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[1] The superimposition of rhythmic bed forms of different spatial scales is a common
and natural phenomenon on sandy seabeds. The dynamics of such seabeds may interfere
with different offshore activities and are therefore of interest to both scientists and offshore
developers. State-of-the-art echo sounding accuracy allows for the analysis of bed form
dynamics on unprecedented spatial and temporal scales. However, the superimposition of
bed forms complicates the automated determination of morphodynamic parameters of
individual bed form components. In this research we present the extension and comparison
of two well-known, automated signal-processing methods for the 1-D and 2-D separation
of bathymetric data derived from multibeam echo soundings into different components
that each represents a bed form of a particular length scale. One method uses geostatistical
filtering, and the other uses a Fourier decomposition of the bathymetric data. The
application of both methods in two case studies of the North Sea shows that both methods
are successful and that results correspond well. For example, megaripples up to 0.83 m
height could be separated from 1.49–2.28 m high sand waves, and regionally averaged
lengths and heights of sand waves, as calculated in either method, differ only 0.42–8.2%
between methods. The obtained sand wave migration rates differ 7–11% between
methods. The resulting morphometric and morphodynamic bed form quantification
contributes to studies of empirical behavior and morphodynamic model validation and is
valuable in risk assessments of offshore human activities.
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1. Introduction

[2] Rhythmic bed forms are widespread on shallow sandy
seabeds and river beds. The superimposition of bed forms of
different spatial scales, each changing at a different tempo-
ral scale, causes a complex dynamic behavior of the bed. On
the North Seafloor, for example, sand waves with wave-
lengths between 100 and 800 m and wave heights in the
order of meters are reported to migrate measurable distances
on time scales of years [Van Dijk and Kleinhans, 2005; Van
Dijk et al., 2006], whereas superimposed megaripples,
which are a factor 10 smaller, observably migrate on the
scale of days [Knaapen, 2005; Knaapen et al., 2004; Wever
and Stender, 2000], or even of hours [Idier et al., 2002].
However, it is only partly understood how sand waves and
megaripples interact dynamically at the seabed.

[3] That such interaction exists is indicated empirically
by several authors: the occurrence, size, orientation
[Lindenbergh, 2004; Van Dijk, 2002; Van Dijk and
Kleinhans, 2005] and the migration rate [Knaapen et al.,
2004] of megaripples is observed to vary systematically
with their relative location on the underlying sand waves.
Idier et al. [2004] showed in a numerical morphodynamic
model that variable flow conditions over sand waves cause
megaripples to grow only on those parts of sand waves
where the bed shear stress is sufficiently large. Since the
dynamic behavior of megaripples appears to be controlled
by sand waves and since megaripples are much more mobile
than sand waves [Cullen, 2005; Knaapen et al., 2004], and
thus easier to observe on short time scales, we hypothesize
that themorphodynamics of megaripples are a good proxy for
the dynamics of sand waves. For this purpose, the quantifi-
cation of individual bed form dynamics is crucial. Correctly
separated compound bed forms allow for a more accurate
calculation of the shape and migration rate of bed forms of
different scales. Consecutively, obtained bed form parameter
values can serve as input for simulation models that link
morphology to local hydrodynamic conditions. Such ap-
proach may lead to a better insight in to what extent mega-
ripples interfere with the migration of sand waves.
[4] The dynamics of individual bed forms are important

to both scientists and offshore developers. For example,
modeled variations in the boundary layer thickness over
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sand waves and their bed roughness affect the bed shear
stress and hence the sediment transport [Idier et al., 2004;
Soulsby, 1997]. Also, sand banks and sand waves affect
tidal flow directions [e.g., Elias et al., 2003; Van de Meene,
1994] and interfere with surface waves in shallow water
[Van Dijk and Kleinhans, 2005]. Megaripples, too, despite
their apparent small dimensions, affect the hydrodynamics
by damping surface waves and therewith affect sediment
transport [Cherlet et al., 2007]. Understanding these pro-
cesses is imperative for maintaining the natural coastal
defense of countries such as the Netherlands. Farther
offshore, sand banks and sand waves are of interest to the
marine aggregate industry. From an engineering point of
view, mobile bed forms interfere with offshore construc-
tions. For example, height differences caused by migrating
sand waves may affect the stability and productivity of
offshore wind turbines and have caused free spans of
pipelines [Morelissen et al., 2003; Santoro et al., 2004].
Investigating the local dynamics of seabeds in anticipation
on selecting suitable construction sites proves to be impor-
tant in lowering the risks (thereby lowering insurance costs)
as well as mitigating the impacts on offshore constructions.
From a managing point of view, sand waves in shallow
areas may form a danger to navigation, for example, in the
shipping lane approaching the harbor of Rotterdam, the
Netherlands. Empirical knowledge on the regional dynam-
ics of sand waves and megaripples leads to more efficient
survey planning and dredging strategies for those authorities
that are either charting the seafloor areas or maintaining
critical navigation depths [Cullen, 2005; Dorst, 2004;
Pluymaekers et al., 2007; Wüst, 2004].
[5] A wide range of process-based morphodynamic mod-

els explains the generation and evolution of bed forms.
Hulscher [1996] demonstrated that sand waves are gener-
ated by residual vertical circulation cells in which sand is
transported toward the sand wave crests. Extended models
show that sand wave migration is caused by a tidally
induced residual flow [Németh, 2003; Németh et al.,
2002] and higher tidal constituents [Besio et al., 2003,
2004]. Németh et al. [2007] refine the explanation of sand
wave evolution with sensitivity tests using an idealized
model. The occurrence and dimensions (esp. wavelength)
of sand waves have been predicted in models by Hulscher
and Van den Brink [2001], Van der Veen et al. [2006], Besio
et al. [2006] and Cherlet et al. [2007] and are shown to be
dependent on, among others, water depth, tidal regime and
sediment grain size. Other models simulate the effect of
existing bed forms on the boundary layer flow conditions
[Idier et al., 2004]. Although it is essential to validate these
theoretical models with empirical data [e.g., Németh, 2003],
this has only been done summarily [e.g., Cherlet et al.,
2007; Németh et al., 2007], because of the scarcity of
reliable empirical analysis results.
[6] With the arrival of multibeam echo sounding

(MBES), the state-of-the-art technique in which many depth
observations are obtained simultaneously in a wide swath
below the ship [FitzGerald and Knight, 2005; Lurton,
2002], and in combination with the differential Global
Positioning System (dGPS), the vertical and horizontal
accuracy and horizontal resolution are adequate for reliable
empirical morphodynamic investigations of both sand
waves and megaripples together. The limited horizontal

resolution of traditional single beam echo sounding, in
which soundings are only obtained vertically below the
ship, does not allow for the calculation of migration rates of
sand waves [e.g., Lanckneus and De Moor, 1991; see also
Németh, 2003; Németh et al., 2002; Terwindt, 1971], let
alone of megaripples. In contrast, modern MBES results in
observational densities of several to tens of soundings per
square meter in shallow seas as the North Sea.
[7] To date, the geometry and especially the migration of

sand waves have been determined manually from maps
(Besio et al. [2004], V. Van Lancker (personal communication,
2007, about data given by Cherlet et al. [2007]), Lanckneus
and De Moor [1991], and Van Dijk and Kleinhans [2005]) or
by simplified calculations for geometry only [e.g., Santoro et
al., 2004]. Analyzing the large, digital data sets obtained with
MBES require a new, objective and automated analysis
approach. However, the superimposition of bed forms of
differential mobility complicates the automated analysis of
individual bed form parameters, such as wavelength, wave
height, asymmetry and crest orientation, and dynamic param-
eters, such as wavelength and wave height variations and
migration rate. It is therefore necessary to develop an
automated method that separates the bathymetric data into
bed forms of different spatial scales.
[8] Several approaches exist for the automatic separation

of dense surveying data into subsets with certain predes-
cribed properties. For the purpose of separating vegetation
points from real terrain points in airborne laser scanning
data [Sithole and Vosselman, 2004], notably the robust
interpolation method is designed [Kraus and Pfeifer,
1998]. This method iteratively determines a surface that
runs in a suited way between the two sets of points by
adapting the interpolating weight of each point accordingly
in each iteration, for instance by using a geostatistical
approach. It has been shown that this method can also be
used to remove outliers inMBES data [Bottelier et al., 2005].
A classic application of using spectral methods in the geo-
spatial domain is the representation of the Earth’s gravita-
tional field by a series of spherical harmonics [Heiskanen and
Moritz, 1967]. Both geostatistical and spectral methods have
been applied to detect and describe periodic morphological
features from gridded topographic maps [Mulla, 1988]. The
author concludes that the spectral method is favorable in
describing periodic features, whereas the geostatistical ap-
proach is the only method capable of identifying the
orientation and correlation scale of relatively small non-
periodic features. Fourier series are normally used to ap-
proximate one-dimensional harmonic time series [e.g.,
Oppenheim et al., 1997] and were previously applied to
describe aeolian bed forms [Stam, 1994]. Curvatures, here
used for locating crest and trough lines, was also used in
automated landform analyses, then often referred to as
‘‘ridges and valleys’’ [e.g., Cazals et al., 2005; Rana, 2006].
[9] Closer to our field, Knaapen [2005] previously used a

low-pass filter to remove megaripples from sand waves as
noise in order to estimate sand wave dimensions and
migration rates, but his value of sand wave migration seems
to be overestimated by a factor 3 for one of our cases
(Egmond). He provides a general estimation of the influence
of the input data accuracy, but does not account for errors
that were incorporated by the method itself when validating
the method. Dorst et al. [2006] recently presented a defor-
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mation analysis method for the estimation of sand wave
dynamics, in which statistical hypotheses of ideal bed form
models are tested on gridded echo soundings (cell size
50 m). Herein, the complexity of the bed is built up in
three levels, but the morphology remains idealized (e.g., by
assuming planes for underlying sloping trends and perfect
sinusoids for sand waves) and does not reach the complex-
ity level of megaripples. These two existing methods both
exclude an analysis of megaripples and both rely on certain
a priori assumptions of the seafloor morphology. What is
still missing in our point of view is an approach that focuses
purely on the bathymetric signal contained in the available
echo soundings.
[10] In this paper, we present and evaluate two methods,

newly extended for the automated separation of echo
sounding-based bathymetric data into bed forms of different
spatial scales, which are subsequently applied in the mor-
phodynamic investigation of compound bed forms. The first
method is factorial Kriging, a sophisticated geostatistical
data analysis method [Goovaerts, 1997], and the second
method is a Fourier analysis, whereby the original signal is
decomposed in a series of sinusoids. From these separated
signals, morphometric and morphodynamic parameters of
individual bed forms of different scales can be calculated
objectively. Both methods are tested on the same MBES
data of two sites in the North Sea and the results are
compared and discussed, complete with uncertainty and
sensitivity analyses. We hereby concentrate on the separa-
tion of sand waves and megaripples. The results of this work
will contribute to the understanding of individual bed form
dynamics in various environments, such as coastal, marine,
estuary and river environments, and will lead to applications
such as a seabed dynamics map of the North Sea.
[11] In section 2, we define the bed form parameters and

describe both methods. In section 3, we present the sepa-
ration results of both methods, supported by accuracy levels
and applied to the same data sets of two case studies of
different sand wave fields in the North Sea. In section 4, we
determine individual bed form parameters from the separated
signals. In the two final sections of the paper, we discuss

method accuracies and sensitivities, flexibility and efficiency,
and state the concluding remarks and wider implications.

2. Description of the Two Bed Form Separation
Methods

2.1. Bed Form Parameter Definitions

[12] The bed form orientation, or strike, is the average
angle in degrees from UTM north (over east) of the bed
form crest lines. Several definitions of sand wave dimension
parameters are used in the literature. In this paper, we define
the sand wavelength, L, as the length of the base line segment
connecting two consecutive trough points on the smoothed
sand wave profile normal to the strike, see Figure 1. The sand
wave height, H, is the length of the line segment, perpen-
dicular to the base line segment, that connects the base line,
l, to the sand wave crest point. The term amplitude is
reserved for the original physical definition of the distance
between the midpoint and maximum extent of a wave
function. The megaripple length and height are defined
analogously. Characteristic morphologic points of bed forms,
which are used in this paper, are indicated in Figure 1.

2.2. Geostatistical Separation Method: Factorial
Kriging

[13] The geostatistical 2-D filter method for separating an
original signal into a sand wave component and a mega-
ripple component first applies a variogram analysis to
determine the direction-dependent variability of the bathy-
metric signal. The directional variograms are used to de-
compose the bathymetric signal into a sand wave and mega
ripple component by means of factorial Kriging.
2.2.1. Variograms and Sand Wave Orientation
[14] The presence of sand waves causes a different

variability in the seafloor topography in different directions.
One way to determine the dominant direction of the sand
wave crest is to perform a variability analysis [Dorst, 2004].
For this purpose, variabilities in depth (zi � zj)

2 are
computed for pairs of depth observations (xi, yi, zi) and
(xj, yj, zj). The results are grouped with respect to the
difference in length and direction of the positional differ-
ence vectors (xi � xj; yi � yj). When averaging the results
per difference class, the anisotropic, experimental variogram
is obtained [Goovaerts, 1997]. The sand wave orientation is
obtained by determining the direction of minimal variabil-
ity. Figure 2 shows two directional variograms, one parallel
to the sand wave crest (bottom curve) and one perpendicular
to the crests (top curve). In Figure 2, the dots represent
experimental variograms and the continuous lines are pos-
itive definite variogram functions fitted to the experimental
variograms. While fitting, mostly a choice is made between
three classes of variogram functions: the exponential, the
spherical and the Gaussian class [Goovaerts, 1997]. The
principal difference between the classes is in their derivative
at the origin and at the smoothness behavior this implies:
Gaussian functions have zero derivatives, while the deriv-
atives of the other two classes are always negative. There-
fore the Gaussian class produces relatively smooth surfaces,
at the cost of being computationally less stable.
[15] Commonly used parameters in variogram fitting are

the range, the distance after which the maximal variability
of the signal is reached, the sill, i.e., the value of the

Figure 1. Definition of the morphologic parameters
wavelength and height and characteristic morphologic
points of bed forms, the crest point, C; trough point, T;
inflection point of the lee side, i; brink point, b; and toe
point, t.
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maximal variability, and the nugget, the microscale vari-
ability that appears in the variogram as the y axis intercept.
In Figure 2, the variability in the direction perpendicular to
the crests first reaches a sill value of around 800 dm2 at
100 m and then decreases again. This decrease coincides
with the periodicity of the sand wave signal. The poor fit at
larger distances does not cause any problems in the follow-
ing interpolation step because of the negligible weight of
observations at larger distances.
2.2.2. Ordinary Kriging
[16] The Ordinary Kriging method determines the Best

Linear Unbiased Predictor (BLUP) for a depth ẑ0 =
Pn

i¼1 wizi
at location p0 from depth observations z1, . . ., zn, at locations
p1, . . ., pn, given a covariance function cov(h): R2 ! R,
depending on the difference vector, hij, between two obser-
vations pi and pj [Goovaerts, 1997]. This depth prediction ẑ0
is optimal in the sense that it minimizes the expected error
variance, given the unbiased condition. It can be shown that
this optimal solution for the weights is obtained by solving
the ordinary Kriging system Cn � wn = dn, with

Cn ¼

C11 � � � C1n 1
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. . .
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[17] Here, Cn, denotes the redundancy matrix filled with
covariances Cij = cov(hij) between the observations. The
proximity vector, dn, contains the covariances Ci0 = cov(hi0)
between the prediction location p0 and the observations.
Solving the system is always possible, given a positive
definite covariance function, and the unique solution gives
the weights w1, . . ., wn, corresponding to the BLUP. To
ensure that the found solution is indeed unbiased, an
additional condition that the weights sum up to one, is
necessary. This extra condition is added to the system by
means of a Lagrange multiplier m. This extra condition to
ensure unbiasedness is not necessary if the mean depth is
known. In this case, local deviations of the mean are predicted
using a simplified version of System (equation (1)), the

Simple Kriging system. On the other hand, an extension of
System (equation (1)) may be necessary if the seafloor
contains a trend: parameters describing such trend can be
estimated simultaneously by adding more Lagrange param-
eters; this method is referred to as Universal Kriging. For a
more extensive overview of the alternative Kriging systems
available, the reader is referred to textbooks as [Goovaerts,
1997] and [Wackernagel, 2003]. Note that solving the Krig-
ing system not only results in a predicted depth ẑ0, but also in
a formal error variance value êo. This error variance reflects
the proximity of the observations, with respect to the covari-
ance function: the stronger the correlation between the
prediction location and the observations, the lower the error
variance. Note that the error variance does not depend on the
actual depth values of the observations.
2.2.3. Incorporating Anisotropy
[18] Assuming second-order stationarity, variograms and

covariance functions are directly related, and the correspon-
dence is given in the variogram by g(h) = s2 � cov(h),
where s2 is the sill. From Figure 2 it is clear that the
variogram value, and thus the covariance value between two
positions, depends on the direction of the difference vector
between the positions. Therefore we use a 2-D covariance
function for the Kriging system that combines the two
extreme directional covariance functions, covC, in the
direction aC parallel to the crests, and covP, in the direction
aP perpendicular to the crest (compare Figure 2). For this
purpose we decompose the difference vector h = (hx, hy)
between two positions in a crest component hC and a
perpendicular component hP, that is, we use cov(hx, hy) =
1/2(covC(hC) + covP(hP)) with

hC
hP

� 	
¼ cosaC cosaP

sinaC sinaP

� 	�1

� hx
hy

� 	
; ð2Þ

to fill the redundancy matrix and the proximity factor.
2.2.4. Separating Spatial Components
[19] The bathymetric signal Z contains a sand wave

component ZS(x, y) and a megaripple component ZM(x, y).
It moreover contains a component ZN(x, y) representing
noise and possibly signals from smaller bed forms. There-
fore we can write

Z x; yð Þ ¼ ZS x; yð Þ þ ZM x; yð Þ þ ZN x; yð Þ: ð3Þ

Separating the sand wave component from the smaller
components is achieved by predicting ẐS(x, y) at the
observation locations. For this purpose we use a slightly
adapted version of Ordinary Kriging. The variability in z
values due to sand waves can be determined by using a
subset of the original data set, such that its resolution is high
enough to represent the sand wave signal, but low enough to
neglect most of the smaller components. In this way we
obtain the long-range variograms as shown in Figure 2.
Kriging with a long range means that observations on long
distance still will contribute in the prediction. The sand
wave component can be emphasized even more by filtering
the nugget, N [Goovaerts, 1997; Wackernagel, 2003]: if the
nugget value N is present only in the diagonal elements of
the redundancy matrix but not in the proximity vector, it
will be filtered out and we will obtain ẐS(x, y) when solving

Figure 2. Directional variograms in the directions parallel
(bottom curve) and perpendicular (top curve) to the sand
wave crests. The periodicity in the top dotted line represents
the periodicity of sand waves.
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the Kriging system. Moreover, the remaining signal, that is
the residual, gives an estimation of the megaripple
component including signal and measurement noise. This
procedure of separating spatial components within the
Kriging paradigm is generally referred to as factorial
Kriging [Goovaerts, 1997]. Note that it is in principle
possible to add more components to equation (3), for
example a component ZL corresponding to sand banks. A
possible signal part corresponding to a sand bank
component can be found by applying the method for
isolating the sand wave component on an appropriate,
larger, spatial scale. In general, components can be found
iteratively by starting of with the largest component,
subtracting the estimation corresponding to this component

from the signal and continue for the next component using
the remaining signal.
2.2.5. Determination of Crest and Trough Lines
[20] Given the sand wave components, the crest and

trough lines are easily obtained by determining the maxima
(crests) and minima (troughs) along all vertical profiles
through the gridded sand wave representation. Note that
in this particular case the vertical or north-south direction is
approximately perpendicular to the sand wave crest orien-
tation. As a result of the removal of the strongly varying
megaripple component, a smooth sand wave signal remains.
Therefore the maxima and minima are found by determin-
ing extreme values within a search range, where the range
length is bounded above by the sand wavelength.

Figure 3. (a) Cumulative constituents of the Fourier analysis (zoomed in), showing three groups of
constituents that each represent a bed form type when summed: a near-horizontal large-scaled
topography, sand waves, and megaripples. (b) A 2-D power plot, with directional wave numbers, k, on
the x and y axes. Two zooms from the 2-D power plot: (c) The concentrated results for the sand waves,
opposed to (d) the more diffuse megaripple results.
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2.2.6. Uncertainty Calculations of the Kriging Method
[21] The robustness of determining the bed form orienta-

tion via the variogram analysis is assessed by considering
the quality of fit of the used variogram models and by
considering the spread in variability as a function of direc-
tion. The smoothing process is monitored both visually, by
plotting both the smoothed and input profiles together, and
quantitatively, by calculating the error distributions of
differences between the input data and the Kriging ap-
proximation, i.e., the residual megaripple signal, for both
the profiles (1-D) and surfaces (2-D). Quality measures are
the symmetry and standard deviation (in m) of these
distributions and the maxima of the errors. Lack of
symmetry in the distribution of the residual differences is
an indication for systematic biases that on their side
indicate a not optimal smoothing process. The calculation
of crest and trough point (CT) locations on the smoothed
curves is approximate and is restricted to the grid points of
the used grid. The evaluation is done by visual inspection
of the CT positions on contour plots of both the smoothed
surfaces and input grids.

2.3. Fourier Analysis

[22] A Fourier analysis is very useful for analyzing
superimposed rhythmic bed forms, such as compound sand
waves, because it breaks down a signal into a series of
constituent sinusoids of different amplitudes and frequen-
cies. Here, we apply one- and two-dimensional discrete
Fourier analyses on MBES data to, respectively, separate an
original signal of compound bed forms into sequences of
individual bed form types and to obtain the characteristic
orientation and plan view dynamics of the bed forms.
[23] For the 2-D Fourier analysis, the input is an inter-

polated grid of the measured MBES data, or surface. The
surfaces were obtained with a simple Kriging algorithm at 1
by 1 m cells (for accuracy calculations for each step, see
section 2.3.3.). Despite the high density and uniform distri-
bution of the measurements, the Kriging algorithm was
chosen, on the basis of best precision performances in
preanalysis assessments of Average, Median and Kriging
interpolation results. The input for the 1-D analysis is a
profile, i.e., a sampled signal (dx � 1 m) from the surface.
2.3.1. Separation of the Compound Signal
[24] If a one-dimensional sampled signal on a finite

length interval is sampled with N sample values fj, 0 	
j < N, then these values can be expressed by the Fourier
series [Press et al., 2002]:

fj ¼
1

N

XN�1

k¼0

Fke
�2pijk=N ; ð4Þ

where Fk are the Fourier coefficients calculated by the
discrete Fourier transform. A plot of the constituent
sinusoids may show different groups of frequencies, which
each represent a different bed form type. For example,
Figure 3a shows three clear groups of frequencies,
representing, when summed, a sand bank, sand waves and
megaripples. These groups can be separated by multiple
truncation (i.e., low-pass filtering) of the original Fourier
series (equation (4)) at certain frequencies that correspond
to wavelengths between two bed form wavelengths. The

cutoff frequency is determined by choosing a value that
minimizes the number of identified crest and trough points
other than those of sand waves, and thus separates the
megaripples successfully, but still approaches the sand wave
morphology well (in this paper referred to as ‘‘optimal
truncation’’). The determination of the cutoff frequencies
was aided with a power versus wavelength plot, or
periodogram, to ascertain that the cutoff frequencies were
chosen in the nondominant frequency domain. The resulting
truncated series are Fourier approximations, or smoothed
curves, of the separated signals for the bed form types with
the larger wavelengths. The subtraction of these approx-
imations from the original bathymetric input signal results
in the residual signal of the smallest bed form type.
[25] By applying a 2-D Fourier transform, the orientation

of bed forms is obtained as follows. The 2-D power versus
wave number plot of the gridded data (Figures 3b–3d)
reveals the dominant wave number, k, in both the x and y
direction, as the cell of the highest power, ideally as one
point. Bed form wavelengths in both directions can be
calculated by l = 1/k. The slopes of the lines through the
points of dominant wave numbers and the origin of the plot
provide the characteristic orientations of the bed form types
in question. For example, in Figures 3b–3d, cells with
maximum power that correspond to the wavelengths and
orientations of sand waves (dark), occur in a condensed
zone or even a single cell (arrow in Figure 3c). In the case of
megaripples, the 2-D power plot displays a diffuse cloud of
cells with medium high power (lighter), due to the smaller
bed form height and the large variability of wavelengths and
orientations of megaripples over the lengths of sand waves
[Van Dijk and Kleinhans, 2005].
[26] A present extension of the Fourier method includes

the identification of three levels of spatial scales, allowing
for not only the separation of megaripples from sand waves,
but also the separation of sand waves from a large-scale
underlying morphology, for example sand banks.
2.3.2. Determination of Crest and Trough Lines
[27] In the Fourier method, the locations of crest and

trough lines are determined through calculation of the
minimal and maximal curvatures at each point of the bed
form surface. These computations involve first- and second-
order derivatives, requiring a smoothed surface [e.g., Cazals
et al., 2005].
[28] The smoothing of the surface was done by truncating

the discrete 2-D Fourier representation of the surface. Out of
other filter options, such as the Savitzky-Golay [Press et al.,
2002], we chose for a Fourier filter, on the basis of the
rigorous physical description of a surface. Two optional
filters were examined: (1) a low-pass filter, which truncates
the Fourier series at a chosen cutoff frequency, and (2) a
nth-order Butterworth filter [Oppenheim et al., 1997], which
has a more gentle filtering profile, of which the sharpness
can be set by choosing the order. This latter filter performed
best as it suppresses ringing artifacts, the Gibbs phenome-
non. Because of satisfying results, no other filter options
were considered.
[29] The curvature calculations [e.g., Gray, 1997], are

applied on the smoothed surface, denoted by S = S(x, y). To
clarify the concept of curvature, consider a plane through a
point on the surface S containing the (e.g., upward pointing)
normal vector and a unit tangential vector. The intersection
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of this plane with the surface S results in a plane curve for
which a curvature can be defined. The curvature of a plane
curve is a measure of the sharpness of the bend of the curve.
For any plane curve constructed in the described way a
curvature can be computed. The maximum (or first) and
minimum (or second) principal curvatures k1 and k2 are
defined as the maximum and minimum curvatures in view
of all plane curves. The associated unit tangential vectors
are called the principal directions and denoted by v1 and v2.
Principal curvatures and directions can conveniently be
calculated using the theorem that states that k1 and k2, are
the eigenvalues of the symmetric Weingarten matrix with
the corresponding orthonormal eigenvectors v1 and v2
[Cazals et al., 2005].
[30] It is assumed that the extreme values of curvature on

the smoothed surface occur at the crest and trough lines. A
crest line is expected to be locally orthogonal to the first
principal direction (the direction with largest curvature) and
has a maximal value along this direction. Therefore a crest
point is defined as a point (x, y, S(x, y)) for which the
directional derivative of S along the first principal direction
v1 vanishes, and the first principal curvature k1 > 0 is
sufficiently large. (The directional derivative of S along the
vector v1 is calculated as rS � v1, that is, the inner product
of the gradient of S in (x, y) and the vector v1.) Likewise, a
trough point is defined as a point for which the directional
derivative of S along the second principal direction v2
equals zero and the second principal curvature k2 < 0 is
sufficiently small.
2.3.3. Uncertainty Calculations of the Fourier Method
[31] In the Fourier method, each step of the procedure is

evaluated by an uncertainty calculation. The vertical accu-
racy of the MBES measurements in water depths used in the
cases in this paper is about 0.2 m. The interpolation quality
of the input grids is defined in terms of reproducibility
rather than by the discrepancy between the gridded z values
and the measured z values in that cell. Hereto, grids were

resampled to the exact locations of the original data points.
The standard deviation (in m) of the distribution of differ-
ences between resampled z values and the original MBES
measurements at each point is a measure for the reproduc-
ibility. Vertical differences up to a few dm’s are acceptable,
with the main criterion being the vertical measuring accu-
racy of the MBES data. A measure of the success of
representation of the real seabed is quantified by the
variances of observations within one grid cell. Uncertainties
of the bed form orientations follow from the calculated
range in angles within the cell of highest power (Figure 3b);
for the more diffuse zone of high power corresponding to
megaripple frequencies, the range in orientation is deter-
mined by angles corresponding to the edges of the ‘‘cloud’’
(see section 2.3.1).
[32] Monitoring of the smoothing process is done as

described in section 2.2.6. In the Fourier method, the calcula-
tion of CT locations on the smoothed curves is exact. The
evaluation is done as described in section 2.2.6, with the
additional inspection using three-dimensional surface plots.

3. Bed Form Separation Results for Both
Methods

[33] Both methods of bed form separation are applied in
two case studies in the North Sea. One site is the Rotterdam
approach zone, 70 km offshore from the coast near Rotter-
dam, the Netherlands (Figure 4a), covering 1 km2, of which
an almost yearly time series exists between 1992 and 2003.
The Rotterdam site comprises rather irregular sand waves of
different wavelengths and heights, covered by megaripples.
[34] The other site is a sand wavefield 50 km offshore

Egmond aan Zee, the Netherlands (Figure 4b), which covers
an area of 1 by 2.5 km and of which 5 data sets exist
between March 2001 and September 2002. At this site, sand
waves are more regular, both in height and alignment, and
also covered by megaripples.

Figure 4. Interpolated MBES images of 1 km2 areas, showing sand waves and megaripples. (a) Rotterdam
survey of 2002 and (b) Egmond survey of March 2001. Depths are given in decimeters to MSL. The
locations of Rotterdam (bottom square) and Egmond (top square) are indicated on the inset map.
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[35] Separation results of all epochs are taken into ac-
count in the interpretations, but merely the 2002 data for
Rotterdam and the March 2001 data for Egmond are
displayed in the figures in this paper. Both raw MBES data
sets have a data density of about 3 observations per m2. For
both case studies and in both methods, no separate noise
component is taken into account. That is, in all results, the
megaripple component still includes possible measurement
and interpolation uncertainties and smaller bed forms such
as ripples.

3.1. Case 1: Bed Form Separation Results, Rotterdam
Area

[36] In the geostatistical method, when comparing vario-
grams in different directions, an average crest orientation of
aC = 113� was found, which implies a perpendicular
direction of aP = 23�. For both extreme variograms,
depicted in Figure 2, the sill value was set at 800 dm2

and the nugget at 10 dm2. For the crestal variogram (bottom

curve), we used a spherical model with a range of 420 m
and for the perpendicular variogram (top curve) a Gaussian
model with a range of 50 m.
[37] Figure 5 shows the 2-D geostatistical filtering

results, with the separated sand wave signal on the left
and the residual megaripple image on the right. This image
gives a much clearer representation of the megaripples than
Figure 4. Still, the sand wave crests are recognizable, which
indicates that near the sand wave crests the smoothing effect
of the filter approach is too high. This could be solved by
decreasing the nugget value, but tests showed that, in that
case, parts of the ripples start to appear in the sand wave
signal. A possible solution is to vary the value of the nugget
with respect to the local seafloor depth.
[38] In the Fourier method, the characteristic sand wave

orientation, aC, is 112� ± 5� and thus the perpendicular
direction, aP, is 22� ± 5�. These values correspond very well
to the results of the geostatistical method. Figure 6 shows

Figure 5. Two-dimensional separation results of the geostatistical filtering method for the Rotterdam
data (2002): (a) the separated sand wave signal and (b) the residual megaripple signal.

Figure 6. Two-dimensional separation results of the Fourier method of the Rotterdam data (2002):
(a) the separated sand wave signal and (b) the residual megaripple signal. Scale bars denote amplitudes in
meters.
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the 2-D filtering results for the Fourier analysis, with the
smoothed sand wave signal on the left and the residual
megaripple signal on the right. In the 2-D Fourier Butter-
worth filtering, an optimal truncation was achieved when
the order n = 4 and the truncation is set at 28 frequencies, so
that only a vague sand wave signal is recognized in the
megaripple signal. However, automated curvature calcula-
tions for locating CT lines perform best when the cutoff
frequency is 8, and thus the sand wave signal appears more
strongly in the megaripple image.
[39] For Rotterdam, two profiles were examined in the 1-D

analyses. The original 1-D compound signals, perpendicular
to the calculated orientation of the sand wave crests, were
successfully described by a Fourier series with frequencies
up to 360 for both profiles (mean = 0.00; standard deviation =
0.04 m and 0.02 m for the western and eastern profile,
respectively). For the sand wave approximations, both series
were optimally truncated at 28 frequencies, which corre-
sponds to a wavelength of 40 m.
[40] Figure 7 shows the 1-D separation results of the

western profile (zoomed) for both methods. Both methods
underestimate the sand wave heights (Figure 7a), but the
Kriging method slightly more than the Fourier method. The
separated sand wave curves of the Kriging method are
smoother than those from the Fourier analysis; the latter
tuning was chosen, because it improves the estimation of
sand wave heights and the remaining perturbations do not
interfere with the automated determination of bed form
parameters. The Fourier method shows an overshoot at
the start of the separated profile, a boundary effect due to
the nonperiodicity of the data. We choose to simply ignore
the first 25 m of the Fourier results, so that the overshoot
neither affects the separation results nor the determination
of sand wave parameters (section 4). Quantitatively, the
vertical difference between the smoothed sand wave curves
of both methods for the Rotterdam 2002 data shown in
Figure 7a, displays a maximum of 0.40 m (Figure 8), which
is principally due to different degrees of wave height
underestimation. The average difference is 0.12 m, which
falls within the measurement accuracy of the input data.

[41] The megaripple signals of both methods show an
anomaly near the sand wave crests, due to the underesti-
mation of the sand wave heights. This anomaly was already
recognized in the 2-D images, and is clearly visible in
Figure 7b, where the largest peaks in the megaripple signal
correspond to the sand wave crests in Figure 7a. This
anomaly can also be seen in Figure 9, where the separated
curve is plotted with the real data. Figure 9 also shows that
the separated megaripples correspond both in size and shape
to those in the original compound curve, and that individual
megaripples of similar size and shape can be identified in
both methods, indicating that the separation of megaripples
is successful up to individual bed form level.
[42] In the Fourier method, the vertical interpolation

accuracy of the 2002 input grid has a standard deviation
of 0.15 m. This value is smaller than the vertical accuracy of
the measurements, and is thus acceptable. The distribution
of the differences between the smoothed sand wave curves
and the original data has a mean of 0.00 m for both profiles
and a standard deviation of 0.27 m and 0.21 m for the
western and eastern profile, respectively. Larger differences

Figure 7. Separation results of both methods for the Rotterdam data (2002) of a profile perpendicular to
the sand wave crests. (a) Sand wave signal from the geostatistical method (gray solid) and the Fourier
method (black dashed) and real data (spiked line). (b) The megaripple signals of the geostatistical method
(gray solid) and the Fourier method (black dashed).

Figure 8. Difference of the smoothed sand wave curves
between the Kriging and Fourier methods of the Rotterdam
2002 survey.
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are mainly due to the anomaly at the sand wave crests, and
may reach 1 m for Rotterdam (in some epochs with
extremes up to 2.5 m), which value exceeds the average
megaripple height of 0.18 m, which is 25.9% of the mean
sand wave height at the Rotterdam site.

3.2. Case 2: Bed Form Separation Results, Egmond
Area

[43] For the Kriging algorithm, a variogram analysis of
the Egmond data gave a sand wave crest orientation of aC =
97�, implying a perpendicular direction of aP = 7�. For both
extreme variograms the sill value was set at 80 dm2 and the
nugget, again, at 10 dm2. For the crestal variogram we used
a spherical model with a range of 500 m and for the
perpendicular variogram a Gaussian model with a range
of 40 m.
[44] In the Fourier method, the orientation of the Egmond

sand waves is 98� ± 1.5�, thus the perpendicular direction is
8� ± 1.5�. The uncertainty here is smaller than in the
Rotterdam case, since sand waves are more aligned. This
orientation corresponds very well to that obtained in the
geostatistical method. The average orientation of the mega-
ripples is 119� ± 9.3�. The large uncertainty, here again, is
due to the variable orientation of megaripples over the
lengths of sand waves [Van Dijk and Kleinhans, 2005].
Wavelengths and orientations, of about 20� with respect to
the sand wave crests, correspond to earlier manual findings
from maps [Van Dijk, 2002; Van Dijk and Kleinhans, 2005].
In the 1-D Fourier analysis, the original signal is described
by a Fourier series with frequencies up to 790. For the sand
wave approximation, the series is truncated at 62 frequen-
cies, which corresponds to a wavelength of 38 m.
[45] The success of both separation methods is illustrated

in Figure 10, where a detail of the separation results
perpendicular to the calculated sand wave orientation is
plotted together with the original input data. Similar to the
Rotterdam case, the geostatistical sand wave signal is
smoother than the Fourier signal, but the latter approximates
the sand wave heights better. Although the separated mega-
ripple signal shows the same anomaly at the sand wave
crests as in the Rotterdam case, the megaripples in both
methods are similar in size and shape, also when compared
to the original signal (Figure 10), supporting the success of
these separation methods on the megaripple scale.
[46] Quantitatively, the maximum difference between the

geostatistical and the Fourier sand wave signals for the
March 2001 set, along the full 2.5 km profile, is 0.31 m.
Both smoothed sand wave approximations are acceptable in

terms of the error standard deviation. In the Fourier method,
the standard deviation of the vertical accuracy of the March
2001 input grid is 0.084 m, which is well within the
accuracy of the MBES measurements. The distribution of
the differences between the smoothed sand wave curve and
the real data has a mean of 0.00 m and a standard deviation
of 0.10 m for both methods, which corresponds to the
megaripple heights at this site (see Table 2 in section 4).
The maximum difference due to the smoothing is, as before,
mainly due to the anomaly at the sand wave crests, and may
reach 0.4 m, which is 20.9% of the average sand wave
height. The distribution of differences is slightly skewed
(third moment equals 0.31 in the Kriging case) which again
reflects the anomaly at the sand wave crests. It should be
remarked that the distribution of the differences in this case
appears much more regular than in the Rotterdam case,
reflecting the more symmetric distribution in the Egmond
case.

4. Determined Parameter Values of Individual
Bed Forms

[47] The main reason for developing bed form separation
methods is the need for an objective, automated determina-
tion of parameters describing the shape and change of
individual bed forms of the different bed form types,
including the small perturbations. As a first application of

Figure 9. Residual megaripple signal compared to the real data, showing good correspondence in both
shape and size of the separated megaripples for (a) the geostatistical method and (b) the Fourier method.

Figure 10. Detail of the separation results of the Egmond
March 2001 survey for the geostatistical method (gray
solid) and the Fourier method (black dashed), compared to
the real data (dark blue solid line).
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our separation methods, we present the geometry (wave-
length and height) of sand waves and megaripples and
dynamic parameters (migration) of sand waves along pro-
files normal to the sand wave crests.

4.1. Resulting Geometric Bed Form Parameter Values

[48] Crest and trough points are determined as described
in sections 2.2.5 and 2.3.2. Once these points are known,
bed form wavelengths and wave heights are determined as
defined in section 2.1.
[49] Resulting sand wavelengths and heights are summa-

rized in Table 1. In order to ignore the boundary effects in
the Fourier method, the first sand wave in the Rotterdam
case was not taken into account. Results of both methods
match remarkably well. Calculated average wavelengths for
Rotterdam (Table 1) only differ 2 m or 1.2% of the average
wavelength of the geostatistical method, on the basis of
8 sand waves, and for Egmond as little as 1 m or 0.42%, on
the basis of 9 sand waves. Average wave heights calculated
in both methods differ 0.13 m or 3.4% of the average wave
height determined in the geostatistical method for Rotter-
dam and 0.15 m or 8.2% for Egmond. Minimum and
maximum lengths and heights are also in very good
agreement between methods.
[50] The comparative results for megaripples parameters,

as calculated after filtering, between methods are quite poor
(Table 2). Profiles analyze large numbers of megaripples
and are therefore representative for megaripples in the area.
The difference for the average megaripple length in the
Rotterdam case is 8.35 m, which is 50.2% of the geo-
statistical average wavelength and for heights 0.33 m or
64.7% of the geostatistical average wave height, based on
the western profile. The length and height ranges for
Egmond are in better agreement (Table 2) with differences

in wavelength of 31.6% and of wave height of 33.3%. The
large differences in relative errors for megaripple results are
explained by methodological differences. First, the different
methods and different tuning between methods result in
different separated signals for megaripples. Second, locating
CT points in the geostatistical method is approximate,
whereas in de Fourier method, determining the locations
is exact (see sections 2.2.6 and 2.3.3). Third, the number of
megaripples included in the analyses is different between
methods. In the Rotterdam case, 37 megaripples are used in
the geostatistical method and 70 megaripples (including
smaller perturbations) in the Fourier method, which is due
to the higher precision of the Fourier description of
the original input surface and the use of all CT points of
the signal. Smaller ripples may in turn be separated from the
megaripples by applying an extra truncation. Despite these
contrasting results, individual megaripples as derived by
both methods are similar in shape. These shapes can also
clearly be recognized from the original data profiles.

4.2. Resulting Dynamic Bed Form Parameter Values

[51] Both methods automatically return morphologic
parameters, from which we determine dynamic parameters
of individual bed forms, i.e., the change in wavelength, the
change in wave height, the change in horizontal asymmetry,
and the horizontal displacement of crest, trough and inflec-
tion points from profiles. The geostatistical method calcu-
lates a trend on the basis of all time spans, whereas the
Fourier method calculates the displacement over the desired
period. Table 3 provides the sand wave migration rates for
all recent surveys. Between methods, the average migration
rates for crest and trough points differ 7.0% to 11.2% of the
geostatistical average migration rate. In the Fourier average
for the Rotterdam case, one outlier was removed. This point

Table 1. Sand Wave Sizesa

Geostatistical Method Fourier Analysis

Wavelength (m) Wave Height (m) Wavelength (m) Wave Height (m)

Rotterdam Sand Wave Data
Minimum 81 1.55 72 1.69
Maximum 299 6.73 288 6.85
Average 161 3.79 159 3.92

Egmond Sand Wave Data
Minimum 172 1.49 171 1.67
Maximum 341 2.28 337 2.46
Average 238 1.84 239 1.99
aSand wave geometries are based on eight sand waves (two profiles) in the Rotterdam case and nine sand waves in the

Egmond case, using surveys 2002 and March 2001, respectively. Results of other epochs are very similar.

Table 2. Megaripple Sizes

Geostatistical Method Fourier Analysis

Ripple Length (m) Ripple Height (m) Ripple Length (m) Ripple Height (m)

Rotterdam Megaripple Data
Minimum 6.00 0.12 2.00 0.005
Maximum 40.00 1.39 39.00 2.51
Average 16.65 0.51 8.30 0.18

Egmond Megaripple Data
Minimum 6.00 0.01 1.75 0.00019
Maximum 23.00 0.83 24.00 0.56
Average 11.70 0.24 8.00 0.16
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was identified as an outlier, because the crest point repre-
sented a broad crest at the bifurcation point of a sand wave
and was observed to jump in location in one of the time sets,
because of arbitrary (imprecision-driven) crest point identi-
fication.
[52] For determining the displacement of megaripples, a

more frequent time series is required, in which individual
megaripples can be identified in subsequent epochs.
[53] Two-dimensional analyses of crest and trough lines

qualify the plan view behavior of sand waves. CT lines for
Egmond, determined by the geostatistical method (Figure 11)
show a regular pattern of nearly parallel crests and troughs.
For the dynamic behavior, a detail of a bifurcation in the
northeast corner for all epochs (Figure 11b) reveals that the
central ridge is straightening up, as the sand wave moves
slightly northward near the bifurcation. Crest and trough lines
of the more irregular sand waves at the Rotterdam site, as
determined by the 2-D Fourier analysis, are displayed in
Figure 12a in 3-D view. Here too, the dynamic behavior as
read from a selection of epochs (Figure 12b), reveals that the
displacement is variable along crests and troughs, so that
rotation and preferential migration occur. The north-south
running ridge of the bifurcation migrates relatively rapidly
toward east.

5. Discussion

[54] The performances of both methods may be validated
by relative errors between mutual method results (parameter
values) and between smoothing differences and the average
parameter values. The small relative errors of mutual
geometric parameter values for sand waves, of less than
8.2%, confirm that the methods are successful in the
calculation of parameter values from separated signals.
However, the relative errors in sand wave height of 20–
25% of the average sand wave height, which are due to
extreme smoothing differences only, are undesirably large.
These anomalies are ascribed to the excessive smoothing
near sand wave crests and troughs, which is observed in
both methods (section 3). The anomaly can be minimized
only slightly by different tuning, otherwise the separation
becomes poorer. We think that the incorporation of steep-
ness-dependent variability in the horizontal resolution dur-
ing the smoothing process (i.e., higher resolution at the
crests and troughs) will be a solution. At this point in time,
we have not tested this, so suggest it to be future work. The
large mutual differences of megaripple geometry, of up to
64.7%, are partially explained by the methodological differ-
ences (approximate versus exact, see section 4). Further-
more, relatively small wavelengths of megaripples are more

easily affected by differences due to the location of grid
nodes and search windows. In addition, heights of mega-
ripples are partly within the uncertainty range of the
methods, so that differences may become more arbitrary
between methods. Nevertheless, since the correct shape of
individual megaripples was extracted from the bathymetric
signal, we consider the megaripple signal to be a useful
estimation of small-scaled bed forms at the seabed.
[55] For the dynamic parameter values of sand waves,

migration rate differences of 7–11% may be partially due to
the different calculation in each method (trend versus value,
see section 4). Also, migration rates in the Rotterdam and
Egmond areas are small and may be close to the accuracy
levels of the methods. However, mutual results show
exceptionally close agreement. More significantly, mutual
migration rates per area are almost the same, whereas those
between areas are clearly distinct. This demonstrated value
of both methods would be better exhibited when spatial
contrasts in migration rates are higher, such as between
offshore and coastal areas of the Netherlands, where respec-
tive migration rates may be near-static and about 20 m/a
[Van Dijk and Kleinhans, 2005; Van Dijk et al., 2006].
Migration rates of megaripples could not be determined with
the available data sets, because the large time intervals
would not allow for reliable identification of individual
megaripples in the following data set. This also implies that
the hypothesized interaction of megaripple and sand wave
dynamics cannot be revealed with these data sets, although
the methods would allow for this.
[56] The results presented in this paper are in close

agreement with sand wave dimensions obtained manually
at the Egmond site [Van Dijk and Kleinhans, 2005]. Van
Dijk and Kleinhans [2005] reported a sand wave crest
orientation of 91�, a megaripple orientation of 121� (136�
in sand wave troughs and 110� near crests), an average sand
wavelength of 203 m and an average sand wave height of
1.79 m, which were determined slightly off the profile that
we use here (compare to section 3.1 and Table 1), and a
megaripple length of 7 m (March 2001) and height of 0.4 m
(compare to Table 2). Van Dijk and Kleinhans [2005]
determined sand wave migration rates by manually mea-
suring the horizontal displacement of upper and lower lee
sides in printed profiles, over the period March 2001 to
April 2002. The average migration rate of both upper and
lower lee sides comes to 2.00 m/a for the manual results, in
comparison to 1.69 m/a (i.e., March 2001 to April 2002) for
the automated Fourier results in this paper. The migration
rate for these same Egmond data sets of 6.1 m/a over the
period 2001–2003 given by Knaapen [2005] seems over-
estimated, since the close agreement between results of both

Table 3. Sand Wave Migrationa

Geostatistical Method Fourier Analysis

Crest Points Trough Points Average CT Points (m a�1) Crest Points Trough Points Average CT Points (m a�1)

Rotterdam 1997–2003
Average (m) 3.03 0.88 4.13 0.63
Average rate (m a�1) 0.61 0.18 0.426 0.69 0.10 0.396

Egmond March 2001 to September 2002
Average (m) 0.60 4.74 2.25 3.45
Average rate (m a�1) 0.40 3.16 1.78 1.55 2.38 1.98
aAll displacements are toward NE.
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automated methods in this paper, as well as agreement with
manual results, strengthens our method’s credibility.
[57] For the Rotterdam site, relevant records of character-

istics of sand waves and in some cases megaripples are
based on manual measurements from vertical echo sounding
profiles from 1935–1938 and 1967–1969 [Terwindt, 1971]
and 1982 to 1985 [Tobias, 1989] and nautical charts of the
same periods, and on automated measurements on recent
data 1995–2002 [Knaapen, 2005] and 1990s to 2004 [Dorst
et al., 2006] (Tables 4 and 5). Our average sand wave-
lengths are smaller than the average lengths in the literature,

but all variables (L, H, orientation and migration) fall
largely within published ranges for nearby sites. Thus, if
the comparison to highly spatially and temporally variable
bed forms in the literature is considered to be valid, our
results for sand waves seem to refine results in comparison
to older methods. It must be noted that most findings in the
existing literature are based upon data that are of signifi-
cantly less horizontal resolution, that sites are at some
distance to our site and that local conditions may have
changed in the harbor approach zone. Compared to
Knaapen [2005], our sand waves are much higher, which

Figure 11. Two-dimensional crest and trough lines with the geostatistical method (a) for the entire
Egmond area of one epoch and (b) for a detail of a bifurcation in the northeast corner for all epochs.

Figure 12. (a) Three-dimensional crest and trough lines with the Fourier method for the entire
Rotterdam area for one epoch and (b) plan view of a detail of a bifurcation for six epochs.
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may be explained by high local variability apparent from the
literature, and our migration rates, in contrast with the
Egmond case, are higher in the Rotterdam case. Dorst et
al. [2006] found static sand waves in the case (site J) closest
to our site.
[58] In contrast, the variability in sizes of megaripples,

obtained with the two methods in this paper, is larger than
those reported in the literature (Table 5). We explain this by
the increase in range of megaripple sizes now that all
individual megaripples are counted, as opposed to assumed
representative averages in the manual methods or methods
using low-resolution data.
[59] Automated methods for the quantitative analysis of

bathymetric surveys are in a pioneer phase, certainly for
mobility analyses. With the two methods presented in this
paper, we add to the filtering method of Knaapen [2005]
because here we provide for the separation of compound
bed forms, which can subsequently be analyzed individu-
ally, and to the method of Dorst et al. [2006], because here
we reach the level of megaripples in the direct (nonideal-
ized) analysis of empirical data.
[60] The 2-D calculation of crest and trough locations in

time for both the Rotterdam and Egmond time series and in
both methods, indicate that sand waves behave most dy-
namically near bifurcation points. Therefore, future research
should not only focus on possible movement of sand
wavefields as a whole, as done by, e.g., Knaapen [2005]
and Dorst et al. [2006], but should also take into account
the lateral behavior of crests and troughs, by analyzing for
example the process of bifurcation.
[61] As in many automated analysis methods, several

subjective choices have to be made in the tuning of both
the Kriging and Fourier methods to obtain the desired result.
Note that in the results section, no value for the accuracy of
the found bed form orientations is provided for in the
Kriging case, but the robustness of determining the bed
form orientation via the variogram analysis can be tested as
described in section 2.2.6. In terms of sensitivity, if the
variability in different directions is strongly varying, as in
Figure 2, the actual choice of which variogram model to
use, does in general not affect the found value for the bed
form orientation. As stated before, the choice of the vario-
gram model and associated variogram parameters (nugget,
range and sill) strongly affects the bed form decomposition
results. Whereas the decomposed signal in the Fourier

method is discrete (with a finite number of frequencies
below the chosen cutoff frequency), the decomposition in
the Kriging method depends continuously on the variogram
parameters.
[62] Sensitivity tests for the Fourier method point out that

changing the cutoff frequencies in the 1-D Fourier method
results in a visual difference of the approximation of the
input signal, but has only a small effect on the morphologic
parameters of sand waves. For example, in the Egmond
case, changing the cutoff frequency from 28 to 62 frequen-
cies gave a visually improved approximation, but resulted in
merely a 0.7 m difference for the average sand wavelength
and 0.06 m for the average height. This insensitivity is
because the cutoff frequencies are chosen in a low-power
domain, in which frequencies have only a small contribu-
tion to the separated grouped components of dominant
frequencies that represent bed forms of different scales.
For the migration rates, differences are higher, in this
example from 1.7 m/a to 2.9 m/a, because of a jump in
one of the preferred automated CT locations in only 1 of the
epochs. In the Fourier method we tuned the cutoff frequen-
cies such, that crests of all regular sand waves were
optimally approximated, thereby increasing the uncertainty
of one bifurcated crest (which was removed as outlier).
[63] The efficiency of quantitative analysis methods

becomes important when working with large data sets, such
as MBES. Given N observations, the 2-D Fast Fourier
Transform needs O(N log2 N) calculations and is therewith
much faster than the geostatistical method, which needs
O(N3) calculations in the worst case. Note, however, that
methods for computational simplification of the Kriging ap-
proach are under development [e.g., Cressie and Johannesson,
2006]. Tuning of the input parameters for filtering the 2-D
surfaces requires some a priori insight in both methods, but
is more complicated in the Fourier method than in the
geostatistical method. Tuning of the input parameters for
smoothing 1-D profiles is in the Fourier method a simple
case of choosing cutoff wavelengths.
[64] In terms of flexibility, the geostatistical method has a

higher level of acceptance of input data anomalies. For
example, the geostatistical method handles input grids with
data gaps, whereas the Fourier method does not deal well
with these. Gaps in the grids are easily filled in grid fill
applications of existing interpolation software. Purely in
terms of separation, the Fourier method allows for custom-

Table 4. Sand Wave Characteristics for Rotterdam From the Literature

Lsw (m) Hsw (m)

Orientation (deg): Mean Mrate (m/a): Mean Distance (km)Mean SD Min Max Mean SD Min Max

Terwindt [1971] (site 9) 288 – – – 7.7 – – – 140 – 3 NE
Tobias [1989] (Euro-channel) 333 167 115 550 6.3 2.3 2.5 9.8 110 2 to SW 5.5 SW
Tobias [1989] (W of E-platform) 195 94 88 448 4.7 1.6 2.2 8.8 116 2 to SW 6–6.7 E
Knaapen [2005] (Approach Channel 1) 230.3 – – – 2.5 – – – 135 0.2 to NE 2.6 SE
Dorst et al. [2006] (sites A–K or J) – – 257 988 – – 0.2 4.6 – 0–2.7 (J: 0) J: 20 W

Table 5. Megaripple Characteristics for Rotterdam From the Literature

Lmg (m) Hmg (m)

Distance (km)Mean SD Min Max Mean SD Min Max

Terwindt [1971] (joint sites) – – – – 0.3–2 – – – unknown
Tobias [1989] (E-platform) 12.8 4.1 7 22 0.48 0.23 0.2 1.2 17 ENE
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controlled deselection of certain CT points, which makes
tuning of the input parameters more flexible and may
thereby reach an optimal approximation of the sand wave
heights without interfering with the megaripple signal.
Underestimation of heights has an effect on slope calcula-
tions. The geostatistical method deals better with nonperi-
odic features, such as one broad crest, for example at
bifurcation points, in a series of regular sand waves.
[65] Both methods can be extended to an analysis of any

number of bed form types by increasing the number of
scaled analyses in the geostatistical method and by increas-
ing the number of truncations in the Fourier method. First
experimental results [Pluymaekers et al., 2007] indicate that
methods for bed form decomposition can be combined with
bed form parameter-based segmentation of nonhomoge-
neous domains. Also, other important bed form character-
istics that were not presented in this paper, such as the
asymmetry, were determined automatically within the meth-
ods presented. In order to serve physical morphodynamic
models, parameter definitions could easily be adjusted to
custom-defined parameters. Furthermore, through the use of
different definitions [Rana, 2006], the Fourier method
allows for the automated detection of other characteristic
bed form points, such as the ‘‘brink point’’ and ‘‘toe point’’
[e.g., Allen, 1968, p.62] in addition to crest, trough and
inflection points (see Figure 1). Brink points normally
indicate the points where flow separation occurs, but at
low-angle marine sand waves, flow separation does not
occur [Best, 2005]. Nevertheless, sand waves do have these
points that characterize their morphology. Therefore, we
would like to add to the discussion whether brink points
should be taken into account in sand wave mobility studies,
for which, until now, mainly crest points have been used.
We have not tested whether brink and toe points could be
identified on megaripples.

6. Conclusions and Wider Implications

[66] Two newly extended methods, a geostatistical and
Fourier method, for the separation of 1-D and 2-D com-
pound bathymetric signals are compared and evaluated, and
are demonstrated to be successful in analyzing bed form
types of different spatial scales. Results from two case
studies in the North Sea show that the geostatistical method
underestimates sand wave heights only slightly more than
the Fourier method, because of a stronger smoothing of the
sand wave signal, due to which sand wave crests appear in
the residual 1-D and 2-D megaripple signals. This anomaly
may be reduced by the different tuning of input parameters,
the choice of which is prescribed by the research aim of the
analysis, or by incorporating a variable horizontal resolution
in future work.
[67] With the two methods presented in this paper, we

improved the analytical possibilities and accuracy of exist-
ing filtering methods, because here we provide for the
separation of compound bed forms into any level of bed
form types, down to the level of megaripples, which each
can subsequently be quantified individually in a direct
(nonidealized) analysis of empirical data.
[68] Both separation methods allow for the automated

determination of geometric and dynamic parameters of
individual bed forms. The close agreement of the results

of both methods, each using an independent algorithm, and
correspondence to manual results make their credibility
convincing. Between methods, sand wavelengths and
heights differ only 0.42–8.2%. For megaripples this differ-
ence is 32–65%, but individual megaripples are well
recognizable in shape. Migration rates of sand waves differ
7.0–11.2% between methods, thereby refining previous
estimates.
[69] Analyses performed with these methods contribute to

the explanation of the dynamics of compound bed forms.
These methods were developed for future investigations of
the interference of bed forms, an entirely new research
question, whereby sand banks, long bed waves [Knaapen
et al., 2001], sand waves and megaripples need to be
separated. The automated determination of bed form param-
eters is a relatively objective approach compared to previous
methods. It can deal with large amounts of bed forms
efficiently, thereby forming a means to the production of
empirical morphodynamic data for the validation of theo-
retical models as well as for the applied use of compiling
morphodynamic maps of continental shelves for offshore
developers and for the management of coastal, marine and
estuary environments. The additional identification of brink
and toe points may also make this method valuable for the
analysis of river dunes.
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