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Abstract
Background: Extracting relevant biological information from large data sets is a major challenge
in functional genomics research. Different aspects of the data hamper their biological
interpretation. For instance, 5000-fold differences in concentration for different metabolites are
present in a metabolomics data set, while these differences are not proportional to the biological
relevance of these metabolites. However, data analysis methods are not able to make this
distinction. Data pretreatment methods can correct for aspects that hinder the biological
interpretation of metabolomics data sets by emphasizing the biological information in the data set
and thus improving their biological interpretability.

Results: Different data pretreatment methods, i.e. centering, autoscaling, pareto scaling, range
scaling, vast scaling, log transformation, and power transformation, were tested on a real-life
metabolomics data set. They were found to greatly affect the outcome of the data analysis and thus
the rank of the, from a biological point of view, most important metabolites. Furthermore, the
stability of the rank, the influence of technical errors on data analysis, and the preference of data
analysis methods for selecting highly abundant metabolites were affected by the data pretreatment
method used prior to data analysis.

Conclusion: Different pretreatment methods emphasize different aspects of the data and each
pretreatment method has its own merits and drawbacks. The choice for a pretreatment method
depends on the biological question to be answered, the properties of the data set and the data
analysis method selected. For the explorative analysis of the validation data set used in this study,
autoscaling and range scaling performed better than the other pretreatment methods. That is,
range scaling and autoscaling were able to remove the dependence of the rank of the metabolites
on the average concentration and the magnitude of the fold changes and showed biologically
sensible results after PCA (principal component analysis).

In conclusion, selecting a proper data pretreatment method is an essential step in the analysis of 
metabolomics data and greatly affects the metabolites that are identified to be the most important.
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Background
Functional genomics approaches are increasingly being
used for the elucidation of complex biological questions
with applications that range from human health [1] to
microbial strain improvement [2]. Functional genomics
tools have in common that they aim to measure the com-
plete biomolecule response of an organism to the envi-
ronmental conditions of interest. While transcriptomics
and proteomics aim to measure all mRNA and proteins,

respectively, metabolomics aims to measure all metabo-
lites [3,4].

In metabolomics research, there are several steps between
the sampling of the biological condition under study and
the biological interpretation of the results of the data anal-
ysis (Figure 1). First, the biological samples are extracted
and prepared for analysis. Subsequently, different data
preprocessing steps [3,5] are applied in order to generate
'clean' data in the form of normalized peak areas that
reflect the (intracellular) metabolite concentrations.
These clean data can be used as the input for data analysis.
However, it is important to use an appropriate data pre-
treatment method before starting data analysis. Data pre-
treatment methods convert the clean data to a different
scale (for instance, relative or logarithmic scale). Hereby,
they aim to focus on the relevant (biological) information
and to reduce the influence of disturbing factors such as
measurement noise. Procedures that can be used for data
pretreatment are scaling, centering and transformations.

In this paper, we discuss different properties of metabo-
lomics data, how pretreatment methods influence these
properties, and how the effects of the data pretreatment
methods can be analyzed. The effect of data pretreatment
will be illustrated by the application of eight data pretreat-
ment methods to a metabolomics data set of Pseudomonas
putida S12 grown on four different carbon sources.

Properties of metabolome data
In metabolomics experiments, a snapshot of the metabo-
lome is obtained that reflects the cellular state, or pheno-
type, under the experimental conditions studied [3]. The
experiments that resulted in the data set used in this paper
were conducted according to an experimental design. In
an experimental design, the experimental conditions are
purposely chosen to induce variation in the area of inter-
est. The resulting variation in the metabolome is called
induced biological variation.

However, other factors are also present in metabolomics
data:

1. Differences in orders of magnitude between measured
metabolite concentrations; for example, the average con-
centration of a signal molecule is much lower than the
average concentration of a highly abundant compound
like ATP. However, from a biological point of view,
metabolites present in high concentrations are not neces-
sarily more important than those present at low concen-
trations.

2. Differences in the fold changes in metabolite concen-
tration due to the induced variation; the concentrations of
metabolites in the central metabolism are generally rela-

The different steps between biological sampling and ranking of the most important metabolitesFigure 1
The different steps between biological sampling and 
ranking of the most important metabolites.
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tively constant, while the concentrations of metabolites
that are present in pathways of the secondary metabolism
usually show much larger differences in concentration
depending on the environmental conditions.

3. Some metabolites show large fluctuations in concentra-
tion under identical experimental conditions. This is
called uninduced biological variation.

Besides these biological factors, other effects present in the
data set are:

4. Technical variation; this originates from, for instance,
sampling, sample work-up and analytical errors.

5. Heteroscedasticity; for data analysis, it is often assumed
that the total uninduced variation resulting from biology,
sampling, and analytical measurements is symmetric
around zero with equal standard deviations. However,
this assumption is generally not true. For instance, the
standard deviation due to uninduced biological variation
depends on the average value of the measurement. This is
called heteroscedasticity, and it results in the introduction
of additional structure in the data [6,7]. Heteroscedasticity
occurs in uninduced biological variation as well as in tech-
nical variation.

The variation in the data resulting from a metabolomics
experiment is the sum of the induced variation and the
total uninduced variation. The total uninduced variation
is all the variation originating from uninduced biological
variation, sampling, sample work-up, and analytical vari-
ation. Data pretreatment focuses on the biologically rele-
vant information by emphasizing different aspects in the
clean data, for instance, the metabolite concentration
under a growth condition relative to the average concen-
tration, or relative to the biological range of that metabo-
lite. In metabolomics, data pretreatment relates the
differences in metabolite concentrations in the different
samples to differences in the phenotypes of the cells from
which these samples were obtained [3].

Data pretreatment methods
The choice for a data pretreatment method does not only
depend on the biological information to be obtained, but
also on the data analysis method chosen since different
data analysis methods focus on different aspects of the
data. For example, a clustering method focuses on the
analysis of (dis)similarities, whereas principal component
analysis (PCA) attempts to explain as much variation as
possible in as few components as possible. Changing data
properties using data pretreatment may therefore enhance
the results of a clustering method, while obscuring the
results of a PCA analysis.

In this paper, we discuss three classes of data pretreatment
methods: (I) centering, (II) scaling and (III) transforma-
tions (Table 1).

Class I: Centering
Centering converts all the concentrations to fluctuations
around zero instead of around the mean of the metabolite
concentrations. Hereby, it adjusts for differences in the
offset between high and low abundant metabolites. It is
therefore used to focus on the fluctuating part of the data
[8,9], and leaves only the relevant variation (being the var-
iation between the samples) for analysis. Centering is
applied in combination with all the methods described
below.

Class II: Scaling
Scaling methods are data pretreatment approaches that
divide each variable by a factor, the scaling factor, which
is different for each variable. They aim to adjust for the dif-
ferences in fold differences between the different metabo-
lites by converting the data into differences in
concentration relative to the scaling factor. This often
results in the inflation of small values, which can have an
undesirable side effect as the influence of the measure-
ment error, that is usually relatively large for small values,
is increased as well.

There are two subclasses within scaling. The first class uses
a measure of the data dispersion (such as, the standard
deviation) as a scaling factor, while the second class uses
a size measure (for instance, the mean).

Scaling based on data dispersion
Scaling methods tested that use a dispersion measure for
scaling were autoscaling [9], pareto scaling [10], range
scaling [11], and vast scaling [12] (Table 1). Autoscaling,
also called unit or unit variance scaling, is commonly
applied and uses the standard deviation as the scaling fac-
tor [9]. After autoscaling, all metabolites have a standard
deviation of one and therefore the data is analyzed on the
basis of correlations instead of covariances, as is the case
with centering.

Pareto scaling [10] is very similar to autoscaling. However,
instead of the standard deviation, the square root of the
standard deviation is used as the scaling factor. Now, large
fold changes are decreased more than small fold changes,
thus the large fold changes are less dominant compared to
clean data. Furthermore, the data does not become
dimensionless as after autoscaling (Table 1).

Vast scaling [12] is an acronym of variable stability scaling
and it is an extension of autoscaling. It focuses on stable
variables, the variables that do not show strong variation,
using the standard deviation and the so-called coefficient
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of variation (cv) as scaling factors (Table 1). The cv is
defined as the ratio of the standard deviation and the

mean: . The use of the cv results in a higher importance

for metabolites with a small relative standard deviation
and a lower importance for metabolites with a large rela-
tive standard deviation. Vast scaling can be used unsuper-
vised as well as supervised. When vast scaling is applied as
a supervised method, group information about the sam-
ples is used to determine group specific cvs for scaling.

The scaling methods described above use the standard
deviation or an associated measure as scaling factor. The
standard deviation is, within statistics, a commonly used
entity to measure the data spread. In biology, however, a
different measure for data spread might be useful as well,
namely the biological range. The biological range is the
difference between the minimal and the maximal concen-
tration reached by a certain metabolite in a set of experi-
ments. Range scaling [11] uses this biological range as the
scaling factor (Table 1). A disadvantage of range scaling
with regard to the other scaling methods tested is that

s

x
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i

Table 1: Overview of the pretreatment methods used in this study. In the Unit column, the unit of the data after the data 

pretreatment is stated. O represents the original Unit, and (-) presents dimensionless data. The mean is estimated as:  

and the standard deviation is estimated as: .  and  represent the data after different pretreatment steps.

Class Method Formula Unit Goal Advantages Disadvantages

I Centering O Focus on the 
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similarities in the data

Remove the offset 
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When data is 
heteroscedastic, the 
effect of this 
pretreatment method 
is not always sufficient

II Autoscaling (-) Compare metabolites 
based on correlations

All metabolites become 
equally important

Inflation of the 
measurement errors

Range scaling (-) Compare metabolites 
relative to the 
biological response 
range
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equally important. 
Scaling is related to 
biology

Inflation of the 
measurement errors 
and sensitive to outliers
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metabolites that show 
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Aims for robustness, 
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response

Suited for identification 
of e.g. biomarkers

Inflation of the 
measurement errors
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multiplicative models 
additive
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multiplicative effects 
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Difficulties with values 
with large relative 
standard deviation and 
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Power transformation √O Correct for 
heteroscedasticity, 
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only two values are used to estimate the biological range,
while for the standard deviation all measurements are
taken into account. This makes range scaling more sensi-
tive to outliers. To increase the robustness of range scaling,
the range could also be determined by using robust range
estimators.

Scaling based on average value
Level scaling falls in the second subclass of scaling meth-
ods, which use a size measure instead of a spread measure
for the scaling. Level scaling converts the changes in
metabolite concentrations into changes relative to the
average concentration of the metabolite by using the
mean concentration as the scaling factor. The resulting
values are changes in percentages compared to the mean
concentration. As a more robust alternative, the median
could be used. Level scaling can be used when large rela-
tive changes are of specific biological interest, for exam-
ple, when stress responses are studied or when aiming to
identify relatively abundant biomarkers.

Class III: Transformations
Transformations are nonlinear conversions of the data
like, for instance, the log transformation and the power
transformation (Table 1). Transformations are generally
applied to correct for heteroscedasticity [7], to convert
multiplicative relations into additive relations, and to
make skewed distributions (more) symmetric. In biology,
relations between variables are not necessarily additive
but can also be multiplicative [13]. A transformation is
then necessary to identify such a relation with linear tech-
niques.

Since the log transformation and the power transforma-
tion reduce large values in the data set relatively more
than the small values, the transformations have a pseudo
scaling effect as differences between large and small values
in the data are reduced. However, the pseudo scaling effect
is not determined by the multiplication with a scaling fac-
tor as for a 'real' scaling effect, but by the effect that these
transformations have on the original values. This pseudo
scaling effect is therefore rarely sufficient to fully adjust for
magnitude differences. Hence, it can be useful to apply a
scaling method after the transformation. However, it is
not clear how the transformation and a scaling method
influence each other with regard to the complex metabo-
lomics data.

A transformation that is often used is the log transforma-
tion (Table 1). A log transformation perfectly removes
heteroscedasticity if the relative standard deviation is con-
stant [7]. However, this is rarely the case in real life situa-
tions. A drawback of the log transformation is that it is
unable to deal with the value zero. Furthermore, its effect
on values with a large relative analytical standard devia-

tion is problematic, usually the metabolites with a rela-
tively low concentration, as these deviations are
emphasized. These problems occur because the log trans-
formation approaches minus infinity when the value to
be transformed approaches zero.

A transformation that does not show these problems and
also has positive effects on heteroscedasticity is the power
transformation (Table 1) [13]. The power transformation
shows a similar transformation pattern as the log transfor-
mation. Hence, the power transformation can be used to
obtain results similar as after the log transformation with-
out the near zero artifacts, although the power transfor-
mation is not able to make multiplicative effects additive.

Methods
Background of the data set
P. putida S12 [14] is maintained at TNO. Cultures of P.
putida S12 were grown in batch fermentations at 30°C in
a Bioflow II (New Brunswick Scientific) bioreactor as pre-
viously described by van der Werf [15]. Samples (250 ml)
were taken from the bioreactor at an OD 600 of 10. Cells
were immediately quenched at -45°C in methanol as
described previously [16]. Prior to extracting the intracel-
lular metabolites from the cells – by chloroform extrac-
tion at -45°C [17] – internal standards were added [18]
and a sample was taken for biomass determination [19].
Subsequently, the samples were lyophilized.

GC-MS analysis
Lyophilized metabolome samples were derivatized using
a solution of ethoxyamine hydrochloride in pyridine as
the oximation reagent followed by silylation with N-tri-
methyl-N-trimethylsilylacetamide as described by [18].
GC-MS-analysis of the derivatized samples was performed
using temperature gradient from 70°C to 320°C at a rate
of 10°C/min on an Agilent 6890 N GC (Palo Alto, CA,
USA) and an Agilent 5973 mass selective detector. 1 µl
aliquots of the derivatized samples were injected in the
splitless mode on a DB5-MS capillary column. Detection
was performed using MS detection in electron impact
mode (70 eV).

Data preprocessing
The data from GC-MS analyses were deconvoluted using
the AMDIS spectral deconvolution software package
[18,20]. Zeros in the data set were replaced with small val-
ues equal to MS peak areas of 1 to allow for log transfor-
mations. The lowest peak areas in the rest of the data are
in the order of 103. The output of the AMDIS analysis, in
the form of peak identifiers and peak areas, was corrected
for the recovery of internal standards and normalized
with respect to biomass. The peaks resulting from a
known compound were combined. The samples N3, S2
and S3 were removed from the data set, as a different sam-
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ple workup protocol was followed. Furthermore, metabo-
lites detected only once in the 13 remaining experiments
were removedW. This lead to a reduced data set consisting
of 13 experiments and 140 variables expressed as peak
areas in arbitrary units (Figure 2). This data set was used
as the clean data for data pretreatment.

Data pretreatment
Data pretreatment and PCA were performed using Matlab
7 [21], the PLS Toolbox 3.0 [22], and home written m-
files. Data pretreatment was applied according to the for-
mulas in Table 1. The notation of the formulas is as fol-
lows: Matrices are presented in bold uppercase (X),
vectors in bold lowercase (t), and scalars are given in low-
ercase italic (a) or uppercase italic in case of the end of a
series i = 1...I. The data is presented in a data matrix X (I ×
J) with I rows referring to the metabolites and J columns
referring to the different conditions. Element xij therefore
holds the measurement of metabolite i in experiment j.

Vast scaling was applied unsupervised as the other data
pretreatment methods were unsupervised as well.

Data analysis
PCA was applied for the analysis of the data. PCA decom-
poses the variation of matrix X into scores T, loadings P,
and a residuals matrix E. P is an I × A matrix containing
the A selected loadings and T is a J × A matrix containing
the accompanying scores.

X = PTT + E,

where PT P = I, the identity matrix.

The number of components used (A) in the PCA analysis
was based on the scree plots and the score plots.

For ranking of the metabolites according to importance
for the A selected PCs, the contribution r of all the varia-
bles to the effects observed in the A PCs was calculated

Here, r is the contribution of variable i to A components,
λa is the singular value for the ath PC and pia is the value for
the ith variable in the loading vector belonging to the ath

PC. To allow for comparison between the different data
pretreatment methods, the values for rA were sorted in
descending order after which the comparisons were per-
formed using the rank of the metabolite in the sorted list.

The measurement errors were analyzed by estimation of
the standard deviation from the biological, analytical, and
sampling repeats. The standard deviations were binned by
calculating the averWage variance per 10 metabolites
ordered by mean value [23].

The jackknife routine was performed according to the fol-
lowing setup. In round one experiments F1, G1, N1 were
left out, in round two F2, G2, N1d were left out, and in
round three F3, G3A, were left out. By selecting these
experiments, the specific aspects of the experimental
design were maintained.

Results and discussion
Properties of the clean data
For any data set, the total variation is the sum of the con-
tributions of all the different sources of variation. The
sources of variation in the data set used in this study were
the induced biological variation, the uninduced biologi-
cal variation, the sample work-up variation, and the ana-
lytical variation. The variation resulting from the sample
work-up and the analytical analysis together was called
technical variation. The contributions of the different
sources of variation were roughly estimated from the rep-
licate measurements by calculating the sum of squares
(SS) and the mean square (MS) (Table 2). In this data set,
the largest contribution to the variation originated from
the induced biological variation, followed by the unin-
duced biological variation. The analytical variation was
the smallest source of variation (Table 2).

The effect of pretreatment on the clean data
The application of different pretreatment methods on the
clean data had a large effect on the resulting data used as
input for data analysis, as is depicted for sample G2 in Fig-
ure 3. The different pretreatment methods resulted in dif-
ferent effects. For instance autoscaling (Figure 3C) showed
many large peaks, while after pareto scaling (Figure 3D),
only a few large peaks were present. It is evident that dif-
ferent results will be obtained when the in different ways
pretreated data sets are used as the input for data analysis.

r pAi a ia
a

A
= ⋅

=
∑ λ2 2

1

Table 2: Estimation of the sources of variation in the data set. 
The SS and the MS for the different sources of variation are 
given, based on the experimental design presented in Figure 2. 
*The technical source of variation consists of the analytical error 
and the sample work-up error.

Source of variation SS MS

Analytical 0.0205 0.0102
Technical* 0.0482 0.0482
Uninduced biological 0.208 0.104
Induced biological 0.952 0.317

Total SS 1.23
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Experimental designFigure 2
Experimental design. The fermentations were performed in independent triplicates. Of the third glucose fermentation a 
sample was taken in duplicate and of G1, N1 and S1 the samples were analyzed in duplicate by GC-MS. The samples of N3, S2 
and S3 were not taken into account in this study.
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Effect of data pretreatment on the original dataFigure 3
Effect of data pretreatment on the original data. Original data of experiment G2 (A), and the data after centering (B), 
autoscaling (C), pareto scaling (D), range scaling (E), vast scaling (F), level scaling (G), log transformation (H), and power trans-
formation (I). For units refer to Table 1.
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Heteroscedasticity
To determine the presence or absence of heteroscedastic-
ity in the data set, the standard deviations of the metabo-
lites of the analytical and the biological repeats were
analyzed (Figure 4). Analysis of the analytical and the
uninduced biological standard deviations showed that
heteroscedasticity was present both in the analytical error
and in the biological uninduced variation (Figure 4A and
4B). In contrast, the relative biological standard deviation
(Figure 4C), and also the relative analytical standard devi-
ation (unpublished results), showed the opposite effect.
Thus, metabolites present in high concentrations were rel-
atively influenced less by the disturbances resulting from
the different sources of uninduced variation, and were
therefore more reliable.

The effect of the log and the power transformation on the
data as a means to correct for heteroscedasticity is shown

in Figure 5. Compared to the clean data (Figure 4B), the
heteroscedasticity was reduced by the power transforma-
tion (Figure 5A), although the power transformation was
not able to remove it completely. The results can possibly
be improved further if a different power would be used
(Box and Cox [24]). Also, the log transformation (Figure
5B) was able to remove heteroscedasticity, however only
for the metabolites that are present in high concentra-
tions. In contrast, the standard deviations of metabolites
present in low concentrations were inflated after log trans-
formation due to the large relative standard deviation of
these low abundant metabolites.

Scaling approaches influence the heteroscedasticity as
well, since the variation, and thus the heteroscedasticity, is
converted into relative values to the scaling factor. It is
likely that this aspect reduces the effect of the hetero-
scedasticity on the results.

Analytical and biological heteroscedasticity in the dataFigure 4
Analytical and biological heteroscedasticity in the data. A: Analytical standard deviation (experiment G1), B: Biological 
standard deviation (all glucose experiments), and C: Relative biological standard deviation (all glucose experiments), as a func-
tion of the metabolite concentration. To obtain a clearer overview, the standard deviations were grouped together based on 
average mean value of the peak area (Binning, see Jansen et al. [23]). The first bin contained the metabolites whose peak area 
was below the detection limit.
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The effect of data pretreatment on the data analysis 
results
PCA [9,25] was applied to analyze the effect on the data
analysis for the in different ways pretreated data. PCA was
chosen as it is an explorative tool that is able to visualize
how the data pretreatment methods are able to reveal dif-
ferent aspects of the data in the scores and the accompa-
nying loadings. Furthermore, it allows for identification
of the most important metabolites for the biological prob-
lem by analysis of the loadings.

The score plots were judged on two aspects by visual
inspection, namely the distance within the cluster of a
specific carbon source and the distance between the clus-
ters of different carbon sources. The loading plots show
the contributions of the measured metabolites to the sep-
aration of the experiments in the score plots. As cellular
metabolism is strongly interlinked (e.g. see [26,27]), it is
expected that the concentrations of many metabolites are
simultaneously affected when an organism is grown on a
different carbon source. Therefore, the loadings are
expected to show contributions of many different metab-
olites.

The data pretreatment methods used largely affected the
outcome of PCA analysis (Figure 6). Three groups of data
pretreatment methods could be identified in this way.
After range scaling, a clear clustering of the samples was
observed based on the carbon sources on which the sam-

pled cells were grown (Figure 6A1). Furthermore, the
loading plots (Figure 6A2 and 6A3) indicate that many
metabolites contributed to the effects in the score plots;
which is in agreement with the biological expectation.
Autoscaling, level scaling, and log transformation resulted
in similar PCA results as after range scaling (unpublished
results).

The application of centering lead to intermediate cluster-
ing results in the score plots (Figure 6B1). The clusters
were larger and less well separated compared to the results
for range scaling (Figure 6A1). The most striking results
for centered data are visible in the loading plots (Figure
6B2 and 6B3). Only a few metabolites had very large con-
tributions to the effects shown the score plot (Figure 6B1),
which is in disagreement with the biological expectations.
Power transformation and pareto scaling gave similar PCA
results (unpublished results).

In contrast to the other pretreatment methods, vast scaling
of the clean data resulted in a very poor clustering of the
samples (Figure 6C1). Overlapping clusters were
observed, although the loading plots (Figure 6C2 and
6C3) show contributions of many metabolites.

These results clearly demonstrate that the pretreatment
method chosen dramatically influences the results of a
PCA analysis. Consequently, these effects are also present
in the rank of the metabolites.

Effect of data transformation on biological heteroscedasticityFigure 5
Effect of data transformation on biological heteroscedasticity. A: power transformed data. B: log transformed data. 
The standard deviations over all glucose experiments were ordered by the mean value of the peak areas and binned per 10 
metabolites. The first bin contained the metabolites whose peak area was below the detection limit.
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Effect of data pretreatment on the PCA resultsFigure 6
Effect of data pretreatment on the PCA results. PCA results of range scaled data (6A), centered data (6B), and vast 
scaled data (6C). For every pretreatment method the score plot (X1) (PC1 vs. PC2) and the loadings of PC 1 (X2) and PC 2 
(X3) are shown. D-fructose (F, �), succinate (S, �), D-gluconate (N, &#x25EF;), D-glucose (G, *).
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Ranking of the most important metabolites
In functional genomics research, ranking of targets
according to their relevance to the problem studied (for
instance, strain improvement) is of great importance as it
is time consuming and costly to validate the, in general,
dozens or hundreds of leads that are generated in these
studies[2]. As shown in Figure 6, the use of different pre-
treatment methods influenced the PCA analysis and the
resulting loadings. For the different pretreatment meth-
ods, different metabolites were identified as the most
important by studying the cumulative contributions of
the loadings of the metabolites on PCs 1, 2 and 3 (Figure
7). Glucose-6-phosphate, for instance, was identified as
the most important metabolite when using centering as
the pretreatment method, while glyceraldehyde-3-phos-
phate (GAP) was identified as the most important metab-
olite when applying range scaling. For centering,
autoscaling, and level scaling, GAP was the 71st, 11th, or
38th most important metabolite, respectively. The pre-

treatment of the clean data thus directly affected the rank-
ing of the metabolites as being the most relevant.

The effect of a data pretreatment method on the rank of
the metabolites is also apparent when studying the rela-
tion between the rank of the metabolites and the abun-
dance (average peak area of a metabolite), or the fold
change (standard deviation of the peak area over all exper-
iments for a metabolite) (Figure 8). The effect of autoscal-
ing (Figure 8B), and also range scaling (unpublished
results), is in agreement with the expectation that the aver-
age concentration and the magnitude of the fold change
are not a measure for the biological relevance of a metab-
olite. In contrast, with centering (Figure 8A), pareto scal-
ing, level scaling, log transformation, and power
transformation (unpublished results), a clear relation
between the rank of the metabolites and the abundance,
or the fold change, of a metabolite was observed. This

Rank of the most important metabolitesFigure 7
Rank of the most important metabolites. The rank was based on the cumulative contributions of the loadings of the first 
three PCs. Top 10 metabolites are given in white characters with a black background, the top 11 to 20 is given in white char-
acters with dark gray background, the top 21 to 30 is given in black characters with a light gray background.

Ranking Centered Auto Range Level     Metabolite
1 2 8 17 6 mannitol
2 24 3 24 4 malate
3 1 25 15 45 glucose-6-phosphate
4 39 23 14 17 BAC-610-N1012 
5 21 36 9 28 gluconic acid lacton
6 13 38 20 27 BAC-629-N1028 
7 14 5 8 80 BAC-607-N1058 
8 45 6 3 57 isomaltose
9 37 26 19 30 sugar-phosphate
10 16 24 26 51 pyruvate
11 51 9 57 1 leucine    
12 71 11 1 38 glyceraldehyde-3-phosphate
13 12 63 12 37 BAC-629-N1037 
14 23 34 22 48 gluconic acid related
15 10 20 42 59 fructose-6-phosphate
16 69 15 27 21 oxalic acid
17 25 41 23 44 BAC-607-N1021 
18 15 10 32 76 uridinemonophosphate
19 73 7 2 55 BAC-607-N1044 
20 19 2 31 86 BAC-607-N1062 
Page 12 of 15
(page number not for citation purposes)



BMC Genomics 2006, 7:142 http://www.biomedcentral.com/1471-2164/7/142
relation was less obvious for vast scaling, however still
present (unpublished results).

Reliability of the rank of the metabolites
While the rank of the metabolites provides valuable infor-
mation, the robustness of this rank is just as important as
it determines the limits of the reliable interpretation of the
rank. To test the reliability of the rank of the metabolites,
a jackknife routine was applied [28].

The results for level scaling and range scaling are shown in
Figure 9. The highest ranking metabolites (up to the
eighth position) for both level scaled and range scaled
data were relatively stable. For both methods, the fluctua-
tions became larger for lower ranked metabolites, how-
ever, for the rank based on range scaled data the
fluctuations in the rank increased faster than for the data
resulting from level scaled data.

This resampling approach showed that the reliability of
the rank of the most important metabolites is also
dependent on the data pretreatment method. The most
stable data pretreatment methods were centering, level
scaling (Figure 9), log transformation, power transforma-
tion, pareto scaling, and vast scaling (results not shown).
Autoscaling was less stable (results not shown), while the
least stable data pretreatment method was range scaling.
Two factors affect the reliability of the rank of the metab-
olites. The first factor relates to the reliability with which
the scaling factor can be determined. For instance, level
scaling uses the mean as the scaling factor. As the mean is
based on all the measurements, it is quite stable. On the

other hand, range scaling uses the biological range
observed in the data as a scaling factor, which is based on
two values only. The second factor that influences the reli-
ability of the rank relates to those data pretreatment meth-
ods whose subsequent data analysis results show a
preference for the high abundant metabolites (Figure 8).
With these pretreatment methods, the stability of the rank
is predetermined by this character due to the low relative
standard deviation of the uninduced biological variation
of the high abundant metabolites (Figure 4B).

It must be stressed that the pretreatment method that pro-
vides the most stable rank does not necessarily provides
the most relevant biological answers.

Conclusion
This paper demonstrates that the data pretreatment
method used is crucial to the outcome of the data analysis
of functional genomics data. The selection of a data pre-
treatment method depends on three factors: (i) the bio-
logical question that has to be answered, (ii) the
properties of the data set, and (iii) the data analysis
method that will be used for the analysis of the functional
genomics data.

Notwithstanding these boundaries, autoscaling and range
scaling seem to perform better than the other methods
with regard to the biological expectations. That is, range
scaling and autoscaling were able to remove the depend-
ence of the rank of the metabolites on the average concen-
tration and the magnitude of the fold changes and
showed biologically sensible results after PCA analysis.

Relation between the abundance or the fold change of a metabolite and its rank after data pretreatmentFigure 8
Relation between the abundance or the fold change of a metabolite and its rank after data pretreatment. The 
highest ranked metabolite after data pretreatment, based on its cumulative contributions on the loadings of the first three PCs, 
has position 1 on the X-axis. The metabolite that is ranked at position 1 on the Y-axis has either the highest fold change in con-
centration (largest standard deviation of the peak area over all the experiments in the clean data (O)); or is most abundant 
(largest mean concentration (�)) in the clean data.
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Other methods showed a strong dependence on the aver-
age concentration or magnitude of the fold change
(centering, log transformation, power transformation,
level scaling, pareto scaling), or lead to PCA results that
were poorly interpretable in relation to the experimental
setup (vast scaling).

Using a pretreatment method that is not suited for the
biological question, the data, or the data analysis method,
will lead to poor results with regard to, for instance, the
rank of the most relevant metabolites for the biological
question that is subject of study (Figure 7 and 8). This will
therefore result in a wrong biological interpretation of the
results.

In functional genomics data analysis, data pretreatment is
often overlooked or is applied in an ad hoc way. For
instance, in many software packages, such as Cluster [29]
and the PLS toolbox [22], data pretreatment is integrated
in the data analysis program and can be easily turned on
or off. This can lead to a careless search through different
pretreatment methods until the results best fit the expec-
tations of the researcher. Therefore, we advise against
method mining. With method mining, the best result
translates to 'which method fits the expectations the best'.
This is poor practice, as results cannot be considered reli-
able when the assumptions and limitations of a data pre-
treatment method are not taken into account.

Furthermore, it is sometimes unknown what to expect, or
the starting hypothesis is incorrect.

As far as we are aware, this is the first time that the impor-
tance of selecting a proper data pretreatment method on
the outcome of data analysis in relation to the identifica-
tion of biologically important metabolites in metabo-
lomics/functional genomics is clearly demonstrated.
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Stability of the rank of the most important metabolitesFigure 9
Stability of the rank of the most important metabolites. The order of the metabolites is based on the average rank.

Range scaling
All Round 1 Round 2 Round 3 Metabolite

1 2 1 6 2 BAC-607-N1044 
2 1 2 8 1 glyceraldehyde-3-phosphate
3 3 7 13 3 isomaltose
4 7 12 7 6 uridine
5 17 5 10 5 mannitol
6 15 9 5 9 glucose-6-phosphate
7 8 13 15 7 BAC-607-N1058 
8 5 23 1 16 disaccharide
9 6 4 30 11 disaccharide
10 9 29 3 18 gluconic acid lacton
11 19 26 2 14 sugar-phosphate
12 24 10 18 10 malate
13 16 30 4 17 heptulose-7-phosphate
14 13 14 17 27 disaccharide
15 10 17 33 12 disaccharide
16 4 3 36 30 BAC-647-N1012 
17 12 11 20 34 BAC-629-N1037 
18 23 6 22 28 BAC-607-N1021 
19 11 16 48 4 citric acid
20 18 21 11 37 sugar phosphate
21 20 40 9 25 BAC-629-N1028 
22 14 36 32 15 BAC-610-N1012 
23 21 50 21 8 ribose-5-phosphate
24 27 35 12 35 oxalic acid
25 22 33 29 29 gluconic acid related

Level scaling
All Round 1 Round 2 Round 3   Metabolite

1 1 5 5 3 leucine    
2 2 6 6 4 BAC-644-N1003 
3 8 1 1 11 BAC-647-N1009 
4 3 7 7 5 fumarate
5 7 2 2 12 BAC-647-N1003 
6 10 13 4 1 BAC-641-N1011 
7 4 11 9 6 malate
8 5 4 11 16 isoleucine
9 9 10 3 14 BAC-647-N1008 
10 11 3 16 8 BAC-610-N1027 
11 13 9 13 9 BAC-647-N1011 
12 6 14 10 15 mannitol
13 15 8 15 7 BAC-647-N1010 
14 12 17 8 13 BAC-641-N1010 
15 14 12 14 10 BAC-647-N1012 
16 17 19 18 17 BAC-610-N1012 
17 16 18 19 18 BAC-644-N1005 
18 21 20 20 20 oxalic acid
19 18 22 45 2 hexadecanoic acid
20 26 30 12 23 BAC-647-N1013 
21 24 29 22 26 disaccharide
22 22 21 23 36 BAC-629-N1038 
23 19 16 24 43 BAC-629-N1040 
24 23 25 25 30 dihydroxyacetonphosphate
25 20 15 26 45 degr glutamic acid
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