight, or attainable bound is a bound able to be attained
by adding an edge to the graph: for example, if the sharp lower bound for
the effective graph resistance of a graph G is x, there exists a candidate edge
e’ such that Rgie = x and there does not exist a different candidate whose
addition would result in an effective graph resistance smaller than x.

The following well-known theorem is relevant to both bounds (see for
example [20, p. 134]):

Theorem 1. Let G be a graph on N wvertices. The eigenvalues of Q(QG)
interlace those of Q(G + e) where e is an edge or a loop. That is,

)\1(G) < )\1(G—|—6) < AQ(G) < )\Q(G—i—e) <. <Z )\N(G) < )\N(G+€) (4.1)

Unfortunately, the bounds of Eq. 4.1 are not sharp: It is not always
possible to find an edge e such that a(G + e) = A3(G) (see for example Fig.
4.1). In addition, Eq. 4.1 cannot be used to formulate an infimum for the
effective graph resistance (based on Eq. 2.11) because not only does Eq. 4.1
not contain an upper bound for Ay (G + €), at least one of the inequalities
must be strict, as follows from Eq. 4.5 (see below). In the remainder of this
section, we will treat the supremum for a graph’s algebraic connectivity and
the infimum for its effective graph resistance separately from each other,
starting with the former.
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4.3.1 A Supremum for the Algebraic Connectivity

What is the largest possible increase of a graph’s algebraic connectivity?
That is, for a given graph GG, what is the sharp upper bound of the set

Ac ={a(G+e):ec BG)} (4.2)
where
E(G)={(i,j):i<jand i,j € V(G) and (i,5) ¢ E(G)} (4.3)

is the set of candidate edges. Except for some highly particular graphs G,
a sharp upper bound of Ag has not been found in literature.

We do know that for any square n by m matrix A, the sum of its n
diagonal entries (i.e., the trace of A) equals the sum of its n eigenvalues.
That is,

a1r +ag + ..+ app = A1+ A2+ o+ Ay (4.4)

and therefore .

> (MG +e) = Xi(G) =2. (4.5)
i=1
After all, the diagonal of the Laplacian consists of the degrees of the vertices
in the graph, in some particular order, and therefore, if we add an edge to
the graph, two of them increase by 1, and accordingly their sum increases
by 2.
Let N(i) be the set of vertices adjacent to vertex i. The following the-
orem by So [44, p. 197] reveals when, given a graph G that we expand by
adding an edge e to it, only a single eigenvalue of Q(G) increases:

Theorem 2. Suppose i and j are fized but arbitrary nonadjacent vertices in
G. Lete = (i,j). Then N(i) = N(j) if and only if the spectrum of Q(G +e)
overlaps the spectrum of Q(G) in n — 1 places.

As a consequence, if N(i) = N(j), then due to Eq. 4.5 the eigenvalue
Ai(G + e) that does not equal \;(G) must have increased by 2.

The question then arises, when does the algebraic connectivity As(G)
increase by 27 Part of the answer is given by Barik and Pati [5, p. 219]:

Theorem 3. Let G be a connected graph on N vertices and let e € E(G).
Let a(G) have multiplicity one. Then the spectral integral variation occurs
in one place by adding the edge e where the changed eigenvalue is a(G) if
and only if G = Ky — e.

A spectral integral variation means the spectrum of the Laplacian changes
such that one or more eigenvalues change by some integer. In fact, due to
Eq. 4.5 there are only two possibilities: after edge addition, a single eigen-
value )\; has increased by 2 or two eigenvalues A; and \; with ¢ # j have
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both increased by 1. Characterising those graphs for which the latter holds
is a question posed by So [44, p. 197] as well, to which the answer was found
by Kirkland [32, p. 80] five years later.

Theorem 3 gives a sharp bound of Ag where G = Ky — e, namely
a(G) + 2. However, if G = Ky — e the problem of finding the best edge to
add is trivial anyway as there is only a single possibility. Below, in the next
subsection, we give one additional sharp bound of Ag if G is the path graph
Py on N vertices, but also in this case, it is trivial to find the edge that
maximally increases a(G). The problem of finding a sharp bound of A¢ for
any graph G, without making an exhaustive search, remains open.

A closely related problem that has been solved is, given M, for all in-
complete graphs G where |F(G)| = M, what is the largest possible value of
a(G)? That is, for some natural number M, what is the sharp upper bound
of the set

By = {a(G) : |[E(G)| = M}. (4.6)

Belhaiza et al. [6, p. 13] show that for all G # Ky and M > 2, the following
upper bound of By is sharp:

a(G) < |[-1+VI+2M]|. (4.7)

At first glance, it might seem as if we can translate the bound of Eq. 4.7 to
a sharp bound of Ag. That is, perhaps the following bound is sharp as well:

oG +e) < {—1 /1420 + 1)J (4.8)

where M is still the number of edges of G. However, M does not fully de-
termine the graph: Equation 4.8 holds for all graphs G’ such that |[E(G")| =
M + 1. Consequently, it is possible that we cannot “obtain” a graph G + e
such that a(G +e) = {—1 +1+2(M+ I)J by adding a single edge to the
graph G that we would like to expand.

More bounds

Fiedler, the inventor of algebraic connectivity, gives an explicit formula for
the algebraic connectivity of a number of standard graphs in the same paper
in which he defines the algebraic connectivity of a graph. Fiedler’s formulas
are given in Table 4.1.

It can be shown that the following formula describes the spectrum of the
Laplacian Q(Py) of the path graph Py on N vertices (for proofs of Egs. 4.9
and 4.10, see for example [9, p. §8]):

Ae(Py) =2 (1 — cos (WU{:N_D)) (4.9)
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Table 4.1: Explicit formulas for the algebraic connectivity a(G), edge con-
nectivity e(G), and vertex connectivity v(G) of a graph G on N vertices [21,
p. 304].

G a(G) e(G)  v(Q)
path 2(1—=cos(m/N)) 1 1
cycle 2(1—cos(2mr/N)) 2 2

star 1 1 1
complete N N—-1 N-1
k-cube 2 k k

where kK = 1,2,..., N. Similarly, the spectrum of Q(Cy) where Cy is the
cycle graph on N vertices is accurately described by

Ae(Cn) =2 (1 — Cos <27r(/§V—1)>) . (4.10)

Observe that Egs. 4.9 and 4.10 are consistent with Table 4.1: if kK = 2, we
find that Ay = a(G) as specified in Table 4.1. Also observe that

A2(Cn) = A3(Py). (4.11)

Considering that it is always possible to obtain Cy by adding the edge €’
to Py that connects the two endpoints of the path graph (i.e., the only two
vertices in V' (Py) that have valency 1), that is, Py + ¢/ = C, we have

A2(Cn) = Xo(Pn + 6/) = A3(Pn). (4.12)
In addition, a corollary of Theorem 1 is that if
Xa(G + ) = X3(G), (4.13)

¢/ is among the best edges to add with respect to the graph’s algebraic
connectivity. Therefore, the supremum of Ap, is A3(Py). Of course, it
would be silly to formulate an oracle Uy based on this bound, and use
Grover’s algorithm to search for an edge e € EpN that maximally increases
the algebraic connectivity of Py.

Finally, it is worthwhile to mention the works of Kirkland [31, 33], who
found a tight bound for the algebraic connectivity of a graph, in terms of
the number of vertices N and cutpoints k. A cutpoint of a connected graph
is a vertex that, if removed, turns the graph into a disconnected graph. He
proves that, the algebraic connectivity a(G) of a graph G on N vertices with
k cutpoints, where 2 < k < N /2, is maximal if and only if

. each cutpoint is adjacent to every non-pendant! vertex of G; and

'A pendant vertex is a vertex that has valency 1 (and a non-pendant vertex has a
valency larger than 1).
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« there are exactly two components at each cutpoint of G, one compo-
nent of which is a pendant vertex.

The proof can be found in [31, p. 102]. In [33] he presents a similar theorem,
which deals with the case where N/2 < k. Neither theorem can be used
directly to base the supremum of A on because, as more or less also applies
to the bound by Belhaiza et al.: not all graphs on N vertices with k cutpoints
can be transformed into a graph that meets both of the requirements above,
just by adding a single edge. For example, if a graph contains no pendant
vertices, it becomes impossible to meet the second requirement if all we are
allowed to do is add one edge.

To conclude this section, there exist many bounds for the algebraic con-
nectivity of a graph (for a survey, see [12]), but almost all of them are not
sharp. The only two that are tight, namely the bounds by Belhaiza et al.
and Kirkland, are expressed in terms of graph invariants that do not fully
determine the graph, and as a consequence are not readily applicable to the
question that we asked ourselves in this section, namely what is the supre-
mum of Ag? If G is Ky — e or Py, the answer is a(Ky — e) 4+ 2 or A\3(Pn),
respectively, but otherwise the answer is not known.

4.3.2 An Infimum for the Effective Graph Resistance
We want to find the sharp lower bound of the set

R = {Raye e € B(G)} (4.14)

where G is given. As before, there is an abundance of literature on bounds
for the effective graph resistance, but all of these bounds are in terms of
graph invariants such as the number of vertices N, the average degree d,
or even the graph’s algebraic connectivity a(G) (for the last mentioned, see
[19, p. 2494)).

For example, the following theorem by Deng [13, p. 177] gives the mini-
mum effective graph resistance among all graphs G on N vertices that have
k bridges. A bridge e € E(G) of a not-necessarily-connected graph G is
an edge whose removal increases the number of components of G (i.e., the
edge-equivalent of Kirkland’s cutpoints) [27, p. 26].

Theorem 4. If G is a connected graph on N wvertices with k bridges, then

Nk+1)+1-

< Rg. 4.15
2 < Rg (1.15)

Deng also identifies the graphs G for which Rz = N(k + 1) +1 —
2N /(N — k): the complete graphs Ky_j in which each vertex i € Ky_g,
in addition to being adjacent to all other vertices in V(K y_g), is also con-
nected to a pendant vertex j ¢ V(Ky_g). The resulting graphs contain k
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Table 4.2: Explicit formulas for the effective graph resistance R¢, algebraic
connectivity a(G), edge connectivity e(G), and vertex connectivity v(G) of
a graph G on N vertices.

G R¢ a(G) [21, p. 304]  e(G) [21, p. 304] ©(G) [21, p. 304]
path (N3 —N)/6 [19, p. 2498]  2(1—cos(w/N)) 1 1

cycle (N3 — N)/12 [37, p. 218 2(1—cos(2n/N)) 2 2

star (N —1)2 [19, p. 2498 1 1 1

complete N —1 [19, p. 2498] N N-1 N -1

k-cube See Theorem 9 in [36, p. 3]. 2 k k

of such pendant vertices (and accordingly k bridges) and therefore N = 2k
vertices in total.

A more general bound for the effective graph resistance is given by Van
Mieghem [47, p. 207]:

Theorem 5. If G is a connected graph on N wvertices, then

N —1)2
Q < Rg (4.16)
d
where d is the average of the degrees do,di,...,dn_1 of the wvertices
0,1,...,N — 1€ V(G), respectively.

The lower bound of Eq. 4.16 is tight, because if G = Ky, d = N —1 and
therefore (N — 1) < Rk, . It is not hard to show that Rx, = N — 1 (see
for example [19, p. 2498] or our own proof in Sect. 5.1) and as a result, the
bound of Eq. 4.16 is sharp.

Unfortunately, however, neither the bound of Eq. 4.15 nor the bound
of Eq. 4.16 says something about the maximum possible decrease of the
graph’s effective graph resistance, resulting from the addition of a single
edge. A theorem similar to Theorem 3, for example, but which applies to
the effective graph resistance, does not seem to exist. What does exist, on
the other hand, are explicit formulas for the effective graph resistance of
certain standard graphs. The formulas can be found in Table 4.2, which
builds on Table 4.1.

4.4 Diirr and Hdyer’s Algorithm Applied

Shortly after Grover published his innovative quantum search algorithm in
1996, Diirr and Hgyer [16] published a quantum algorithm for finding the
minimum (or maximum) in an unsorted database, which uses Grover’s algo-
rithm? as a subroutine. Their algorithm does not require the minimum to

2Not exactly Grover’s algorithm, rather a generalisation of it by Boyer et al. [8, p. 498]
which does not require the number of solutions to be known.
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be known, which takes away the need for the supremum and infimum sought
for in the two preceding sections. The algorithm looks as follows.

Diirr and Hgyer's Algorithm [16]

Parameters. Let T' denote the unsorted database that we are searching
through, and T'[i] the entry at index i. Moreover, the number of entries
in T equals n, which has order of magnitude 1 or larger.

Output. With probability p > 1/2, index iy, such that T7[i,,] is the
smallest entry in the database.

1. Define X to be 8/7 (see [8, p. 498]).

2. Choose threshold index iy € Z : 0 < 74 < n — 1 uniformly at
random.

3. Repeat the following until the cumulative sum of the number of
applied Grover iterations exceeds |87+/n|.3 Afterwards, go to (4.).

a. Use the generalisation of Grover's algorithm by Boyer et al.
[8, p. 498] to search for an index i such that T'[i] < T'[i].
That is,

i. Initialise s = 1.
ii. Initialise two n-qubit registers as Z;:Ol ﬁ ) |i¢).
iii. Choosel € Z :0 <1 < s uniformly at random.

iv. Apply the Grover iterate (see Sect. 3.2) [ times. The
oracle f is implemented by Uy as follows:

~liplie) i TE] < Tl

4.17
i) |is) otherwise (4.17)

Uy : [i) [ir) = {
v. Measure the first register. Let i; be the outcome. If

o T[i}] < TTiy] let 4 := 4; and return;

. otherwise let s := min (As,y/n) and go

to (ii.).

4. Return 4.

3Actually, in [16, p. 1] a slightly smaller bound for the cumulative sum of Grover
iterations is given, namely 22.5\/n < 25y/n = LSW\/EJ, which is probably a little mistake
by the authors and should have been 20y/n. Why is our bound 25+/n instead of 20y/n?
As will be discussed below in more detail, the latter bound is only valid if during step (2.)
not just one but instead a handful of indices is chosen uniformly at random and of which
the best becomes the initial threshold index ;.
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Diirr and Hgyer’s algorithm outputs 4, with probability larger than
1/2 after at least "87T\/7€-| applications of the Grover iterate. Therefore, if
the algorithm is run c times, the probability that the minimum is among
the results is at least 1 — (1/2)¢, which grows rapidly as ¢ increases. For
example, after running the algorithm ¢ = 8 times, the minimum is part of
the outcomes with a probability that is certainly larger than 0.99.

Does this mean that, if we would tailor the algorithm by Diirr and Hgyer
to the specifics of either instance, we would arrive at two algorithms, each
of which solves a different instance, but both of which have a complexity
of O(N)? (Recall from Sect. 1.2 that the size of our search space n is
strictly smaller than N2.) The answer, unfortunately, is in the negative: the
algorithm’s running time is composed of more than just its query complexity
of [877\/51 In general, the complexity of a black-box algorithm, Uy being
our black box, equals the query complexity 1" times the complexity B of a
single query, plus the total complexity A of all non-query operations.

In what follows, we will elaborate on where the requisite number of
’7871'\/5—‘ Grover iterations comes from. We will show why [87r\/ﬂ is the

query complexity T of the algorithm, 1.39log3 n the complexity A of all non-
query operations, and that the complexity B of a single query — irrespective
of the instance being solved — is O(N?3). As a result, the time complexity
of the algorithm, after the details have been put in, is O(N%).

4.4.1 Running Time in the Black-Box Model

Clearly, the loop that step (3.) is should be interrupted only if, with prob-
ability at least 1/2, i; equals i,,. Accordingly, the running time of the
algorithm is largely dependent on how long it takes for the foregoing to
hold.

The following result is well-known (for a proof, see for example [43,

p. 71)):

Theorem 6 (Markov’s Inequality [43, p. 71]). If X is a random variable
that takes only non-negative values, then for any value a > 0

P{X >a} < E[GX] (4.18)

where P{X > a} denotes the probability that X is larger than or equal to a.

We define X to be the time it takes until ¢; := 4,,. Theorem 6 shows
that

P{X > 2E[X]} < == (4.19)
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and

1 P{X > 2B[X]} > 1 - % _ % (4.20)

P{X <2E[X]} > % (4.21)
Therefore, if we interrupt the loop after it has run for time 2E[X], we know
that the probability that ¢, = i, is at least 1/2. The remainder of this
section will be about computing the expectation of X.

The point of subroutine (3a.) is to find an index 7} such that T[i;] < T'[is].
The larger the difference between T'[i;] and T'[¢}], the sooner we are done.
Or, the smaller the number of entries smaller than T[], the sooner we are
done. If there is as little as one entry smaller than T'[i}], we know that with
high probability only one more execution of Boyer et al’s algorithm will be
necessary before we can move on to step (4.). The question arises, what
is — at most — the expected value of the time it takes until there are no
entries smaller than T'[}]?

In the worst case, no two entries in 7" have the same value, our random
initial threshold index 4, is the index of the largest entry in the database,
and subroutine (3a.) always results in a new threshold index i} such that
T[iy] is the largest entry smaller than T'[i;]. As a consequence, only after
n — 1 executions of Boyer et al’s algorithm 4; will be 4,,.

Fortunately for us, it is unlikely that all n — 1 possible executions are
required. Most will be skipped, automatically, simply because the result of
(3a.) is an index 4; such that T'[¢}] is not only smaller than T'[i;], but also
smaller than a handful of different entries each of which is also smaller than
T'i] but that were just unlucky and have not been chosen. What’s more, it
is impossible that, in the future, they are chosen.

One way to compute E[X] is by first observing that

X=Y1+Yo+ - +Y, (4.22)

where Y}, is a random variable defined as the length of the kth possible
execution of Boyer et al’s algorithm. The value of T'[i;] at the start of the
kth possible execution is the kth largest of all entries in 7. For example,
the value of T[i;] at the start of the first execution (i.e., k = 1) of the n — 1
possible executions is the value of the largest entry in T'.

Since, in general

E[Zl +Zo+ -+ Zn] = E[Zl] + E[ZQ] + -+ E[Zn] (4.23)

where 71,25, ..., Z, are arbitrary random variables, we can evaluate E[X]
if we can work out E[Y;]. What is E[Y;]? Evidently, the kth execution will
either take place and have length Ly > 0 or it will not take place and have
zero length. That is,

E[Y] = pLk (4.24)
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where p denotes the probability that the kth execution takes place and Ly
the length of the execution. Observe that the kth execution occurs directly
after, and at no other point in time, threshold index i; becomes x such that
T'[x] is the kth largest entry in 7. As a result, p is equal to the probability
that 4; := x.

In the same paper in which they present their algorithm, Diirr and Hgyer
prove by induction that p = 1/r where 1 < r < n is the ranking of T[x],
which is 1 if the entry is minimal and n if it is maximal (see Lemma 1 in
[16, p. 1]). As a result, for example,

1
E[Yn-1] = 5 Lot (4.25)

because the (n — 1)th execution, the last of all possible executions, occurs
if and only if during an earlier execution 4; := y such that the ranking r
of T[y] is 2, which by Dirr and Hgyer’s lemma happens with probability
p=1/r = 1/2. We find that,
1 1 1
E[X] =E[Yi + Yo+ +Yoi] = ~Li+ ——=Lo+---+ 5Lyt (4.26)
and are left with the assignment to find Ly.

The length L; of a single execution is the sum of the lengths of steps
(ii.) and (iv.); steps (i.), (iii.), and (v.) take a negligible amount of time and
are, accordingly, neglected in the complexity analysis. The duration of (ii.)
is same for all iterations: by convention, it is logy n [16, p. 1]. More difficult
is the determination of the duration of (iv.), because it depends on k.

Boyer et al. show that the running time of their algorithm i.e., of sub-
routine (3a.), is O(y/n/t) where n is again the size of T" and ¢ the number
of solutions [8, p. 499]. Recall that an index i is a solution if T'[i] < T'[is].
Like Diirr and Hgyer, they also assume unit time oracle queries.

Unfortunately for us, in order to arrive at their result, Boyer et al. make
an assumption that cannot be made if the algorithm is used as in, for ex-
ample, Diirr and Hgyer’s algorithm. They assume that t < 3n/4. For
all iterations k > n — [3n/4] the assumption is correct, but otherwise if
k <n—[3n/4] it definitely cannot be made. The threshold T'[i;] of each of
these iterations is so large that the number of solutions ¢ is guaranteed to
be at least 3n/4.%

In their complexity analysis, Boyer et al. explain that “The case ¢t > 3n/4 can be
disposed of in constant expected time by classical sampling” [8, p. 499]. However, how
does one know whether ¢ > 3n/4 or not? After all, the algorithm is an algorithm “for
finding a solution when the number ¢ of solutions is unknown.” [8, p. 498]. The way out of
this difficulty is to, before going to step (3.), pick uniformly at random d > 1 indices and
let the initial threshold index i;, be the index ¢ among the d random indices such that
Ti] is minimal. If, for example, d = 4, the probability that T'[i,] belongs to the smallest
75% of T equals 1 — (1/4)* which is larger than 0.99. Since picking four random indices
and comparing the corresponding entries takes constant time, Boyer et al’s assumption
that ¢ < 3n/4 is in fact justified.
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The assumption is necessary to show that

(4.27)

n n
nm_QJ@—thV:
but not needed to show that the expected number of applications of the
Grover iterate is at most 8myg [8, p. 499]. For each of all n — 1 possible
executions, the number of solutions ¢ is known: There are n — 1 entries
T[i] smaller than the threshold T'[i¢] of the first execution, n — 2 entries
T'[i] smaller than threshold T[] of the second execution, etc. until we reach
execution 7 — 1 and there is only one entry smaller than the threshold T7[i],
which is T'[i,,]. In other words, ¢ = n — k and we have found Ly:

4B
Ly, = 8moB +logyn = (nt)t + logy n
T —
15n +lo (4.28)
= n
=Rk o

where B is the complexity of a single query. As a result, the expected value

E[X] of X is

n—1
:E:n_é_4)< é?zﬂjJ%wO (4.29)
4dn
= kz:l TR/ cEay —I—logznz k—l—l (4.30)
n—1

4dn
z:: (n—k+1)/(n—kk

+ (Hp — 1) loggn (4.31)

where H,, denotes the nth harmonic number. The remaining summation
can be overestimated by a definite integral on the interval [1,n]. We need
to increase the upper limit by 1 because as illustrated in Figs. 4.2—4.4, the
terms of the summation, as a function of k& and for some constant n, are
virtually nondecreasing on the interval 1 < k < n — 1. Accordingly, in order
for the integral to actually overestimate the summation, the latter should
be thought of as a right Riemann sum. That is,

Z_: 4dn 4dn (4.32)
o (n—k+1)/(n—k kln—k+1) (n—k)k '
and
/n An 2n (2 arcsin ("252) + 77) An 133
= < . .
k=1 (n—k+1)\/(n—k)k vn+1 T Vn+1 (4:33)
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Combining Eq. 4.33 with the fact that H,, — 1 < Inn (see for example [41,
p. 2]), we find that, if n is sufficiently large and v/n + 1 = /n,

E[X] < 47By/n+ Innlogyn (4.34)
log3 n. (4.35)

< 4nBy/n +
log, e

As a result, after time twice the upper bound of Eq. 4.35, i.e. after time
8mB+/n + 1.391og3 n we should stop executing Boyer et al’s algorithm and
move on to step (4.). That is, after at least [877\/ﬂ applications of the
Grover iterate, the probability that ¢, = i,, is at least 1/2. Consequently,
Diirr and Hgyer’s algorithm does indeed run in time O(By/n) where B is
the time complexity of querying the oracle and n the size of T'. The size of
T will be |E(G)| and therefore always smaller than N? (see Sect. 1.2).

4.4.2 Complexity of the Oracle

How long does it take for the oracle Uy to respond to a single query? Let’s
consider each problem instance separately. First, the problem of maximising
a graph’s algebraic connectivity a(G), afterwards the problem of minimising
its effective graph resistance Rg.
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Computing the Algebraic Connectivity

Let a(G +e¢;) be the algebraic connectivity of G +¢;, where ¢; is the ith edge
of a totally ordered E(G), ordered according to some arbitrary total order.
The oracle is given a(G + e;,) for some index i; and asked to compare it to
a(G + ¢;) for any i and change the phase of |i) accordingly. It seems that,
in order to do so, it cannot but compute a(G + €;) = A\2(G + €;) each time
we ask for a comparison.

The most efficient way to compute Ao of a given Laplacian @ is by
means of the symmetric QR algorithm mentioned before (see Sect. 1.2). This
classical algorithm, like any other classical algorithm, can be implemented
efficiently on a quantum computer using only Toffoli gates [39, p. 29]. The
time complexity B of the oracle is equal to the complexity of the symmetric
QR algorithm, which is O(N3).

Computing the Effective Graph Resistance

This time, the oracle needs to compute R¢g; before it can respond to our
query. We have seen in Sect. 2.3 that there are no less than four different
ways by which the effective graph resistance Rg of a graph G can be com-
puted. Or rather, by which the effective resistance R;; between two vertices
i and j can be computed. The most efficient way, however, is to either
compute the Moore-Penrose matrix inverse of the Laplacian to obtain Q
and use Eq. 2.10 to compute Rg or to compute the spectrum of Q and then
Eq. 2.11 to find Rg. Again, using the symmetric QR algorithm to compute
the eigenvalues of @, the complexity of the oracle is O(N?).

4.4.3 Integrating Heuristics

Consider, once more, Diirr and Hgyer’s algorithm. In Sect. 4.4.1 we ex-
plained that the running time of the algorithm is heavily dependent on the
ranking r of the threshold 7'[i;]. The threshold of execution k = 1 is chosen
uniformly at random, and from then on determined by the outcome of (v.).
What if we do not choose the first threshold randomly, but instead make an
educated guess at the index ¢ of a very small, if not minimal, entry 7'[¢]?

Before we discuss how such an educated guess can be made, i.e. how
relatively good edges can be identified, we will determine the potential gain
of time. To that end, we will quantify the performance P of a heuristic
h : G — h(G) by the maximum number of entries in 7" smaller than or
equal to T[H| where H is a random variable defined as the index that the
heuristic returns after we feed it G. The index H is one of P indices and we
will assume that it has a uniform distribution. The smaller P, the better
h. For example, if P = n for some heuristic h, then h performs as good as
a heuristic that just returns an index chosen uniformly at random. And if
P =1, the heuristic always returns i,,.
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Equation 4.26 shows that there is a very simple relationship between
the performance P of a heuristic h and the minimum speed-up that using
h will result in. If, for example, P = n/2 for some heuristic h, we are
effectively solving the same problem but without using h, except that our
database T no longer contains n entries, but P = n/2 instead. As a result,
the complexity of Diirr and Hgyer’s algorithm, in terms of the performance
P of the heuristic h that is used to choose the initial threshold index 4;, and
thereby replaces step (2.), becomes O(B+v/P).

An Example

In [49], Wang and Van Mieghem evaluate two different heuristics for finding
an edge that maximally increases the algebraic connectivity of the aug-
mented graph. The first heuristic iy is very simple: pick a random vertex
i from the set of vertices that have minimal degree, and connect it to a
random vertex j that is not in #’s neighbourhood already. In a different
work by Wang et al. [50], of which Van Mieghem is indeed co-author, the
same heuristic is analysed but this time to solve the second instance of our
problem, where robustness is defined as minus the graph’s effective graph
resistance.

In both works, the performance of h; is measured by the (relative) in-
crease of algebraic connectivity and the effective graph resistance, respec-
tively. We, on the other hand, are interested in P: the maximum number
of entries in 7' smaller than or equal to T[H]. To that end, Fig. 4.5 shows
the rate of occurrence of each possible ranking r of the index H =1, “rec-
ommended” by h;. The frequencies in Fig. 4.5 have been approximated
as follows: for each of 1003 random, connected, non-isomorphic graphs of
16 vertices and 42 edges, a sorted table T of size |E(G)| = 78 consisting
of the algebraic connectivities in Ag, indexed by the edges in F(G), has
been constructed. The ranking r of i, is simply the ranking of the edge
en,, the edge corresponding to i, in Ts. If » = 1, ey, is the best edge to
add and accordingly ij, = %y, is the index of the largest entry in T;. Note
that, although the algebraic connectivities of two different entries in Ts may
be equal, their rankings will be different, which introduces a small error in
the histogram in Fig. 4.5. For example, it is possible that the algebraic
connectivities in Ty are all equal, but because of the arbitrariness intrinsic
to the labelling of vertices, e, will probably not have ranking 1 — while it
actually has. As a consequence, the histogram in Fig. 4.5 paints a slightly
worse — not better — picture of the distribution of the ranking of H.

Fig. 4.6 shows the same kind of histogram as in Fig. 4.5, but this
time robustness is defined as minus the graph’s effective graph resistance.
Although a non-trivial upper bound for the performance P of h; is probably
hard to find, Figs. 4.5 and 4.6 suggest that a speed-up can be obtained by
including h; in Diirr and Hgyer’s algorithm (if it is used to solve our problem)
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A histogram of the rankings r of the estimates ey, of h;.

Robustness is defined as the algebraic connectivity a(G) of G.
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Figure 4.5: A histogram of the rankings r of the estimates e, of hj.
Robustness is defined as the algebraic connectivity a(G) of G. The number
of random graphs in the experiment was 1003, the number of edges in each
of these graphs 42 and accordingly the number of candidate edges 78, which
explains why the rankings range from 1 to 78. Observe that h; guesses
im correctly ~6% of the time and that T'[ip,] usually (~70% of the time)
belongs to the largest 25% of T.
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A histogram of the rankings r of the estimates ej, of hy.
Robustness is defined as minus the effective graph resistance Rg of G.
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Figure 4.6: A histogram of the rankings r of the estimates e, of hj.
Robustness is defined as the minus the effective graph resistance Rg of G.
The number of random graphs in the experiment was 1013, the number of
edges in each of these graphs 42 and accordingly the number of candidate
edges 78, which explains why the rankings range from 1 to 78. Observe that
hi guesses iy, correctly ~6% of the time and that T'[ip,] usually (~80% of
the time) belongs to the smallest 25% of T'.

52



compared to vanilla Dirr and Hgyer.

We should not forget that running the algorithm H; that implements hq
will take time as well. Worse still, the time complexity of H; is dependent
on the number of vertices IV of the graph. The most expensive part of
Hi, in terms of time, will be finding a random vertex that has minimal
degree, because in the worst case, we will have to iterate over all N rows in
the adjacency matrix A (the input to our algorithm), each time computing
their N-term sum to find the degree of the vertex, whilst keeping track of
the smallest degree encountered so far. If, however, we come across a vertex
that has degree 1, we can stop searching immediately.

In any case, H; will take time O(NN?) (for a bit more detail, see [50, p. 6]).
Given that N is reasonably large, as long as the time complexity of the
algorithm for computing the heuristic is better than the complexity O(N%)
of Diirr and Hgyer’s algorithm applied to our problem, using the heuristic
will be beneficial. For example, if P ~ n/4 — a reasonable estimate of h’s
performance if robustness is defined as minus the graph’s effective graph
resistance (see Fig. 4.6) — the running time of Diirr and Hgyer’s becomes

N2
8N/ -+ O(N?) +1.391log3 N? = 4rN* + O(N?) 4 1.39log3 N? (4.36)

and the halving of the constant in front of the fourth-order term outweighs
the additional polynomial of degree 2.

In the works by Wang and Van Mieghem [49] and Wang et al. [50],
more involved and computationally expensive heuristics are proposed for
both problems, respectively. The same kind of histograms as in Figs. 4.5
and 4.6, but illustrating the performance of those heuristics, can be made
without difficulty. In general, one should expect that, the more involved the
heuristic, the worse its time complexity but also the better its performance.
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Chapter 5

Conclusion

In this work, we asked ourselves the question, given a network, the addition
of which single edge will maximally increase the network’s robustness? We
defined robustness as the algebraic connectivity of the graph and minus
its effective graph resistance, respectively. In Chap. 1, we explained that
searching exhaustively for the best edge to add takes time O(N?); that Kim’s
bisection algorithm solves the first instance in time O(N?), but that no
algorithm exists that makes use of the hidden structure that either problem
may follow. Perhaps no such structure exists, and the best we can do is to
“simply” search for the edge that maximally increases the robustness of the
graph.

Although using search, as a means to compute something, is simple com-
pared to the difficulty of revealing a problem’s hidden structure, there are
all kinds of different ways to search: clever and naive searches, efficient and
inefficient ones. In particular, Grover’s algorithm defined quantum search
and gave rise to other quantum search algorithms, each of which if fun-
damentally different from the more familiar and above all classical search
algorithms.

In Chap. 3 we explained Grover’s algorithm, so as to apply one of its
spin-offs, a quantum search algorithm by Diirr and Hgyer, in Chap. 4. We
showed that the running time of Diirr and Hgyer’s algorithm, applied to
either instance, solves the problem in time O(N?). As a result, it is the
“fastest” algorithm for finding an edge that maximally decreases the effective
graph resistance of the augmented graph. Kim’s bisection algorithm, also
a clever kind of search, albeit classical, is indeed still better for finding an
edge that maximally increases algebraic connectivity.

Finally, also in Chap. 4, we explained how heuristics can be used to
speed up Diirr and Hgyer’s algorithm. Not just any search algorithm can be
accelerated by integrating a heuristic, but Diirr and Hgyer’s can be accel-
erated and the gain is significant — it seems possible to roughly halve the
algorithm’s running time.
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5.1 Future Work

Some obvious directions for future research include the following:

« Apply Diirr and Hgyer’s algorithm as applied in this work to other op-
timisation problems, in particular to optimisation problems for which
good heuristics exist.

« Devise and measure the performance of new heuristics for solving the
graph augmentation problem. A heuristic based on spanning trees,
for example, does not seem to have been found while we showed in
Sect. 2.3.3 that there is a relationship between the number of spanning
trees of the augmented graph and its effective graph resistance.

o Search for a sharp bound for the algebraic connectivity and effective
graph resistance of the augmented graph.

o Come up with a more efficient way to compute the algebraic connectiv-
ity or effective graph resistance of a given graph. It might be possible,
for example, to compute efficiently and recursively the effective graph
resistance of some graphs by reducing (“folding up”) them by means
of the four reductions presented in Sect. 2.3.4.

« Devise a clever classical search algorithm for minimising the effective
graph resistance of the augmented graph, motivated by Kim’s result.

« And last but not least, yet beyond all doubt the most challenging:
reveal the problem’s hidden structure or prove that there is none.

A slightly less obvious direction for future research is to elaborate further
on the relation between the random walk on the graph and the effective
resistance. Even less obvious is to try to relate the quantum random walk
on the graph to the effective (graph) resistance. We have had a try at the
latter during the past six months that were spent on this work, and we
conclude this text by briefly speculating about what the union of effective
(graph) resistance and quantum random walks has to offer.

Recall Eq. 2.12,
1

2M
where C;; = E[Tj;] + E[T};] denotes the commute time between i and j.
M is the number of edges |E|. Intuitively, the smaller Cjj, the poorer the
connection between ¢ and j. That is, if Cj; is small, the random walk on the
graph starting in ¢ has difficulty in reaching j and vice versa.

Think of the random walk on G as a finite time-reversible Markov chain
(Xn)nen. If we only consider connected non-bipartite graphs, (X, )nen will

R = Cij (2.12)
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be positive recurrent, irreducible, and aperiodic (for definitions, see for ex-
ample [40, p. 140]). Consequently, we have

_ 1
(i)

where ¢ is a member of the state space S of (X,,)nen, 7 the limiting and at
the same time stationary distribution of the Markov chain, and p;(i) > 1
the expected time before a random walk on G starting in 4 hits j (see for
example [40, p. 133]). It can be shown that

pi(i) =1+ > PyE[T}] (52)
jes\(i}

where P is the transition matrix of (X, )nen (see for example [40, p. 104]).
Hence,

1
—= 1+ Y PyE[T}] (5.3)
‘ JeS\{i}
and since P;; = 0 if 4 is not a neighbour of j and 1/d; otherwise, we have
1 1
== 1+ 7 > E[Ty] (5.4)
! " JEN(3)

where N (i) is the set of vertices adjacent to vertex i. Eq. 5.4 shows that
1/m; — 1 is the average of the expected lengths of the random walks starting
in 7’s neighbours and ending in 1.

It is well-known that

d.
=3 M (5.5)

and accordingly, combining Eq. 5.4 and Eq. 5.5 gives
2M —d; = Y E[Tj). (5.6)

JEN()
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Equation 5.6 can be used to simplify Eq. 2.7. That is,

N-2 N-1 N—-1N-1

Re=> > Rij= ﬁ > Y E[T] (5.7)
=0 j=i+1 =0 75=0
= ﬁ Y. EILI+ETD+ > (BIT] +E[sz-])) (5.8)
(i) €E(G) (i) €E(G)
= ﬁ >, @M —d)+ > (E[T] +E[Tj~])> (5.9)
i€V(G) (i,9)€EE(G)
1
= 5u7 2NM —2M + | Z (E[T3;] +E[Tﬂ])) (5.10)
(i.4)€B(G)
SNl Y (B[] ET) (511)
(i.4)€B(G)
=N-1+ > Ry (5.12)
(1.5)€E(G)

Equation 5.12 establishes evidence that if E(G) = @, which implies G = Ky,
then Rg = Rk, = N — 1 as was also shown by Ellens et al. (see Table 4.2)
albeit in a different way.

The equation also explains why adding the edge (4, j) such that R;; is
maximal will probably serve as a good heuristic: if we add (i,j) to G, the
large R;; term will be swallowed up completely in the NV — 1 term in front
of the summation. The other effective resistances will also decrease, but
to what extent remains obscure. That is also why such a heuristic will
be a heuristic and not an algorithm for solving the problem: sometimes the
addition of an edge (i, j) such that R;; is not maximal will nevertheless bring
about the largest decrease of all terms in the summation Z(i’ NEEG) R;j and
accordingly minimise the effective graph resistance of the augmented graph.

Returning to the usefulness of random walks and quantum random walks
in solving the second instance of our problem, one will find that if 7; is small,
connecting 7 to any other vertex it is not already connected to will often —
but not always — maximally decrease the effective graph resistance of the
augmented graph. A similar pattern is observed if we look at the long-run
behaviour of the quantum random walk on the graph. Although different
kinds of quantum random walks have been defined (see [51] and [29] for
the definitions of two types of discrete quantum random walks on general
graphs, respectively), usually if not always the components of some state
|1)) are mapped on to V or E and as a result, just as we can classically,
a probability can be attached to each vertex or edge. Contrary to random
walks, however, quantum random walks in general do not have a limiting
or stationary distribution, but the average of the different distributions over
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time does converge, and for that reason Aharonov et al. [1, p. 53] defined the
limiting distribution of a quantum random walk as the average distribution
over time t as t grows from 0 to infinity.

In any case, Eq. 5.5 shows that if one were to add edges based on ;
as described in the beginning of the preceding paragraph, one is effectively
applying heuristic h; (see Sect. 4.4.3). Quantum random walks devised to
emulate as closely as possible classical random walks will probably display
the same behaviour — that is, low probabilities being indicative of vertices
incident with relatively good candidate edges — for the same reason. To
conclude, although tempting, the long-run behaviour of both classical and
quantum random walks does not seem to be of immediate use. B
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